Chapter 1

AURAIT: COMBININGNEGATIVE THINKING AND
BRANCH-AND-BOUND INUNATE COVERING PROBLEMS

LucaP. Carloni
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Evguenii |. Goldberg
Cadence Berkeley Laboratories, Berkeley, CA 94704

Tiziano Villa
PARADES, 00186 Roma

Robert K. Brayton
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Abstract Recently a novel technique has been published to augment traditional Branch-
and-Bound (B& B) while solving exactly a discrete optimization problem [Gold-
berg et al., 1997]. This technique is based on the negative thinking paradigm
and has been applied to develop Aura, a Unate Covering Problem (UCP) solver
which reportedly was able to deal efficiently with some time-consuming bench-
mark problems. However, on average AURA was not able to compete with
SCHERZO, a classical UCP solver based on several new bounding techniques
proposed by O. Coudert in his breakthrough paper [Coudert, 1996]. This fact
left open the question on the practical impact of the negative thinking paradigm.
The present work is meant to settle this question. The paper discussesthe details
of AuraA II, a new implementation of the negative thinking paradigm for UCP
which combinesthe best of scHERZ0 and AUrRA. Experimental results show the

dramaticimpact of the negative thinking paradigm in searching the solution space
and propose AuRrA 11 as the most efficient available tool for unate covering.

Keywords: Combinatioral optimization, branch-and-bound, covering problem.

1. INTRODUCTION

The Unate Covering Problem (UCP) [Kam et a., 1997] occursofteninlogic
synthesisand operations research and is defined as:

= Given aBoolean matrix A (all entriesare 0 or 1), with m rows, denoted
as Row(A), and n columns, denoted as C'ol(A), and acost vector ¢ of the
columnsof A (¢; isthe cost of thei-th column), minimizethecost 27 ¢ =
Y5y zjcj, overal z € {0,1}", subjectto A z > (1,1, -+, 1)T.

Informally the minimum unate covering problem requires to find a set of
columns of minimum cost, such that each row intersects - “is covered by” - at
least once a column in the set (i.e., the entry at the intersection isa 1). For
simplicity assume that al columns have the same cost. An instance of UCP
with matrix A isdenoted UC' P(A).

In [Goldberg et al., 1997] the authors applied to UCP a novel technique
to augment Branch-and-Bound (B&B) by a new way of exploring solutions,
inspired by a paradigm called negative thinking. An algorithm named raiser
realizing negative thinking by means of incremental problem solving wasim-
plementedinacomputer program called AurA. Thispaper discussesthedetails
of the raiser algorithm and reports the results obtained with Aura 11, a new
UCP solver which combines the best techniques of the traditional B&B with
the negative thinking paradigm.

An exact solution of UCP may be obtained by a B&B recursive ago-
rithm, variants of which have been implemented in successful computer pro-
grams [Coudert, 1994, Coudert, 1996, Coudert and Madre, 1995, Rudell and
Sangiovanni-Vincentelli, 1987]. Branching is done by columns, i.e., subprob-
lems are generated by considering whether a chosen branching columnisor is
not in the solution. A run of the algorithm, say mincov, can be described by a
computation tree, where theroot istheinput of the problem, an edge represents
acal to mincov and an internal node is a reduced input. A leaf is reached
when a complete solution is found or the search is bounded away. From the
root to any internal node there is a unique path, which is the current path for
that node. The path leading to the node gives a partial solutionand a submatrix
Apn obtained from A by removing some rows and columns. On the path some
columnsareincludedin the partial solutionand they are denoted by path(Ay).

Suppose that we know that any minimal cover of A isgreater or equa toa
value L(Ay). Thevalueiscalled alower bound of thesolutionsof U C' P(Ay);
e.g., aMaximal Set of Independent Rows (M SIR) isalower bound (independent

Aurall: Combining negativethinkingand branch-and-boundinunatecoveringproblems 3

means that they have at most 1 one per column). So the size of any solution
of UC P(A) including the columnsin path(Ay) isgreater or equal to L(Axy)
+ |path(An)|. Hence, if we found before a solution best with the same or a
smaller number of columns, i.e., |best| < L(An)+ path(Ax) we can stop the
recursion and backtrack to the parent nodeof Ay . Denoteby K (Ay) thevalue
|best| — L(An) — |path(Ay)|. Theconditionto stop the recursionis given by
K(An) < 0. Ontheother hand, if K(Ax) hasalarge positivevalue, usually
it meansthat Z(Ay) isfar from the size of aminimal solutionto UC' P(Ay)
and so alot of branching is expected from A before aleaf can be reached.

Supposethat thereisno way of improving thesolution be st inthe search tree
rooted at Ay, yet K(Ay) ispositive. Usualy aB&B agorithmmust continue
branching. However, thereis another way of making K (A x) negative or zero:
itistoimprovethelower bound 7.(A). Thefirstway is“positive’, inthesense
that the algorithm tries to construct a better solution, and branching columns
are chosen in the hope of improving the current best solution. The second way
is“negative’, in the sensethat the algorithm triesto prove that thereis no better
solutionin the tree rooted at A . Often in thefirst leaf a solution very close
to a minimum one is found, so only few improvements are required to get a
minimum solution. Therefore “positive” search will succeed and yield a new
better solution only in a few of the potential 2" subproblems at the n-th level
of the computation tree. In the overwhelming majority of the subproblems
“negative’ search ismore natural. Thelessfrequently the best current solution
isimproved during the search, the more the “negative” search isjustified.

Toexploit both“ positive” and “ negative” search, B& B wasmodifiedin[Gold-
berg et a., 1997] as follows: start solving the initial problem with “positive
thinking” inthe ordinary column branching mode, called PT-mode. Then, when
the number of subproblems generated in the column branching mode becomes
large“enough”, solve each subproblemin the “ negative thinking” mode, called
NT-mode. Modes are switched depending on the ratio of the expected number
of improvements to the number of subproblems generated at this level of the
search tree. The smaller the ratio, the more appropriate it is to switch to the
NT-maode.

In [Goldberg et a., 1997] the resultsof comparing AUrA against ESPRESSO
[Rudell and Sangiovanni-Vincentelli, 1987] and scurErzo [Coudert, 1994,
Coudert, 1996, Coudert and Madre, 1995] were reported. Aura could out-
perform EsPRESsO on every benchmark, but was not always able to beat the
performance of scHERZ0, due to itsimprovements in the computation of the
lower bounds; partition-based pruning and further modificationsin the organi-
zation of the B&B scheme. In principle, these features are orthogonal to the
introduction of the negative thinking paradigm.

To assessfurther the strength of raiser, an approach (only partialy explored
in [Goldberg et a., 1997]) would have been to reproduce systematically all

4

the features of scHErzO within AuRA. This paper reports the results of the
aternative choice to re-implement raiser on top of scHErzo, yielding the
program aAura II, inorder to exploit the a gorithmic and programming virtues
of scHERZO together with the power of negative thinking available through
raiser. In Section 3. the results of this comparison are reported, showing
that Aura II isfaster than scHERZO, especialy in the most time-consuming
examples. Asfar asweknow aura II iscurrently the most efficient available
tool for unate covering. Aura IT combinesthe best of both worlds, and settles
some experimental questionsleft openin [Goldberg et ., 1997].

2. THE RAISING ALGORITHM

Figure 1.1 shows how the traditiona branch-and-bound agorithm min-
cov [Villa et a., 19974 is modified to incorporate the technique of incre-
mentally raising the lower bound. After the computation of the lower bound,
if the gap difference between the upper and lower boundissmall, i.e., lessthan
aglobal parameter mazx Raiser, anew procedure raiser isinvoked with a pa-
rameter n set to the value of difference. The parameter maz Raiser currently
is decided a-priori, but ideally it should be adapted dynamically. Intuitively if
thegap issmall, we conjecturethat a search in this subtree will notimprove the
best solution and so we trigger the procedure raiser that may either confirm
the conjecture and prove that no better solution can be found here or disprove
the conjecture and improve the best solution, updating the current one.

2.1 RAISING ALGORITHM: OVERVIEW

Asdiscussedin[Goldberg et d ., 1997] we devel oped an n-raiser procedure,
based on row branching. Given a covering matrix A, let A’ be a submatrix of
Aand A, arow from Row(A)\ Row(A’). Let S beasolutionof UC P(A").
Denote by O(A,) theset {5 | A,; = 1}, i.e, the set of al columns covering
Ay, and by Rec(A’' 4+ A,,5) aset of solutions of UC'P(A’ + A,) obtained
according to the following rules:

1. if Sisasolutionof UCP(A' + A,), then Rec(A’ + A,,5) = {S};

2. if Sisnotasolutionof UC P(A’ + A,), i.e, no column of S covers A,
then Rec(A' + A,,8) = {SU{j}| j € O(4,)}.

So Rec(A'+ A,) givesthesolutionsof UC P(A’ 4 A,) that can be obtained
from the solution S of UC'P(A’). According to 2., if .S is not a solution of
UCP(A'+A,),thenweobtain|O(A,)| solutionsof UC' P(A’+ A,) by adding
to 5" the columns covering A,,.

As discussed in [Goldberg et a., 1997], we represent the solutions of
UC P(A) by setswithastructureof multi-valued cubes[Rudell and Sangiovanni-
Vincentelli, 1987]. We define acubeto betheset ¢ = Dy x --- x D, where

Aurall: Combining negativethinkingand branch-and-boundin unatecovering problems

AuraMincov(A, path, weight, lbound, ubound) {

I* Apply row dominance, column dominance, and select essentials */

if (not reduce(A, path, weight, ubound)) return empty_solution,

/* Seeif Gimpel’s reduction technique applies*/

if (gimpel_reduce(A, path,weight, lbound, ubound, best)) return best

/* Find lower bound from here to final solution by independent set */

MSIR = mazimal_independent_set(A, weight)

/* Make sure the lower bound is monotonically increasing */

lbound_new = max(cost(path) + cost(M STR), lbound)

dif ference = ubound — lbound_new

/* Bounding based on no better solution possible */

if (dif ference < 0) best = empty_solution

elseif (dif ference < mazRaiser){ /[* Apply raiser with n = dif ference */
SolCube = cover_ M SIR(MSIR)
lower Bound = |SolCube|
a = raiser(SolCube, dif ference, A, lower Bound, bestSol, ubound)
if (a = 1) best = empty_solution
elsebest = path U bestSol [* (answer =0) */

elseif (A isempty) { /* New best solution at current level */
best = solution_dup(path)
} eseif (block_partition(A, A1, A2) givesnon-trivial bi-partitions) {
pathl = empty_solution
bestl = mincov(A1, pathl,weight, 0, ubound — cost(path))
/* Add best solution to the selected set */
if (bestl = empty_solution) best = empty_solution
else{
path = path U bestl
best = mincov(Asz, path, weight, lbound_new, ubound)

} else { /* Branch on cyclic coreand recur */
branch = select_column(A, weight, M STR)
pathl = solution_dup(path) U branch
let Ay,qnen bethereduced table assuming branch in solution
bestl = mincov(Avranch, pathl, weight, lbound_new, ubound)
/* Update the upper bound if we found a better solution */
if (bestl # empty_solution) [* Itimplies (ubound > cost(bestl)) */
ubound = cost(bestl)
/* Do not branchiif lower bound matched */
if (bestl # empty_solution) and (cost(best1) = lbound_new) return best1
let Az———- be the reduced table assuming branch notin solution
best2 = 'mincov(AbT — path,weight, lhound_new, ubound)
best = best-solution?bestl, best2)

}

return best

}

Figure1.1 AuraMincov: Traditional mincov algorithm enhanced by incremental raising.

@
@
®
O]

®
(16)
(17
(18)
(19)
(20)
21
(6)
U]

8
©)

(10)

(11

(12)

(13)

(14)

(15)

DinD;=0,i# jand D; C Col(A), 1< i,j < d. Thesubsets D; arethe
domainsof cube C'. So cube C' denotes a set of sets consisting of d columns.
Let A’ be a submatrix of A. The set of all irredundant (and minimum)

solutionsof UC' P(A”) can berepresented asthecube O(A;,) x -+ - x O(A

where A

ia)s

iy, A;, aetherows forming A’. Let C' = Dy x --- x Dy bea

cube of solutions of UC' P(A’). Then, choose a “good” row A, from from

5

6

Row(A)\ Row(A’). From the definition of the Rec operator * it followsthat
Rec(A"+ Ay, C) = partl(C) U part2(C) x O(A,) (11)

where part1(C') is the set of solutions contained in C" which cover A, and
part2(C') isthe set of solutionscontained in C' which do not cover A,. Hence,
Rec(A"+ A,, C') can be represented by r + 1 cubes where r isthe number of
rowsof the M ST R(A) intersecting A,,. Then, perform recursively the process
for each of ther + 1 cubes, i.e., choose a new row from those not yet selected
for each of the r + 1 cubes of solutions and split each cube according to the
rule explained in [Goldberg et al., 1997].

Theentire process can be described by a search tree, called cube branching
tree. Theinitial cube of solutionsC' correspondsto the root node, to which we
associate also apair of matrices M STR(A)and A M STR(A). Ineschnodea
choice of an unselected row from the second matrix of the node is made. The
chosen row is removed from the second matrix of the pair and added to the
first matrix of the pair. The number of branchesleaving anode is equal to the
number of cubesin which the cube corresponding to the node is partitioned
by the Rec operation, and each child of a node gets one of the cubes obtained
after splitting. So the cube corresponding to anode representsa set of solutions
covering the first matrix of the pair (that isa*“lower bound submatrix” for the
node).

Some useful facts are:

= When applyingan n-raiser, the branches corresponding to cubes of more
than | M STR(A)| + n domains are pruned.

= |f at anode arow A, ischosen such that no solution from the cube C'
of the node covers A, then there is no splitting of the cube, since Rec
yieldsonly onecube C' x [O(A,) \ (D1 U -+ U Dyg).

m At each node, the following reduction rule can be applied to the second
matrix of the pair: if arow of the second matrix is covered by every
solution of the cube €' corresponding to the node, then the row can be
removed from the matrix since, if we add it to thelower bound submatrix
of the pair, then the recomputed cube will be equal to C'.

The recursion terminates if one of the two following conditions hold:

1. Thereisanodesuchthat thereare no rowsleft in the second matrix of the
pair and the corresponding cubehas k£ domains, wherek < |M STR|+n.
This means that the lower bound |M ST R| cannot be improved by n.

1with the natural extensionthat Rec(4, C') = UCEC Rec(A,c).

Aurall: Combining negativethinking and branch-and-boundin unatecovering problems

Any solution from the cube can be taken as the best current solution of
UCP(A).

2. From al branches, nodes are reached corresponding to cubes with a
number of domains greater than |M STR| + n. In this case the lower
bound has been raised to | M ST R| 4+ n, sinceno solution S of UC' P(A)
existssuchthat | 5| < M STR| + n.

The correctness of the n-raiser procedure, applied to matrix A with lower
bound | M STR(A)|, has been proved in[Goldberg et & ., 1997].

2.2 RAISING ALGORITHM: IMPLEMENTATION

The procedure raiser returns 1 if the lower bound can be raised by n,
otherwise it returns 0, which means that the current best solution has been
improved at least once by raiser. The following parameters are needed:

= A isthe matrix of rows not yet considered. Initialy A = A"\ MSTR,
where A’ is the covering matrix at the node (of the column branching
tree) that called raiser, and M SR is the maximal independent set of
rows, found at the node (of the column branching tree) that called raiser.
Hence, A’ isthe covering matrix related to the subproblem obtained by
choosing the columns in the path from the root to the node that called
raiser. The set of chosen columnsis denoted by path.

m SolCubeisacubewhichencodesaset of partial solutionsof the covering
matrix A’. Initialy SolCube isequal to the set of solutionscovering the
MSIR.

= 7 isnumber by which the lower bound /bound must be raised. » isan
input-output parameter initially equal to ubound — |M STR| — |path|,
whichis decreased if raiser decreases the best current solution.

» [bound isan input parameter for raiser equa to | M STR|. Notice that

Ibound differs from the original lower bound 2 by a quantity equal to
|path], for consistency with the previous definition of n.

m ubound isthe cardinality of the best solution known at the time of the
current call of raiser.

m hestSolution isanoutput parameter which containsthenew best solution
found by raiser, if the lower bound could not be raised by n.

2lbound_new = |MSIR| 4+ |path].

7

raiser(SolCube, n, A, lbound, best Solution, ubound) {

/* returns 1 if solutionsin SolC'ube raise lower bound of A by n */
stillToRaise = lbound + n — number _domains(SolCube)
if (stillToRaise < 0) returnl
/*1f A = @ thenpath + solutionsof A in SolCube beats upper bound */
if (A =10) return found_solution(SolCube, n,bestSolution, ubound)
/* consider rows of A not covered by any solution from SolCube */
BSONTIR = find_best_set_of_non_intersecting_-rows(A, SolCube)
foreachrow r; € BSONTIR {

/* add anew domain for the columns coveringr;, € A */

SolCube = add_domain(SolCube, A,r;)

stillToRaise = stillToRaise — 1

if (stillToRaise < 0) return1

/* Removethe coveredrowsfrom A and check againif A isempty */
A= A\BSONTR
if (A=10) return found_solution(SolCube, n,bestSolution, ubound)
if (stillToRaise = 1) {
/* Cover with SolC'ube and removefrom A the 1-intersecting rows*/
/* If 2 rows intersect 2 different cols in the same domain, prune the branch */
if (add_set_of_lintersecting_rows(A, SolCube) = 1) returnl
if (4 =0)
return found_solution(SolCube, n, bestSolution, ubound)

/* select next "best" row to be coveredwith SolCube and removeit from A */
r; = select_best_uncovered_row(A, SolCube)
A=A\ {r}
[* splitting: partl = {SolCubeq, - -, SolCubey }; part2 = {SolCubey 41} */
split_cubes(SolCube, A, r;, partl, part2)
[* addto SolCubey € part2 new domain of the columnscovering r; */
SolCubeyy, = add_domain(SolCubey 1, A,r;)
/* branching on cubes of part1 and part2 */
returnValue = 1
while (partl U part2 # 0) {
/* select first cubesfrom part1, then cubefrom part2 */
SolCube; = get_next_cube(partl U part2)
/* if abetter global solution has been found set returnV alue to 0*/
if (raiser(SolCube;,n, A, lbound, bestSolution, ubound) = 0)
returnValue = 0

}

return returnV alue

}

found_solution(SolCube, n, bestSolution, ubound) {
[* extract any solution from SolCube by picking a column from each domain */
bestSolution = get_solution(SolCube)
newlUbound = cost(bestSolution)
newN = n — (ubound — newUbound)
n = newlN
ubound = newlUbound
return O

Figure1.2 Algorithm to raise the lower bound.

Aurall: Combining negativethinkingand branch-and-boundinunatecoveringproblems 9

Fig. 1.2 shows the flow of raiser, the procedure that attempts to raise the
lower bound of A. Natice that it requires a routine split_cubes which, for a
selection of arow r; covered by & of the d domains of SolCube, partitions
SolCube in k + 1 digoint cubes, each of d domains; so partl has k cubes
of solutionsfrom SolC'ube covering r;, whereas part2 has one cube of solu-
tions from SolCube not covering r;. The number of domains of SolCube is
computed by number _domains.

raiser isarecursive procedure which starts by handling two terminal cases.
The first one occurs when the variable stillToRaise 2, which measures the
gap between the upper bound and the current lower bound, is less or equal to
zero. If so, we know that the solutionsin S'olCube raise the lower bound of A
by at least n, so that no solutionsof A can beat the current upper bound. The
second terminal case occurs when, after some recursive cals, A has become
empty, and so any solution obtained as the union of asolutionof A in SolCube
together with the columns in the current path isthe new best solution.

After thesepreliminary checks, find_best_set_of non_intersecting_rows
is called. Thisroutine, reported in Figure 1.3, implements a fast heuristic to
find agood subset of rows of A which do not intersect any domain of SolCube
and which do not intersect each other. Ideally, we would like to get the best
BSONTIR set,whichisasort of “maximum set of independent rows’ related to
SolCube, but thiswould require the solution of another NP-compl ete problem.
We implemented instead the heuristic to insert first in the set BSONZR the
largest row that intersects neither adomain of SolC'ube nor arow previously
inserted into BSONZIR.

Thereafter, since each row r; in BSONZR isnot covered by any solution
encoded in SolC'ube, we must add a new domain to SolC'ube made by the
columns which cover r;. While we are adding these new domains, we keep
decreasing the variable stillT'o Raise and checking if its value becomes equal
to zero. Finally, we can remove the set BSONZR from A because the rows
have been covered by the new added domains. Notice that during the first call
of raiser the set BSONZR isempty because SolCube encodesthe M STR
and, by definition, every row not in the M ST R must intersect at |east one row
inthe M STR. However, during the following recursive calls of raiser the
original domains of SolCube may change, namely decrease in cardinality due
to split_cubes and add_set_of _lintersecting_rows. Hence, at some node of

3By definition,

stillToRaise = lbound 4+ n — number Domains(SolCube)
|[MSIR| + ubound — |MSIR| — |path| — number Domains(SolCube)

ubound — |path| — number Domains(SolCube)

10

find_ best_set_of _non_intersecting_rows(A, SolCube) {
/* Heuristic to find best set of rows non intersecting SolCube domains. */
emptylnter Rows =)
best Row =)
foreachrowr € A {
[* D isthe set of SolCube domainsintersected by r */
D = compute_set_of intersected_domains(SolCube, 1)
if (D=20){
emptylInter Rows = emptyInter Rows Ur
if (length(bestRow) < length(r))
bestRow = 7

}

[* If every row intersects domains of SolC'ube then return the empty set */
if (emptyInter Rows = 0)

return §
else{
/* Build BSONIR starting from best Row */
BSONIR =0
do {

BSONIR = BSONTIR UbestRow
emptylInter Rows = emptyInter Rows \ bestRow
/* Find the new best Row within emptyInter Rows*/
foreachrow r € emptyInter Rows {
if (r"BSONIR) # 0)
emptyInter Rows = emptylInter Rows \ r
elseif (length(bestRow) < length(r))

bestRow = r
} while (emptyInter Rows # 0)

return BSONIR

Figure1.3 Algorithm to find the best set of rows not intersecting SolCube.

the recursion tree, it may happen that a row of A is not covered anymore by
any domain of SolCube.

After having removed the rows belonging to BSON TR, another optimiza-
tion step can be applied successively before splitting SolCube. If at this point
stillToRaise is equa to 1, it means that we have aready raised the lower
bound by » — 1. Therefore, if we are forced to add one more domain to
SolCube, then we can prune the current branch. Hence, a simple condition
which leads immediately to pruning is the following: consider two rows r
and r, of A whichintersect SolCube only inonedomaind = {¢',¢2,..-, ¢!},
and suppose that 7; intersects only the column ¢*, while r, intersects only the
column ¢/, This fact allows us to prune the current branch because to cover
one of the rows we may choose either one of the two distinct columns of the
domain. Say w.l.0.g that we cover r; with ¢, then to cover r, we must use a

Aurall: Combining negativethinkingand branch-and-boundinunatecoveringproblems 11

column which does not bel ong to any domain of 5ol C'ube and so we areforced
to add one more domain to S'olC'ube, thereby raising the lower bound by n.

Figurel.4illustratestheprocedureadd set_o f _lintersecting rows, which
exploits the previous situation and, in practice, is invoked often because the
condition stillToRaise = 1 happens very commonly in hard problems. Basi-
caly, the routine is based on two nested cycles. The externd cycle is repeated
until the internal cycle does not modify SolCube anymore. Theinternal cycle
computes, for each row r» of A, theset D of thedomainsof S0l C'ube intersected
by r. If the cardindity of D isequal to 1, eg., D = {d}, we remove from d
all the columns which are not intersected by r and then we remove r from A,
since r has been covered.

Noticethat add_set_of _lintersecting _rows is caled just after having re-
moved from A the set of non-intersectingrows BSONZR and therefore when
all theremaining rowsof A intersect at least onedomain of SolCube. However,
after cycling inside this routine and removing some columns (thereby making
“leaner” some domains), it ispossible that arow of A isnot covered anymore,
i.e, |D| = 0. Asdiscussed above, this happens, e.g., when two 1-intersecting
rows intersect two different columns in the same domain D. In this case the
routine returns 1 in order to inform the caller to prune the current branch. If
this fact does not happen before the end of both cycles, a 0 is returned but,
at least a certain number of rows have been removed from A and the corre-
sponding intersected domains of SolCube have been made “leaner”. After
caling add _set_of lintersecting rows and removing 1-intersecting rows, it
is possiblethat A has become empty. If so, raiser cals found_solution to
update the variables best S olution, ubound and n.

After all these special cases have been addressed, we must select a new row
r; to be covered with SolCube. Therow r; isremoved from A and drivesthe
splitting of SolCube. The strategy to select the best row in order to split the
current SolCube, before calling recursively raiser, isto look for the row of
A which intersects the minimum number of domains of SolCube. The reason
is to reduce the number of branches from the node #. Notice that at this stage
each row of A intersectsat least 2 domainsof SolCube. In case of tiesbetween

different rows, therow having the highest weight ischosen. Theweight of arow

A, isdefined as [, :g—k: where m is the number of domains of S'olC'ube
k

intersecting A,, D;, isadomainintersected by A, and D = D;, \ O(A).

So the weight of A,, isjust the fraction of solutionsfrom S'olC'ube that do not

cover A, that is the quantity that we want to maximize when selecting a new

4Recall that there is a branch for each domain intersecting the row plus one more branch for the non-
intersecting domains.

12

add_set_of _lintersecting_rows(A, SolCube) {
/* Thisroutineiscalled only if stillToRaise = 1. It covers*/
/* with SolCube and removesfrom A the 1-intersecting rows, */
/* i.e., the rows intersecting only onedomain of SolCube. */
/* If 2 rows intersect 2 different columnsin the same domain, */
/* return 1 to the caller to prunethe current branch */
do {
reducingDomains = FALSE
foreachrowr € A {
I* D isthe set of SolCube domainsintersected by r */
D = compute_set_of _intersected_domains(SolCube, r)
it (|D|=1){
reducingDomains = TRUE
/* Get the domain d of SolC'ube coveringr and */
/* removefrom d all the cols which do not cover » */
d = get_covering_-domain(SolCube, r)
simpli fy-domain(d, r)
/* Removethe coveredrow r from 4 */
A=A\{r}

}
eseif (| D |=0){
[* After removing some columns, arow may not be*/
* covered anymore, so current branch must be pruned. */

[* else (| D |> 1): do nothing*/
[* becauser isnot a 1-intersecting row */

} while (reducing Domains)
return 0

Figure1.4 Algorithm to handle the 1-intersecting rows.

row. If D] = (), for some k, this means that A, is covered by any solution
from SolCube. Such arow issimply removed from A” and added to A’.

After performing the splitting of S'olCube as explained in [Goldberg et al.,
1997], raiser is called recursively on the digoint cubes of the recomputed
solution. If the current best solution is not improved in any of the calls, then
raiser returns 1, meaning that the lower bound has been raised by ». If instead
the current best solution has been improved once or moretimes, raiser returns
0 after having updated the current best solution and upper bound.

3. EXPERIMENTAL RESULTS

In[Goldberg et a., 1997], AUrA Was compared against the routine mincov
avalable in EsPrESSO, and against the results of scurrzo [Coudert, 1994,
Coudert, 1996, Coudert and Madre, 1995], the most effective UCP solver
available then. Compared to ESPRESSO, SCHERZO features a collection of
new lower bounds (easy lower bound, logarithmic lower bound, left hand side
lower bound, limit lower bound), and partition-based pruning. In this paper we

Aurall: Combining negativethinking and branch-and-boundin unatecovering problems

SCHERZO AURA 11T time
matrix R x C(5%) Sol. nodes time | nodes/A-nodes time | r | ratio
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 614510/156 | 110665 | 1 0.97
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 31185/243184 | 1346.67 | 2 0.12
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 1905/195190 74685 | 3 | 0.06
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 533632/52 | 524454 | 1 | 095
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 91345/667471 | 2994.88 | 2 | 054
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 | 15353/1624827 | 5967.92 | 3 | 110
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 26143/16 | 145481 | 1 0.97
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 6115/115460 | 1685.36 | 2 110
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 1389/754564 10162 | 3 | 6.70
saucier 171 x 6207 (47) 6 | 187089 | 11876.1 7136 240 | 1 | 0.002
saucier 171 x 6207 (47) 6 | 187089 | 11876.1 7136 240 | 2 | 0.002
saucier 171 x 6207 (47) 6 | 187089 | 11876.1 7136 24.0 | 3 | 0.002

Table1.1 Resultson Espressobenchmarks(scHERZO VS. AURA 11).

compare AURA 11, thatisraiser implemented insSCHERZO, agaiNst SCHERZO.
The benchmarks used belong to three classes: Table 1.1 contains difficult
cases from the collection of EsprEsso (we start from the matrix obtained
by EsprESsO after removing the essential primes) and some matrix encoding
constraints satisfaction problems from [Villaet a., 1997b]; Table 1.2 contains
random generated matrices with varying row/column ratios and densities (e.g.,
m200.100_30_70 meansamatrix with 200 rows, 100 columns, and each column
having a number of ones between 30 and 70). For each of these matrices, their
size (R x C'in the tables) and sparsity (5 expressed as a percentage in the
tables) are reported. The experiments were performed with a 1GB 625Mhz
Alphawith timeout set to 4 hours of cpu time. Tables 1.1 and 1.2 report two
types of data for comparison: the number of nodes of the column branching
computation tree and the running time. Concerning the number of nodes we
clarify the following points:

1. aura II has two types of nodes: those of the column branching com-
putation tree and those of the cube branching computation tree (called
A-nodesinthetables). Indeed aura TI followsadud strategy: it builds
thecolumn branching computationtree, but when at anodethedifference
between the upper bound and the lower bound is less than or equd to
the raising parameter » (or maz Raiser), Aura II callsthe procedure
raiser Which buildsa cube branching computation tree (appended at the
node where raiser was caled). So we need to report both numbers of
nodesto measurearun of AurA II.

2. Nodes of the cube branching computation tree usually take much less
computing time than those of the column branching computation tree,
even though a time ratio between the two types of nodes is not known
apriori. Thereason isthat expensive procedures for finding dominance
relationsand M STR are applied in each node of the column branching
tree.

13

14

SCHERZO AURA IT time
matrix R x C(5%) Sol. nodes time nodes/A-nodes time | r | ratio
m100-100-1010 100 x 100 (10) 12 95086 36.87 3180/121892 2033 | 3 | 055
m100-100-1015 100 x 100 (12) 10 10335 6.12 269/11071 241 | 3 | 039
m100-100-10-30 100 x 100 (20) 8 4618 4.05 84/2726 078 | 3 | 019
m100-100-30-30 100 x 100 (30) 5 1752 2.44 49/1288 064 | 3 | 0.26
m100-100.50.50 100 x 100 (50) 4 4015 6.1 5/857 069 | 3 | 011
m100-100-70_70 100 x 100 (70) 3 171 221 3/112 019 | 3 | 0.09
m100-100.90-90 100 x 100 (90) 2 2 0.02 2/0 002 | 3 1
m100-300-10-10 100 x 293 (3) 21 351183 235.16 10144/612753 17537 | 3 | 0.75
m100.3001014 100 x 297 (4) 19 1906835 | 1257.62 70998/3453419 99383 | 3 | 0.79
m100-3001015 100 x 297 (4) 19 | 11596849 | 7066.57 | 329794/16381322 | 4385.16 | 3 | 0.62
m100-300-1020 100 x 299 (5) 17 5240615 | 3641.41 138572/6904928 | 2036.72 | 3 | 0.56
m100.50-10_10 100 x 50 (20) 8 2079 0.92 85/2411 042 | 3 | 046
m100.50.20_20 100 x 50 (40) 5 1825 1.02 23/889 027 | 3 | 0.26
m100.50-30-30 100 x 50 (60) 3 63 0.34 3/24 0.03 | 3 | 0.09
m100.50.40-40 100 x 50 (80) 2 2 0.01 2/0 001 | 3 1
m50-100-10-10 50 x 99 (10) 8 92 0.02 12/133 002 | 3 1
m50-100-30-30 50 x 100 (30) 4 65 0.06 5/61 002 | 3 | 033
m50-100.50_50 50 x 100 (50) 3 107 0.22 3/32 0.02 | 3 | 0.09
m50-100-70-70 50 x 100 (70) 2 2 0.01 2/0 001 | 3 1
m50-100-90-90 50 x 100 (90) 2 2 0.01 2/0 001 | 3 1
m100-200-10-30 100 x 200 (10) 12 281845 242.65 2915/161571 4561 | 3 | 019
m100-200-10.50 100 x 200 (10) 12 281845 241.06 2915/161571 4536 | 3 | 0.19
m100-200-10-70 100 x 200 (20) 8 19135 22.8 82/6538 236 | 3 | 010
m100-200-30-30 100 x 200 (15) 8 154475 1175 31499/775717 22005 | 3 | 190
m100-200-30.50 100 x 200 (19) 7 50613 78.03 4019/136979 5958 | 3 | 0.76
m100-200-30-70 100 x 200 (25) 6 30577 61.55 707/15289 1043 | 3 | 017
m100-200.50.50 100 x 200 (25) 6 32214 63.84 3753/78023 4467 | 3 | 0.70
m100-200.50-70 100 x 200 (29) 5 4867 17.19 163/5581 494 | 3 | 029
m100-200-70_70 100 x 200 (35) 5 26588 63.73 245/22860 1647 | 3 | 026
m200-100-1010 200 x 100 (10) 16 | 13889095 | 10776.6 | 464553/16098542 | 3830.34 | 3 | 0.36
m200-100-10-100 200 x 100 (54) 6 317 179 9/250 021 | 3 | 012
m200-100-10-30 200 x 100 (19) 11 564302 584.54 9156/371430 11552 | 3 | 0.20
m200-100-10.50 200 x 100 (28) 8 29803 46.64 528/17689 891 | 3 | 019
m200-100-10-70 200 x 100 (40) 7 1735 4.87 37/1046 101 | 3| 021
m200-100-30-100 200 x 100 (64) 4 1725 11.09 5/185 038 | 3 | 0.03
m200-100-30-30 200 x 100 (30) 6 65468 11544 883/31293 18 | 3 | 016
m200-100-30.50 200 x 100 (39) 6 123621 170.09 1177/51624 3341 | 3 | 020
m200-100-30-70 200 x 100 (51) 4 2036 17.07 7/190 039 | 3 | 0.02
m200-100.50-100 200 X 100 (74) 3 145 7.08 3/52 033 | 3 | 0.05
m200-100.50.50 200 x 100 (50) 4 8076 354 9/1607 179 | 3 | 005
m200-100.50-70 200 x 100 (60) 4 5413 32.48 5/1302 231 | 3 | 007
m200.100.70.100 | 200 x 100 (84) 2 2 0.03 2/0 003 | 3| 1
m200-100-70_70 200 x 100 (70) 3 169 10.89 3/90 046 | 3 | 0.04
m200-200.100100 | 200 x 200 (50) 4 16313 259.45 5/2642 711 | 3 | 0.03

Table1.2 Resultson random benchmarks (scHERZO vs. AURA IT).

3. Theraising parameter » isan input to Aura II. The higher the raising
parameter, the fewer column branching nodes compared to cube branch-
ing nodesthere will be. With avauethat ishigh enough, there will bea
single column node and the rest will be al row nodes.

The experiments show that Aura II isfaster than scHERZO, especialy in the
most time-consuming examples. For each of the difficult casesof Table 1.1, we
haverun Aura IT withr = 1,2, 3. Thereisawaysavalue of r which allows
AURA IIto solvetheproblem faster than schErzo and in general thisvalueis
either 2 or 3. However, for the problem prom?2 the higher is the value of r the

Aurall: Combining negativethinkingand branch-and-boundinunatecoveringproblems 15

lower is the performance of AurA II: in fact, since this problem presents an
highly diversified solution space, the raising procedure often terminates only
after it has found a better solution (and, therefore, without having been ableto
prunerapidly the current branch). Onthe other hand, in the case of the problem
saucier, whose solution spaceis poorly diversified, Aura II finds the solution
in 24 second with any possiblevalue of » whilescurrzo takes 11876 seconds.
These results are in concord with the philosophy of “nhegative thinking” as
discussedin Section 1.: thelessfrequently the best current solutionisimproved
during the search, the more the “negative” search isjustified. Now, when we
arerunning avery time-consuming problem, the overwhel ming majority of the
subproblems do not lead to a solution improvement and, therefore, “ negative”
search ismore natural and, if applied, leadsto spectacular savingsintotal time.
This is confirmed by the experiments with the random generated matrices of
Table 1.2, for which we have kept the raising parameter r constantly equd to
3. Inthe most time-consuming of these examples Aura 11 takes between 36%
and 75% of thetime of scHERZO.

31 OTHER COMPARISONS

We do not have a systematic comparison with the results by Bcu, avery
efficient recently-developed ILP-based covering solver [Liao and Devadas,
1997]. However, theintuitionisthat an algorithm based on linear programming
is better suited for problems with a solution space diversified in the costs, i.e.,
for problems which are “closer” to numerical ones. To test the conjecture we
asked the authors of [Liao and Devadas, 1997] to run BcU on saucier.t, whose
solution spaceis poorly diversified (a minimum solution has 6 columns, while
most of the irredundant solutions cost in the range from 6 to 8). Bcu ran out
of memory after 20000 seconds of computations (the information was kindly
provided by S.Liao), while aura IT completes the example in 24 seconds. It
would be of interest to study if the virtues of an ILP-based solver and of raiser
could be combined in a single algorithm.

4. CONCLUSIONS

In [Goldberg et ., 1997] the authors applied to UCP a novel technique to
augment Branch-and-Bound (B&B) using a new way of exploring solutions,
inspired by a paradigm called negative thinking. Traditional UCP solvers are
based on the mincov algorithm [Rudell and Sangiovanni-Vincentelli, 1987]
which keep searching the solution spacein the hope of finding a better solution
(positivethinking mode) The new paradigm|ed to the devel opment of theraiser
algorithm which can be coupled with mincov to better guide the exploration of
the binary tree representing the solution space: in fact, the search for a better
solutioncan beappropriately interl eaved with the attempt to provethat no better

16

solution can be found in the current branching node (negative thinking mode).
This paper discussesthedetails of theraiser algorithm. Moreover, by reporting
experimental resultsobtainedwith aAur a 1T, anew state-of-the-art UCP solver
which combinesthe best of both worlds, we settle some experimental questions
left open in [Goldberg et al., 1997]. Future work includes the extension of
AURA II to solve the binate covering problem.

Acknowledgments

We gratefully thank Dr. Olivier Coudert (Monterey Design Systems) who kindly provided
us aversion of Scherzo and was always available for technical discussions.

References

[Coudert, 1994] Coudert, O. (1994). Two-level logic minimization: an
overview. Integration, 17-2:97-140.

[Coudert, 1996] Coudert, O. (1996). On solving binate covering problems. In
The Proceedings of the Design Automation Conference, pages 197-202.

[Coudert and Madre, 1995] Coudert, O. and Madre, J. (1995). New ideas for
solving covering problems. In The Proceedings of the Design Automation
Conference, pages 641-646.

[Goldberg et ., 1997] Goldberg, E., Carloni, L. P, Villa, T., Brayton, R. K.,
and Sangiovanni-Vincentelli, A. (1997). Negative thinking by incremental
problem solving: application to unate covering. In The Proceedings of the
International Conference on Computer-Aided Design, pages 91-99.

[Kamet d., 1997] Kam, T., Villa, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997). Synthesisof FSMs: functional optimization. Kluwer
Academic Publishers.

[Liao and Devadas, 1997] Liao, S. and Devadas, S. (1997). Solving covering
problems using L PR-based |ower bounds. In The Proceedings of the Design
Automation Conference.

[Rudell and Sangiovanni-Vincentelli, 1987] Rudell, R. and Sangiovanni-
Vincentelli, A. (1987). Multiple-valued minimization for PLA optimization.
| EEE Transactions on Computer-Aided Design, CAD-6:727-750.

[Villaetd., 19974] Villa, T., Kam, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997a). Explicit and implicit algorithmsfor binate covering
problems. IEEE Transactions on Computer-Aided Design, 16(7):677—-691.

[Villaet d., 1997b] Villa, T., Kam, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997b). Synthesis of FSMs: logic optimization. Kluwer
Academic Publishers.

