
Determinization of resolution by an algorithm operating on complete
assignments

Cadence Berkeley Labs

1995 University Ave.,Suite 460, Berkeley, California,94704
phone: (510)-647-2825, fax: (510)-486-0205

CDNL-TR-2007-0106

January 2007

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract. “Determinization” of resolution is usually done by
employing a DPLL-like procedure that operates on partial
assignments. We introduce a resolution-based SAT-solver that
operates on complete assignments and give a theoretical
justification for determinizing resolution in such a way. This
justification is based on the notion of a point image of a
resolution proof. We give experimental results confirming the
viability of our approach to resolution determinization.

1. Introduction
The resolution proof system [1] has achieved outstanding

popularity in practical applications. Since resolution is a non-
deterministic proof system, any SAT-solver based on resolution,
one way or another, has to perform its “determinization” . In the
state-of-the-art SAT-solvers this determinization is based on using
the DPLL procedure [2] that operates on partial assignments.
The current partial assignment is extended until a clause is
falsified. Then, the DPLL procedure backtracks to the last
decision assignment and flips it. The search performed by the
DPLL procedure can be simulated by so-called tree-like
resolution (a special type of general resolution).

The reason for using partial rather than complete assignments
is that by rejecting a partial assignment the DPLL procedure may
“simultaneously” reject an exponential number of complete
assignments. The premise of such an approach is that to prove that
a CNF formula F is unsatisfiable one has to show that F evaluates
to 0 for all complete assignments.

In this report, we introduce the notion of a point image of a
resolution proof that questions the premise above. Let R be
resolution proof that a CNF formula F is unsatisfiable. Let T be a
set of points that has the following property. For any resolvent C
of R obtained from parent clauses C′ and C″, there are two points
p′′′′ and p″″″″ of T such that

1. C′ (p′′′′) = 0 and C″ (p″″″″) = 0,
2. C(p′′′′)=C(p″″″″)=0.

Then the set T is called a point image of R.
Given a resolution proof R, one can always build its point

image whose size is at most twice the size of R (measured in the
number of resolution operations). Besides, given a set of points T
and a CNF formula F, one can always test if T is a point image of
a resolution proof by a simple procedure described in this report.
This result implies that a resolution proof that a CNF formula F is
unsatisfiable can be “guided” by testing the value of F at a
sequence of points. Moreover, if F has a short resolution proof of
unsatisfiability, the number of “guiding” points is negligible with
respect to the size of the entire search space.

Interestingly, a resolution proof R has, in general, an
exponential number of point images but not all point images are
“equivalent” from the point of view of determinization.
Informally, this means that given two different point images T1
and T2 of a proof R, one may be able to generate, say, T1 by a
much simpler program than T2.

 In this report, we introduce a DPLL-like SAT-solver called
FI (which stands for Find Image) that is inspired by the
observation above. Namely, FI operates on complete assignments.
Algorithmically, FI can be interpreted as a DPLL like SAT-solver
that is allowed to make assignments only to variables of clauses
that are falsified by a complete assignment. This complete
assignment dynamically changes. However, as we show in this
report much more fruitful interpretation of FI is to consider it as
an algorithm “directly” operating on complete assignments. In
this interpretation all the variables are assigned and FI only
“ fixes” some assignments. We give experimental results showing
that while FI is competitive in the quality of proofs with the state-
of-the-art, it has interesting properties that SAT-solvers operating
on partial assignments do not have.

This report is structured as follows. In Section 2 we recall
basic definitions. In Section 3 we give some justification of our

algorithm and introduce the notion of a point image of a
resolution proof. Section 4 describes FI. In Section 5, we explain
the advantages of the “point” interpretation of FI over the
traditional interpretation in terms of partial assignments. Section 6
explains why decision making of FI works well. In Section 7 we
show that the set of points “visited” by FI is a point image of the
proof FI builds. Section 8 compares FI with local search and
DPLL-based procedures. Experimental results are given in
Section 9. We make some conclusions in Section 10.

2. SAT and resolution proofs
In this section, we give some basic definitions.
Let F be a CNF formula (i.e. conjunction of disjunctions of

literals) over a set X of Boolean variables. The satisfiability
problem (SAT) is to find a complete assignment p (called a
satisfying assignment) to the variables of X such that F(p) = 1 or
to prove that such an assignment does not exist. If F has a
satisfying assignment, F is called satisfiable. Otherwise, F is
unsatisfiable. A disjunction of literals is further referred to as a
clause. A complete assignment to variables of X will be also
called a point of the Boolean space B|X| where B={ 0,1} . A point p
satisfies clause C if C(p)=1. If C(p)=0, p is said to falsify C.
Denote by Vars(C) and Vars(F) the set of variables of C and F
respectively.

Now we recall basic definitions of the resolution proof
system [1]. Let C1 and C2 be two clauses that have opposite
literals of a variable xi. Then the clause consisting of all the
literals of C1,C2 except those of xi is called the resolvent of C1,C2.
(For example if C1=x1∨ x3 ∨ x5, C2= x2 ∨ ~x3 ∨ x7 , the resolvent of
C1 and C2 is the clause x1 ∨ x5 ∨ x2 ∨ x7 .) The resolvent of C1,C2
is said to be obtained by the resolution operation.

The resolvent of C1,C2 is implied by C1 ∧ C2. So, if an
empty clause is derived from clauses of F, then F implies an
empty clause and so F is unsatisfiable. Hence, the resolution
system is sound. It is also complete, that is, given an unsatisfiable
CNF formula F, one can always generate a sequence of resolution
operations resulting in producing an empty clause. This sequence
of operations is called a resolution proof. The resolution proof
system is very important from a practical of view because the best
SAT-solvers for solving “ industrial” formulas (like Grasp [18],
SATO [19], Chaff [13], BerkMin [7], Minisat [3] and Siege) are
based on resolution.

3. Justification of our approach
In this section, we give a theoretical justification of our

approach.

3.1 Point image of resolution proof
Let R be a resolution proof that a CNF formula F is

unsatisfiable. Let T be a set of points that has the following
property. For any resolvent C of R obtained from parent clauses
C′ and C″ there are two points p′′′′ and p″″″″ of T such that

1 C′ (p′′′′) = 0 and C″ (p″″″″) = 0.
2 C(p′′′′)=C(p″″″″)=0.

Then the set T is called a point image of resolution proof R. The
points p′′′′ and p″″″″ are called a point image of the resolution
operation over clauses C′ and C″.

The definition of point image of resolution operation above
is more general than the one we gave in [5]. Here, instead of the
requirement of [5] that p′′′′ an p″″″″ are at Hamming distance 1, we
only require that the resolvent C is falsified by p′′′′ and p″″″″. The
difference between the two definitions is in assignments to “ free”
variables of p′′′′ an p″″″″, that is the variables of the set
Vars(F) \ (Vars(C′) ∪ Vars(C″)). According to the previous
definition, p′′′′ an p″″″″ have to have identical assignments to the free
variables. The new definition allows one to assign the free
variables of p′′′′ an p″″″″ arbitrarily. The advantage of the new
definition in the context of test generation is explained in [6]. (It
allows one to extract from resolution proofs high quality test sets
called tight sufficient test sets.) In this report, the new definition
allows us to show that the set of points visited by the SAT-solver
FI (described later) is a point image of the proof FI builds.

3.2 Building a point image of a resolution
proof

Given a resolution proof R that F is unsatisfiable, a trivial
way of building a point image T of R is as follows. We start with
an empty set T. Then for every resolution operation from R over
clauses C′ and C″ we add to T two points p′′′′ and p″″″″ forming its
point image (unless p′′′′ and/or p″″″″ have been added to T before.)
Clearly, the size of a set T built this way is at most twice the
number of resolution operations in R.

3.3 Checking if a set of points is an image
of a proof

Given a set of points T and a CNF formula F, one can test if
T is a point image of a resolution proof by the following
procedure. Let S be a set of clauses that initially consists of the
clauses of F. At every step of this procedure we pick a pair of
clauses of C′ and C″ of S such that a point image of C′ and C″ is
in T and add the resolvent to S unless it is subsumed by a clause
of S. This procedure has three termination conditions. 1) If a point
of T satisfies F, then clearly F is satisfiable and T is not a point
image. 2) No new clause can be added to S at a step of the
procedure. This means that T is not a point image of any
resolution proof and so one cannot say whether F is satisfiable or
not yet. In other words, the set T is not “ large enough” to be a
point image of a proof. 3) An empty clause is derived at a step of
the procedure. This means that T is a point image of a resolution
proof that F is unsatisfiable.

In [6], we show experimentally that the procedure of
checking if T is a point image we just described is inefficient. That
is, although this procedure dramatically reduces the set of
resolution operations that are “allowed”, it still performs a large
number of “ junk” resolutions. That is the majority of generated
resolvents do not contribute into the derivation of an empty
clause. (As we show in [6], one can make this procedure efficient
by adding some extra information.) However, this inefficiency
does not matter. We describe this procedure just to show that a
small set of points can “encrypt” a proof and that this fact can be
established by a deterministic procedure (although inefficient).

3.4 A proof has a huge number of point
images

Let Res be the resolution operation of a proof R (that a CNF
formula F is unsatisfiable) over clauses C′ and C″ . The operation
Res, in general, has a huge number of point images because the
values of points p′′′′ and p″″″″ forming a point image of Res are
specified only for the variables of C′ and C″. For the variables of
F that are not in C′ and C″, points p′′′′ and p″″″″ may have arbitrary
values.

Since a point image of a resolution proof R is essentially the
union of point images of resolution operations comprising R, the
latter has a huge number of point images. However, not all point
images of R are equivalent in the sense that some images are more
“ regular” and so can be more easily built by a deterministic
algorithm. So, resolution, being a non-deterministic proof system,
does not distinguish between different point images of R. On the
other hand, the fact that different point images of R have different
complexity of building them, implies that an algorithm operating
on complete assignments can be used to “determinize” resolution.
The idea of such an algorithm it to try to build a “ regular” point
image of a resolution proof that F is unsatisfiable.

4. Descr iption of FI
The procedure of subsection 3.3 shows that one can use

complete assignments to “guide” a resolution proof. The size of a
“guiding” set T (if it is “ irredundant”) is at most twice the size of
the proof the set T “guides” . In this section, we introduce a
resolution-based SAT-solver called FI (Find Image) that operates
on complete assignments (points). Although FI is inspired by the
ideas of Section 3 it does not look for a point image of a
resolution proof “directly” . Instead, we formulate FI as a DPLL-
like procedure whose decision making is driven by a complete
assignment.

To simplify understanding of FI operation we first give its
description in terms of partial assignments (subsection 4.1). The
interpretation of FI in terms of complete assignments is given in
subsection 4.2. (The merits of this interpretation are listed in
Section 5.) In the following subsections of this section we
describe FI in more detail.

4.1 Descr iption in terms of par tial
assignments

The pseudocode of FI (without restarts) is shown in Figure
1. In this subsection, we describe FI from the viewpoint of a
traditional SAT-solver i.e. in terms of partial assignments. (We
will denote this interpretation of FI as FI*.) FI* can be viewed as
a regular SAT-solver that uses a complete assignment p as an
“oracle” in decision making. This complete assignment is initially
generated in line 2 of Figure 1. Then the set M(p) of clauses
falsified by p is computed (line 3). After that, FI* follows the
well-known procedure [18] used by the current state-of-the-art
resolution based SAT-solvers. The only difference is that FI*
maintains two additional entities: a complete assignment p and the
set M(p) of clauses falsified by p. When FI* makes an assignment
to a variable xi either during BCP (line 5) or decision making (line
12) it checks if the chosen value of xi is equal to the value of xi in
p. If these values are equal, then no recomputation of p or M(p)
occurs. Otherwise, a new complete assignment p′′′′ is produced

from p by flipping the value of xi and the set M(p′′′′) is computed
(by recomputation of M(p)). If an unsatisfiable clause is found
(line 5), FI* backtracks without changing the current point p.

 1 FI*(F)
 2 { p=generate_initial_point(F);
 3 M=find_falsified_clauses(F, p);
 4 while (true)
 5 { if (BCP(F,M,p) == conflict)
 6 { level = analyze(F);
 7 if (level == 0) return(UNSAT);
 8 else backtrack(F,p,M);
 9 }
 10 else // no conflict yet
 11 if (M =∅) return (SAT);
 12 else make_assignment(F, p, M);
 13 }
 14 }

Figure 1. Pseudocode of FI*

The current complete assignment p and the set M(p) are used
in FI* solely for the purpose of decision making. Namely, the next
variable to be assigned is picked only among variables of clauses
of M(p) i.e. of clauses that are currently falsified by p.

4.2 Descr iption in terms of complete
assignments

Now we give an interpretation of the procedure of Figure 1,
in terms of complete assignments. (We will refer to this
interpretation as FI without a star symbol.) In this interpretation
no free (i.e. unassigned) variables exist. Instead of assigning a
value to a free variable xi (as it is done by FI* in line 12) , FI just
fixes the existing assignment to xi in a current point p. Thus, in
all the points p visited after variable xi has been fixed, the value of
xi stays the same. On the other hand, undoing an assignment to
variable xi in FI* corresponds in FI to “unfixing” the assignment
to xi in the current point. It means that now the value of xi can
change in generated points p until the next time the value of xi is
fixed. A conflict in FI is the situation when M(p) contains a clause
C of the current formula such that all the assignments setting the
literals of C to 0 have been fixed. (So no point satisfying C can be
obtained from p without unfixing one of the assignments that has
been fixed before.)

4.3 Decision making of FI
The decision making of FI is based on variable activity as it

was proposed in [13] and later used in many other SAT solvers.
The activity of variables is computed similar to BerkMin [7]. But
in contrast to BerkMin we compute the activity of literals (as it
was done in Chaff) rather than variables. Let lit(xi) be a literal of
variable xi. If lit(xi) occurs in k clauses of the current formula that
were involved in the last conflict, then the activity of lit(xi) is
incremented by k. After a fixed number of conflicts, the activity
of literals is divided by a small constant as it was first done in
Chaff [13].

We experimented with two different procedures of decision
making that performed well. The first procedure is BerkMin-like.
If M(p) contains conflict clauses, then FI picks the conflict clause
C of M(p) that was derived most recently. (Note that since M(p)

contains clauses falsified by one point, no variable can have
literals of both polarities in clauses of M(p)). FI picks the most
active literal lit(xi) among variables of C and fixes the assignment
to xi setting lit(xi) to 1. This assignment does not necessarily
satisfy C. Suppose C contains the literal ~lit(xi) (i.e. the opposite
of lit(xi)) which means that p has the assignment to xi that sets
lit(xi) to 1. Then FI fixes the current assignment to xi and so p and
the set M(p) stay unchanged. Otherwise, (i.e. if C contains lit(xi))
FI flips the current value of xi thus satisfying C and only then
fixes the new value of xi. This entails changing p and
recomputing M(p). If M(p) does not contain a conflict clause, then
FI fixes the assignment setting to 1 the most active literal lit(xi)
among the variables of clauses of M(p).

The second decision-making procedure of FI fixes the
assignment setting to 1 the most active literal lit(xi), where xi is a
variable of a clause of M(p). (As we explained above this
assignment does not necessarily satisfy a clause of M(p).) That is
the second procedure works exactly as the first decision-making
procedure when M(p) does not contain conflict clauses.

4.4 BCP procedure and conflict clause
analysis

The BCP procedure of FI is identical to that of a generic
DPLL based SAT-solver. So the BCP procedure of FI is “global”
in contrast to its decision making. As it was described above, in
its decision making, FI fixes assignments only of variables that
occur in clauses of M(p). In the BCP procedure, FI keeps track of
all the unit clauses regardless of whether they are falsified or
satisfied by p and so regardless of their presence in M(p) . (In
terms of fixed assignments, a clause is unit, if all its literals but
one are set to 0 by fixed assignments.)

FI also employs a traditional conflict analysis and conflict
clause generation whose description can be found in [13].

4.5 Restar ts
FI uses occasional restarts as it was suggested in [8]. (I.e.

once in a while, FI abandons the current search tree to start a new
one.) After a restart, FI inherits the last complete assignment p
obtained before abandoning the previous search tree. As we will
show in Section 9, this allows FI to benefit from making
frequent restarts.

4.6 Initial point generation
Currently FI uses the following procedure for generation of

an initial point p. This procedure makes a “decision” assignment
to a variable xi of the formula and runs BCP procedure to make all
the implied assignments. If implied assignments to a variable
contradict each other, one of them is picked randomly. This goes
on until all variables are assigned. This procedure may vary in
how variable xi and its assignment are chosen. Variable xi can be
chosen randomly or according to a particular order. An
assignment to xi can be also picked randomly or according to
some heuristic.

5. Which interpretation is “ better” ?
In this section, we justify the interpretation of FI as an

algorithm operating on complete assignments (we will refer to it
as a point interpretation of FI). We explain why the point
interpretation is much more “ fruitful” than the interpretation in
terms of partial assignments described in subsection 4.1. For the

sake of simplicity, in the discussion of this section, we assume
that FI does not make restarts and so builds a single search tree.

5.1 DPLL still needs determinization
In this subsection, we try to draw the line between the

notions of a heuristic and determinization. By determinization, we
mean a reduction of the proof space in such a way that some
“reasonably good” choices still remain. In a sense, DPLL can be
viewed as determinization of general resolution because it reduces
the type of allowed proofs but the proof space still contains
“good” solutions. By a heuristic, we mean a way to find a
particular proof out of a space of proofs (already reduced). For
example, making an assignment satisfying the largest number of
unsatisfied clauses is a heuristic. More formally, one can view a
heuristic of a DPLL-like procedure as a function that, given a
CNF formula and a set of already assigned variables, computes
the next assignment to make.

We believe that it is wrong to consider the DPLL procedure
as “almost” an algorithm that just needs a heuristic to make DPLL
deterministic. In reality, DPLL is still a “highly non-
deterministic” proof system that needs determinization. A strong
indicator of that is the fact that tree-like resolution is most likely
non-automatizable [15]. Non-automatizability implies that given a
class of CNF formulas with short proofs in tree-like resolution,
there is no efficient algorithm for finding those proofs. This
essentially means that effective and efficiently computable
heuristics are impossible for DPLL. (This does not contradict the
fact that very good decision-making heuristics have appeared
recently. These heuristics, in general, cannot help find a small
proof if, say, the original CNF formula has a small unsatisfiable
core. See subsection 9.3.)

One way to solve the problem is to reduce non-determinism
of the DPLL procedure even more and then search for heuristics.
Otherwise, heuristics may be very fragile and unrobust and it will
be hard to say whether a particular heuristic “makes sense” or is
just tailored for a small finite set of benchmarks. It will also be
hard to predict whether this heuristic will work for a slightly
larger set of benchmarks.

Decision making based on using complete assignments
provides much “deeper” determinization of DPLL than that of
current resolution based SAT-solvers. “Extra” determinization is
achieved by reducing the choices of decision-making only to the
variables of clauses falsified by the current point. As we will see
in Section 6 such reduction indeed can be viewed as a
determinization of DPLL, because the reduced set of variables
still contains “good” choices.

5.2 Interpretation in terms of complete
assignments is much more “ fruitful”

Probably, the most important reason why we strongly suggest
using the point interpretation of FI is as follows. It is much more
fruitful to consider a DPLL-like procedure in terms of point
interpretation of FI than the other way around. In terms of partial
assignments, FI is a DPLL procedure with “odd” decision
making . This decision making looks extremely strange because,
in terms of partial assignments, a SAT-solver tries to cover the
entire search space as fast as possible. However, FI makes

decisions that are based on a complete assignment i.e. on a
miniscule part of the space of all assignments.

On the other hand, the point interpretation of FI allows one
to study and classify existing decision making heuristics and
generate new ones. First of all, note that DPLL can simulate FI
while the opposite is not true. Indeed, any choice of an
assignment to fix made by FI can be simulated by DPLL as an
assignment to a “ free” variable. However, a search tree built the
DPLL procedure, in general, can not be simulated by FI. The
reason is twofold.

 Firstly, the set of variables to fix is limited to those of
clauses that are falsified by the current point p. Secondly, p can
not be changed arbitrarily. Recall, that FI either fixes an
assignment to a variable xi that agrees with p (in which case p
does not change) or it flips the value of xi and then fixes it. In this
case, the new point is at distance 1 from the previous one. In other
words, FI can not flip more than one bit of p at a time and
moreover, only bits corresponding to the variables of clauses
falsified by p may be flipped. This means that only a negligible
number of search trees built by DPLL can be simulated by FI.
Surprisingly, in spite of this dramatic reduction of the proof space,
FI is competitive in the number of backtracks with current SAT-
solvers operating on partial assignments (see Section 9.) Our
explanation of this fact is given in Section 6.

To simulate the DPLL procedure, FI should be “extended”.
By testing these extensions one can study various decision
heuristics. Basically there are two ways to extend FI. First
extension is to allow FI to make “non-local” moves (where more
than one bit of p can be changed at once) and/or to allow to flip
the bits of p that are not in a clause falsified by p. Importantly,
one can control the degree of “non-locality” , for example, by
limiting moves that are allowed.

The second type of extension is to maintain more than one
complete assignment. This type of extension seems to be more
promising for the following reason. By allowing “non-local”
changes of p one makes FI more “non-deterministic” and hence
more DPLL-like. On the other hand, by keeping more than one
point, FI can improve its decision making without introducing
“extra” non-determinism.

5.3 Traditional semantics of DPLL may be
very misleading

 The underlying semantics of a SAT-solver operating on
partial assignments is that this SAT-solver has to cover the entire
search space. (At each step it generates branches xi=0 and xi=1,
which guarantees complete search space coverage.) Suppose that
an initial formula F contains a unit clause xi or such clause can be
“easily” derived from F. From the semantics of DPLL it follows
that by setting xi to 1, one reduces the search space by half and so
“half the work” is done by making this assignment. However, it is
well known that derivation of unit clauses usually does not reduce
the amount of work to do as dramatically as one can conclude
from the search space covering semantics.

An explanation of this phenomenon can be easily given in
terms of point images. Suppose, an original CNF formula F
contains a unit clause xi and F is unsatisfiable. Then in a point
image T of a proof R that F is unsatisfiable there will be only one

point falsifying clause xi. (Here we assume that both R and T are
not “artificially” inflated by obvious redundancies.) The rest of
the points of T will have xi assigned to 1. So the fact that xi is
fixed at 1 does not mean that a lot of work is done because only
one point of the subspace xi=0 is in T. (On the other hand, if the
unit clause xi is derived and this derivation is “ long” , then a lot of
points with xi=0 may be added to T. This means that the
derivation of this clause is a “ large piece of work” .)

6. Compar ison of decision making based
on complete and par tial assignments

In this section, we discuss one important advantage of
decision making of FI over SAT-solvers operating on partial
assignments like Chaff, BerkMin and many others. We also
describe one obvious “ flaw” of FI’ s decision making.

Let F be an unsatisfiable CNF formula and F′ be an
unsatisfiable subset of clauses of F. Let p be a complete
assignment to variables of F and M(p) be the set of clauses of F
falsified by p. Note, that regardless of the choice of p, at least one
clause of F′ has to be in M(p). So in spite of the fact that the
decision-making choices of FI are very limited, it still has good
decisions to make because variables of F′ are always available for
decision making. (Here we assume that making decisions on
variables of F′ is a good idea.) So according to definition of
subsection 5.1, using a complete assignment to guide decision-
making can be viewed as determinization of tree-like resolution.

One may think that the argument above is applicable only if
the original formula is unsatisfiable and has a small irredundant
core of clauses. In reality, this argument is applicable to any CNF
formula. Indeed, if an original formula F is satisfiable, after fixing
values of some variables, F may become unsatisfiable. Besides,
even if the original formula F is irredundant it becomes
redundant after fixing values of variables. Eventually, unless a
satisfying assignment is found, an unsatisfiable clause is
encountered. This clause forms an “unsatisfiable core” of F under
the current set of assignments.

One more universal source of redundancy is adding derived
clauses (e.g. conflict clauses.) On the one hand, if a clause C is
implied by F, then obviously C is redundant in F ∧ C. On the
other hand, some clauses of F may become redundant in F ∧ C .
Adding clauses to F by a resolution based SAT-solver, in general,
leads to forming a small unsatisfiable core. Indeed, eventually, an
empty clause is derived. This clause forms an unsatisfiable core of
the formula F ∧ D where D is the set of derived clauses.

The advantage of FI’ s decision making mentioned above,
due to its universal applicability, can explain good experimental
results of FI (see Section 9.) Note that the observation that local
search can be used for identifying an unsatisfiable core of the
initial formula was made in [12].

An obvious disadvantage of the decision making of FI in
comparison to that of SAT-solvers operating on partial
assignments is the restriction on variables whose value can be
fixed. Note that we do not contradict our claim above about merits
of FI’ s decision-making. If the current formula F contains an
unsatisfiable core F′, current point p necessarily falsifies a clause
C of F′. However, variables of C may be not the best variables
of F′ to fix. Had we chosen another point p∗, it would have

falsified some other clause C* of F′ with “better” variables to fix.
However, FI can not fix a variable of C* if it is not in a clause
falsified by the current point. (As we mentioned in subsection 5.2,
one of the natural extensions of FI is to maintain more than one
complete assignment, which could mitigate the problem above.)

7. Does FI build a point image of its
proof?

Let F be an unsatisfiable formula and R be a resolution proof
found by FI when solving F. Let T be the set of points visited by
FI. In this section, we show that after a “natural” extension of the
set T, it becomes a point image of R. In subsection 7.1 we
describe this natural extension and in subsection 7.2 we show that
the extended set T is a point image of R.

7.1 Extension of set T of visited points
The extension above is due to the fact that during BCP FI

may fix assignments of variables of clauses that are not in M(p).
Let C be a unit clause (i.e all the literals of C but one are set to 0
by fixed assignments). Suppose, the assignment satisfying C
agrees with the current complete assignment p. (So C is not
M(p).) After this assignment is fixed by FI, the clause C may get
involved in a conflict without being falsified by any point of T.
However, the necessary condition for T to be a point image of R is
that every clause of R is falsified by a point of T. So, obviously,
T is not an image of R.

Suppose we extend T by the set of points that falsify all
clauses that became unit during a run of BCP and from which an
(implied) assignment was derived. This extension can be built in
the following way. If, during BCP a unit clause C is satisfied by
fixing an assignment to a variable xi that agrees with the current
point p we add to T the point p′′′′ obtained from p by flipping the
value of xi. Obviously, p′′′′ falsifies C. This extension of T is
“natural” in the sense that the only reason why FI does not visit
the points like p′′′′ “explicitly” is that they can not be a satisfying
assignment.

7.2 FI builds image of proof it generates
Let Ccnfl be the conflict clause produced in the latest conflict.

The conflict clause generation based on the first-UIP scheme (that
is used by FI) is well described in [20]. According to this scheme
Ccnfl is generated by resolving clauses from which an assignment
was deduced at the conflict level and the clause that became
unsatisfiable. Let Ccnfl be obtained by resolving clauses C1,..,Ck
of the current CNF formula F. Here C1,..,Ck-1 are clauses from
which assignments were deduced during BCP at the conflict level
and Ck is the unsatisfiable clause. (Note that during BCP at the
conflict level, assignments may have been deduced from clauses
other than C1,..,Ck-1. But we are interested only in the clauses
involved in the conflict.) Assume that C1,..,Ck-1 are numbered in
the order in which they were processed by BCP (that is if i < j,
then an assignment was deduced from Ci before another
assignment was deduced from Cj).

In the first-UIP scheme, Ccnfl is obtained from C1,..,Ck by
resolving them in the “ reverse order” . That is, first, Ck is resolved
with Ck-1. Then Ck-2 is resolved with the resolvent of Ck and Ck-1
and so on.

Proposition. The extended set of points T is a point image of
the proof generated by FI.

Proof. We need to show that for each of k-1 resolution
operations performed to generate Ccnfl, the extended set T contains
two points forming an image of this operation. This can be proven
by induction in the number of resolutions. Note that by definition
of the conflict situation, the last conflict clause Ck has to be
falsified by the current point pcnfl.

Basis. The fact that T contains point pcnfl falsifying Ck and
that the variables of Vars(Ck) have fixed assignments is the basis
of our inductive proof.

Denote by Rm the clause equal to Ck for m=1 or the result of
resolving the clauses Ck,Ck-1,Ck-m-1 for m > 1.

The inductive statement of our proof is as follows. We
assume that Rm is falsified by the point pcnfl and all the variables
of Vars(Rm) have assignments fixed before an assignment was
deduced from Ck-m-1.

Using this assumption we will show that
1) the inductive statement holds for the next value of m;
2) T contains a point pm falsifying the clause Ck-m such

that pcnfl and pm form the point image of the
resolution operation over Rm and Ck-m.

Proof of the first condition. The resolvent Rm+1 is obtained
by resolving Rm and Ck-m. Denote by Ded_var(Ck-m) the variable
whose value was deduced from Ck-m during BCP. Note that before
a value was deduced from Ded_var(Ck-m), the literals of the other
variables of Ck-m were set to 0 by fixed assignments. So the clause
Rm+1 is falsified by pcnfl. Note that the assignments to the variables
of Vars(Ck-m) \ { Ded_var(Ck-m)} were fixed before deducing a
value of Ded_var(Ck-m). So all the literals of Rm+1 were fixed at 0
before derivation of Ded_var(Ck-m).

Proof of the second condition. Let p be the point that was
the current complete assignment of FI at the time an assignment
was deduced from Ck-m. Denote by pm the point of T defined as
follows. If Ck-m was falsified by p, then pm = p. If Ck-m was
satisfied by p, then pm=p′′′′ where p′′′′ is obtained by the extension of
T described above (i.e. by flipping the value of variable
Ded_var(Ck-m)). In either case, Ck-m(pm)=0. Now we need to
show that both pm and pcnfl falsify the resolvent Rm+1 of Ck-m and
Rm. We already showed above that pcnfl falsifies Rm+1.

Now we show that pm sets to 0 all the literals of Rm (except
maybe the literal of Ded_var(Ck-m)) and hence, taking into
account that Ck-m(pm)=0, the point pm falsifies Rm+1. Let lit(xj) be a
literal of Rm (where xj is different from Ded_var(Ck-m)). Note that
according to our inductive statement the value of xj was fixed
before variable Ded_var(Ck-m-1). Since Ded_var(Ck-m) and xj are
different, the assignment xj was also fixed before Ded_var(Ck-m)
was fixed. This assignment to xj sets lit(xj) to 0 (otherwise pcnfl
would satisfy Rm). So pm falsifies Rm+1.

8. Relation of FI to DPLL and local
search

In this section, we compare our approach with local search
SAT-algorithms and SAT-solvers based on the DPLL procedure
and give some background information.

There have been many tries to combine local search
algorithms pioneered in [16],[17] and SAT-solvers based on the
DPLL procedure [2]. In [12], in every node of the DPLL
procedure, a local search procedure is invoked to identify the next
variable to branch on . This approach was also tried in [9] with
the following modification. Before running a local search

procedure at a node of the search tree, dependencies between
variables of the current formula were computed. In [14] random
backtracking was used to improve the scalability of the DPLL
procedure. In [10], BCP was used to correct values of a complete
assignment p. The values of p were re-assigned in a random order,
every assignment being followed by BCP. A complete local
search algorithm augmented by clause generation was introduced
in [4]. Clause generation was used in [4] for escaping local
minima.

The only feature that FI shares with local search SAT-solvers
is its operating on complete assignments. At the same time, a
typical local search procedure [11] has at least one of the
following three features: 1) it is incomplete; 2) it tries to optimize
a “straightforward” cost function (like the number of falsified
clauses); 3) making random decisions plays an important role in
SAT-solver’s performance. On the other hand, FI is complete,
does not optimize any “straightforward” cost function and random
decisions are not of crucial importance. Probably, the best way to
position FI is to view it as a resolution-based SAT-solver that
operates on complete assignments and so makes one more step
away from the DPLL procedure. The SAT-solver of [4] is also
complete and based on resolution but it introduces new clauses in
“a mechanical way” just to escape a local minimum. Our
experiments show that the SAT-solver of [4] generates an
enormous number of new clauses and so fails to prove the
unsatisfiability of even very small CNF formulas.

9. Exper imental Results
In this section, we give results of some experiments with an

implementation of FI. The main objective of experiments was to
show that FI is competitive with state-of-the-art SAT-solvers in
the number of backtracks (or, equivalently, in the number of
conflicts). So we used a very simple implementation that lacked
the techniques commonly employed to speed up a SAT-solver
(like fast BCP, efficient formula representation, special treatment
of binary clauses and so on.) Besides, we tried to keep our
implementation of FI as simple as possible (to facilitate changing
the code of FI). For that reason we do not report runtimes.
However in subsection 9.1 we give experimental data suggesting
that overhead for maintaining complete assignment p and the set
M(p) for large CNF formulas is small. We also discuss how this
overhead can be further reduced.

In our exper iments, we used the first decision-making heur istic
descr ibed in subsection 4.3 for the formulas of Tables 1-5. (I t
was slightly modified for the formulas of Table 4 as descr ibed

below). For the formulas of

Table 6 we used the second decision-making heuristic of
subsection 4.3 In all the experiments, (except for those reported in
Table 5) a restart was performed every 150 conflicts.

In subsection 9.2, we compare FI with other SAT-solvers in
terms of the number of conflicts. In the following three
subsections we try to highlight some advantages of decision
making of FI. In subsection 9.3, we show that FI is able to find
unsatisfiable subformulas that can not be found by SAT-solvers
operating on partial assignments. Subsection 9.4 shows that
employing complete assignments allows FI to use more frequent
restarts because subproofs found in different iterations become
more “coherent” . Finally, in subsection 9.5 we show that decision
making of FI is more “precise” than that of a SAT-solver

operating on complete assignments. As a result, FI makes fewer
decisions.

9.1 About efficient implementation of FI
In contrast to regular resolution-based SAT-solvers, FI has to

maintain the set M(p) of clauses of F falsified by the current
complete assignment p, which may affect FI’ s performance. Every
time a decision or implied assignment to a variable is fixed and it
disagrees with the current complete assignment p, the latter
changes and M(p) has to be recomputed. Let xi be the flipped
variable (whose value is fixed after flipping) and p′′′′ be the point
obtained from p by flipping the value of xi. The recomputation
involves removing clauses that are satisfied by p′′′′ from M(p) and
adding to M(p) the clauses falsified by p′′′′ (that were satisfied by
p). Note that only clauses having literals of xi are involved in
recomputation of M(p).

Removing from M(p) the clauses satisfied by p′′′′ is “cheep”. If
for every literal of F, one maintains the subset of clauses of M(p)
that have this literal, then one just needs to “empty” this subset for
the corresponding literal of xi. Finding the clauses with variable xi
that one has to add to M(p) is more time consuming. In a naive
implementation, one needs to examine every clause C of F with
the literal of xi of the corresponding polarity and check if C is
falsified by p′′′′. To reduce the complexity of this part of updating
M(p) one can use watched literals introduced in [13][19].

The idea is as follows. For every clause C of F we pick a
literal lit(xj) of C such that the variable xj is not fixed and the
value of xj in the current complete assignment sets lit(xj) to 1. So
C is satisfied by the current complete assignment and hence C is
not in M(p). (This watched literal is different from the two
watched literals used to check if C is unit). Then, to add the
clauses of F that are falsified after flipping the value of xi, one
just needs to examine those of them for which the corresponding
literal of xi is “watched”. So, C will be accessed only if its
watched literal is set to 0 by a fixed value. Then a new watched
literal is searched for in C. If there is no variable of Vars(C) that is
not fixed and whose assignment satisfies C, then C is added to
M(p). Otherwise, a new watched literal is picked.

In regular BCP, to check if a clause is unit, two watched
literals are maintained and this clause is accessed every time at
least one of them is assigned. The check if a clause C has to be
added to M(p) as described above is performed only if one
watched literal is assigned. That is checking if a clause C should
be added to M(p), is performed less frequently then checking if C
is unit.

As we mentioned above, one needs to recompute M(p) only if
the assignment to xi disagrees with the value of xi in the current
complete assignment. Table 1 shows how often FI had to
recompute M(p). The second, third and fourth columns of Table 1
contain the number of variables, clauses and generated conflicts
(in thousands). The fifth column contains the number of
assignments (both decision and deduced) in millions. The last
column of Table 1, gives the percentage of assignments for which
FI had to recompute M(p).

One can make the following two conclusions from Table 1.
First, for all formulas, the number of assignments where FI had to
recompute M(p), was smaller than that of assignments where the
value to be fixed agreed with the current complete assignment.
Second, while for small size formulas (like c3540, c5315)

recomputations of M(p) occurred in more than 1/3 of all
assignments, for larger formulas this percentage dropped below
10%. This means that the overhead for maintaining M(p) in FI
for large formulas should be negligible. The reason why the
percentage of assignments requiring recomputation of M(p)
dropped for large formulas was that for those formulas the
majority of clauses remained satisfied by the original complete
assignment. So only a small fraction of the clauses appeared in
M(p).

Table 1. Percentage of times FI had to recompute M(p)

Name #Vars

∗ 103

#Clauses

∗ 103

#Cnfl.

∗ 103

#assgns

∗ 106

 disagr.

(%)

2bitadd_10 0.6 1.4 219 9.1 21.9

c3540 3.5 9.3 101 35.3 34.0

c5315 5.4 15.0 42 11.7 38.2

6pipe 15.8 395 112 64.2 3.4

ci 218 639 9.5 135 5.8

ldv4.0.100 308 902 68 1335 8.1

raven.50 756 2,243 30 349 8.0

s104 1306 3864 7.1 57 3.7

smv 1377 4213 12.0 552 3.8

9.2 Compar ison in terms of the number of
conflicts

Although the efficiency of the current implementation of FI
can be significantly improved, its performance was sufficient to
collect statistics on a large variety of formulas. First, we give
results of applying FI to Dimacs formulas (Table 2) and some
other known families of formulas (Table 3). Dimacs, Beijing,
blocksworld, bmc formulas can be downloaded from [21].
Formulas bmc1 (consisting of subclasses barrel, longmult,
queueinvar) are described in [22]. Formulas vliw-sat.1.0, fvp-
unsat.1.0 and Npipe (of fvp-unsat.2.0) can be found in [23].

Table 2. Dimacs formulas

Name #form-
ulas

Forklift

#conflicts

Minisat

#conflicts

FI

#conflicts

aim 72 3,303 3,587 3,256

bf 4 774 383 379

dubois 13 3,062 4,904 3,260

hanoi 2 26,156 65,428 223,040

hole 5 227,102 1,538,350 56,884

ii 41 6,505 4,088 1,254

jnh 49 2,151 2,096 2,069

par16 10 42,934 47,568 70,915

par8 10 304 162 83

pret 8 4,342 6,892 2,942

ssa 8 744 367 348

We compare FI’ s results (in terms of the number of conflicts)
with that of Forklift , the winner of the SAT-2003 contest in the
industrial category, and Minisat , the runner-up of the SAT-2005
contest in the industrial category [3]. In Table 3, if Minisat was
not able to finish all formulas, we report the number of conflicts
only for the formulas it solved and give the number of unsolved
formulas (in parentheses). The main conclusion we draw from
Table 2 and Table 3 is that decision making of FI is quite
competitive with those of resolution based SAT-solvers operating
on partial assignments.

Since the decision-making of FI is extremely “ local” , such a
result is hard to understand from the viewpoint of the current
DPLL semantics (that every complete assignment of the search
space has to be “covered”). However, this result is implied by the
theory of Section 3 showing that resolution proofs can be driven
by complete assignments. Besides, in Section 6 we explained why
the decision-making of FI should work. The results of
experiments seem to confirm our arguments.

Table 3. Some other known formulas

Name #
for-

mu-

las

Forklift

#conflicts

Minisat

#conflicts
(#aborted)

FI

#conflicts

Beijing 16 494,534 > 721,258(1) 106,896

blocksworld 7 2,116 4,732 8,209

bmc 13 54,098 44,195 48,568

bmc1 31 1,033,434 1,326,812 1,568,729

planning 6 29,415 17,153 24,426

Velev’s formulas

vliw-sat.1.0 100 679,827 1,413,027 527,416

fvp-
unsat.1.0

4 101,991 180,240 92,333

3pipe 4 24,738 66,567 33,856

4pipe 5 125,850 538,932 154,321

5pipe 6 268,463 1,261,229 231,975

6pipe 2 218,461 >470,779(1) 176,067

7pipe 2 386,396 > 0 (2) 211,667

9.3 Finding unsatisfiable subformulas
In Table 4 we consider the performance of Forklift, Minisat

and FI on 8 “artificial” formulas with small unsatisfiable
subformulas. Formulas f2k10_i and f3k50_i, i=1,2,3 are
obtained from formulas f2k10 and f3k50 by random permutation
of variables. The formula f2k10 was obtained by adding to a hard
random formula F of 2000 variables the clauses of a random
unsatisfiable formula G of 10 new variables. The formula f3k50
was obtained in the same way as f2k10. The only difference is that
formula F has 3000 variables and G has 50 new variables. (Note
that we got results similar to those of Table 4 even if variables of
F and G had a “weak” overlap.)

Table 4. Formulas with small unsatisfiable cores

Names Forklift

#conflicts

Minisat

#conflicts

FI

#conflicts

 f2k10_1 > 2,897,607 > 997,377 756

 f2k10_2 > 2,904,869 > 997,376 935

 f2k10_3 > 2,898,438 > 997,376 908

 f2k10 4 6 1,209

 f3k50_1 > 6,402,459 > 5,050,044 48

 f3k50_2 > 6,507,802 > 5,050.047 18,127

 f3k50_3 44 66 18,890

 f3k50 71 62 15,447

As we mentioned in Section 6, one of the advantages of
operating on complete assignments is easy identification of
unsatisfiable subformulas. For a formula F ∧ G of Table 4, no
matter how FI picks a complete assignment p, the set M(p) will
contain a clause of the unsatisfiable subformula G. In this
experiment, we modified the decision-making heuristic of FI as
follows. For every clause C of the formula, its activity was
maintained. This activity was computed as the number of conflicts
in which C was involved. Every 100 decisions FI picked the
clause C′ of M(p) with the “ lowest” activity and fixed an
assignment to a variable of C′. This way we made FI look for
unsatisfiable subformulas (because the modification above made
FI fix an assignment to a variable of G once in a while). Note that
this modification does not change FI’ s performance on other
formulas much because in 99% cases FI makes a “ regular”
decision. As one can see from Table 4, Forklift and Minisat easily
solved three formulas, but for the rest of them, they “got stuck” in
the hard subformula F. On the other hand, FI easily solved all 8
formulas.

9.4 More frequent restar ts, smaller proofs
As we mentioned in subsection 4.5, after a restart, FI uses

the last point reached after the previous restart as the initial point
p of the new iteration. This makes subproofs generated by FI in
different iterations more “coherent” . In this subsection, we give
experimental evidence of FI’ s benefiting from making frequent
restarts.

In Table 5, we apply FI to equivalence checking formulas.
We compare FI to its CounterParT (called CPT(FI)) operating on
partial assignments. CPT(FI) gets as close to FI as it is possible
without maintaining a complete assignment p and the set of
falsified clauses M(p). The only difference between the two is
that CPT(FI) makes decisions taking into account all clauses that
remain unsatisfied by the current set of fixed assignments while FI
makes decisions based only on the clauses of M(p). (But literal
activity computation, conflict clause generation and so on are
identical.)

Either SAT-solver was run in the ” rare” restart mode (a
restart occurs every 150 conflicts) and the “ frequent” restart mode
(a restart occurs every 5 conflicts). In the rare restart mode, both
SAT-solvers generated similar numbers of conflicts (251,165 for
CPT(FI) and 236,937 for FI). On the contrary, in the frequent
restart mode, FI noticeably reduced the number of conflicts to
138,927 while CPT(FI) did not (255,024 conflicts).

Table 5. Equivalence checking formulas

CPT(FI) FI Name

rare restarts freq. restarts rare restarts freq. restarts

c1355 5,241 2,563 3,832 1,960

c1908_bug 14,161 4,199 3,575 3,088

c1908 22,449 16,628 16,807 4,096

c2670_bug 117 51 3 3

c2670 5342 4,668 2,572 2,629

c3540_bug 0 0 743 59

c3540 65,017 46,636 96,548 46,818

c432 659 556 657 632

c499 2,766 2,090 2,762 1,296

c5315_bug 3,483 7,885 2,705 514

c5315 47,918 42,618 41,942 22,342

c7552_bug 175 2,174 296 1,645

c7552 80,644 120,526 60,450 50,143

c880-s 3,193 4,430 4,045 3,702

Total 251,165 255,024 236,937 138,927

9.5 Making fewer decisions
In this subsection, we show that FI, in general, makes fewer
decisions per conflict than a typical resolution based SAT-

solver . In

Table 6, we give some results of applying FI and Minisat to
large BMC formulas. (The names of satisfiable formulas are
marked with ‘ *’ in the first column). The number of variables
and clauses (in thousands) is given in second and third columns.
For both FI and Minisat, we report the number of conflicts and
the number of decisions. When solving these formulas, Minisat
and FI generated about the same number of conflicts (243,773
and 226,860 respectively). However, Minisat made almost 5
times the number of decisions made by FI (15,436,775 and
3,192,567 respectively).

10. Conclusions
We introduced a new resolution based SAT-solver operating

on complete assignments. As a theoretical justification for the new
solver, we showed that for a resolution proof R, there is always a
set of points T completely “specifying” R. The size of T is at most
twice the size of R measured in the number of resolution

operations. Experimental results show the viability of our
approach. Determinization of resolution by an algorithm operating
on complete assignments seems to be a promising way for
building more powerful resolution-based SAT-solvers.

Table 6. Bounded model checking formulas

Minisat FI Name #vars

∗103

#clause

∗103 #confl. #decis. #confl. #decis.

CI 218 639 9,930 46,943 10,885 42,723

PA0 331 980 234 14,945 24 119

SMV* 1,377 4,212 32,896 195,594 12,320 51,085

BAR* 199 591 532 98,965 253 773

BIU16* 76 228 147 3,243 12 96

EMIF3* 1,879 5,582 8,459 86,309 40,330 119,113

GMTX* 234 684 70 10,248 0 1

LBQ* 166 538 53,957 10,208,072 16,069 1,933,380

LIR* 301 881 4,057 371,577 1507 11,705

PA1* 741 2,194 13,312 406,077 19,633 517,172

S104* 1,306 3,864 6,485 2,204,831 6,536 13,947

W2_2* 350 1,014 65 718,935 11 1,108

LDV.100 308 902 59,986 338,201 78,194 247,112

PA.25 337 995 2,328 94,515 96 815

PA.50 726 2,145 46,014 604,583 7,901 59,218

RAVEN.25 340 1,010 779 4,084 546 2,156

RAVEN.50 756 2,242 4,522 29,653 32,543 192,044

Total 243,773 15,436,775 226,860 3,192,567

References
[1] L.Bachmair, H.Ganzinger. Resolution theorem proving in

A.Robinson, A.Voronkov editors, The Handbook of
Automated Reasoning, chapter 2, vol. 1,19-99. Elsevier
Science Pub.2001.

[2] M.Davis, G.Longemann, D.Loveland. A Machine program
for theorem proving. Communications of the ACM. -1962. -
V.5. -P.394-397.

[3] Een N., Sorensson N. An extensible SAT-solver. Proceedings
of SAT-2003 in LNCS 2919, pp.503-518.

[4] H.Fang, W.Ruml. Complete Local Search for Propositional
Satisfiability. Proc. of 19th National Conference on Artificial
Intelligence, 2004, pp.161-166.

[5] E.Goldberg. Determinization of resolution by an algorithm
operating on complete assignments. SAT-2006, LNCS 4121,
pp.90-95

[6] E.Goldberg. On bridging simulation and formal verification.
Technical Report CDNL-TR-2006-1225, December 2006.
Available at http://eigold.tripod.com/papers/ssim.pdf.

[7] E.Goldberg, Y.Novikov. BerkMin: a Fast and Robust SAT-
Solver. DATE-2002, Paris,pp. 142-149 .

[8] C.P.Gomes, B. Selman, H.Kautz. Boosting combinational
search through randomization. Proceedings of International
Conference on Principles and Practice of Constraint
Programming. - 1997.

[9] D.Habet,C.M.Li,L.Devendeville, and M.Vasquez. A hybrid
approach for SAT. International Conference on Principles
and Practice of Constraint Programming, 2002, pp. 172-184.

[10] E. A. Hirsch, A. Kojevnikov. UnitWalk: A new SAT solver
that uses local search guided by unit clause elimination.
Annals of Mathematics and Artificial Intelligence 43(1-
4):91-111, 2005

[11] H.Hoos, T.Stutzle. Stochastic Local Search: Foundations
and Applications. Morgan Kaufmann, San Francisco (CA),
USA, 2004.

[12] B.Mazure, L.Sais, and R.Gregoire. Boosting complete
techniques thanks to local search methods. Annals of Math.
and Artif. Intelligence vol. 22 (1998), pp. 319-331.

[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik.
Chaff: Engineering an Efficient SAT Solver. In: Proceeding
of the 38th Design Automation Conference (DAC’01), 2001.

[14] S.Prestwich. Local search and backtracking vs. non-
systematic backtracking. AAAI Fall Symposium on Using
Uncertainty Within Computation. November 2-4, 2001,
North Falmouth, Cape Cod, MA,pp.109-115.

[15] M. Alekhnovich, A. Razborov. Resolution is Not
Automatizable Unless W[P] is Tractable, FOCS-2001,
pp.210-219.

[16] B. Selman H. Levesque, D. Mitchell. 1992. A New Method
for Solving Hard Satisfiability Problems. AAAI-92, pp. 440-
446.

[17] B.Selman, H.A.Kautz and B.Cohen. Noise strategies for
improving local search. AAAI-94, Seattle, pp. 337-343,
1994..

[18] J.P.M.Silva, K.A.Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions of
Computers. -1999. -V. 48. -P. 506-521.

[19] H.Zhang. SATO: An efficient propositional prover.
Proceedings of the International Conference on Automated
Deduction. -July 1997. -P.272-275.

[20] L. Zhang, C. Madigan, M. Moskewicz, S. Malik. Efficient
Conflict Driven Learning in a Boolean Satisfiability Solver.,
Proceedings of ICCAD 2001, San Jose, CA, Nov. 2001.

[21] http://www.intellektik.informatik.tu-darmstadt.de/
SATLIB/benchm.html

[22] http://www.lri.fr/~simon/satex/satex.php3
[23] http://www.ece.cmu.edu/~mvelev/

