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Abstract

We introduce the notion of problem symmetry in search-
based SAT algorithms. We develop a theory of essential
points to formally characterize the potential search-space
pruning that can be realized by exploiting problem sym-
metry. We unify several search-pruning techniques used in
modern SAT solvers under a single framework, by show-
ing them to be special cases of the general theory of essen-
tial points. We also propose a new pruning rule exploiting
problem symmetry. Preliminary experimental results vali-
date the efficacy of this rule in providing additional search-
space pruning beyond the pruning realized by techniques
implemented in leading-edge SAT solvers.

1 Introduction

The Boolean Satisfiability (SAT) problem is a core prob-
lem in mathematical logic and computing theory. The last
decade has seen significant improvements in SAT solver
technology [6, 7, 11]. Spurred by these developments SAT
solvers have been actively used in a number of EDA appli-
cations including ATPG [9], formal verification [1, 2],logic
optimization [5] and physical design [10] among others. Al-
most all leading edge SAT solvers use a backtracking al-
gorithm based on the classical Davis-Putnam-Logemann-
Loveland procedure (DPLL) [3] enhanced with some form
of non-chronological backtracking and conflict based learn-
ing [6, 7]. This work develops the notion of problem sym-
metry to formally characterize and enhance the search space
pruning of a SAT solver operating in such a setting.

The notion of problem symmetry stems from the simple
observation that in certain regions of the Boolean space the
unsatisfiability of the CNF under check can be established
without using a certain variable, say � . In other words, in
this sub-space the CNF is symmetric with respect to � (or
�
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Figure 1. Illustration of Symmetry in Search

this is a symmetric subspace with respect to � )1. In the con-
text of a backtracking-based SAT algorithm this can be used
as follows. Consider the backtracking search tree shown
in Figure 1. When exploring the left branch of branching
variable � ( ��� � ) the algorithm computes an (under) ap-
proximation of the symmetric sub-space (out of the space
explored under the branch ��� � ) with respect to � (sub-
space R1 in Figure 1) and in the right branch of � ( ���	� )
the counter-part of this symmetric sub-space is pruned (sub-
space R2 in Figure 1).

Our main contributions in this work are as follows:


 We introduce the notion of problem symmetry and for-
mally characterize the potential search-space pruning
afforded by it through the theory of essential points.


 We show that many popular search pruning tech-
niques (such as the pure-literal rule, non-chronological
backtracking and conflict based learning) employed in
leading-edge SAT solvers are in fact special cases of
pruning under the general theory of essential points.
Thereby this work unifies these apparently disparate
techniques under a single framework and paves the
way for discovering several new pruning techniques.

1Note that this notion of symmetry is distinct from the often used notion
of a Boolean function being symmetric with respect to certain variables.




 We propose a new, simple and efficient pruning tech-
nique called supercubing based pruning, based on
problem symmetry. Preliminary experimental results
demonstrate this to be effective in providing search-
space pruning over and above the pruning afforded by
existing techniques in SAT solvers.

The rest of the paper is organized as follows. Section 2
presents the notational framework used in the exposition. In
Section 3 we illustrate the notion of problem symmetry with
a few examples. The theory of essential points and a formal
characterization of problem symmetry is developed in Sec-
tion 4. Section 5 presents theoretical results showing several
popular pruning techniques used in SAT solvers to be spe-
cial cases of the general theory of essential points. In Sec-
tion 6 we present a new pruning rule called the supercubing
rule. This is also a special case of problem symmetry but
subsumes some existing pruning techniques and is orthog-
onal to others. Section 7 presents preliminary experimental
results validating the efficacy of this rule. Conclusions and
suggestions for future research are presented in Section 8.

2 Definitions & Notation

The following discussion will be with respect to SAT
instances expressed as conjunctive normal form (CNF)
formulas. A CNF formula � on � Boolean variables�
� � ����� �	�
�������
� ���	� is a conjunction of � clauses� ��� � ��������� ��� . Each clause is a disjunction of literals over

the variables
�

. Let � denote a literal of one of the vari-
ables

�
. lit � �
� refers to a literal of variable � i.e. lit � �
�

is either � or � . � refers to a minterm or point in the� � Boolean space of variables ����� �	�
�������
� ��� . Note that
a minterm � is a complete Boolean assignment to the vari-
ables

�
. Further, formula � can be evaluated under this

assignment. In the sequel we will occasionally use a lit-
eral of a variable to refer to a particular value assignment
to the variable (e.g. ���

���
� ) and a cube (minterm) to

refer to a partial(complete) value assignment to variables of�
. � � �
� refers to the current assignment of variable � or

alternatively the literal corresponding to that assignment.
The underlying SAT algorithm used for the discussion

is the basic DPLL [3] algorithm, augmented with some
form of conflict analysis, non-chronological backtracking
and conflict clause recording [6]. This is representative of
the SAT methods implemented in most leading-edge SAT
solvers [6, 7, 11].

As in [6, 7] a variable that is consciously chosen and
assigned a value by the branching procedure is referred
to as a decision variable (assignment) and is distinguished
from a deduced variable (assignment) whose value has been
implied through Boolean constraint propagation (BCP). A
conflict condition is denoted by ! . A conflict condition oc-
curs when the current partial assignment (during branching)

unsatisfies one or more clauses of the CNF. The conflict is
identified by one of these clauses, which is referred to as the
conflict clause of conflict ! and denoted by

� �"!#� 2.$ �%�&� refers to the clause that was used to imply or deduce
the literal � . Although, there can be many such clauses,

$ �%�&�
is one of them, which is held responsible for the deduction.$ � � � refers to the set of deduced literals of clause

�
i.e. the

set of literals assigned through BCP implications from other
clauses. '(� � � refers to the set of literals of

�
assigned

through decision assignments.
Given a conflict condition ! , conflict analysis performs

the task of identifying a subset of assignments, denoted)+* �"!#� (out of the current set of decision and deduced as-
signments) which can be held responsible for ! . As noted
in [6, 12] there can be multiple ways at arriving at such a
subset (i.e. there can be multiple possible

)�* �"!#� for a given! ). For the sake of concreteness we will use the following
definition of

),* �"!#� in the sequel.
Consider the following recursive marking function- � � � , which operates on a clause

�
and is defined as

- � � � �.'(� � �
/ $ � � �10243�5�687�9 - � $ �%�&�:� (1)

Then
) �"!#� � - � � �"!#�:� . Further

) �"!#� can be split
into disjoint subsets

),; �"!#� and
) 5 �"!<� which are respec-

tively the decision and implied variables comprising
) �"!#� .

The clause
� * �"!#� recorded on conflict ! is defined to be:

� * �"!#� � ��� � �
��= �?> ),; �"!#�@�� * �"!#� � A243
BDCE6GFH9 � (2)

Definition 2.1 Given a clause
�

denote by IJ� � � the un-
satisfiability cube of

�
which is the set of minterms (assign-

ments) which unsatisfy
�

, e.g. given
�
�K� �L��� �	��� �NM�� and�

�O� ����P �	��� , IJ� � � �Q� ��� �	� �NMR� ��� �	� �NM
� .
Note that IJ� � � can also be interpreted as a cube of liter-

als. For the above example IJ� � � � �L� �	� . In the following
we use the two interpretations interchangeably.

3 Problem Symmetry in Search

The notion of problem symmetry has been introduced
and its potential in search space pruning motivated briefly
in Section 1. In this Section we provide two examples
to buttress this understanding and illustrate that 1.) in-
stances of problem symmetry are plentiful in typical SAT
instances arising from EDA applications, and 2.) current

2This should be distinguished from the new clause SLTLU4VXW which is
recorded or deduced on a conflict V .
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Figure 2. Example of Symmetry in SAT on circuits

pruning techniques harness only a fraction (albeit inadver-
tently) of the potential search space pruning afforded by
problem symmetry.

Consider the sub-circuit shown in Figure 2(a). Assume
that this is part of a larger circuit on which some SAT prob-
lem is being solved3 Here � is a primary input of the circuit
and the three gates shown are the only fanouts of � . Sup-
pose the backtrack tree explored by the SAT algorithm is
of the form shown in Figure 2(b). Consider the left branch
( � � � ) of branching variable � . Suppose that under this
branch the algorithm subsequently makes the assignments	 � �R� 
 � � and � � � (and potentially other assignments
as well) and reaches a sub-space � � (shown in Figure 2(b)).
Note that in sub-space � � the value of � is no longer rele-
vant i.e. the formula is symmetric with respect to � in � � .
Thus, if the algorithm finds sub-space � � unsatisfiable then
it need not explore the sub-space � � , the counterpart of � �
under the branch � � � , as that too will be unsatisfiable.
This is a simple and classical case of problem symmetry in
SAT instances derived from logic circuits, which may not be
effectively covered by existing search pruning techniques.

The next example is designed to illustrate that current
implementations of conflict clause recording exploit only a
fraction of the search space pruning potentially afforded by
problem symmetry. Consider the following CNF formula.

� � � 
 P
� P
� � � 
 P � P
� � � 
 P
� P�� � � 
 P ���
� 
 P � P � � � 
 P
� P � � � 	 P 
 P
� P � �
� 	 P 
 P��HP � � (3)

A typical backtracking tree for solving this CNF is
shown in Figure 3. The backtracking algorithm employs
conflict analysis, clause recording etc. The recorded clauses

3This means that an appropriate CNF formula is extracted from the
circuit and solved by a SAT solver.
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Figure 3. Symmetry in backtrack search

(as per the specific scheme described in Section 2) are
shown below each conflict. Also noted are the set of de-
cision assignments relevant to the conflict. An analysis of
the conflicts in the branch 	 � � reveals that 	 was only
relevant to a conflict when



� � and � � � . The rest of

the sub-space under 	 � � represents the symmetric space
with respect to 	 . Thus when exploring the right branch
of 	 , i.e. 	 � � we do not need to explore the sub-space

� �*) ��� � . In other words, on taking the branch	 � � we can immediately assert



� � and � � � . Note,

that the assertion


� � is also deduced by means of the

recorded conflict clause � 
 � but the additional assignment
� � � comes only through exploiting problem symmetry
more fully. Note that this observation is not an artifact of
the specific conflict clause recording mechanism used in
this work and in this example. Rather it is a fundamental
limitation of conflict based learning in that on a given con-
flict the recorded clause(s) represent only a fraction of the
implicates that can be learned from that conflict. It is nei-
ther feasible nor practical to learn all possible implicates.



However, it may be possible to extract additional pruning
using another, complementary technique based on problem
symmetry. The Supercubing technique presented later in
Section 6 is a simple example of one such option.

Note that during the search, certain variables, initially
picked as decision variables become deduced variables due
to BCP implications from newly added conflict clauses, e.g.
in the example shown in Figure 3



� � can be treated as

a deduced assignment implied from the clause � 
 � recorded
on conflict ! � . Such assignments are called failure-driven
assertions (FDA) [6]. However,



� � may as well be

treated as decision assignment. In our treatment, FDAs are
treated as deduced assignments for the purpose of gener-
ating the recorded conflict clauses

� * �"!#� . However, for
generating the responsible assignments shown in Figure 3
(and for the supercubing rule presented in Section 6) FDAs
are treated as decision assignments. Both versions of the
analysis still use Equations 1 and 2 but generate different
sets

),; �"!#� (and � ; �"!#� ).
4 The Theory of Essential Points

In this section we develop the notion of essential points
to formally characterize the search space pruning that can
be realized by exploiting problem symmetry.

Definition 4.1 A point � is called ��� essential if all clauses
of � unsatisfied by � (must be at least one4.) contain literal� , e.g. given � � � 	 P 
 � � ��� � 	 P 
 P ��� � 	 P ��� � 	 P 
 P ���
the minterm 	 
 � is an 	 -essential point.

Definition 4.2 Let � and � � be two points in the
� �

Boolean space. � � is said to be � -symmetric to � if it is
obtained from � by flipping the value of variable � in � .
For example, minterms � � 	 
 � � and � � � 	 
 � � are � -
symmetric with respect to each other.

Proposition 4.1 Let � be a complete assignment to vari-
ables ����� �	�
������� � ��� (i.e. a minterm of

� � ) which satisfies� . Then assignment � � which is x-symmetric to � is either
lit( � )-essential (lit � �
��>(� ) or satisfies � i.e. is a solution.

Proof: Suppose � � is neither a solution nor lit( � )-essential
(where lit � �
� > � ). Then there exists a clause

�
of � such

that � � unsatisfies
�

and
�

does not contain any � literal.
But then

�
is unsatisfied by � as well. Therefore � is not a

solution of � . Contradiction !

Proposition 4.2 If assignment � is lit( � )-essential then as-
signment � � , � -symmetric to � , is either lit � �
� -essential or
is a solution.

4Thus, satisfying assignments of
�

are not essential points

Proof: Suppose � � is neither a solution nor lit � �
� -essential.
Then there exists a clause � of � such that � � unsatisfies
� and � does not contain any � literal. But then � is un-
satisfied by � as well. Therefore � is not lit( � )-essential.
Contradiction !

For a literal � , the set of � -essential points with respect to
the current CNF is denoted by ���%�%� . The subset of ���%�&� lying
in a sub-space � is denoted by ���N�%�&� and by �
	���
��%�%� when
the sub-space being referred to is clear from the context.

The search space pruning that can be achieved using the
notion of essential points can be operationally defined by
the following theorem.

Theorem 4.1 Suppose the algorithm has explored the left
branch of variable � (without loss of generality � � � ) and
found no solution. Moreover, suppose the algorithm has
computed � ��� �
� (the subset of �E� �
� in the Boolean sub-
space spanned by the � � � branch). Then under the
branch � � � solutions of � must lie in the set of points
� -symmetric to points in � ��� �
� (denoted by � �� � �
� ).

Proof: For correctness, the algorithm only needs to ensure
that it does not skip any solutions of the CNF in the branch
� � � (it can prune everything else). By Proposition 4.1
solutions can only be points � -symmetric to points in � �	� �
� .

Theorem 4.1 implies that for of testing satisfiability of �
when exploring the branch � � � the algorithm only needs
to explore the set of points � �� � �
� . It is also easy to see that
it is not necessary to compute the set � �N� �
� exactly. Any
over-approximation of it would work as well, though the
amount of pruning would be reduced proportionally.

Under a clause recording scenario, i.e. when the algo-
rithm progressively adds implicates of the CNF to the clause
database (for example through conflict clause recording) the
set of essential points ���%�%� for each literal � either remains
unchanged or shrinks.

Theorem 4.2 Let CNF ��� be obtained from � by adding
clause

� � to � where
� � is an implicate of � . Then, for

any literal � , the set of essential points of � in ��� , denoted
� � �%�&� must satisfy � � �%�&�����E�%�&� .
Proof: Consider any minterm ���>����%�%� . Then, there must
exist a clause

�
of � such that ���> � and �Q>?IJ� � � . But,

since ��� � � ) � � ,
�

is also a clause of ��� . Thus, ���>
��� �%�&� . Therefore, ���>����%�&��� ���>���� �%�&� .

The relevance of Theorem 4.2 is that under a clause
recording scenario, when a new clause is added all partial
sets of essential points computed up to that point continue
to be valid with respect to the new CNF5.

5However they can potentially be over-estimates of the essential points
with respect to the new CNF.



5 Popular Pruning Techniques: Special
Cases of Essential Point Pruning

In the following we show that several popular search
pruning techniques such as the pure-literal rule [4], non-
chronological backtracking (NCB) and conflict clause
recording (or conflict-based learning) [6] are special cases
of the pruning afforded by the theory of essential points.
This unifies these techniques under a single framework and
paves the way for developing potentially more powerful
variants of problem symmetry based pruning.

5.1 The Pure-Literal Rule

The Pure-Literal rule [4] can be used to effect pruning
in branching by looking for variables that appear in only
one polarity (the pure polarity) in open (undecided) clauses,
at the current point in the search, and then asserting the
variable to the pure polarity. In effect this means pruning
the other branch of the variable. If no solution is found in
the explored pure-branch, the pruning effected by the pure-
literal rule can be explained by the theory of essential points
as follows.

The pure-polarity branch of the variable (say � �
�
) can

be considered the left branch of � , which the algorithm ex-
plored and found no solution. The other polarity branch
� � � which was pruned by the pure-literal rule is the po-
tential right branch. Thus, if we can prove that the sub-
space under the pure-branch � �

�
does not contain any

� -essential points then the pruning done by the pure-literal
rule is explained by Theorem 4.1. Thus, the pure-literal rule
can be claimed to be a special case of essential point based
pruning.

It is sufficient to only consider the case when the pure-
literal branch of the pure-literal variable is unsatisfiable be-
cause in the case when there is a solution under the pure-
literal branch the algorithm terminates. In such a case the
claim of pruning the other branch has no meaning.

Theorem 5.1 The sub-space under the pure-polarity
branch (say � �

�
) of a pure-literal variable � cannot con-

tain any � -essential points.

Proof: Consider exploring the pure polarity branch (say
� �

�
) of the pure-literal variable � . By assumption there

is no solution under this branch. Now consider the follow-
ing algorithm which just explores the sub-space under this
branch using a stripped-down DPLL procedure (i.e. no BCP
or pure-literal rule).

Such an algorithm would explore the entire sub-space
under the � �

�
branch, stopping and chronologically

backtracking every time the current assignment unsatisfes
a clause of the CNF. Let the set of such conflict clauses en-
countered while exploring this branch be

� ��� � ���������
� ��� .

It is easily seen that IJ� � � ��/ IJ� � ����/ ����� / IJ� ��� � sub-
sumes the entire sub-space under the � � � branch. Ad-
ditionally, none of these clauses contain variable � since a
conflict clause has all literals unsatisfied by the current as-
signment and the pure-literal assignment � � � merely sat-
isfies some clauses and restricts6 none. The result follows.

5.2 Non-Chronological Backtracking (NCB)

The notion of Non-chronological backtracking
(NCB) [6] is used to prune areas of the search space
by backtracking to the last variable responsible for the
current conflict, rather than the last variable in the current
assignment stack. This method effects pruning by skipping
the right branch of some of the stack variables. Opera-
tionally, this is accomplished by deducing an implicate
(through conflict analysis) whose unsatisfiability cube
subsumes the regions to be pruned.

Another way of looking at this pruning is that NCB
prunes the right branch of a variable � , if and only if all
conflicts in the left branch of � were independent of (sym-
metric in) � . This is obviously a special case of symmetry
(described by the theory of essential points) which targets
pruning sub-spaces symmetric in a particular variable. Be-
fore proving this we state a few simple facts, without proof,
to formalize the operational definition of NCB. The inter-
ested reader is referred to [6] for details.

 Fact 1: NCB pruning is done in a setting where con-

flict analysis is used to produce conflict clauses (impli-
cates) responsible for the conflict7.


 Fact 2: The deduction procedure for a conflict clause
may be simulated by a tree of resolution steps where
the leaf clauses are clauses of the original CNF (or pre-
viously added conflict clauses) and the variable being
resolved out at a node is a deduced variable.


 Fact 3: NCB to prune the right branch of variable �
happens only on deducing a conflict clause which does
not contain any literal of � and whose unsatisfiability
cube subsumes the subspace being pruned under the
right branch of � .

Proposition 5.1 If clause
�

is the resolvent produced by
resolving clauses

� � and
� � in some common variable (say

� ) then IJ� � ��� IJ� � � � / IJ� � ��� .
Proof: Without loss of generality, let

� � � � M � � and� � � ��� � � , where
� M and

���
are some disjunctions of

literals. Then
�
�
� M � ��� , IJ� � � � � � � M and IJ� � ��� �

�
���

. Thus IJ� � � � � M�� ��� � � � � M���/ � � ��� � .
6An assignment which sets one more literals in a clause to � is said to

restrict that clause.
7The deduced conflict clauses may or may not be added to the CNF.



Theorem 5.2 If the right branch of a variable � is eligi-
ble for pruning under NCB, then the subspace under the
left branch of � (without loss of generality � � � ) cannot
contain any � -essential points.

Proof: From Fact 3, there must exist an implicate
�

, de-
duced through conflict analysis which does not contain lit-
erals � or � and which subsumes the subspace under the
unexplored right branch, � � � . Since

�
does not contain

literals of � it must also subsume the sub-space under the
left branch � � � . Moreover, from Fact 2 there must exist
clauses

� ��� � ��������� ��� of the current CNF which form the
leaves of the resolution tree simulating the deduction of

�
.

From the recursive application of Proposition 5.1 it follows
that IJ� � ��� IJ� � � �	/ IJ� � ���	/?������/ IJ� ��� � . Thus, clauses� ��� � ��������� ��� collectively cover the subspace under the left
branch of � . Also since the resolution could only be done on
deduced variables clauses

� ��� � ��������� ��� cannot have vari-
able � . Therefore none of the points covered by them can
be � -essential.

5.3 Conflict Clause Recording

Conflict clause recording [6] is a powerful pruning tech-
nique that is employed in several successful SAT solvers.
The basic idea is to deduce an implicate (through conflict
analysis) responsible for the current conflict and add it to
the clause database with the aim of avoiding future occu-
rances of the same conflict.

Although not apparent from the above statement of the
notion, the recorded conflict clauses do in fact effect sym-
metry based pruning. Consider the following situation. In
the left branch of variable � , say � � � , a conflict ! occurs
on which a conflict clause

� * �"!#� is learned. Now, suppose� �"!#� does not contain literal � (it cannot contain � ). Let
the set of assignments, preceding � be given by cube � . Let�#� � � ) � ) IJ� � �"!#�:� and � � � � ) � ) IJ� � �"!<�:� . Note
that � � is precisely the sub-space potentially prunable by� * �"!#� in the right branch � � � of � .

As shown below, the pruning of sub-space � � by clause� * �"!#� can be accounted for by the theory of essential
points. Thus, conflict clause based pruning is a special case
of essential point based pruning. Due to space limitations
we state the results without proof. The interested reader is
referred to [8] for the proofs.

Theorem 5.3 The symmetry based pruning afforded by a
recorded conflict clause

� * �"!#� with respect to a variable
� is subsumed by the pruning potentially realizable using
essential point based pruning (Theorem 4.1).

It can be shown that the entire pruning potentially ac-
complished by a recorded clause, subsequent to its record-

ing can be broken down into a series of right-branch prun-
ings like the above situation8.

Theorem 5.4 The search space pruning provided by a
recorded clause

� *
, can be divided into a set of sub-spaces

such that each sub-space lies under the right branch of a
variable � , which does not appear in

� *
, where

� *
was

recorded in the left branch of � .

From Theorems 5.3 and 5.4 it follows that conflict clause
recording is a special case of essential point pruning.

6 Supercubing-Based Pruning

In this section we develop a simple new pruning rule
based on exploiting problem symmetry. This rule is called
the supercubing rule after the supercube operator defined
below, which is the core operation used in implementing it.

Definition 6.1 Supercubing Operator ( � ): Given two
cubes � � and � � over the

� � Boolean space, � � � ��� ����� com-
putes the smallest cube containing both ��� and � � , i.e. the
supercube of � � and � � .
6.1 Supercubing Procedure & Pruning

The algorithm maintains a cube called the supercube for
each decision variable currently on the decision stack. The
supercube of variable � (denoted ��� ) is initialized to � when
� is first chosen for branching. In the left branch of � (say
� � � ) � � is updated on each conflict ! where � > � * �"!#�
( � * �"!#� is computed considering FDAs as decision vari-
ables) as follows:

� � ��� ��� � ������� where �	� � 
243
BDCH64F 9 � (4)

After the algorithm has explored the left branch � �
�

and found no solution, it would have computed some super-
cube for � , denoted ����
 ��� 2� . Say ����
 ��� 2� � � ) �&� ) � � ) ����� ) � �
Then in the right branch, � � � we immediately assert�&� � TRUE �:� ��� TRUE �������:� � � TRUE i.e. the region
�
) � �&� � � � � ����� � � � � is pruned.
Note that the asserted assignments are treated as con-

scious assignments for the purpose of future conflict
analysis and supercubing i.e. it is as though these vari-
ables � 2�� ��� 2�� ������� ��� 2�� were consciously branched on and
the branches �&��� � ���������
� � � were pruned, while the other
branches were explored.

8provided the search is organized as a single tree i.e. without restarts.



6.2 Proof of Correctness

The proof of correctness of the algorithm requires prov-
ing two propositions:

1. Every supercube-based pruning is legal, i.e. the pruned
space cannot contain a solution.

2. At any point in the algorithm the following property
hold for each point (minterm) in the Boolean sub-space
that the algorithm has already explored (and found un-
satisfiable).

Definition 6.2 A point � satisfies property A if there exist a
cube ��� such that ��� ��� and ��� was processed by super-
cubing (Equation 4) under some previous conflict.

Proof: The algorithm prunes off (explores) regions of the
Boolean space through two kinds of pruning events, namely
1.) regular conflicts and 2.) supercube based pruning.

We prove the above two propositions simultaneously by
induction on the sequence of pruning events. The overall
idea is to prove that if all the points pruned by all previous
pruning events satisfy Property A then :
a.) Points pruned by the current pruning event satisfy Prop-
erty A, and b.) supercube-based pruning is legal.
Base Case : Since pruning occurs only in the right branch
of a variable, the first pruning event must be a conflict and
by definition, the algorithm would generate a conflict clause
covering the pruned region and do supercubing on it. So all
pruned points satisfy Property A.
Induction hypothesis : Suppose points pruned by the first�

pruning events satisfy property A and are legal prunings.
Induction proof : Consider the

� P	����� pruning event.
If this is a regular conflict the proof trivially follows as
per the base case. So consider the case when it is super-
cube based pruning performed in the right branch � � �
of some variable � . The region pruned by supercubing

� ��� ���
	� ��� ) � � � � ��
 ��� 2� Consider any point � � > � ��� � �
	�
and point � , which is � -symmetric to � � . Obviously � was
examined by the algorithm in the left branch of � . Further,� �> ����
 � � 2� . Also, by the induction hypothesis there ex-
ists cube ��� such that � > ��� and ��� was processed by
supercubing. Thus, since �	���� ��� 
 � � 2� cube �	� must not
have variable � which means that it covers point � � as well.
Hence all points in � ��� � �
	� are covered by conflict clauses
that have already been discovered and processed by the al-
gorithm. This also means that the current pruning is a legal
one (since the pruned space is obviously unsatisfiable).

Note that in reality there is a third kind of pruning event,
namely BCP deductions. However, the sub-space pruned by
them is completely accounted for by the conflict clauses of
the conflicts lying below this deduction. A simple way to
prove this is to take the current branching tree and “push”

all BCP deductions to the leaves of the tree i.e. after all the
conscious assignments in each branch. Since in our proce-
dure all conflict clauses are composed entirely of conscious
assignments the same conflicts will still occur, but there will
be no BCP-pruned areas this time. Here, the conflict clauses
can be trivially seen to cover the entire pruned areas. Also
we have not considered pure-literal rule based pruning in
this proof since this rule is a special case of Supercubing
(see Proposition 6.1).

6.3 Supercubing and Other Pruning Techniques

Proposition 6.1 The pure-literal rule is a special case of
supercubing based pruning.

The reader is referred to [8] for the proof. The essential
idea is that in some of the instances where a null supercube
is computed for a decision variable � , supercubing based
pruning of the right branch of � is synonymous with an ap-
plication of the pure-literal rule on � . In other such cases
the behavior of the algorithm is identical to NCB. Thus, su-
percubing overlaps with some instances of NCB. In fact, we
conjecture that supercubing subsumes NCB. All our exper-
iments thus far have not yielded a single case where NCB,
implemented in the conventional fashion, could prune a
sub-space that supercubing could not. However, the opera-
tional definition of NCB given in the literature is not precise
enough to prove or challenge our conjecture. This could be
an interesting problem for future research.

7 Experimental Results

This section presents preliminary experimental results
validating the efficacy of the supercubing pruning rule. The
pruning rule has been implemented in a prototype SAT
solver modeled on the lines of the GRASP SAT solver [6].
The prototype solver implements all the algorithmic fea-
tures of GRASP including conflict analysis, NCB, conflict
based learning and various ordering heuristics. However,
the solver has not yet been software engineered for effi-
ciency since its purpose is simply to evaluate the first or-
der efficacy of some pruning techniques. Therefore the re-
ported results are in terms of number of nodes in the SAT
search tree, rather than CPU runtimes since reporting the
latter would be unfair and not particularly informative.

Preliminary results on selected SAT benchmarks from
the DIMACS suite and bounded model checking [1] are re-
ported in Table 1. The benchmark examples have been cho-
sen to be representative of the examples that we ran, rang-
ing from the ones where supercubing gave the maximum
improvement to ones where it was not so effective.

For each benchmark the solver was run in two configu-
rations with four possible orderings, DLCS, DLIS, MSTS,



Best Order Worst Order
Benchmark # Nodes # Nodes

Orig. With SC Orig. With SC

SSA-0432-003 1371 1050 3316 1074
SSA-2670-130 44039 38812 109766 66142
BF-0432-007 11487 10811 27298 9099
Queueinvar8 3211 2983 5842 5842
Aim-50-1 6-no-2 27 26 150 84
Aim-100-1 6-no-1 120 64 881 455
Aim-200-1 6-y-1-4 291 193 1155 354
Aim-200-1 6-no-3 457 559 6671 1252
Par-16-1-c 6543 6543 6543 6543
Hole 6 719 719 817 817

Table 1. Supercubing: Experimental results

MSOS9 (i.e. eight configurations) 1.) ORIG: without su-
percubing but with NCB and clause recording, and 2.) With
SC: same as ORIG except supercubing is also used. For
each benchmark the best and the worst ORIG results (in
terms of number of nodes in the search tree) were cho-
sen and are reported in columns 2 and 4 respectively. The
corresponding results with SC (i.e. with the same ordering
heuristic as the ORIG result) are reported in columns 3 and
5 respectively.

As shown in Table 1 the search tree size decreases in
most cases, sometimes quite significantly. In the odd case
(in our experience less than 1% of the cases) e.g. Aim-200-
1 6-no-3 there is a slight increase. This is because super-
cubing disturbs the number of recorded clauses and hence
the variable order slightly. However, overall supercubing
proved beneficial for both the best order and the worst order.
The improvements in the case of the worst ordering were
more significant suggesting that this pruning technique can
partially correct a poor ordering. The supercubing itself
added virtually nothing to the runtimes since most of the
book-keeping required for it was being done by conflict
analysis. The additional supercubing operations were ef-
ficiently implemented by bit-vector operations. Thus gains
in number of search tree nodes translate directly to runtime
gains. Also, since supercubing based pruning partly over-
laps with the pruning provided by conflict-based learning
using supercubing frequently led to fewer recorded clauses.

8 Conclusions & Future Directions

In this paper we have introduced and formalized the no-
tion of problem symmetry in search-based SAT algorithms.
We have developed the theory of essential points to formally
characterize the potential search-space pruning that can be
realized by exploiting problem symmetry. We have unified
several powerful search pruning techniques used in modern
SAT solvers under a single framework, by showing them

9Refer to the GRASP user manual for details on these heuristics.

to be special cases of the theory of essential points. We
have also proposed a new pruning rule exploiting problem
symmetry and shown it to provide additional search space
pruning over the pruning realized by current techniques.

Current SAT solvers integrate fairly sophisticated search
pruning techniques in a very tightly and efficiently engi-
neered software framework. However, there is very little
fundamental understanding of how these techniques inter-
act, what search space they prune and what the margin for
improvement is. Our current work it a step towards answer-
ing these questions. We believe that it is possible to derive
a whole family of search pruning techniques with varying
cost-power tradeoffs, under the general purview of the the-
ory of essential points. The supercubing rule presented in
Section 6 is a simple case in point. It is quite obviously a
very weak and cheap realization of essential point pruning.
However, it still improves over the state-of-the-art, demon-
strating the potential for improvement. Our current and fu-
ture research efforts are aimed at realizing this potential.
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