
Chapter 1

AURA II: COMBINING NEGATIVE THINKING AND
BRANCH-AND-BOUND IN UNATE COVERING PROBLEMS

Luca P. Carloni
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Evguenii I. Goldberg
Cadence Berkeley Laboratories, Berkeley, CA 94704

Tiziano Villa
PARADES, 00186 Roma

Robert K. Brayton
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720

Abstract Recently a novel technique has been published to augment traditional Branch-
and-Bound (B&B) while solving exactly a discrete optimization problem [Gold-
berg et al., 1997]. This technique is based on the negative thinking paradigm
and has been applied to develop ������� , a Unate Covering Problem (UCP) solver
which reportedly was able to deal efficiently with some time-consuming bench-
mark problems. However, on average ������� was not able to compete with
���	��
���
�� , a classical UCP solver based on several new bounding techniques
proposed by O. Coudert in his breakthrough paper [Coudert, 1996]. This fact
left open the question on the practical impact of the negative thinking paradigm.
The present work is meant to settle this question. The paper discusses the details
of ����������� , a new implementation of the negative thinking paradigm for UCP
which combines the best of ���	��
���
�� and ������� . Experimental results show the

1

2

dramatic impact of the negative thinking paradigm in searching the solution space
and propose ����� � ��� as the most efficient available tool for unate covering.

Keywords: Combinatioral optimization, branch-and-bound, covering problem.

1. INTRODUCTION

The Unate Covering Problem (UCP) [Kam et al., 1997] occurs often in logic
synthesis and operations research and is defined as:

Given a Boolean matrix
�

(all entries are 0 or 1), with � rows, denoted
as �����	� �	

, and � columns, denoted as �
����� �	

, and a cost vector � of the

columns of
�

(��� is the cost of the � -th column), minimize the cost ����������� �"! � � � � , over all �$#�%�&('*)�+ � , subject to
� �-,.�/)0'*)0'2131314'*)
 � .

Informally the minimum unate covering problem requires to find a set of
columns of minimum cost, such that each row intersects - “is covered by” - at
least once a column in the set (i.e., the entry at the intersection is a 1). For
simplicity assume that all columns have the same cost. An instance of UCP
with matrix

�
is denoted 56�
78� ��

.
In [Goldberg et al., 1997] the authors applied to UCP a novel technique

to augment Branch-and-Bound (B&B) by a new way of exploring solutions,
inspired by a paradigm called negative thinking. An algorithm named raiser
realizing negative thinking by means of incremental problem solving was im-
plemented in a computer program called 9;:=<>9 . This paper discusses the details
of the raiser algorithm and reports the results obtained with 9;:=<>9@?�? , a new
UCP solver which combines the best techniques of the traditional B&B with
the negative thinking paradigm.

An exact solution of UCP may be obtained by a B&B recursive algo-
rithm, variants of which have been implemented in successful computer pro-
grams [Coudert, 1994, Coudert, 1996, Coudert and Madre, 1995, Rudell and
Sangiovanni-Vincentelli, 1987]. Branching is done by columns, i.e., subprob-
lems are generated by considering whether a chosen branching column is or is
not in the solution. A run of the algorithm, say mincov, can be described by a
computation tree, where the root is the input of the problem, an edge represents
a call to mincov and an internal node is a reduced input. A leaf is reached
when a complete solution is found or the search is bounded away. From the
root to any internal node there is a unique path, which is the current path for
that node. The path leading to the node gives a partial solution and a submatrix�BA

obtained from
�

by removing some rows and columns. On the path some
columns are included in the partial solution and they are denoted by C�D0EGF"� �HA8

.
Suppose that we know that any minimal cover of

�HA
is greater or equal to a

value IJ� � A

. The value is called a lower bound of the solutions of 5H�
78� � A

;
e.g., a Maximal Set of Independent Rows (MSIR) is a lower bound (independent

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 3

means that they have at most 1 one per column). So the size of any solution
of 5H�
78� �	

including the columns in C D E F"� ��A8

is greater or equal to IJ� ��A�

+
� C�D0EGF"� ��A

 �

. Hence, if we found before a solution ����� E with the same or a
smaller number of columns, i.e.,

� ����� E �	� I � � A
�
 C D0EGF"� � A

we can stop the

recursion and backtrack to the parent node of
�6A

. Denote by � � ��A�

the value� ����� E ��
 I � �BA8

�� C�D0EGF"� ��A�
 �

. The condition to stop the recursion is given by
� � �BA�
 � & . On the other hand, if � � ��A8

has a large positive value, usually
it means that I � ��A�

is far from the size of a minimal solution to 5H�
78� �HA

and so a lot of branching is expected from

� A
before a leaf can be reached.

Suppose that there is no way of improving the solution ����� E in the search tree
rooted at

��A
, yet � � ��A

is positive. Usually a B&B algorithm must continue
branching. However, there is another way of making � � �6A	

negative or zero:
it is to improve the lower bound IJ� � A

. The first way is “positive”, in the sense
that the algorithm tries to construct a better solution, and branching columns
are chosen in the hope of improving the current best solution. The second way
is “negative”, in the sense that the algorithm tries to prove that there is no better
solution in the tree rooted at

�6A
. Often in the first leaf a solution very close

to a minimum one is found, so only few improvements are required to get a
minimum solution. Therefore “positive” search will succeed and yield a new
better solution only in a few of the potential � � subproblems at the � -th level
of the computation tree. In the overwhelming majority of the subproblems
“negative” search is more natural. The less frequently the best current solution
is improved during the search, the more the “negative” search is justified.

To exploit both “positive” and “negative” search, B&B was modified in [Gold-
berg et al., 1997] as follows: start solving the initial problem with “positive
thinking” in the ordinary column branching mode,called PT-mode. Then, when
the number of subproblems generated in the column branching mode becomes
large “enough”, solve each subproblem in the “negative thinking” mode, called
NT-mode. Modes are switched depending on the ratio of the expected number
of improvements to the number of subproblems generated at this level of the
search tree. The smaller the ratio, the more appropriate it is to switch to the
NT-mode.

In [Goldberg et al., 1997] the results of comparing 9 : <(9 against �����(<��������
[Rudell and Sangiovanni-Vincentelli, 1987] and �������(<���� [Coudert, 1994,
Coudert, 1996, Coudert and Madre, 1995] were reported. 9 : <(9 could out-
perform �����(<�������� on every benchmark, but was not always able to beat the
performance of �������(<�� � , due to its improvements in the computation of the
lower bounds; partition-based pruning and further modifications in the organi-
zation of the B&B scheme. In principle, these features are orthogonal to the
introduction of the negative thinking paradigm.

To assess further the strength of raiser, an approach (only partially explored
in [Goldberg et al., 1997]) would have been to reproduce systematically all

4

the features of �������(<�� � within 9 : <(9 . This paper reports the results of the
alternative choice to re-implement raiser on top of �������(<�� � , yielding the
program 9 : <(9 ?�? , in order to exploit the algorithmic and programming virtues
of �������(<���� together with the power of negative thinking available through
raiser. In Section 3. the results of this comparison are reported, showing
that 9 : <(9 ?�? is faster than �������(<�� � , especially in the most time-consuming
examples. As far as we know 9 : <(9 ?�? is currently the most efficient available
tool for unate covering. 9 : <(9 ?�? combines the best of both worlds, and settles
some experimental questions left open in [Goldberg et al., 1997].

2. THE RAISING ALGORITHM

Figure 1.1 shows how the traditional branch-and-bound algorithm min-
cov [Villa et al., 1997a] is modified to incorporate the technique of incre-
mentally raising the lower bound. After the computation of the lower bound,
if the gap difference between the upper and lower bound is small, i.e., less than
a global parameter �$D � ��D � ��� � , a new procedure � D � ��� � is invoked with a pa-
rameter � set to the value of difference. The parameter �$D � ��D � ��� � currently
is decided a-priori, but ideally it should be adapted dynamically. Intuitively if
the gap is small, we conjecture that a search in this subtree will not improve the
best solution and so we trigger the procedure � D � ��� � that may either confirm
the conjecture and prove that no better solution can be found here or disprove
the conjecture and improve the best solution, updating the current one.

2.1 RAISING ALGORITHM: OVERVIEW

As discussed in [Goldberg et al., 1997] we developed an � -raiser procedure,
based on row branching. Given a covering matrix

�
, let

���
be a submatrix of�

and
���

a row from ������� �	
�� �����	� � �
 . Let � be a solution of 56�878� � �
 .
Denote by 	2� � �
 the set %�
 � � � � �)�+ , i.e., the set of all columns covering���

and by � �*�*� � �
 ��� '
�

a set of solutions of 5H�
78� � �
.���0

obtained
according to the following rules:

1. if � is a solution of 56�
78� � �
 ���0

, then � �*�*� � �
 ��� '��
 �@%�� + ;

2. if � is not a solution of 5H�
78� � �
 ���0

, i.e., no column of � covers

���
then � �3�*� � �
 � � '��
 �@%����-%�
�+ �
 #�	 � � �
 + .

So � �*�*� � �
 � � '��

gives the solutions of 56�878� � �
 � �

that can be obtained
from the solution � of 56�878� � �
 . According to 2., if � is not a solution of
56�
78� � �
 ���0

, then we obtain
� 	 � ����
 � solutionsof 56�878� � �
 ���0

by adding
to � the columns covering

���
.

As discussed in [Goldberg et al., 1997], we represent the solutions of
56�
78� ��

by sets with a structure of multi-valued cubes [Rudell and Sangiovanni-
Vincentelli, 1987]. We define a cube to be the set � = � !�� 131*1 � ��� where

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 5

��������� � �	��

��� ��� � ����������� ��� ������� �
 � � � ���!�
 � � ��"$#
/* Apply row dominance, column dominance, and select essentials */ (1)
if (not

��� � � � � � �%� � ���&�����'� ��� �������!�
 � � ��"�" return
��(� ��) *
 �+��� �
��

/* See if Gimpel’s reduction technique applies */ (2)
if (�/� (� �,� �-� � � � � � �%� � �.�&�����'� ��� �����,� �
 � � � �&�!�
 � � � �/���,*�� "&" return

���
*��
/* Find lower bound from here to final solution by independent set */ (3)�1032542�6(7��8 � (7�9� � � � � � � � � � � � *,��� � �%�&�'� ��� ��� "
/* Make sure the lower bound is monotonically increasing */ (4)� �
 � � � � ��� �:(;�.8 ����
 *�� � � ����� "!< ��
 *�� � �1032-4 " �&� �
 � � ��"=!>�?@?$A9B�A�CED�A7FHG$I�J!G$CE=LKNM�I�J!G$CE= CEA9O
/* Bounding based on no better solution possible */ (5)
if P =�>&?$?@A�B�A�CED�ARQTS�U$I�A�V5WXFHA�Y:Z�W/[V9J\M]G^W/>�J!C
else if P =�>&?$?@A�B�A�CED�ARQTY`_	a$bc_	>�V9A�B�U # /* Apply raiser with

C`FH=!>�?@?$A�B�A9CED�A
*/ (16)d�J�M�efG@I�AfFHD�J�g!A�B hidkj	b P hHd�j	blU

(17)M]J�OlA9B�mnJ�G@CE=RFpo dkJ�M�enG$I�A�o
(18)_qFHB�_	>�V9A�B P dkJ�M�enG$I�A\r9=!>�?@?$A�B�A9CED�A\r9s7r
M]J�OlA9B�mnJ�G@CE=^r-I�A�V-W/d�J�M�r/G$I�J�G@CE=�U
(19)

if P _RFut9U$I�A9V-WXFHA�Y6Z\W/[V9J\M�G	W/>�J!C
(20)

else
I�A9V-WvFiZw_\W,xzy:I�A�V5W/dkJ�M

/* (answer = 0) */ (21){
else if (

�
is empty) # /* New best solution at current level */ (6)���,*�� �|*
 �+��� �
�� � � � � � ���&� "{

else if � ���
5��} � �.�/� � � �
��~� �����������k� " gives non-trivial bi-partitions) # (7)� ����� ! �`��(� ��) *
 �+��� �
�����,*�� ! �:(� �w��

��� ���\� � �.�&� !������ ��� �����������!�
 � � ��� ��
 *�� � � ���&� "�" (8)
/* Add best solution to the selected set */ (9)
if � ���
*�� !=�|��(� ��) *
 ����� �
 � " ���,*�� �N��(� ��) *
 �+��� �
��
else # (10)� �����;� � ���&�'�f���,*�� !���,*�� �6(� �w��

��� ����� � �.�&������� ��� �����,� �
 � � � � ���%�&�!�
 � � ��"{{

else # /* Branch on cyclic core and recur */ (11)���-� �w� �4��*,�,��� � � ��
 ����(�~� �����'� ��� �������103254 "� ����� ! �`*
 ����� �
�� � � � � � �.�&� " �;����� �w� �
let

�������5�9���
be the reduced table assuming

����� �w� � in solution (12)���,*�� ! �:(� �w��

��� � �����5�9��� � � ����� !������ � � ���������
 � � � � ���%���!�
 � � �."
/* Update the upper bound if we found a better solution */ (13)
if � ���
*�� !f��|��(� ��) *
 ����� �
 � " /* It implies � �!�
 � � ��� ��
 �� � ���,�� ! "&" */�!�
 � � � � ��
 *�� � ���
*�� ! "
/* Do not branch if lower bound matched */ (14)
if � ���
*�� !f��|��(� ��) *
 ����� �
 � " and ����
 �� � ���,�� ! " �`� �
 � � � � ��� " return

���,*�� !
let

� �����5�9��� be the reduced table assuming
����� �w� � not in solution (15)���,*���� �:(� �w��

��� � �����5�9��� � � ����������� ��� ���������
 � � � � �������!�
 � � ��"���,*�� �|���
*�� *
 �+��� �
��3� ���,*�� !������,*���� "{

return
���
*��{

Figure 1.1 AuraMincov: Traditional mincov algorithm enhanced by incremental raising.

�2����� � ��� , �R��
 and �2�n�@�8����� ��

,) � � '
 ���

. The subsets � � are the
domains of cube � . So cube � denotes a set of sets consisting of

�
columns.

Let
���

be a submatrix of
�

. The set of all irredundant (and minimum)
solutions of 5H�
78� � �
 can be represented as the cube 	2� � � �
 � 131*1 � 	2� � ���
 ,
where

� � � '31*131 ' � � � are the rows forming
� �

. Let � � � ! � 1*131 � � � be a
cube of solutions of 5H�
78� � �
 . Then, choose a “good” row

���
from from

6

�����	� �	
�� ������� � �
 . From the definition of the � �3� operator 1 it follows that

� �*�*� � �
 ��� '��
 � C�D � E/) � �
 � C D � E � � �
 � 	2� ����
 (1.1)

where C D � E/)��G�

is the set of solutions contained in � which cover

� �
and

C D � E � � �

is the set of solutions contained in � which do not cover

� �
. Hence,

� �3�*� � �
 ��� '��

can be represented by �
) cubes where � is the number of

rows of the � ���(�8� ��

intersecting

���
. Then, perform recursively the process

for each of the �
) cubes, i.e., choose a new row from those not yet selected
for each of the �
) cubes of solutions and split each cube according to the
rule explained in [Goldberg et al., 1997].

The entire process can be described by a search tree, called cube branching
tree. The initial cube of solutions � corresponds to the root node, to which we
associate also a pair of matrices � ���>�8� �	

and
� � ���(�8� �	

. In each node a
choice of an unselected row from the second matrix of the node is made. The
chosen row is removed from the second matrix of the pair and added to the
first matrix of the pair. The number of branches leaving a node is equal to the
number of cubes in which the cube corresponding to the node is partitioned
by the � �*� operation, and each child of a node gets one of the cubes obtained
after splitting. So the cube corresponding to a node represents a set of solutions
covering the first matrix of the pair (that is a “lower bound submatrix” for the
node).

Some useful facts are:

When applying an � -raiser, the branches corresponding to cubes of more
than

� � ���>�8� ��
 �
 � domains are pruned.

If at a node, a row
���

is chosen such that no solution from the cube �
of the node covers

���
, then there is no splitting of the cube, since � �*�

yields only one cube � ��� 	2� ����
 � � � ! ��131*1
� ���
�� .
At each node, the following reduction rule can be applied to the second
matrix of the pair: if a row of the second matrix is covered by every
solution of the cube � corresponding to the node, then the row can be
removed from the matrix since, if we add it to the lower bound submatrix
of the pair, then the recomputed cube will be equal to � .

The recursion terminates if one of the two following conditions hold:

1. There is a node such that there are no rows left in the second matrix of the
pair and the corresponding cube has � domains, where �
	 � � ���(� �
 � .
This means that the lower bound

� � ���(� �
cannot be improved by � .

1With the natural extension that
4%� �
� �%��� " ��
 ����� 4%� �
� �%� � " .

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 7

Any solution from the cube can be taken as the best current solution of
5H�
78� �	

.

2. From all branches, nodes are reached corresponding to cubes with a
number of domains greater than

� � ���>� �
 � . In this case the lower
bound has been raised to

� � ���(� �
 � , since no solution � of 5H�
78� �	

exists such that

� � ��� � � ���(� �
 � .

The correctness of the � -raiser procedure, applied to matrix
�

with lower
bound

� � ���>�8� ��
 �
, has been proved in [Goldberg et al., 1997].

2.2 RAISING ALGORITHM: IMPLEMENTATION
The procedure raiser returns 1 if the lower bound can be raised by � ,

otherwise it returns 0, which means that the current best solution has been
improved at least once by raiser. The following parameters are needed:

�
is the matrix of rows not yet considered. Initially

� � � � � � ���>� ,
where

� �
is the covering matrix at the node (of the column branching

tree) that called raiser, and � ���(� is the maximal independent set of
rows, found at the node (of the column branching tree) that called raiser.
Hence,

� �
is the covering matrix related to the subproblem obtained by

choosing the columns in the path from the root to the node that called
raiser. The set of chosen columns is denoted by C D0EGF .

�4��� ������� is a cube which encodes a set of partial solutionsof the covering
matrix

� �
. Initially � ��� ������� is equal to the set of solutions covering the

� ���(� .

� is number by which the lower bound � � ����� �
must be raised. � is an

input-output parameter initially equal to ��� ��� � �
 � � ���(� �
 � C D E F � ,
which is decreased if raiser decreases the best current solution.

� � ��� � �
is an input parameter for � D � ��� � equal to

� � ���(� �
. Notice that

� � ��� � �
differs from the original lower bound 2 by a quantity equal to� C�D0EGF � , for consistency with the previous definition of � .

� � ����� �
is the cardinality of the best solution known at the time of the

current call of raiser.

����� E �4�����(E ����� is an outputparameter which contains the new best solution
found by � D � ��� � , if the lower bound could not be raised by � .

2 ���
 � � � � ��� ��� �103254�� < � � �.�&���
.

8

�-� � *,��� � 0
 � �k�!���-� � �&�������
 � � � �����,*���0
 �+��� �
�� ���!�
 � � ��"$#
/* returns 1 if solutions in

0
 � �k�!���
raise lower bound of

�
by � */*�� � � � �
 4%� � *
�(�N� �
 � � �'< � � � ��(7����� �
 (7� � � * � 0
 � �k�!��� "

if � *�� � ��� �
 4%� � *
��� � " return 1
/* If

�2���
then

� �.�&�
+ solutions of

�
in

0
 � ���!���
beats upper bound */

if � � ��� " return �
 � � � *
 ����� �
��3� 0
 � �k�!���5� � �����
*��&0
 ����� �
 � �,�!�
 � � ��"
/* consider rows of

�
not covered by any solution from

0
 � �k�!���
*/���	��

��� � � � � � ���,*�� *,���
 � �w
�� � � �&����*
� � � � � � �
 �'* � �%�,0
 � �k�!��� "

foreach row
���������	��
���� #

/* add a new domain for the columns covering
�����;�

*/0
 � �k�!���"�N� � � �
 (;� � �~� 0
 � �k�!���5���%����� "*�� � � � �
 4%� � *
�(�N*�� � ��� �
 4%� � *
� � !
if � *�� � ��� �
 4%� � *
��� � " return 1{

/* Remove the covered rows from
�

and check again if
�

is empty */� �:����������

���
if � � ��� " return �
 � � � *
 ����� �
��3� 0
 � �k�!���5� � �����
*��&0
 ����� �
 � �,�!�
 � � ��"
if � *�� � ��� �
 4%� � *
�(�2! "	#

/* Cover with
0
 � �k�!���

and remove from
�

the 1-intersecting rows */
/* If 2 rows intersect 2 different cols in the same domain, prune the branch */
if � � � � *
���
 � ! � � ������*,� � � � � � �
 ��* � ���,0
 � �k�!��� " �2! " return 1
if � � ��� "

return �
 � � � *
 ����� �
��3� 0
 � �k�!���5� � �����
*��&0
 ����� �
 � ���!�
 � � ��"{
/* select next "best" row to be covered with

0
 � ���!���
and remove it from

�
/���0�`,�
� � � � ���,*�� � �	��
,� ����� � �
 � � �%��0
 � �k�!��� "� �:��� # ��� {

/* Splitting:
� ���5� !�� # 0
 � ���!���
���������,��0
 � �k�!���� {"! � �.�/��� � # 0
 � �k�!���� �# � {

/ � � � � � �!���
* � 0
 � �k�!���5�
�%�&����� � ���5� !�� � ���5�&� "
/* add to

0
 � �k�!�����$� � �.�5�&�
new domain of the columns covering

���
*/0
 � �k�!��� �# � �`� � � �
 (7� � �~� 0
 � ���!��� �# � �&���&��� "

/* branching on cubes of
� �.�5� !

and
� ���5�&�

*/�-������� ��% �9���!� � t
while (

� ���5� !E� � �.�/���c����
) #

/* select first cubes from
� ���5� !

, then cube from
� �.�5�&�

*/0
 � �k�!���'& � � ��� � ��8�� � �!��� � � ���5� !k� � �.�5�&� "
/* if a better global solution has been found set

��������� ��% ���+�!�
to 0 */

if � ��� � *,��� � 0
 � ���!���(&�� � ���%��� �
 � � � �,���
*��&0
 ����� �
 � ���!�
 � � ��" �`S "�-������� ��% �9���!� �NS{
return

�-������� ��% �9���!�{
�
 � � � *
 �+��� �
��3� 0
 � �k�!���-� � �����,*���0
 �+��� �
�� ���!�
 � � ��"~#

/* extract any solution from
0
 � �k�!���

by picking a column from each domain */���,*���0
 �+��� �
�� � � ��� *
 �+��� �
��3� 0
 � �k�!��� "� ����)%�
 � � � � ��
 �� � ���,��&0
 �+��� �
�� "� ��� A � � � � �!�
 � � ��� � ����)%�
 � � ��"� � � ��� A
�!�
 � � � � � ����)%�
 � � �
return 0{

Figure 1.2 Algorithm to raise the lower bound.

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 9

Fig. 1.2 shows the flow of � D � ��� � , the procedure that attempts to raise the
lower bound of

�
. Notice that it requires a routine split cubes which, for a

selection of a row � � covered by � of the
�

domains of � ��� � � ��� , partitions
� ��� � � ��� in �
) disjoint cubes, each of

�
domains; so C D � E�) has � cubes

of solutions from � ��� � � ��� covering � � , whereas C D � E � has one cube of solu-
tions from � ��� � � ��� not covering � � . The number of domains of �4��� ������� is
computed by number domains.� D � ��� � is a recursive procedure which starts by handling two terminal cases.
The first one occurs when the variable � E � � ���H����D � ��� 3, which measures the
gap between the upper bound and the current lower bound, is less or equal to
zero. If so, we know that the solutions in � ��� � � ��� raise the lower bound of

�
by at least � , so that no solutions of

�
can beat the current upper bound. The

second terminal case occurs when, after some recursive calls,
�

has become
empty, and so any solution obtained as the union of a solution of

�
in �4��� � �����

together with the columns in the current C D E F is the new best solution.
After these preliminary checks, �"� � � ����� E ��� E ��� �"��� � ��E � � ���*��E � ��� � ��� �

is called. This routine, reported in Figure 1.3, implements a fast heuristic to
find a good subset of rows of

�
which do not intersect any domain of �4��� � �����

and which do not intersect each other. Ideally, we would like to get the best���
	
�
���
set, which is a sort of “maximum set of independent rows” related to

� ��� � � ��� , but this would require the solution of another NP-complete problem.
We implemented instead the heuristic to insert first in the set

���
	
�
���
the

largest row that intersects neither a domain of � ��� � � ��� nor a row previously
inserted into

����	��
���
.

Thereafter, since each row � � in
���
	
�
���

is not covered by any solution
encoded in � ��� ������� , we must add a new domain to � ��� � � ��� made by the
columns which cover � � . While we are adding these new domains, we keep
decreasing the variable � E ��� ���6����D � ��� and checking if its value becomes equal
to zero. Finally, we can remove the set

���
	
�
���
from

�
because the rows

have been covered by the new added domains. Notice that during the first call
of � D � ��� � the set

���
	
�
���
is empty because � ��� ������� encodes the � ���(�

and, by definition, every row not in the � ���(� must intersect at least one row
in the � ���(� . However, during the following recursive calls of � D � ��� � the
original domains of � ��� � � ��� may change, namely decrease in cardinality due
to � C � � E � ������� and D �$� ��� E ���)3� ��E � � ���3��EG� ��� � ��� � . Hence, at some node of

3By definition,

*�� � ��� �
 4%� � *,� � � �
 � � �k< � � � ��(7�������
 (;� � � * � 0
 � �k�!��� "� � �103254�� < �!�
 � � ��� � �1032-4 � � � � �.�&��� � � ��(;�������
 (7� � � * � 0
 � �k�!��� "� �!�
 � � ��� � � �.�&��� � � ��(7�������
 (;� � � * � 0
 � �k�!��� "
.

10

� � � � ���
*�� *
���
 � �	
 � � � �&����*
� � � � � � �
 ��* � ����0
 � �k�!��� "@#
/* Heuristic to find best set of rows non intersecting

0
 � ���!���
domains. */��(� ��)92 � �&���54
 ��*"������,*���4
 �2� �

foreach row
� �n� #

/* � is the set of
0
 � �k�!���

domains intersected by
�

*/
� � ��
 (� ���&� *,���
 � � � �&����*
� � �&� � �
 (7� � � * � 0
 � �k�!���5�,� "
if � � � � "!#��(� ��)92 � �&���54
 ��*"�`��(� ��)92 � �&���54
 ��*����

if � � � � � �&� � ���,*���4
 � "�� ��� � � �&� � � "�"���,*���4
 �2�`�{{
/* If every row intersects domains of

0
 � �k�!���
then return the empty set */

if � ��(� ��)92 � �&���54
 ��*�� � "
return

�
else #

/* Build
���	��

���

starting from
���
*���4
 � */���	��

��� ���

do # ���	��

��� �����	��
���� �n���,*���4
 ���(� ��)92 � �&���54
 ��*"�`��(� ��)92 � �&���54
 ��* �E���
*���4
 �
/* Find the new

���,*���4
 � within
��(� ��)�2 � �&���54
 �'*

*/
foreach row

� �;��(� ��)92 � �&���/4
 ��* #
if (� ��� ���	��

��� " �� � "��(� ��)92 � �&���54
 ��*"�`��(� ��)92 � �&���54
 ��* �$�
else if � � � � � �&� � ���,*���4
 � "�� ��� � � �&� � � "�"���,*���4
 �2�`�{{

while � ��(� ��)92 � �����54
 �'*l�� � "{
return

���	��

���{

Figure 1.3 Algorithm to find the best set of rows not intersecting �����
	���
�� .

the recursion tree, it may happen that a row of
�

is not covered anymore by
any domain of �4��� � ����� .

After having removed the rows belonging to
����	
� ���

, another optimiza-
tion step can be applied successively before splitting � ��� � � ��� . If at this point
� E ��� ���6����D � ��� is equal to 1, it means that we have already raised the lower
bound by �
) . Therefore, if we are forced to add one more domain to
� ��� � � ��� , then we can prune the current branch. Hence, a simple condition
which leads immediately to pruning is the following: consider two rows � !
and � � of

�
which intersect �4��� ������� only in one domain

� �@%�� ! '�� � '*131*1 '/� � + ,
and suppose that � ! intersects only the column � � , while � � intersects only the
column � � . This fact allows us to prune the current branch because to cover
one of the rows we may choose either one of the two distinct columns of the
domain. Say w.l.o.g that we cover � ! with � � , then to cover � � we must use a

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 11

column which does not belong to any domain of �4��� ������� and so we are forced
to add one more domain to � ��� ������� , thereby raising the lower bound by � .

Figure 1.4 illustrates the procedure D �@� ��� E ���)3� ��E � � ���3��EG� ��� � ��� � , which
exploits the previous situation and, in practice, is invoked often because the
condition � E ��� ���6����D � ���H�) happens very commonly in hard problems. Basi-
cally, the routine is based on two nested cycles. The external cycle is repeated
until the internal cycle does not modify � ��� ������� anymore. The internal cycle
computes, for each row � of

�
, the set � of the domains of � ��� � � ��� intersected

by � . If the cardinality of � is equal to 1, e.g., � � % � + , we remove from
�

all the columns which are not intersected by � and then we remove � from
�

,
since � has been covered.

Notice that D �$� ��� E ���)3� ��E � � ���3��EG� ��� � ��� � is called just after having re-
moved from

�
the set of non-intersecting rows

���
	
� � �
and therefore when

all the remaining rows of
�

intersect at least one domain of � ��� ������� . However,
after cycling inside this routine and removing some columns (thereby making
“leaner” some domains), it is possible that a row of

�
is not covered anymore,

i.e.,
� � � �@& . As discussed above, this happens, e.g., when two 1-intersecting

rows intersect two different columns in the same domain � . In this case the
routine returns) in order to inform the caller to prune the current branch. If
this fact does not happen before the end of both cycles, a & is returned but,
at least a certain number of rows have been removed from

�
and the corre-

sponding intersected domains of � ��� � � ��� have been made “leaner”. After
calling D �@� ��� E ���)3� ��E � � ���*��E � ��� � ��� � and removing 1-intersecting rows, it
is possible that

�
has become empty. If so, � D � ��� � calls � ����� � �3�����(EG� ��� to

update the variables ����� E � �����(EG� ��� , � � ��� � �
and � .

After all these special cases have been addressed, we must select a new row� � to be covered with �4��� � ����� . The row � � is removed from
�

and drives the
splitting of � ��� � ����� . The strategy to select the best row in order to split the
current �4��� � ����� , before calling recursively � D � ��� � , is to look for the row of�

which intersects the minimum number of domains of �4��� ������� . The reason
is to reduce the number of branches from the node 4. Notice that at this stage
each row of

�
intersects at least 2 domains of � ��� ������� . In case of ties between

different rows, the row having the highest weight is chosen. The weight of a row���
is defined as �

(} �"! � ���� �� �$� � , where � is the number of domains of �4��� � �����
intersecting

���
, �2� is a domain intersected by

���
and � �� � � � � 	2� ���0
 .

So the weight of
���

is just the fraction of solutions from � ��� ������� that do not
cover

���
, that is the quantity that we want to maximize when selecting a new

4Recall that there is a branch for each domain intersecting the row plus one more branch for the non-
intersecting domains.

12

� � � *
���
 � ! � � �&����*,� � � � � � �
 �'* � �%��0
 � �k�!��� "$#
/* This routine is called only if

*�� � � � �
 4%� � *
�(� !
. It covers */

/* with
0
 � �k�!���

and removes from
�

the 1-intersecting rows, */
/* i.e., the rows intersecting only one domain of

0
 � �k�!���
. */

/* If 2 rows intersect 2 different columns in the same domain, */
/* return 1 to the caller to prune the current branch */
do # �-� � � � � � � �
 (7� � � *=���'��� 0��

foreach row
� �n� #

/* � is the set of
0
 � �k�!���

domains intersected by
�

*/
� � ��
 (� ���&� *,���
 � � � �&����*
� � �&� � �
 (7� � � * � 0
 � �k�!���5�,� "
if � � � � � ! "w#�-� � � � � � � �
 (7� � � *=� � 4)��

/* Get the domain � of
0
 � �k�!���

covering
�

and */
/* remove from � all the cols which do not cover

�
*/� � � ��� ��

� ��� � � � �
 (7� � �~� 0
 � ���!���-��� "* � (� � � �) �
 (;� � �3� � ��� "

/* Remove the covered row
�

from
�

*/� �:��� # � {{
else if � � � � �6� "w#

/* After removing some columns, a row may not be */
/* covered anymore, so current branch must be pruned. */{

/* else � � � � � ! " : do nothing */
/* because

�
is not a 1-intersecting row */{{

while (
��� � � � � � � �
 (;� � � *

)
return 0{

Figure 1.4 Algorithm to handle the 1-intersecting rows.

row. If � �� � � , for some � , this means that
���

is covered by any solution
from �4��� � ����� . Such a row is simply removed from

� � �
and added to

� �
.

After performing the splitting of � ��� � � ��� as explained in [Goldberg et al.,
1997], � D � ��� � is called recursively on the disjoint cubes of the recomputed
solution. If the current best solution is not improved in any of the calls, then
raiser returns 1, meaning that the lower bound has been raised by � . If instead
the current best solution has been improved once or more times, � D � ��� � returns
0 after having updated the current best solution and upper bound.

3. EXPERIMENTAL RESULTS

In [Goldberg et al., 1997], 9 : <(9 was compared against the routine mincov
available in �����(<�������� , and against the results of �������(<�� � [Coudert, 1994,
Coudert, 1996, Coudert and Madre, 1995], the most effective UCP solver
available then. Compared to ��� �(< ������� , �������(<���� features a collection of
new lower bounds (easy lower bound, logarithmic lower bound, left hand side
lower bound, limit lower bound), and partition-based pruning. In this paper we

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 13

���������
	��
�����
���� time
matrix ������������� Sol. nodes time nodes/A-nodes time r ratio
ex5 �! #"$�&%('�%(�)��%!� 37 614631 11397.1 614510/156 11066.5 1 0.97
ex5 �! #"$�&%('�%(�)��%!� 37 614631 11397.1 31185/243184 1346.67 2 0.12
ex5 �! #"$�&%('�%(�)��%!� 37 614631 11397.1 1905/195190 746.85 3 0.06
max1024 "�*!+�*,�-"�%�.(')��*�/ 0!� 245 533635 5535.67 533632/52 5244.54 1 0.95
max1024 "�*!+�*,�-"�%�.(')��*�/ 0!� 245 533635 5535.67 91345/667471 2994.88 2 0.54
max1024 "�*!+�*,�-"�%�.(')��*�/ 0!� 245 533635 5535.67 15353/1624827 5967.92 3 1.10
prom2 "�+!%�')�1%!.�"!"2��*�/ �� 278 26143 1506.75 26143/16 1454.81 1 0.97
prom2 "�+!%�')�1%!.�"!"2��*�/ �� 278 26143 1506.75 6115/115460 1685.36 2 1.10
prom2 "�+!%�')�1%!.�"!"2��*�/ �� 278 26143 1506.75 1389/754564 10162 3 6.70
saucier "�3�"$�&.!%!*�3,�4'�3!� 6 187089 11876.1 7/36 24.0 1 0.002
saucier "�3�"$�&.!%!*�3,�4'�3!� 6 187089 11876.1 7/36 24.0 2 0.002
saucier "�3�"$�&.!%!*�3,�4'�3!� 6 187089 11876.1 7/36 24.0 3 0.002

Table 1.1 Results on Espresso benchmarks (��� ��
���
 � vs. ����� � � �).

compare 9 : <(9 ?�? , that is � D � ��� � implemented in �������(<�� � , against �������(<���� .
The benchmarks used belong to three classes: Table 1.1 contains difficult
cases from the collection of ��� �(< ������� (we start from the matrix obtained
by ��� �(< ������� after removing the essential primes) and some matrix encoding
constraints satisfaction problems from [Villa et al., 1997b]; Table 1.2 contains
random generated matrices with varying row/column ratios and densities (e.g.,
� �0&0&)3& & 50& 6�& means a matrix with 200 rows, 100 columns, and each column
having a number of ones between 30 and 70). For each of these matrices, their
size (� � � in the tables) and sparsity (� expressed as a percentage in the
tables) are reported. The experiments were performed with a 1GB 625Mhz
Alpha with timeout set to 4 hours of cpu time. Tables 1.1 and 1.2 report two
types of data for comparison: the number of nodes of the column branching
computation tree and the running time. Concerning the number of nodes we
clarify the following points:

1. 9 : <(9@?/? has two types of nodes: those of the column branching com-
putation tree and those of the cube branching computation tree (called
A-nodes in the tables). Indeed 9;:=<>9 ?/? follows a dual strategy: it builds
the column branching computation tree, but when at a node the difference
between the upper bound and the lower bound is less than or equal to
the raising parameter � (or �$D � ��D � ��� �), 9 : <(9 ?�? calls the procedure� D � ��� � which builds a cube branching computation tree (appended at the
node where � D � ��� � was called). So we need to report both numbers of
nodes to measure a run of 9 : <(9 ?/? .

2. Nodes of the cube branching computation tree usually take much less
computing time than those of the column branching computation tree,
even though a time ratio between the two types of nodes is not known
a-priori. The reason is that expensive procedures for finding dominance
relations and � ���(� are applied in each node of the column branching
tree.

14

���!���(�
	��
�����
���� time
matrix � �&�)� � ��� Sol. nodes time nodes/A-nodes time r ratio
m100 100 10 10 " *!*)�-"�*!*,� "�*�� 12 95086 36.87 3180/121892 20.33 3 0.55
m100 100 10 15 " *!*)�-"�*!*,� "�%�� 10 10335 6.12 269/11071 2.41 3 0.39
m100 100 10 30 " *!*)�-"�*!*,��%!*�� 8 4618 4.05 84/2726 0.78 3 0.19
m100 100 30 30 " *!*)�-"�*!*,� �*�� 5 1752 2.44 49/1288 0.64 3 0.26
m100 100 50 50 " *!*)�-"�*!*,��0!*�� 4 4015 6.1 5/857 0.69 3 0.11
m100 100 70 70 " *!*)�-"�*!*,��3!*�� 3 171 2.21 3/112 0.19 3 0.09
m100 100 90 90 " *!*)�-"�*!*,��+!*�� 2 2 0.02 2/0 0.02 3 1
m100 300 10 10 " *!*)�1%!+()� �� 21 351183 235.16 10144/612753 175.37 3 0.75
m100 300 10 14 " *!*)�1%!+!3,� '�� 19 1906835 1257.62 70998/3453419 993.83 3 0.79
m100 300 10 15 " *!*)�1%!+!3,� '�� 19 11596849 7066.57 329794/16381322 4385.16 3 0.62
m100 300 10 20 " *!*)�1%!+!+,��0!� 17 5240615 3641.41 138572/6904928 2036.72 3 0.56
m100 50 10 10 " *!*)�10!*,��%!*!� 8 2079 0.92 85/2411 0.42 3 0.46
m100 50 20 20 " *!*)�10!*,� '�*!� 5 1825 1.02 23/889 0.27 3 0.26
m100 50 30 30 " *!*)�10!*,��.!*!� 3 63 0.34 3/24 0.03 3 0.09
m100 50 40 40 " *!*)�10!*,� ��*!� 2 2 0.01 2/0 0.01 3 1
m50 100 10 10 0�*��&+!+)� " *!� 8 92 0.02 12/133 0.02 3 1
m50 100 30 30 0�*��1"�*!*,� �*!� 4 65 0.06 5/61 0.02 3 0.33
m50 100 50 50 0�*��1"�*!*,��0!*!� 3 107 0.22 3/32 0.02 3 0.09
m50 100 70 70 0�*��1"�*!*,��3!*!� 2 2 0.01 2/0 0.01 3 1
m50 100 90 90 0�*��1"�*!*,��+!*!� 2 2 0.01 2/0 0.01 3 1

m100 200 10 30 " *!*)�1%!*!*,� "�*�� 12 281845 242.65 2915/161571 45.61 3 0.19
m100 200 10 50 " *!*)�1%!*!*,� "�*�� 12 281845 241.06 2915/161571 45.36 3 0.19
m100 200 10 70 " *!*)�1%!*!*,��%!*�� 8 19135 22.8 82/6538 2.36 3 0.10
m100 200 30 30 " *!*)�1%!*!*,� "�0�� 8 154475 117.5 31499/775717 220.05 3 1.90
m100 200 30 50 " *!*)�1%!*!*,� "�+�� 7 50613 78.03 4019/136979 59.58 3 0.76
m100 200 30 70 " *!*)�1%!*!*,��%!0�� 6 30577 61.55 707/15289 10.43 3 0.17
m100 200 50 50 " *!*)�1%!*!*,��%!0�� 6 32214 63.84 3753/78023 44.67 3 0.70
m100 200 50 70 " *!*)�1%!*!*,��%!+�� 5 4867 17.19 163/5581 4.94 3 0.29
m100 200 70 70 " *!*)�1%!*!*,� �0�� 5 26588 63.73 245/22860 16.47 3 0.26
m200 100 10 10 %�*!*)�-"�*!*,� "�*�� 16 13889095 10776.6 464553/16098542 3830.34 3 0.36
m200 100 10 100 %�*!*)�-"�*!*,��0('�� 6 317 1.79 9/250 0.21 3 0.12
m200 100 10 30 %�*!*)�-"�*!*,� "�+�� 11 564302 584.54 9156/371430 115.52 3 0.20
m200 100 10 50 %�*!*)�-"�*!*,��%(��� 8 29803 46.64 528/17689 8.91 3 0.19
m200 100 10 70 %�*!*)�-"�*!*,� '�*�� 7 1735 4.87 37/1046 1.01 3 0.21
m200 100 30 100 %�*!*)�-"�*!*,��.('�� 4 1725 11.09 5/185 0.38 3 0.03
m200 100 30 30 %�*!*)�-"�*!*,� �*�� 6 65468 115.44 883/31293 18 3 0.16
m200 100 30 50 %�*!*)�-"�*!*,� �+�� 6 123621 170.09 1177/51624 33.41 3 0.20
m200 100 30 70 %�*!*)�-"�*!*,��0�" � 4 2036 17.07 7/190 0.39 3 0.02
m200 100 50 100 %�*!*)�-"�*!*,��3('�� 3 145 7.08 3/52 0.33 3 0.05
m200 100 50 50 %�*!*)�-"�*!*,��0!*�� 4 8076 35.4 9/1607 1.79 3 0.05
m200 100 50 70 %�*!*)�-"�*!*,��.!*�� 4 5413 32.48 5/1302 2.31 3 0.07
m200 100 70 100 %�*!*)�-"�*!*,� �!'�� 2 2 0.03 2/0 0.03 3 1
m200 100 70 70 %�*!*)�-"�*!*,��3!*�� 3 169 10.89 3/90 0.46 3 0.04
m200 200 100 100 %�*!*)�1%!*!*,��0!*�� 4 16313 259.45 5/2642 7.11 3 0.03

Table 1.2 Results on random benchmarks (��� ��
���
 � vs. ������� ���).

3. The raising parameter � is an input to 9 : <(9@?�? . The higher the raising
parameter, the fewer column branching nodes compared to cube branch-
ing nodes there will be. With a value that is high enough, there will be a
single column node and the rest will be all row nodes.

The experiments show that 9 : <(9 ?/? is faster than �������(<���� , especially in the
most time-consuming examples. For each of the difficult cases of Table 1.1, we
have run 9;:=<>9.?/? with � �)0' �('#5 . There is always a value of � which allows
9;:=<>9 ?�? to solve the problem faster than �������(<�� � and in general this value is
either � or 5 . However, for the problem prom2 the higher is the value of � the

Aura II: Combining negative thinkingand branch-and-bound in unate covering problems 15

lower is the performance of 9 : <(9@?�? : in fact, since this problem presents an
highly diversified solution space, the raising procedure often terminates only
after it has found a better solution (and, therefore, without having been able to
prune rapidly the current branch). On the other hand, in the case of the problem
saucier, whose solution space is poorly diversified, 9 : <(9 ?�? finds the solution
in � � second with any possible value of � while �������(<�� � takes)0)�� 6�� seconds.
These results are in concord with the philosophy of “negative thinking” as
discussed in Section 1.: the less frequently the best current solution is improved
during the search, the more the “negative” search is justified. Now, when we
are running a very time-consuming problem, the overwhelming majority of the
subproblems do not lead to a solution improvement and, therefore, “negative”
search is more natural and, if applied, leads to spectacular savings in total time.
This is confirmed by the experiments with the random generated matrices of
Table 1.2, for which we have kept the raising parameter � constantly equal to
5 . In the most time-consuming of these examples 9 : <(9 ?�? takes between 5����
and 6	��� of the time of �������(<�� � .

3.1 OTHER COMPARISONS

We do not have a systematic comparison with the results by
 �=: , a very
efficient recently-developed ILP-based covering solver [Liao and Devadas,
1997]. However, the intuition is that an algorithm based on linear programming
is better suited for problems with a solution space diversified in the costs, i.e.,
for problems which are “closer” to numerical ones. To test the conjecture we
asked the authors of [Liao and Devadas, 1997] to run
�� : on saucier.t, whose
solution space is poorly diversified (a minimum solution has 6 columns, while
most of the irredundant solutions cost in the range from 6 to 8).
��=: ran out
of memory after 20000 seconds of computations (the information was kindly
provided by S.Liao), while 9 : <(9 ?�? completes the example in 24 seconds. It
would be of interest to study if the virtues of an ILP-based solver and of raiser
could be combined in a single algorithm.

4. CONCLUSIONS

In [Goldberg et al., 1997] the authors applied to UCP a novel technique to
augment Branch-and-Bound (B&B) using a new way of exploring solutions,
inspired by a paradigm called negative thinking. Traditional UCP solvers are
based on the mincov algorithm [Rudell and Sangiovanni-Vincentelli, 1987]
which keep searching the solution space in the hope of finding a better solution
(positive thinking mode) The new paradigm led to the development of the raiser
algorithm which can be coupled with mincov to better guide the exploration of
the binary tree representing the solution space: in fact, the search for a better
solutioncan be appropriately interleaved with the attempt to prove that no better

16

solution can be found in the current branching node (negative thinking mode).
This paper discusses the details of the raiser algorithm. Moreover, by reporting
experimental results obtained with 9 : <(9 ?/? , a new state-of-the-art UCP solver
which combines the best of both worlds, we settle some experimental questions
left open in [Goldberg et al., 1997]. Future work includes the extension of
9;:=<>9 ?�? to solve the binate covering problem.

Acknowledgments
We gratefully thank Dr. Olivier Coudert (Monterey Design Systems) who kindly provided

us a version of Scherzo and was always available for technical discussions.

References

[Coudert, 1994] Coudert, O. (1994). Two-level logic minimization: an
overview. Integration, 17-2:97–140.

[Coudert, 1996] Coudert, O. (1996). On solving binate covering problems. In
The Proceedings of the Design Automation Conference, pages 197–202.

[Coudert and Madre, 1995] Coudert, O. and Madre, J. (1995). New ideas for
solving covering problems. In The Proceedings of the Design Automation
Conference, pages 641–646.

[Goldberg et al., 1997] Goldberg, E., Carloni, L. P., Villa, T., Brayton, R. K.,
and Sangiovanni-Vincentelli, A. (1997). Negative thinking by incremental
problem solving: application to unate covering. In The Proceedings of the
International Conference on Computer-Aided Design, pages 91–99.

[Kam et al., 1997] Kam, T., Villa, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997). Synthesis of FSMs: functional optimization. Kluwer
Academic Publishers.

[Liao and Devadas, 1997] Liao, S. and Devadas, S. (1997). Solving covering
problems using LPR-based lower bounds. In The Proceedings of the Design
Automation Conference.

[Rudell and Sangiovanni-Vincentelli, 1987] Rudell, R. and Sangiovanni-
Vincentelli, A. (1987). Multiple-valued minimization for PLA optimization.
IEEE Transactions on Computer-Aided Design, CAD-6:727–750.

[Villa et al., 1997a] Villa, T., Kam, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997a). Explicit and implicit algorithms for binate covering
problems. IEEE Transactions on Computer-Aided Design, 16(7):677–691.

[Villa et al., 1997b] Villa, T., Kam, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. (1997b). Synthesis of FSMs: logic optimization. Kluwer
Academic Publishers.

