
Partial Quantifier Elimination And Property
Generation

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We study partial quantifier elimination (PQE) for proposi-
tional CNF formulas with existential quantifiers. PQE is a generalization
of quantifier elimination where one can limit the set of clauses taken out
of the scope of quantifiers to a subset of clauses. The appeal of PQE is
threefold. First, PQE is dramatically simpler than full quantifier elimi-
nation if only a small part of the formula is unquantified. Second, many
well-known verification problems (e.g., SAT, equivalence checking and
model checking) can be solved in terms of PQE. Third, PQE can be used
to attack new problems. We describe application of PQE to property gen-
eration that can be viewed as a generalization of testing. The objective
here is to produce an unwanted property, thus exposing a bug. We in-
troduce two PQE solvers called EG-PQE and EG-PQE+. EG-PQE is a
very simple SAT-based algorithm. EG-PQE+ is more sophisticated and
robust than EG-PQE . We use these PQE solvers to find an unwanted
property (namely, an unwanted invariant) of a buggy FIFO buffer. We
also apply them to invariant generation for sequential circuits from an
HWMCC benchmark set. Finally, we use these solvers to generate prop-
erties of a combinational circuit that mimic symbolic simulation.

1 Introduction

In this paper, we consider the following problem. Let F (X,Y) be a propositional
formula in conjunctive normal form (CNF)1 where X,Y are sets of variables.
Let G be a subset of clauses of F . Given a formula ∃X[F], find a quantifier-free
formula H(Y) such that ∃X[F] ≡ H ∧ ∃X[F \G]. In contrast to full quantifier
elimination (QE), only the clauses of G are taken out of the scope of quantifiers
here. So, we call this problem partial QE (PQE) [1]. (In this paper, we consider
PQE only for formulas with existential quantifiers.) We will refer to H as a
solution to PQE. Like SAT, PQE is a way to cope with the complexity of QE.
But in contrast to SAT that is a special case of QE (where all variables are
quantified), PQE generalizes QE. The latter is just a special case of PQE where
G = F and the entire formula is unquantified. Interpolation [2,3] can be viewed
as a special case of PQE as well [4,5].

1 Every formula is a propositional CNF formula unless otherwise stated. Given a CNF
formula F represented as the conjunction of clauses C1∧· · ·∧Ck, we will also consider
F as the set of clauses {C1, . . . , Ck}.

The appeal of PQE is threefold. First, it can be much more efficient than
QE if G is a small subset of F . Second, many verification problems like SAT,
equivalence checking, model checking can be solved in terms of PQE [1,6,7,8]. So,
PQE can be used to design new efficient methods for solving known problems.
Third, one can apply PQE to solving new problems like property generation
considered in this paper. In practice, to perform PQE, it suffices to have an
algorithm that takes a single clause out of the scope of quantifiers. Namely, given
a formula ∃X[F (X,Y)] and a clause C ∈ F , this algorithm finds a formula H(Y)
such that ∃X[F] ≡ H ∧ ∃X[F \ {C}]. To take out k clauses, one can apply this
algorithm k times. Since H ∧∃X[F] ≡ H ∧∃X[F \ {C}], solving the PQE above
reduces to finding H(Y) that makes C redundant in H ∧ ∃X[F]. So, the PQE
algorithms we present here employ redundancy based reasoning. We describe
two PQE algorithms called EG-PQE and EG-PQE+ where “EG” stands for
“Enumerate and Generalize”. EG-PQE is a very simple SAT-based algorithm
that can sometimes solve very large problems. EG-PQE+ is a modification of
EG-PQE that makes the algorithm more powerful and robust.

In [7], we showed the viability of an equivalence checker based on PQE. In par-
ticular, we presented instances for which this equivalence checker outperformed
ABC [9], a high quality tool. In this paper, we describe and check experimentally
one more important application of PQE called property generation. Our moti-
vation here is as follows. Suppose a design implementation Imp meets the set
of specification properties P1, . . . , Pm. Typically, this set is incomplete. So, Imp
can still be buggy even if every Pi, i = 1, . . . ,m holds. Let P ∗m+1, . . . , P

∗
n be de-

sired properties adding which makes the specification complete. If Imp meets the
properties P1, . . . , Pm but is still buggy, a missed property P ∗i above fails. That
is, Imp has the unwanted property P ∗i . So, one can detect bugs by generating
unspecified properties of Imp and checking if there is an unwanted one.

Currently, identification of unwanted properties is mostly done by massive
testing. (As we show later, the input/output behavior specified by a single test
can be cast as a simple property of Imp.) Another technique employed in prac-
tice is guessing unwanted properties that may hold and formally checking if this
is the case. The problem with these techniques is that they can miss an un-
wanted property. In this paper, we describe property generation by PQE. The
benefit of PQE is that it can produce much more complex properties than those
corresponding to single tests. So, using PQE one can detect bugs that testing
overlooks or cannot find in principle. Importantly, PQE generates properties
covering different parts of Imp. This makes the search for unwanted properties
more systematic and facilitates discovering bugs that can be missed if one simply
guesses unwanted properties that may hold.

In this paper, we experimentally study generation of invariants of a sequen-
tial circuit N . An invariant of N is unwanted if a state that is supposed to be
reachable in N falsifies this invariant and hence is unreachable. Note that find-
ing a formal proof that N has no unwanted invariants is impractical. (It is hard
to efficiently prove a large set of states reachable because different states are
reached by different execution traces.) So developing practical methods for find-

ing unwanted invariants if very important. We also study generation of properties
mimicking symbolic simulation for a combinational circuit obtained by unrolling
a sequential circuit. An unwanted property here exposes a wrong execution trace.

This paper is structured as follows. (Some additional information can be
found in the supporting technical report [5].) In Section 2, we give basic defini-
tions. Section 3 presents property generation for a combinational circuit. In Sec-
tion 4, we describe invariant generation for a sequential circuit. Sections 5 and 6
present EG-PQE and EG-PQE+ respectively. In Section 7, invariant generation
is used to find a bug in a FIFO buffer. Experiments with invariant generation
for HWMCC benchmarks are described in Section 8. Section 9 presents an ex-
periment with property generation for combinational circuits. In Section 10 we
give some background. Finally, in Section 11, we make conclusions and discuss
directions for future research.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal
of a variable v is either v or its negation. A clause is a disjunction of literals.
A formula F is in conjunctive normal form (CNF) if F = C1 ∧ · · · ∧ Ck where
C1, . . . , Ck are clauses. We will also view F as the set of clauses {C1, . . . , Ck}.
We assume that every formula is in CNF.

Definition 2. Let F be a formula. Then Vars(F) denotes the set of variables
of F and Vars(∃X[F]) denotes Vars(F)\X.

Definition 3. Let V be a set of variables. An assignment #»q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in #»q as
Vars(~q). We will refer to #»q as a full assignment to V if Vars(~q) = V . We
will denote as #»q ⊆ #»r the fact that a) Vars(~q) ⊆ Vars(~r) and b) every variable
of Vars(~q) has the same value in #»q and #»r .

Definition 4. A literal, a clause and a formula are said to be satisfied (respec-
tively falsified) by an assignment #»q if they evaluate to 1 (respectively 0) under
#»q .

Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and #»q be an assignment to Vars(H). If C is satisfied by #»q , then C~q ≡ 1. Oth-
erwise, C~q is the clause obtained from C by removing all literals falsified by #»q .
Denote by H~q the formula obtained from H by removing the clauses satisfied by
#»q and replacing every clause C unsatisfied by #»q with C~q.

Definition 6. Given a formula ∃X[F (X,Y)], a clause C of F is called a quan-
tified clause if Vars(C) ∩ X 6= ∅. If Vars(C) ∩X = ∅, the clause C depends
only on free, i.e., unquantified variables of F and is called a free clause.

Definition 7. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if G~q = H~q for all full assign-
ments #»q to Vars(G) ∪Vars(H).

Definition 8. Let F (X,Y) be a formula and G ⊆ F and G 6= ∅. The clauses
of G are said to be redundant in ∃X[F] if ∃X[F] ≡ ∃X[F \G]. Note that if
F \G implies G, the clauses of G are redundant in ∃X[F].

Definition 9. Given a formula ∃X[F (X,Y))] and G where G ⊆ F , the Partial
Quantifier Elimination (PQE) problem is to find H(Y) such that
∃X[F] ≡ H ∧ ∃X[F \G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Example 1. Consider the formula F = C1∧C2∧C3∧C4 where C1 = x3∨x4, C2 =
y1∨x3, C3 = y1 ∨ x4, C4 =y2∨x4. Let Y denote {y1, y2} and X denote {x3, x4}.
Consider the PQE problem of taking C1 out of ∃X[F], i.e., finding H(Y) such
that ∃X[F] ≡ H ∧∃X[F \ {C1}]. As we show later, ∃X[F] ≡ y1∧∃X[F \ {C1}].
That is, H=y1 is a solution to the PQE problem above.

Remark 1. Let D be a clause of a solution H to the PQE problem of Definition 9.
If F \G implies D, then H \ {D} is a solution to this PQE problem too.

Proposition 1. Let H be a solution to the PQE problem of Definition 9. That
is, ∃X[F] ≡ H ∧ ∃X[F \G]. Then F ⇒ H (i.e., F implies H).

The proofs of propositions can be found in [5].

Definition 10. Let clauses C ′,C ′′ have opposite literals of exactly one variable
w ∈Vars(C ′)∩Vars(C ′′). Then C ′,C ′′ are called resolvable on w. Let C be a
clause of a formula G and w ∈ Vars(C). The clause C is said to be blocked [10]
in G with respect to the variable w if no clause of G is resolvable with C on w.

Proposition 2. Let a clause C be blocked in a formula F (X,Y) with respect to
a variable x ∈ X. Then C is redundant in ∃X[F], i.e., ∃X[F \ {C}] ≡ ∃X[F].

3 Property Generation By PQE

Many known problems can be formulated in terms of PQE, thus facilitating the
design of new efficient algorithms. In [5], we give a short summary of results
on solving SAT, equivalence checking and model checking by PQE presented in
[1,6,7,8]. In this section, we describe application of PQE to property generation
for a combinational circuit. The objective of property generation is to expose a
bug via producing an unwanted property.

Let M(X,V,W) be a combinational circuit where X,V,W specify the sets
of the internal, input and output variables of M respectively. Let F (X,V,W)
denote a formula specifying M . As usual, this formula is obtained by Tseitin’s
transformations [11]. Namely, F equals FG1

∧· · ·∧FGk
where G1, . . . , Gk are the

gates of M and FGi
specifies the functionality of gate Gi.

Example 2. Let G be a 2-input AND gate defined as x3 = x1 ∧ x2 where x3

denotes the output value and x1, x2 denote the input values of G. Then G is
specified by the formula FG =(x1∨x2∨x3)∧(x1∨x3)∧(x2∨x3). Every clause of
FG is falsified by an inconsistent assignment (where the output value of G is not
implied by its input values). For instance, x1∨ x3 is falsified by the inconsistent
assignment x1 = 0, x3 = 1. So, every assignment satisfying FG corresponds to a
consistent assignment to G and vice versa. Similarly, every assignment satisfying
the formula F above is a consistent assignment to the gates of M and vice versa.

3.1 High-level view of property generation by PQE

One generates properties by PQE until an unwanted property exposing a bug
is produced. (Like in testing, one runs tests until a bug-exposing test is encoun-
tered.) The benefit of property generation by PQE is fourfold. First, by property
generation, one can identify bugs that are hard or simply impossible to find by
testing. Second, using PQE makes property generation efficient. Third, by tak-
ing out different clauses one can generate properties covering different parts of
the design. This increases the probability of discovering a bug. Fourth, every
property generated by PQE specifies a large set of high-quality tests.

In this paper (Sections 7, 9), we consider cases where identifying an unwanted
property is easy. However, in general, such identification is not trivial. A discus-
sion of this topic is beyond the scope of this paper. (An outline of a procedure
for deciding if a property is unwanted is given in [5].)

3.2 Property generation as generalization of testing

The behavior of M corresponding to a single test can be cast as a property. Let
wi ∈ W be an output variable of M and #»v be a test, i.e., a full assignment to
the input variables V of M . Let B~v denote the longest clause falsified by #»v , i.e.,
Vars(B~v) = V . Let l(wi) be the literal satisfied by the value of wi produced by
M under input #»v . Then the clause B~v ∨ l(wi) is satisfied by every assignment
satisfying F , i.e., B~v ∨ l(wi) is a property of M . We will refer to it as a single-
test property (since it describes the behavior of M for a single test). If the
input #»v is supposed to produce the opposite value of wi (i.e., the one falsifying
l(wi)), then #»v exposes a bug in M . In this case, the single-test property above
is an unwanted property of M exposing the same bug as the test #»v .

A single-test property can be viewed as a weakest property of M as opposed
to the strongest property specified by ∃X[F]. The latter is the truth table of M
that can be computed explicitly by performing QE on ∃X[F]. One can use PQE
to generate properties of M that, in terms of strength, range from the weakest
ones to the strongest property inclusively. (By combining clause splitting with
PQE one can generate single-test properties, see the next subsection.) Consider
the PQE problem of taking a clause C out of ∃X[F]. Let H(V,W) be a solution
to this problem, i.e., ∃X[F] ≡ H ∧∃X[F \ {C}]. Since H is implied by F , it can
be viewed as a property of M . If H is an unwanted property, M has a bug.

(Here we consider the case where a property of M is obtained by taking a clause
out of formula ∃X[F] where only the internal variables of M are quantified.
Later we consider cases where some external variables of M are quantified too.)

We will assume that the property H generated by PQE has no redundant
clauses (see Remark 1). That is, if D ∈ H, then F \ {C} 6⇒ D. Then one can
view H as a property that holds due to the presence of the clause C in F .

3.3 Computing properties efficiently

If a property H is obtained by taking only one clause out of ∃X[F], its com-
putation is much easier than performing QE on ∃X[F]. If computing H still
remains too time-consuming, one can use the two methods below that achieve
better performance at the expense of generating weaker properties. The first
method applies when a PQE solver forms a solution incrementally, clause by
clause (like the algorithms described in Sections 5 and 6). Then one can simply
stop computing H as soon as the number of clauses in H exceeds a threshold.
Such a formula H is still implied by F and hence specifies a property of M .

The second method employs clause splitting. Here we consider clause splitting
on input variables v1, . . . , vp, i.e., those of V (but one can split a clause on
any subset of variables from Vars(F)). Let F ′ denote the formula F where a
clause C is replaced with p + 1 clauses: C1 = C ∨ l(v1),. . . , Cp = C ∨ l(vp),
Cp+1 = C∨ l(v1)∨· · ·∨ l(vp), where l(vi) is a literal of vi. The idea is to obtain a
property H by taking the clause Cp+1 out of ∃X[F ′] rather than C out of ∃X[F].
The former PQE problem is simpler than the latter since it produces a weaker
property H. One can show that if {v1, . . . , vp}= V , then a) the complexity of
PQE reduces to linear; b) taking out Cp+1 actually produces a single-test
property. The latter specifies the input/output behavior of M for the test #»v
falsifying the literals l(v1), . . . , l(vp). (The details can be found in [5].)

3.4 Using design coverage for generation of unwanted properties

Arguably, testing is so effective in practice because one verifies a particular de-
sign. Namely, one probes different parts of this design using some coverage metric
rather than sampling the truth table (which would mean verifying every possible
design). The same idea works for property generation by PQE for the following
two reasons. First, by taking out a clause, PQE generates a property inherent
to the specific circuit M . (If one replaces M with an equivalent but structurally
different circuit, PQE will generate different properties.) Second, by taking out
different clauses of F one generates properties corresponding to different parts
of M thus “covering” the design. This increases the chance to take out a clause
corresponding to the buggy part of M and generate an unwanted property.

3.5 High-quality tests specified by a property generated by PQE

In this subsection, we show that a property H generated by PQE, in general,
specifies a large set of high-quality tests. Let H(V,W) be obtained by taking

C out of ∃X[F (X,V,W)]. Let Q(V,W) be a clause of H. As mentioned above,
we assume that F \ {C} 6⇒ Q. Then there is an assignment (#»x , #»v , #»w) satisfying

formula (F \ {C}) ∧ Q where #»x , #»v , #»w are assignments to X,V,W respectively.
(Note that by definition, (#»v , #»w) falsifies Q.) Let (#»x ∗, #»v , #»w∗) be the execution
trace of M under the input #»v . So, (#»x ∗, #»v , #»w∗) satisfies F . Note that the output
assignments #»w and #»w∗ must be different because (#»v , #»w∗) has to satisfy Q. (Oth-
erwise, (#»x ∗, #»v , #»w∗) satisfies F ∧ Q and so F 6⇒ Q and hence F 6⇒ H.) So, one
can view #»v as a test “detecting” disappearance of the clause C from F . Note
that different assignments satisfying (F \ {C})∧Q correspond to different tests
#»v . So, the clause Q of H, in general, specifies a very large number of tests. One
can show that these tests are similar to those detecting stuck-at faults and so
have very high quality [5].

4 Invariant Generation By PQE

In this section, we extend property generation for combinational circuits to se-
quential ones. Namely, we generate invariants. Note that generation of desired
auxiliary invariants is routinely used in practice to facilitate verification of a
predefined property. The problem we consider here is different in that our goal
is to produce an unwanted invariant exposing a bug. We picked generation of
invariants (over that of weaker properties just claiming that a state cannot be
reached in k transitions or less) because identification of an unwanted invariant
is, arguably, easier.

4.1 Bugs making states unreachable

Let N be a sequential circuit and S denote the state variables of N . Let I(S)
specify the initial state #»sini (i.e., I(#»sini)=1). Let T (S′, V, S′′) denote the tran-
sition relation of N where S′, S′′ are the present and next state variables and
V specifies the (combinational) input variables. We will say that a state #»s of
N is reachable if there is an execution trace leading to #»s . That is, there is
a sequence of states #»s0, . . . ,

#»sk where #»s0 = #»sini ,
#»sk = #»s and there exist #»vi

i = 0, . . . , k−1 for which T (#»si,
#»vi,

#»si+1) = 1. Let N have to satisfy a set of in-
variants P0(S), . . . , Pm(S). That is, Pi holds iff Pi(

#»s) = 1 for every reachable
state #»s of N . We will denote the aggregate invariant P0 ∧ · · · ∧ Pm as Pagg .
We will call #»s a bad state of N if Pagg(#»s) = 0. If Pagg holds, no bad state is
reachable. We will call #»s a good state of N if Pagg(#»s) = 1.

Typically, the set of invariants P0, . . . , Pm is incomplete in the sense that it
does not specify all states that must be unreachable. So, a good state can well be
unreachable. We will call a good state operative (or op-state for short) if it is
supposed to be used by N and so should be reachable. We introduce the term an
operative state just to factor out “useless” good states. We will say that N has
an op-state reachability bug if an op-state is unreachable in N . In Section 7,
we consider such a bug in a FIFO buffer. The fact that Pagg holds says nothing
about reachability of op-states. Consider, for instance, a trivial circuit Ntriv that

simply stays in the initial state #»sini and Pagg(#»sini) = 1. Then Pagg holds for
Ntriv but the latter has op-state reachability bugs (assuming that the correct
circuit must reach states other than #»sini).

Let R #»s (S) be the predicate satisfied only by a state #»s . In terms of CTL,
identifying an op-state reachability bug means finding #»s for which the property
EF.R #»s must hold but it does not. The reason for assuming #»s to be unknown
is that the set of op-states is typically too large to explicitly specify every prop-
erty ET.R #»s to hold. This makes finding op-state reachability bugs very hard.
The problem is exacerbated by the fact that reachability of different states is
established by different traces. So, in general, one cannot efficiently prove many
properties EF.R #»s (for different states) at once.

4.2 Proving operative state unreachability by invariant generation

In practice, there are two methods to check reachability of op-states for large
circuits. The first method is testing. Of course, testing cannot prove a state un-
reachable, however, the examination of execution traces may point to a poten-
tial problem. (For instance, after examining execution traces of the circuit Ntriv

above one realizes that many op-states look unreachable.) The other method is
to check unwanted invariants, i.e., those that are supposed to fail. If an un-
wanted invariant holds for a circuit, the latter has an op-state reachability bug.
For instance, one can check if a state variable si ∈ S of a circuit never changes
its initial value. To break this unwanted invariant, one needs to find an op-state
where the initial value of si is flipped. (For the circuit Ntriv above this unwanted
invariant holds for every state variable.) The potential unwanted invariants are
formed manually, i.e., simply guessed.

The two methods above can easily overlook an op-state reachability bug.
Testing cannot prove that an op-state is unreachable. To correctly guess an
unwanted invariant that holds, one essentially has to know the underlying bug.
Below, we describe a method for invariant generation by PQE that is based on
property generation for combinational circuits. The appeal of this method is
twofold. First, PQE generates invariants “inherent” to the implementation at
hand, which drastically reduces the set of invariants to explore. Second, PQE is
able to generate invariants related to different parts of the circuit (including the
buggy one). This increases the probability of generating an unwanted invariant.
We substantiate this intuition in Section 7.

Let formula Fk specify the combinational circuit obtained by unfolding a
sequential circuit N for k time frames and adding the initial state constraint
I(S0). That is, Fk = I(S0)∧ T (S0, V0, S1)∧ · · · ∧ T (Sk−1, Vk−1, Sk) where Sj , Vj
denote the state and input variables of j-th time frame respectively. Let H(Sk)
be a solution to the PQE problem of taking a clause C out of ∃Xk[Fk] where
Xk = S0∪V0∪· · ·∪Sk−1∪Vk−1. That is, ∃Xk[Fk] ≡ H∧ ∃Xk[Fk \ {C}]. Note that
in contrast to Section 3, here some external variables of the combinational circuit
(namely, the input variables V0, . . . , Vk−1) are quantified too. So, H depends only
on state variables of the last time frame. H can be viewed as a local invariant
asserting that no state falsifying H can be reached in k transitions.

One can use H to find global invariants (holding for every time frame) as
follows. Even if H is only a local invariant, a clause Q of H can be a global
invariant. The experiments of Section 8 show that, in general, this is true for
many clauses of H. (To find out if Q is a global invariant, one can simply run a
model checker to see if the property Q holds.) Note that by taking out different
clauses of Fk one can produce global single-clause invariants Q relating to dif-
ferent parts of N . From now on, when we say “an invariant” without a qualifier
we mean a global invariant.

5 Introducing EG-PQE

In this section, we describe a simple SAT-based algorithm for performing PQE
called EG-PQE . Here ’EG’ stands for ’Enumerate and Generalize’. EG-PQE
accepts a formula ∃X[F (X,Y)] and a clause C ∈ F . It outputs a formula H(Y)
such that ∃X[Fini] ≡ H ∧ ∃X[Fini \ {C}] where Fini is the initial formula F .
(This point needs clarification because EG-PQE changes F by adding clauses.)

5.1 An example

Before describing the pseudocode of EG-PQE , we explain how it solves the PQE
problem of Example 1. That is, we consider taking clause C1 out of ∃X[F (X,Y)]
where F = C1 ∧ · · · ∧ C4, C1 = x3 ∨ x4, C2 =y1∨x3, C3 = y1 ∨ x4, C4 =y2∨x4

and Y = {y1, y2} and X = {x3, x4}.
EG-PQE iteratively generates a full assignment #»y to Y and checks if (C1)~y

is redundant in ∃X[F~y] (i.e., if C1 is redundant in ∃X[F] in subspace #»y). Note
that if (F \ {C1})~y implies (C1)~y, then (C1)~y is trivially redundant in ∃X[F~y].
To avoid such subspaces, EG-PQE generates #»y by searching for an assignment
(#»y , #»x) satisfying the formula (F \{C1})∧C1. (Here #»y and #»x are full assignments
to Y and X respectively.) If such (#»y , #»x) exists, it satisfies F \ {C1} and falsifies
C1 thus proving that (F \ {C1})~y does not imply (C1)~y.

Assume that EG-PQE found an assignment(y1 = 0, y2 = 1, x3 = 1, x4 = 0)

satisfying (F \{C1})∧C1. So #»y = (y1 =0, y2 =1). Then EG-PQE checks if F~y is
satisfiable. F~y = (x3∨x4)∧x3∧x4 and so it is unsatisfiable. This means that (C1)~y
is not redundant in ∃X[F~y]. (Indeed, (F \ {C1})~y is satisfiable. So, removing
C1 makes F satisfiable in subspace #»y .) EG-PQE makes (C1)~y redundant in
∃X[F~y] by adding to F a clause B falsified by #»y . The clause B equals y1

and is obtained by identifying the assignments to individual variables of Y that
made F~y unsatisfiable. (In our case, this is the assignment y1 = 0.) Note that
derivation of clause y1 generalizes the proof of unsatisfiability of F in subspace
(y1 =0, y2 =1) so that this proof holds for subspace (y1 =0, y2 =0) too.

Now EG-PQE looks for a new assignment satisfying (F \{C1})∧C1. Let the
assignment (y1 = 1, y2 = 1, x3 = 1, x4 = 0) be found. So, #»y = (y1 = 1, y2 = 1).
Since (y1 = 1, y2 = 1, x3 = 0) satisfies F , the formula F~y is satisfiable. So, (C1)~y
is already redundant in ∃X[F~y]. To avoid re-visiting the subspace #»y , EG-PQE
generates the plugging clause D = y1 ∨ y2 falsified by #»y .

EG-PQE fails to generate a new assignment #»y because the formula
D ∧ (F \ {C1}) ∧ C1 is unsatisfiable. Indeed, every full assignment #»y we have
examined so far falsifies either the clause y1 added to F or the plugging clause
D. The only assignment EG-PQE has not explored yet is #»y = (y1 = 1, y2 = 0).

Since (F \ {C1})~y = x4 and (C1)~y = x3 ∨ x4, the formula (F \ {C1}) ∧ C1 is
unsatisfiable in subspace #»y . In other words,(C1)~y is implied by (F \ {C1})~y and

hence is redundant. Thus, C1 is redundant in ∃X[Fini ∧ y1] for every assignment
to Y where Fini is the initial formula F . That is, ∃X[Fini] ≡ y1∧ ∃X[Fini \ {C1}]
and so the clause y1 is a solution H to our PQE problem.

5.2 Description of EG-PQE

EG-PQE(F,X, Y, C) {
1 Plg := ∅; Fini := F
2 while (true) {
3 G := F \ {C}
4

#»y :=Sat1(Plg∧G∧C)
5 if (#»y = nil)
6 return(F \ Fini)
7 (#»x ∗, B) := Sat2(F, #»y)
8 if (B 6= nil) {
9 F := F ∪ {B}
10 continue }
11 D :=PlugCls(#»y , #»x ∗,F)
12 Plg := Plg ∪ {D}}}

Fig. 1. Pseudocode of EG-PQE

The pseudo-code of EG-PQE is shown in
Fig. 1. EG-PQE starts with storing the ini-
tial formula F and initializing formula Plg
that accumulates the plugging clauses gener-
ated by EG-PQE (line 1). As we mentioned
in the previous subsection, plugging clauses
are used to avoid re-visiting the subspaces
where the formula F is proved satisfiable.

All the work is carried out in a while loop.
First, EG-PQE checks if there is a new sub-
space #»y where ∃X[(F \ {C})~y] does not im-
ply F~y. This is done by searching for an as-
signment (#»y , #»x) satisfying Plg∧(F \{C})∧C
(lines 3-4). If such an assignment does not
exist, the clause C is redundant in ∃X[F].
(Indeed, let #»y be a full assignment to Y .

The formula Plg ∧ (F \{C})∧C is unsatisfiable in subspace #»y for one of the two
reasons. First, #»y falsifies Plg . Then C~y is redundant because F~y is satisfiable.
Second, (F \ {C})~y ∧ C~y is unsatisfiable. In this case, (F \ {C})~y implies C~y.)
Then EG-PQE returns the set of clauses added to the initial formula F as a
solution H to the PQE problem (lines 5-6).

If the satisfying assignment (#»y , #»x) above exists, EG-PQE checks if the for-
mula F~y is satisfiable (line 7). If not, then the clause C~y is not redundant in
∃X[F~y] (because (F \ {C})~y is satisfiable). So, EG-PQE makes C~y redundant
by generating a clause B(Y) falsified by #»y and adding it to F (line 9). Note
that adding B also prevents EG-PQE from re-visiting the subspace #»y again.
The clause B is built by finding an unsatisfiable subset of F~y and collecting the
literals of Y removed from clauses of this subset when obtaining F~y from F .

If F~y is satisfiable, EG-PQE generates an assignment #»x ∗ to X such that
(#»y , #»x ∗) satisfies F (line 7). The satisfiability of F~y means that every clause
of F~y including C~y is redundant in ∃X[F~y]. At this point, EG-PQE uses the
longest clause D(Y) falsified by #»y as a plugging clause (line 11). The clause D is
added to Plg to avoid re-visiting subspace #»y . Sometimes it is possible to remove

variables from #»y to produce a shorter assignment #»y ∗ such that (#»y ∗, #»x ∗) still
satisfies F . Then one can use a shorter plugging clause D that is falsified by #»y ∗

and involves only the variables assigned in #»y ∗.

5.3 Discussion

EG-PQE is similar to the QE algorithm presented at CAV-2002 [12]. We will
refer to it as CAV02 -QE . Given a formula ∃X[F (X,Y)], CAV02 -QE enumerates
full assignments to Y . In subspace #»y , if F~y is unsatisfiable, CAV02 -QE adds to
F a clause falsified by #»y . Otherwise, CAV02 -QE generates a plugging clause
D. (In [12], D is called “a blocking clause”. This term can be confused with the
term “blocked clause” specifying a completely different kind of a clause. So, we
use the term “the plugging clause” instead.) To apply the idea of CAV02 -QE
to PQE, we reformulated it in terms of redundancy based reasoning.

The main flaw of EG-PQE inherited from CAV02 -QE is the necessity to
use plugging clauses produced from a satisfying assignment. Consider the PQE
problem of taking a clause C out of ∃X[F (X,Y)]. If F is proved unsatisfiable in
subspace #»y , typically, only a small subset of clauses of F~y is involved in the proof.
Then the clause generated by EG-PQE is short and thus proves C redundant
in many subspaces different from #»y . On the contrary, to prove F satisfiable
in subspace #»y , every clause of F must be satisfied. So, the plugging clause
built off a satisfying assignment includes almost every variable of Y . Despite
this flaw of EG-PQE , we present it for two reasons. First, it is a very simple
SAT-based algorithm that can be easily implemented. Second, EG-PQE has
a powerful advantage over CAV02 -QE since it solves PQE rather than QE.
Namely, EG-PQE does not need to examine the subspaces #»y where C is implied
by F \ {C}. Surprisingly, for many formulas this allows EG-PQE to completely
avoid examining subspaces where F is satisfiable. In this case, EG-PQE is very
efficient and can solve very large problems. Note that when CAV02 -QE performs
complete QE on ∃X[F], it cannot avoid subspaces #»y where F~y is satisfiable unless
F itself is unsatisfiable (which is very rare in practical applications).

6 Introducing EG-PQE+

In this section, we describe EG-PQE+, an improved version of EG-PQE .

6.1 Main idea

The pseudocode of EG-PQE+ is shown in Fig 2. It is different from that of
EG-PQE only in line 11 marked with an asterisk. The motivation for this change
is as follows. Line 11 describes proving redundancy of C for the case where C~y

is not implied by (F \ {C})~y and F~y is satisfiable. Then EG-PQE simply uses a
satisfying assignment as a proof of redundancy of C in subspace #»y . This proof
is unnecessarily strong because it proves that every clause of F (including C) is
redundant in ∃X[F] in subspace #»y . Such a strong proof is hard to generalize to
other subspaces.

EG-PQE+(F,X, Y, C) {
1 Plg := ∅; Fini := F
2 while (true) {
........
11∗ D :=PrvClsRed(#»y ,F,C)
12 Plg := Plg ∪ {D}}}

Fig. 2. Pseudocode of EG-PQE+

The idea of EG-PQE+ is to generate a
proof for a much weaker proposition namely
a proof of redundancy of C (and only C).
Intuitively, such a proof should be easier
to generalize. So, EG-PQE+ calls a pro-
cedure PrvClsRed generating such a proof.
EG-PQE+ is a generic algorithm in the sense
that any suitable procedure can be employed
as PrvClsRed. In our current implementa-
tion, the procedure DS -PQE [1] is used as

PrvClsRed. DS -PQE generates a proof stating that C is redundant in ∃X[F]
in subspace #»y ∗ ⊆ #»y . Then the plugging clause D falsified by #»y ∗ is generated.
Importantly, #»y ∗ can be much shorter than #»y . (A brief description of DS -PQE
in the context of EG-PQE+ is given in [5].)

Example 3. Consider the example solved in Subsection 5.1. That is, we consider
taking clause C1 out of ∃X[F (X,Y)] where F = C1 ∧ · · · ∧ C4, C1 = x3 ∨ x4,
C2 = y1∨x3, C3 = y1 ∨ x4, C4 = y2∨x4 and Y = {y1, y2} and X = {x3, x4}.
Consider the step where EG-PQE proves redundancy of C1 in subspace #»y =
(y1 = 1, y2 = 1). EG-PQE shows that (y1 = 1, y2 = 1,x3 = 0) satisfies F , thus
proving every clause of F (including C1) redundant in ∃X[F] in subspace #»y .
Then EG-PQE generates the plugging clause D = y1 ∨ y2 falsified by #»y .

In contrast to EG-PQE , EG-PQE+ calls PrvClsRed to produce a proof of
redundancy for the clause C1 alone. Note that F has no clauses resolvable with
C1 on x3 in subspace #»y ∗ = (y1 = 1). (The clause C2 containing x3 is satisfied by
#»y ∗.) This means that C1 is blocked in subspace #»y ∗ and hence redundant there
(see Proposition 2). Since #»y ∗ ⊂ #»y , EG-PQE+ produces a more general proof of
redundancy than EG-PQE . To avoid re-examining the subspace #»y ∗, EG-PQE+

generates a shorter plugging clause D = y1.

6.2 Discussion

Consider the PQE problem of taking a clause C out of ∃X[F (X,Y)]. There are
two features of PQE that make it easier than QE. The first feature mentioned
earlier is that one can ignore the subspaces #»y where F \{C} implies C. The sec-
ond feature is that when F~y is satisfiable, one only needs to prove redundancy of
the clause C alone. Among the three algorithms we run in experiments, namely,
DS -PQE , EG-PQE and EG-PQE+ only the latter exploits both features. (In
addition to using DS -PQE inside EG-PQE+ we also run it as a stand-alone PQE
solver.) DS -PQE does not use the first feature [1] and EG-PQE does not exploit
the second one. As we show in Sections 7 and 8, this affects the performance of
DS -PQE and EG-PQE .

7 Experiment With FIFO Buffers

In this and the next two sections we describe some experiments with
DS -PQE , EG-PQE and EG-PQE+ (their sources are available at [13], [14]

and [15] respectively). We used Minisat2.0 [16] as an internal SAT-solver. The
experiments were run on a computer with Intel Core i5-8265U CPU of 1.6 GHz.

· · ·
if (write == 1 && currSize < n)
* if (dataIn != Val)

begin
Data[wrPnt] = dataIn;
wrPnt = wrPnt + 1;
end
· · ·

Fig. 3. A buggy fragment of Ver-
ilog code describing Fifo

In this section, we give an example of bug
detection by invariant generation for a FIFO
buffer. Our objective here is threefold. First,
we want to give an example of a bug that
can be overlooked by testing and guessing
the unwanted properties to check (see Subsec-
tion 7.3). Second, we want to substantiate the
intuition of Subsection 3.4 that property gen-
eration by PQE (in our case, invariant gener-
ation by PQE) has the same reasons to be ef-
fective as testing. In particular, by taking out

different clauses one generates invariants relating to different parts of the de-
sign. So, taking out a clause of the buggy part is likely to produce an unwanted
invariant. Third, we want to give an example of an invariant that can be easily
identified as unwanted2.

7.1 Buffer description

Consider a FIFO buffer that we will refer to as Fifo. Let n be the number of
elements of Fifo and Data denote the data buffer of Fifo. Let each Data[i], i =
1, . . . , n have p bits and be an integer where 0 ≤ Data[i] < 2p. A fragment of
the Verilog code describing Fifo is shown in Fig 3. This fragment has a buggy
line marked with an asterisk. In the correct version without the marked line, a
new element dataIn is added to Data if the write flag is on and Fifo has less
than n elements. Since Data can have any combination of numbers, all Data
states are supposed to be reachable. However, due to the bug, the number Val
cannot appear in Data. (Here Val is some constant 0<Val<2p. We assume that
the buffer elements are initialized to 0.) So, Fifo has an op-state reachability bug
since it cannot reach operative states where an element of Data equals Val .

7.2 Bug detection by invariant generation

Let N be a circuit implementing Fifo. Let S be the set of state variables of N
and Sdata ⊂ S be the subset corresponding to the data buffer Data. We used

2 Let P (Ŝ) be an invariant for a circuit N depending only on a subset Ŝ of the state
variables S. Identifying P as an unwanted invariant is much easier if Ŝ is meaningful
from the high-level view of the design. Suppose, for instance, that assignments to Ŝ
specify values of a high-level variable v. Then P is unwanted if it claims unreachabil-
ity of a value of v that is supposed to be reachable. Another simple example is that
assignments to Ŝ specify values of high-level variables v and w that are supposed to
be independent. Then P is unwanted if it claims that some combinations of values of
v and w are unreachable. (This may mean, for instance, that an assignment operator
setting the value of v erroneously involves the variable w.)

DS -PQE , EG-PQE and EG-PQE+ to generate invariants of N as described in
Section 4. Note that an invariant Q depending only on Sdata is an unwanted
one. If Q holds for N , some states of Data are unreachable. Then Fifo has an
op-state reachability bug since every state of Data is supposed to be reachable.
To generate invariants, we used the formula Fk = I(S0) ∧ T (S0, V0, S1) ∧ · · · ∧
T (Sk−1, Vk−1, Sk) introduced in Subsection 4.2. Here I and T describe the initial
state and the transition relation of N respectively and Sj and Vj denote state
variables and combinational input variables of j-th time frame respectively. First,
we used a PQE solver to generate a local invariant H(Sk) obtained by taking a
clause C out of ∃Xk[Fk] where Xk = S0 ∪ V0 ∪ · · · ∪Sk−1 ∪ Vk−1. So, ∃Xk[Fk] ≡
H∧ ∃Xk[Fk \ {C}]. (Since Fk ⇒ H, no state falsifying H can be reached in k
transitions.) In the experiment, we took out only clauses of Fk containing an
unquantified variable, i.e., a state variable of the k-th time frame. The time limit
for solving the PQE problem of taking out a clause was set to 10 sec.

Table 1. FIFO buffer with n elements of 32 bits. Time limit is 10 sec. per PQE problem

buff. lat- time total pqe probs finished pqe probs unwant. invar runtime (s.)
size ches fra- ds- eg- eg- ds- eg- eg- ds- eg- eg- ds- eg- eg-

n mes pqe pqe pqe+ pqe pqe pqe+ pqe pqe pqe+ pqe pqe pqe+

8 300 5 1,236 311 8 2% 36% 35% no yes yes 12,141 2,138 52
8 300 10 560 737 39 2% 1% 3% yes yes yes 5,551 7,681 380
16 560 5 2,288 2,288 16 1% 65% 71% no no yes 22,612 9,506 50
16 560 10 653 2,288 24 1% 36% 38% yes no yes 6,541 16,554 153

For each clause Q of every local invariant H generated by PQE, we checked if
Q was a global invariant. Namely, we used a public version of IC3 [17,18] to verify
if the property Q held (by showing that no reachable state of N falsified Q). If
so, and Q depended only on variables of Sdata , N had an unwanted invariant.
Then we stopped invariant generation. The results of the experiment for buffers
with 32-bit elements are given in Table 1. When picking a clause to take out,
i.e., a clause with a state variable of k-th time frame, one could make a good
choice by pure luck. To address this issue, we picked clauses to take out randomly
and performed 10 different runs of invariant generation and then computed the
average value. So, the columns four to twelve of Table 1 actually give the average
value of 10 runs.

Let us use the first line of Table 1 to explain its structure. The first two
columns show the number of elements in Fifo implemented by N and the num-
ber of latches in N (8 and 300). The third column gives the number k of time
frames (i.e., 5). The next three columns show the total number of PQE prob-
lems solved by a PQE solver before an unwanted invariant was generated. For
instance, EG-PQE+ found such an invariant after solving 8 problems. On the
other hand, DS -PQE failed to find an unwanted invariant and had to solve all
1,236 PQE problems of taking out a clause of Fk with an unquantified variable.
The following three columns show the share of PQE problems finished in the time
limit of 10 sec. For instance, EG-PQE finished 36% of 311 problems. The next
three columns show if an unwanted invariant was generated by a PQE solver.
(EG-PQE and EG-PQE+ found one whereas DS -PQE did not.) The last three
columns give the total run time. Table 1 shows that only EG-PQE+ managed

to generate an unwanted invariant for all four instances of Fifo. This invariant
asserted that Fifo cannot reach a state where an element of Data equals Val .

7.3 Detection of the bug by conventional methods

The bug above (or its modified version) can be overlooked by conventional meth-
ods. Consider, for instance, testing. It is hard to detect this bug by random tests
because it is exposed only if one tries to add Val to Fifo. The same applies to
testing using the line coverage metric [19]. On the other hand, a test set with
100% branch coverage [19] will find this bug. (To invoke the else branch of the
if statement marked with ’*’ in Fig. 3, one must set dataIn to Val .) However, a
slightly modified bug can be missed even by tests with 100% branch coverage [5].

Now consider, manual generation of unwanted properties. It is virtually im-
possible to guess an unwanted invariant of Fifo exposing this bug unless one
knows exactly what this bug is. However, one can detect this bug by checking
a property asserting that the element dataIn must appear in the buffer if Fifo
is ready to accept it. Note that this is a non-invariant property involving states
of different time frames. The more time frames are used in such a property the
more guesswork is required to pick it. Let us consider a modified bug. Suppose
Fifo does not reject the element Val . So, the non-invariant property above holds.
However, if dataIn == Val , then Fifo changes the previous accepted element if
that element was Val too. So, Fifo cannot have two consecutive elements Val .
Our method will detect this bug via generating an unwanted invariant falsified by
states with consecutive elements Val . One can also identify this bug by checking
a property involving two consecutive elements of Fifo. But picking it requires a
lot of guesswork and so the modified bug can be easily overlooked.

8 Experiments With HWMCC Benchmarks

In this section, we describe three experiments with 98 multi-property bench-
marks of the HWMCC-13 set [20]. (We use this set because it has a multi-
property track, see the explanation below.) The number of latches in those
benchmarks range from 111 to 8,000. More details about the choice of bench-
marks and the experiments can be found in [5]. Each benchmark consists of a
sequential circuit N and invariants P0, . . . , Pm to prove. Like in Section 4, we
call Pagg = P0 ∧ · · · ∧ Pm the aggregate invariant. In experiments 2 and 3 we
used PQE to generate new invariants of N . Since every invariant P implied by
Pagg is a desired one, the necessary condition for P to be unwanted is Pagg 6⇒ P .
The conjunction of many invariants Pi produces a stronger invariant Pagg , which
makes it harder to generate P not implied by Pagg . (This is the reason for using
multi-property benchmarks in our experiments.) The circuits of the HWMCC-13
set are anonymous, so, we could not know if an unreachable state is supposed to
be reachable. For that reason, we just generated invariants not implied by Pagg

without deciding if some of them were unwanted.

Similarly to the experiment of Section 7, we used the formula Fk = I(S0) ∧
T (S0, V0, S1) ∧ · · · ∧ T (Sk−1, Vk−1, Sk) to generate invariants. The number k of
time frames was in the range of 2≤k≤10. As in the experiment of Section 7, we
took out only clauses containing a state variable of the k-th time frame. In all
experiments, the time limit for solving a PQE problem was set to 10 sec.

8.1 Experiment 1

In the first experiment, we generated a local invariant H by taking out a clause
C of ∃Xk[Fk] where Xk = S0 ∪ V0 ∪ · · · ∪ Sk−1 ∪ Vk−1. The formula H asserts
that no state falsifying H can be reached in k transitions. Our goal was to show
that PQE can find H for large formulas Fk that have hundreds of thousands
of clauses. We used EG-PQE to partition the PQE problems we tried into two
groups. The first group consisted of 3,736 problems for which we ran EG-PQE
with the time limit of 10 sec. and it never encountered a subspace #»sk where
Fk was satisfiable. Here #»sk is a full assignment to Sk. Recall that only the
variables Sk are unquantified in ∃Xk[Fk]. So, in every subspace #»sk, formula Fk

was either unsatisfiable or (Fk \ {C}) ⇒ C. (The fact that so many problems
meet the condition of the first group came as a big surprise.) The second group
consisted of 3,094 problems where EG-PQE encountered subspaces where Fk

was satisfiable.
For the first group, DS -PQE finished only 30% of the problems within 10

sec. whereas EG-PQE and EG-PQE+ finished 88% and 89% respectively. The
poor performance of DS -PQE is due to not checking if (Fk \ {C}) ⇒ C in the
current subspace. For the second group, DS -PQE , EG-PQE and EG-PQE+

finished 15%, 2% and 27% of the problems respectively within 10 sec. EG-PQE
finished far fewer problems because it used a satisfying assignment as a proof of
redundancy of C (see Subsection 6.2).

To contrast PQE and QE, we employed a high-quality tool CADET [21,22]
to perform QE on the 98 formulas ∃Xk[Fk] (one formula per benchmark). That
is, instead of taking a clause out of ∃Xk[Fk] by PQE, we applied CADET to
perform full QE on this formula. (Performing QE on ∃Xk[Fk] produces a formula
H(Sk) specifying all states unreachable in k transitions.) CADET finished only
25% of the 98 QE problems with the time limit of 600 sec. On the other hand,
EG-PQE+ finished 60% of the 6,830 problems of both groups (generated off
∃Xk[Fk]) within 10 sec. So, PQE can be much easier than QE if only a small
part of the formula gets unquantified.

8.2 Experiment 2

The second experiment was an extension of the first one. Its goal was to show
that PQE can generate invariants for realistic designs. For each clauseQ of a local
invariant H generated by PQE we used IC3 to verify if Q was a global invariant.
If so, we checked if Pagg 6⇒ Q held. To make the experiment less time consuming,
in addition to the time limit of 10 sec. per PQE problem we imposed a few more
constraints. The PQE problem of taking a clause out of ∃Xk[Fk] terminated

as soon as H accumulated 5 clauses or more. Besides, processing a benchmark
aborted when the summary number of clauses of all formulas H generated for
this benchmark reached 100 or the total run time of all PQE problems generated
off ∃Xk[Fk] exceeded 2,000 sec.

Table 2. Invariant generation
pqe #bench results
solver marks local glob. not imp.

invar. invar. by Pagg

ds-pqe 98 5,556 2,678 2,309
eg-pqe 98 9,498 4,839 4,009

eg-pqe+ 98 9,303 4,773 3,940

Table 2 shows the results of the exper-
iment. The third column gives the num-
ber of local single-clause invariants (i.e.,
the total number of clauses in all H over
all benchmarks). The fourth column shows
how many local single-clause invariants
turned out to be global. (Since global in-

variants were extracted from H and the summary size of all H could not exceed
100, the number of global invariants per benchmark could not exceed 100.) The
last column gives the number of global invariants not implied by Pagg . So, these
invariants are candidates for checking if they are unwanted. Table 2 shows that
EG-PQE and EG-PQE+ performed much better than DS -PQE .

8.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses Q1, . . . ,Qn to make
P ∧ Q1∧ · · · ∧ Qn inductive. If IC3 succeeds, every Qi is an invariant. More-
over, Qi may be an unwanted invariant. The goal of the third experiment was to
demonstrate that PQE and IC3 , in general, produce different invariant clauses.
The intuition here is twofold. First, IC3 generates clauses Qi to prove a prede-
fined invariant rather than find an unwanted one. Second, the closer P to being
inductive, the fewer new invariant clauses are generated by IC3 . Consider the
circuit Ntriv that simply stays in the initial state #»sini (Section 4). Any invariant
satisfied by #»sini is already inductive for Ntriv . So, IC3 will not generate a single
new invariant clause. On the other hand, if the correct circuit is supposed to
leave the initial state, Ntriv has unwanted invariants that our method will find.

In this experiment, we used IC3 to generate P ∗agg , an inductive version of
Pagg . The experiment showed that in 88% cases, an invariant clause generated
by EG-PQE+ and not implied by Pagg was not implied by P ∗agg either. (More
details about this experiment can be found in [5].)

9 Properties Mimicking Symbolic Simulation

Let M(X,V,W) be a combinational circuit where X,V,W are internal, input
and output variables. In this section, we describe generation of properties of M
that mimic symbolic simulation [23]. Every such a property Q(V) specifies a
cube of tests that produce the same values for a given subset of variables of W .
We chose generation of such properties because deciding if Q is an unwanted
property is, in general, simple. The procedure for generation of these properties
is slightly different from the one presented in Section 3.

Let F (X,V,W) be a formula specifying M . Let B(W) be a clause. Let H(V)
be a solution to the PQE problem of taking a clause C ∈ F out of ∃X∃W [F ∧B].
That is, ∃X∃W [F ∧B] ≡ H∧ ∃X∃W [(F \ {C}) ∧B]. Let Q(V) be a clause of
H. Then M has the property that for every full assignment #»v to V falsifying
Q, it produces an output #»w falsifying B (a proof of this fact can be found in [5]).
Suppose, for instance,Q=v1∨ v10∨v30 and B=w2∨w40. Then for every #»v where
v1 =0, v10 =1,v30 =0, the circuit M produces an output where w2 = 0, w40 = 1.
Note that Q is implied by F ∧B rather than F . So, it is a property of M under
constraint B rather than M alone. The property Q is unwanted if there is an
input falsifying Q that should not produce an output falsifying B.

To generate combinational circuits, we unfolded sequential circuits of the set
of 98 benchmarks used in Section 8 for invariant generation. LetN be a sequential
circuit. (We reuse the notation of Section 4). Let Mk(S0, V0, . . . , Sk−1, Vk−1, Sk)
denote the combinational circuit obtained by unfolding N for k time frames. Here
Sj , Vj are state and input variables of j-th time frame respectively. Let Fk denote
the formula I(S0)∧T (S0, V0, S1)∧ · · ·∧T (Sk−1, Vk−1, Sk) describing the unfold-
ing of N for k time frames. Note that Fk specifies the circuit Mk above under the
input constraint I(S0). Let B(Sk) be a clause. Let H(S0, V0, . . . , Vk−1) be a solu-
tion to the PQE problem of taking a clause C ∈ Fk out of formula ∃S1,k[Fk ∧B].
Here S1,k = S1 ∪ · · · ∪ Sk. That is, ∃S1,k[Fk ∧B] ≡ H∧ ∃S1,k[(Fk \ {C}) ∧B].
Let Q be a clause of H. Then for every assignment (#»sini ,

#»v0,. . . , #»v k−1) falsifying
Q, the circuit Mk outputs #»sk falsifying B. (Here #»sini is the initial state of N
and #»sk is a state of the last time frame.)

Table 3. Property generation for combinational circuits
name lat- time size subc. M ′k results

ches fra- of gates inp. min max time 3-val.
mes B vars (s.) sim.

6s326 3,342 20 15 348,479 1,774 27 28 2.9 no
6s40m 5,608 20 15 406,474 3,450 27 29 1.1 no
6s250 6,185 20 15 556,562 2,456 50 54 0.8 no
6s395 463 30 15 36,088 569 24 26 0.7 yes
6s339 1,594 30 15 179,543 3,978 70 71 3.1 no
6s292 3,190 30 15 154,014 978 86 89 1.1 no
6s143 260 40 15 551,019 16,689 526 530 2.5 yes
6s372 1,124 40 15 295,626 2,766 513 518 1.7 no
6s335 1,658 40 15 207,787 2,863 120 124 6.7 no
6s391 2,686 40 15 240,825 7,579 340 341 8.9 no

In the experiment, we
used DS -PQE ,EG-PQE
and EG-PQE+ to solve
1,586 PQE problems de-
scribed above. In Table 3,
we give a sample of results
by EG-PQE+. (More de-
tails about this experi-
ment can be found in [5].)
Below, we use the first
line of Table 3 to explain
its structure. The first col-

umn gives the benchmark name (6s326). The next column shows that 6s326 has
3,342 latches. The third column gives the number of time frames used to pro-
duce a combinational circuit Mk (here k = 20). The next column shows that the
clause B introduced above consisted of 15 literals of variables from Sk. (Here
and below we still use the index k assuming that k = 20.) The literals of B were
generated randomly. When picking the length of B we just tried to simulate the
situation where one wants to set a particular subset of output variables of Mk

to specified values. The next two columns give the size of the subcircuit M ′k of
Mk that feeds the output variables present in B. When computing a property
H we took a clause out of formula ∃S1,k[F ′k ∧B] where F ′k specifies M ′k instead

of formula ∃S1,k[Fk ∧B] where Fk specifies Mk. (The logic of Mk not feeding a
variable of B is irrelevant for computing H.) The first column of the pair gives
the number of gates in M ′k (i.e., 348,479). The second column provides the num-
ber of input variables feeding M ′k (i.e., 1,774). Here we count only variables of
V0∪· · ·∪Vk−1 and ignore those of S0 since the latter are already assigned values
specifying the initial state #»sini of N .

The next four columns show the results of taking a clause out of ∃S1,k[F ′k∧B].

For each PQE problem the time limit was set to 10 sec. Besides, EG-PQE+

terminated as soon as 5 clauses of property H(S0, V0, . . . , Vk−1) were generated.
The first three columns out of four describe the minimum and maximum sizes of
clauses in H and the run time of EG-PQE+. So, it took for EG-PQE+ 2.9 sec.
to produce a formula H containing clauses of sizes from 27 to 28 variables. A
clause Q of H with 27 variables, for instance, specifies 21747 tests falsifying Q that
produce the same output of M ′k (falsifying the clause B). Here 1747 = 1774− 27
is the number of input variables of M ′k not present in Q. The last column shows
that at least one clause Q of H specifies a property that cannot be produced by
3-valued simulation (a version of symbolic simulation [23]). To prove this, one
just needs to set the input variables of M ′k present in Q to the values falsifying Q
and run 3-valued simulation. (The remaining input variables of M ′k are assigned
a don’t-care value.) If after 3-valued simulation some output variable of M ′k is
assigned a don’t-care value, the property specified by Q cannot be produced by
3-valued simulation.

Running DS -PQE , EG-PQE and EG-PQE+ on the 1,586 PQE problems
mentioned above showed that a) EG-PQE performed poorly producing proper-
ties only for 28% of problems; b) DS -PQE and EG-PQE+ showed much better
results by generating properties for 62% and 66% of problems respectively. When
DS -PQE and EG-PQE+ succeeded in producing properties, the latter could not
be obtained by 3-valued simulation in 74% and 78% of cases respectively.

10 Some Background

In this section, we discuss some research relevant to PQE and property genera-
tion. Information on BDD based QE can be found in [24,25]. SAT based QE is
described in [12,26,27,28,29,30,31,32,21]. Our first PQE solver called DS -PQE
was introduced in [1]. It was based on redundancy based reasoning presented
in [33] in terms of variables and in [34] in terms of clauses. The main flaw of DS -
PQE is as follows. Consider taking a clause C out of ∃X[F]. Suppose DS -PQE
proved C redundant in a subspace where F is satisfiable and some quantified
variables are assigned. The problem is that DS -PQE cannot simply assume that
C is redundant every time it re-enters this subspace [35]. The root of the prob-
lem is that redundancy is a structural rather than semantic property. That is,
redundancy of a clause in a formula ξ (quantified or not) does not imply such
redundancy in every formula logically equivalent to ξ. Since our current imple-
mentation of EG-PQE+ uses DS -PQE as a subroutine, it has the same learning
problem. We showed in [36] that this problem can be addressed by the machinery

of certificate clauses. So, the performance of PQE can be drastically improved
via enhanced learning in subspaces where F is satisfiable.

We are unaware of research on property generation for combinational circuits.
As for invariants, the existing procedures typically generate some auxiliary de-
sired invariants to prove a predefined property (whereas our goal is to generate
invariants that are unwanted). For instance, they generate loop invariants [37]
or invariants relating internal points of circuits checked for equivalence [38]. An-
other example of auxiliary invariants are clauses generated by IC3 to make an
invariant inductive [17]. As we showed in Subsection 8.3, the invariants produced
by PQE are, in general, different from those built by IC3 .

11 Conclusions And Directions For Future Research

We consider Partial Quantifier Elimination (PQE) on propositional CNF formu-
las with existential quantifiers. In contrast to complete quantifier elimination,
PQE allows to unquantify a part of the formula. We show that PQE can be
used to generate properties of combinational and sequential circuits. The goal of
property generation is to check if a design has an unwanted property and thus
is buggy. We used PQE to generate an unwanted invariant for a FIFO buffer
exposing a non-trivial bug. We also applied PQE to invariant generation for
HWMCC benchmarks. Finally, we used PQE to generate properties of combina-
tional circuits mimicking symbolic simulation. Our experiments show that PQE
can efficiently generate properties for realistic designs.

There are at least three directions for future research. The first direction is
to improve the performance of PQE solving. As we mentioned in Section 10,
the most promising idea here is to enhance the power of learning in subspaces
where the formula is satisfiable. The second direction is to use the improved
PQE solvers to design new, more efficient algorithms for well-known problems
like SAT, model checking and equivalence checking. The third direction is to
look for new problems that can be solved by PQE.

References

1. E. Goldberg and P. Manolios, “Partial quantifier elimination,” in Proc. of HVC-14.
Springer-Verlag, 2014, pp. 148–164.

2. W. Craig, “Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory,” The Journal of Symbolic Logic, vol. 22, no. 3, pp. 269–285, 1957.

3. K. McMillan, “Interpolation and sat-based model checking,” in CAV-03. Springer,
2003, pp. 1–13.

4. E. Goldberg, “Property checking by logic relaxation,” Tech. Rep. arXiv:1601.02742
[cs.LO], 2016.

5. ——, “Partial quantifier elimination and property generation,” Tech. Rep.
arXiv:2303.13811 [cs.LO], 2023.

6. E. Goldberg and P. Manolios, “Software for quantifier elimination in propositional
logic,” in ICMS-2014,Seoul, South Korea, August 5-9, 2014, pp. 291–294.

7. E. Goldberg, “Equivalence checking by logic relaxation,” in FMCAD-16, 2016, pp.
49–56.

8. ——, “Property checking without inductive invariant generation,” Tech. Rep.
arXiv:1602.05829 [cs.LO], 2016.

9. B. L. Synthesis and V. Group, “ABC: A system for sequential synthesis and veri-
fication,” 2017, http://www.eecs.berkeley.edu/∼alanmi/abc.

10. O. Kullmann, “New methods for 3-sat decision and worst-case analysis,” Theor.
Comput. Sci., vol. 223, no. 1-2, pp. 1–72, 1999.

11. G. Tseitin, “On the complexity of derivation in the propositional calculus,” Zapiski
nauchnykh seminarov LOMI, vol. 8, pp. 234–259, 1968, english translation of this
volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

12. K. McMillan, “Applying sat methods in unbounded symbolic model checking,” in
Proc. of CAV-02. Springer-Verlag, 2002, pp. 250–264.

13. The source of DS -PQE , http://eigold.tripod.com/software/ds-pqe.tar.gz.
14. The source of EG-PQE , http://eigold.tripod.com/software/eg-pqe.1.0.tar.gz.
15. The source of EG-PQE+, http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz.
16. N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, Santa Margherita

Ligure, Italy, 2003, pp. 502–518.
17. A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI, 2011,

pp. 70–87.
18. An implementation of IC3 by A. Bradley, https://github.com/arbrad/IC3ref.
19. M. Aniche, Effective Software Testing: A developer’s guide. Manning publications,

2022.
20. HardWare Model Checking Competition 2013 (HWMCC-13), http://fmv.jku.at/

hwmcc13/.
21. M. Rabe, “Incremental determinization for quantifier elimination and functional

synthesis,” in CAV, 2019.
22. CADET, https://github.com/MarkusRabe/cadet.
23. R. Bryant, “Symbolic simulation—techniques and applications,” in DAC-90, 1990,

pp. 517–521.
24. ——, “Graph-based algorithms for Boolean function manipulation,” IEEE Trans-

actions on Computers, vol. C-35, no. 8, pp. 677–691, August 1986.
25. P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang, “Using com-

binatorial optimization methods for quantification scheduling,” ser. CHARME-01,
2001, pp. 293–309.

26. H. Jin and F.Somenzi, “Prime clauses for fast enumeration of satisfying assign-
ments to boolean circuits,” ser. DAC-05, 2005, pp. 750–753.

27. M. Ganai, A.Gupta, and P.Ashar, “Efficient sat-based unbounded symbolic model
checking using circuit cofactoring,” ser. ICCAD-04, 2004, pp. 510–517.

28. J. Jiang, “Quantifier elimination via functional composition,” in Proceedings of the
21st International Conference on Computer Aided Verification, ser. CAV-09, 2009,
pp. 383–397.

29. J. Brauer, A. King, and J. Kriener, “Existential quantification as incremental sat,”
ser. CAV-11, 2011, pp. 191–207.

30. W. Klieber, M. Janota, J.Marques-Silva, and E. Clarke, “Solving qbf with free
variables,” in CP, 2013, pp. 415–431.

31. N. Bjorner, M. Janota, and W. Klieber, “On conflicts and strategies in qbf,” in
LPAR, 2015.

32. N. Bjorner and M. Janota, “Playing with quantified satisfaction,” in LPAR, 2015.
33. E. Goldberg and P. Manolios, “Quantifier elimination by dependency sequents,”

in FMCAD-12, 2012, pp. 34–44.

http://eigold.tripod.com/software/ds-pqe.tar.gz
http://eigold.tripod.com/software/eg-pqe.1.0.tar.gz
http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz
https://github.com/arbrad/IC3ref
http://fmv.jku.at/hwmcc13/
http://fmv.jku.at/hwmcc13/
https://github.com/MarkusRabe/cadet

34. ——, “Quantifier elimination via clause redundancy,” in FMCAD-13, 2013, pp.
85–92.

35. E. Goldberg, “Quantifier elimination with structural learning,” Tech. Rep. arXiv:
1810.00160 [cs.LO], 2018.

36. ——, “Partial quantifier elimination by certificate clauses,” Tech. Rep.
arXiv:2003.09667 [cs.LO], 2020.

37. I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant generation via
abductive inference,” vol. 48, 10 2013, pp. 443–456.

38. J.Baumgartner, H. Mony, M. Case, J. Sawada, and K. Yorav, “Scalable conditional
equivalence checking: An automated invariant-generation based approach,” in 2009
Formal Methods in Computer-Aided Design, 2009, pp. 120–127.

	Partial Quantifier Elimination And Property Generation

