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Abstract.  “Determinization”  of resolution is usually done by 
employing a DPLL-like procedure that operates on partial 
assignments. We introduce a resolution-based SAT-solver that 
operates on complete assignments and give a theoretical 
justification for  determinizing resolution in such a way. This 
justification is based on the notion of a point image of a 
resolution proof. We give experimental results confirming the 
viability of our approach to resolution determinization. 
 

1.  Introduction 
The resolution proof system [1] has achieved  outstanding 

popularity in practical applications. Since resolution is a non-
deterministic proof system, any SAT-solver based on resolution, 
one way or another, has to perform its “determinization” . In the 
state-of-the-art SAT-solvers this determinization is based on using  
the DPLL procedure [2] that operates on partial assignments.  
The current partial assignment is extended until a clause is 
falsified. Then, the DPLL procedure backtracks to the last 
decision assignment and flips it.  The search performed by the 
DPLL procedure can be simulated by so-called tree-like 
resolution (a special type of general resolution). 

The reason for using partial rather than complete assignments  
is that by rejecting a partial assignment the DPLL procedure may 
“simultaneously”  reject an exponential number of complete 
assignments. The premise of such an approach is that to prove that 
a CNF formula F is unsatisfiable one has to show that F evaluates 
to 0 for all complete assignments.   

In this report, we introduce the notion of a point image of a 
resolution proof that questions the premise above. Let R be 
resolution proof that a CNF formula F is unsatisfiable. Let T be a 
set of points that has the following property. For any resolvent C 
of R obtained from parent clauses C′ and C″,  there are two points 
p′′′′ and p″″″″ of T such that  

 

1. C′ (p′′′′ ) = 0 and C″ (p″″″″ )  = 0, 
2. C(p′′′′ )=C(p″″″″ )=0.  

Then the set T  is called a point image of R. 
Given a resolution proof R, one can always build its point 

image whose size is at most twice the size of R  (measured in the 
number of resolution operations). Besides, given a set of points T 
and a CNF formula F, one can always test if T is a point image of 
a resolution proof by a simple procedure described in this report. 
This result implies that a resolution proof that a CNF formula F is 
unsatisfiable can be “guided”  by testing the value of F at a 
sequence of points.  Moreover, if F has a short resolution proof of 
unsatisfiability, the number of “guiding”  points is negligible with 
respect to the size of the entire search space. 

Interestingly, a resolution proof R  has, in general, an 
exponential number of point images but not all point images are 
“equivalent”  from the point of view of determinization. 
Informally, this means that  given two different point images T1 
and T2 of  a proof R, one may be able to generate, say, T1 by a 
much simpler  program than T2. 

 In this report, we introduce a DPLL-like SAT-solver called 
FI (which stands for Find Image) that is inspired by the 
observation above. Namely, FI operates on complete assignments.  
Algorithmically, FI can be interpreted as a DPLL like SAT-solver 
that is allowed to make assignments only to variables of clauses 
that are falsified by a complete assignment. This complete 
assignment dynamically changes. However, as we show in this 
report  much more fruitful interpretation of FI is to consider it as 
an algorithm “directly”  operating on complete assignments.  In 
this interpretation all the variables are assigned and FI only 
“ fixes”  some assignments.  We give experimental results showing 
that while FI is competitive in the quality of proofs with the state-
of-the-art, it has interesting properties that SAT-solvers operating 
on partial assignments do not have. 

This  report is structured as follows. In Section 2 we recall 
basic definitions. In Section 3 we give some justification of our 



algorithm and introduce the notion of a point image of a 
resolution proof. Section 4 describes FI. In Section 5, we explain 
the advantages of the “point”  interpretation of FI over the 
traditional interpretation in terms of partial assignments. Section 6 
explains why decision making of FI works well. In Section 7 we 
show that the set of points “visited”  by FI is a point image of the 
proof FI builds. Section 8  compares FI with local search and 
DPLL-based procedures. Experimental results are given in 
Section 9.  We make some conclusions in Section 10. 

 

2. SAT and resolution proofs 
In this section, we give some basic definitions. 
Let F be a CNF formula (i.e. conjunction of disjunctions of 

literals) over a set X of Boolean variables. The satisfiability 
problem (SAT) is to find a complete assignment p (called a 
satisfying assignment) to the variables of X  such that F(p) = 1 or 
to prove that such an assignment does not exist.  If F has a 
satisfying assignment,  F  is called satisfiable. Otherwise, F is 
unsatisfiable. A disjunction of literals is further referred to as a 
clause. A complete assignment to variables of X will be also 
called a point of the Boolean space B|X| where B={ 0,1} . A point p  
satisfies clause C if C(p)=1. If C(p)=0, p is said to falsify C. 
Denote by Vars(C) and Vars(F) the set of variables of C and F 
respectively. 

Now we recall basic definitions of the resolution proof 
system [1]. Let C1 and C2 be two clauses that have opposite 
literals of a variable xi. Then the clause consisting of all the 
literals of C1,C2 except those of xi is called the resolvent of C1,C2.  
(For example if C1=x1∨ x3 ∨ x5, C2= x2 ∨ ~x3 ∨ x7 , the resolvent of 
C1 and C2 is the clause x1 ∨ x5 ∨ x2 ∨ x7 .)  The resolvent of C1,C2 
is said to be obtained by the resolution operation.  

The resolvent of C1,C2 is implied by C1 ∧ C2. So, if  an 
empty clause is derived from clauses of  F, then F implies an 
empty clause and so F  is unsatisfiable. Hence, the resolution 
system is sound. It is also complete, that is, given an unsatisfiable 
CNF formula F, one can always generate a sequence of resolution 
operations resulting in producing an empty clause. This sequence 
of operations is called a resolution proof. The resolution proof 
system is very important from a practical of view because the best 
SAT-solvers for solving “ industrial”  formulas (like Grasp [18], 
SATO [19], Chaff [13],  BerkMin [7], Minisat [3] and Siege) are  
based on  resolution. 

3. Justification of our  approach 
In this section, we give a theoretical justification of our 

approach.  

 

3.1 Point  image of  resolution proof 
Let R be a resolution proof that a CNF formula F is 

unsatisfiable. Let T be a set of points that has the following 
property. For any resolvent C of R obtained from parent clauses 
C′ and C″  there are two points p′′′′ and p″″″″ of T such that  

1 C′ (p′′′′ ) = 0 and C″ (p″″″″ )  = 0. 
2 C(p′′′′ )=C(p″″″″ )=0.  

Then the set T is called a point image of resolution proof R. The 
points p′′′′ and p″″″″ are called a point image of the resolution 
operation over clauses C′ and C″.  

The definition of point image of resolution operation above 
is more general than the one we gave in [5]. Here, instead of the 
requirement of [5] that p′′′′ an p″″″″  are  at Hamming distance 1, we 
only require that the resolvent C is falsified by p′′′′ and p″″″″.  The 
difference between the two definitions is in assignments to “ free”  
variables of p′′′′ an p″″″″, that is the variables of the set 
Vars(F) \ (Vars(C′ ) ∪ Vars(C″ )). According to the previous 
definition, p′′′′ an p″″″″  have to have identical assignments to the free 
variables. The new definition allows one to assign the free 
variables of p′′′′ an p″″″″  arbitrarily. The advantage of the new 
definition in the context of test generation is explained  in [6]. (It 
allows one to extract from resolution proofs high quality test sets 
called tight sufficient test sets.) In this report, the new definition 
allows us to show that the set of points visited by the SAT-solver 
FI (described later) is a point image of the proof FI  builds. 
 

3.2 Building a point image of a resolution 
proof 

Given a resolution proof R that F is unsatisfiable, a trivial 
way of building a point image T of R is as follows. We start with 
an empty set T. Then for every resolution operation from R over 
clauses C′ and C″ we add to T two points p′′′′ and p″″″″  forming its 
point image (unless p′′′′ and/or  p″″″″  have been added to T before.) 
Clearly, the size of a set T built this way is at most twice the 
number of resolution operations in R. 

 

3.3 Checking if a set of points is an image 
of a proof 

Given a set of points T and a CNF formula F, one can test if 
T is a point image of a resolution proof by the following 
procedure. Let S be a set of clauses that initially consists of the 
clauses of F.  At every step of this procedure we pick a pair of 
clauses of C′ and C″ of S such that a point image of C′ and C″  is 
in T and add the resolvent to S unless it is subsumed by a clause 
of S. This procedure has three termination conditions. 1) If a point 
of T satisfies F, then clearly F is satisfiable and T is not a point 
image. 2) No new clause can be added to S at a  step of the 
procedure. This means that T is not a point image of any 
resolution proof and so one cannot say whether F is satisfiable or 
not yet. In other words, the set T is not “ large enough” to be a 
point image of a proof. 3) An empty clause is derived at a step of 
the procedure. This  means that T is a point image of a resolution 
proof that F is unsatisfiable.  

In [6], we show experimentally that the procedure of 
checking if T is a point image we just described is inefficient. That 
is, although this procedure dramatically reduces the set of 
resolution operations that are “allowed”, it still performs a large 
number of “ junk”  resolutions. That is the majority of  generated 
resolvents do not contribute into the derivation of an empty 
clause.  (As we show in [6], one can make this procedure efficient 
by adding some extra information.) However,  this inefficiency 
does not matter. We describe this procedure just to show that a 
small set of points can “encrypt”  a proof and that this fact can be 
established by a deterministic procedure (although inefficient).  

 
 



3.4 A proof has a huge number of point 
images 

Let Res be the resolution operation of a proof R (that a CNF 
formula F is unsatisfiable) over clauses C′ and C″ . The operation 
Res, in general, has a huge number of point images because  the 
values of points p′′′′  and p″″″″ forming a point image of Res are 
specified only for the variables of C′ and C″. For the variables of 
F that are not in C′ and C″, points p′′′′  and p″″″″  may have arbitrary  
values.  

Since a point image of a resolution proof R is essentially the 
union of point images of resolution operations comprising R, the 
latter has a huge number of point images. However, not all point 
images of R are equivalent in the sense that some images are more 
“ regular”  and so can be more easily built by a deterministic 
algorithm. So, resolution, being a non-deterministic proof system,  
does not distinguish between different point images of R. On the 
other hand, the fact that different point images of R have different 
complexity of building them, implies that an algorithm operating 
on complete assignments can be used to “determinize”  resolution. 
The idea of such an algorithm it to try to build a “ regular”  point 
image of a resolution proof that F is unsatisfiable. 
 

4. Descr iption of FI 
The procedure of subsection 3.3 shows that one can use 

complete assignments to “guide”  a resolution proof. The size of a 
“guiding”   set T (if it is “ irredundant” ) is at most twice the size of 
the proof the set T “guides” .  In this section, we introduce a 
resolution-based SAT-solver called FI (Find Image) that operates 
on complete assignments (points).  Although FI is inspired by the 
ideas of Section 3 it does not look for a point image of a 
resolution proof “directly” . Instead, we formulate FI as a DPLL-
like procedure whose  decision making is driven by a complete 
assignment. 

To simplify understanding of FI  operation we first give its 
description in terms of partial assignments (subsection 4.1). The 
interpretation of FI  in terms of complete assignments is given in 
subsection 4.2.  (The merits of this interpretation are listed in 
Section 5.)  In the following subsections of this section we 
describe FI in more detail. 

 

4.1 Descr iption in terms of par tial 
assignments 

The  pseudocode of FI  (without restarts) is shown in Figure 
1.  In this subsection, we describe FI from the viewpoint of a 
traditional SAT-solver i.e. in terms of partial assignments. (We 
will denote this interpretation of FI as FI*.) FI* can be viewed  as 
a regular SAT-solver that uses a complete assignment p as an 
“oracle”  in decision making.  This complete assignment is initially 
generated in line 2 of Figure 1. Then the set  M(p) of clauses 
falsified by p  is computed (line 3).  After that,  FI* follows the 
well-known procedure  [18] used by the current state-of-the-art 
resolution based SAT-solvers.  The only difference is that FI* 
maintains two additional entities: a complete assignment p and the 
set M(p) of clauses falsified by p. When FI* makes an assignment  
to a variable xi either during BCP (line 5) or decision making (line 
12) it checks if the chosen value of  xi  is equal to the value of xi in  
p. If these values are equal, then no recomputation of p or M(p) 
occurs. Otherwise, a new complete assignment p′′′′ is produced 

from p  by flipping the value of xi and the set M(p′′′′ ) is computed 
(by recomputation of M(p)).  If an unsatisfiable clause is found 
(line 5), FI* backtracks without changing the current point p. 

 
 1 FI*(F)  
 2 { p=generate_initial_point(F); 
 3  M=find_falsified_clauses(F, p); 
 4   while (true) 
 5       { if (BCP(F,M,p) == conflict) 
 6           { level = analyze(F); 
 7               if (level == 0)   return(UNSAT); 
 8              else  backtrack(F,p,M); 
 9               }  
 10         else // no conflict yet 
 11             if (M =∅) return (SAT); 
 12             else make_assignment(F, p, M); 
 13        }  
 14  }  

Figure 1. Pseudocode of FI*  

The current complete assignment p and the set M(p) are used 
in FI* solely for the purpose of decision making. Namely, the next 
variable to be assigned is picked only among variables of clauses 
of M(p) i.e. of  clauses that are currently falsified by p.   
 

4.2 Descr iption in terms of complete 
assignments 

Now we give an interpretation of the procedure of Figure 1, 
in terms of complete assignments. (We will refer to this 
interpretation as FI without a star symbol.)  In this interpretation 
no free (i.e. unassigned) variables exist. Instead of assigning a 
value  to a free variable xi (as it is done by FI* in line 12) , FI just 
fixes the  existing assignment to xi in a current point p.  Thus, in 
all the points p visited after variable xi has been fixed, the value of 
xi stays the same.  On the other hand, undoing an assignment to 
variable xi in FI* corresponds in FI to “unfixing”  the assignment 
to xi in the current point. It means that now the value of xi can 
change in generated points p until the next time the value of xi is 
fixed. A conflict in FI is the situation when M(p) contains a clause 
C of the current formula such that all the assignments setting the 
literals of C to 0 have been fixed. (So no point satisfying C can be 
obtained from p without unfixing one of the assignments that has 
been fixed before.) 
 

4.3 Decision making of FI 
The decision making of FI is  based on variable activity as  it 

was proposed in  [13] and later used in many  other  SAT solvers.  
The activity of variables is computed  similar to  BerkMin [7]. But 
in contrast to BerkMin we compute the activity of literals (as it 
was done in Chaff) rather than variables. Let lit(xi) be a literal of 
variable xi. If lit(xi) occurs in k clauses of the current formula that 
were involved in the last conflict,  then the activity of lit(xi) is 
incremented by k.  After a fixed number of conflicts, the activity 
of literals is divided by a small constant as it was first done in 
Chaff [13]. 

We experimented with two different procedures of decision 
making that performed well.  The first procedure is BerkMin-like. 
If M(p) contains conflict clauses, then FI picks the conflict clause 
C of M(p) that was derived  most recently. (Note that since M(p) 



contains clauses falsified by one point, no variable can have 
literals of both polarities in clauses of M(p)). FI picks the most 
active literal lit(xi)  among variables of C and fixes the assignment 
to xi setting lit(xi) to 1.  This assignment does not necessarily 
satisfy C. Suppose C contains the literal ~lit(xi) (i.e. the opposite 
of lit(xi)) which means  that p has the assignment to xi that sets 
lit(xi) to 1. Then FI fixes the current assignment to xi and so p and 
the set M(p) stay unchanged. Otherwise, (i.e. if C contains lit(xi))  
FI flips the current value of xi thus satisfying C and only then 
fixes the new value of xi. This entails changing  p and 
recomputing M(p). If M(p) does not contain a conflict clause, then 
FI fixes the assignment setting to 1 the most active literal lit(xi) 
among the variables of  clauses of M(p). 

The second decision-making procedure of FI fixes the 
assignment  setting to 1 the most active literal lit(xi), where xi is a 
variable of a clause of M(p). (As we explained above this 
assignment does not necessarily satisfy a clause of M(p).)  That is 
the second procedure  works exactly as the first decision-making 
procedure when M(p) does not contain conflict clauses. 

4.4 BCP procedure and conflict clause 
analysis 

The BCP procedure of FI is identical to that of a generic 
DPLL based SAT-solver. So the BCP procedure of FI is “global”  
in contrast to its decision making. As it was described above, in 
its decision making, FI fixes assignments only of variables that 
occur in clauses of M(p). In the BCP procedure, FI keeps track of 
all the unit clauses regardless of whether they are falsified or 
satisfied by p and so regardless of their presence  in M(p) . (In 
terms of fixed assignments, a clause is unit, if all its literals but 
one are set to 0 by fixed assignments.)  

FI also employs a traditional conflict analysis and conflict 
clause generation whose description can be found in [13]. 

4.5 Restar ts 
FI uses occasional restarts  as it was suggested in [8]. (I.e. 

once in a while, FI abandons the current search tree to start a new 
one.) After a restart, FI inherits the last complete assignment p 
obtained before abandoning the previous search tree. As we will 
show in Section 9, this allows FI  to benefit from  making 
frequent restarts. 

4.6 Initial point generation 
Currently FI uses the following procedure for  generation of 

an initial point p.  This procedure makes a “decision”  assignment 
to a variable xi of the formula and runs BCP procedure to make all 
the implied assignments.  If implied assignments to a variable 
contradict each other, one of them is picked randomly. This goes 
on until all variables are assigned.  This procedure may vary in 
how variable xi and its assignment are chosen. Variable xi can be 
chosen randomly or according to a particular order. An 
assignment to xi can be also picked randomly or according to 
some heuristic. 

 

5. Which interpretation is “ better” ? 
In this section, we justify the interpretation of FI  as an 

algorithm operating on complete assignments (we will refer to it 
as a point interpretation of FI). We explain why the point 
interpretation is much more “ fruitful”  than the interpretation in 
terms of partial assignments described in subsection 4.1. For the 

sake of simplicity, in the discussion of this section, we assume 
that FI does not make restarts and so builds a single search tree. 

5.1 DPLL still needs determinization 
In this subsection, we try to draw the line  between the 

notions of a heuristic and determinization. By determinization, we 
mean a reduction of the proof space in such a way that some 
“reasonably good” choices still remain. In a sense, DPLL can be 
viewed as determinization of general resolution because it reduces 
the type of allowed proofs but the proof space still contains 
“good” solutions.  By a heuristic, we mean  a way to find a 
particular proof out of a space of proofs (already reduced). For 
example, making an assignment satisfying the largest number of 
unsatisfied clauses is a heuristic.  More formally, one can view a 
heuristic of a DPLL-like procedure as a function that, given a 
CNF formula and a set of already assigned variables, computes  
the next assignment to make. 

We believe that it is wrong to consider the DPLL procedure  
as “almost”  an algorithm that just needs a heuristic to make DPLL 
deterministic.  In reality, DPLL is still a “highly non-
deterministic”  proof system that needs determinization. A strong 
indicator of that is the fact that tree-like resolution is most likely 
non-automatizable [15]. Non-automatizability implies that given a 
class of CNF formulas with short proofs in tree-like resolution,  
there is no efficient algorithm for finding those proofs. This 
essentially means that effective and efficiently computable 
heuristics   are impossible for DPLL. (This does not contradict the 
fact that very good decision-making heuristics have appeared 
recently. These heuristics, in general, cannot help find a small 
proof if, say,  the original CNF formula has a small unsatisfiable 
core. See subsection 9.3.) 

One way to solve the problem is to reduce non-determinism 
of the DPLL procedure even more and then search for heuristics. 
Otherwise, heuristics may be very fragile and unrobust and it will 
be hard to say whether a particular heuristic “makes sense”  or is 
just tailored for a small finite set of benchmarks. It will also be 
hard to predict whether this heuristic will work for a slightly 
larger set of benchmarks.  

Decision making based on using complete assignments 
provides much “deeper”  determinization of DPLL than that of 
current resolution based SAT-solvers.  “Extra”  determinization is 
achieved by reducing the choices of decision-making only to the 
variables of clauses falsified by  the current point. As we will see 
in Section 6 such reduction indeed can be viewed as a 
determinization of  DPLL, because the reduced set of variables 
still contains “good” choices.  

 

5.2 Interpretation in terms of complete 
assignments is much more “ fruitful”  

Probably, the most important reason why we strongly suggest 
using the point interpretation of FI is as follows. It is much more 
fruitful to consider a DPLL-like procedure in terms of point 
interpretation of FI than the other way around. In terms of partial 
assignments, FI  is a DPLL procedure with  “odd”  decision 
making . This decision making looks extremely strange because, 
in terms of partial assignments, a SAT-solver tries to cover the 
entire search space as fast as possible. However,  FI  makes 



decisions  that are based on a complete assignment  i.e. on a 
miniscule part of the space of all assignments. 

On the other hand,  the point interpretation of FI  allows one 
to study and  classify existing decision making heuristics and 
generate new ones. First of all, note that DPLL can simulate FI 
while the opposite is not true. Indeed, any choice of an 
assignment to fix made by FI can be simulated by DPLL as an 
assignment to a “ free”  variable. However, a search tree built  the 
DPLL procedure, in general, can not be simulated by FI. The 
reason is twofold. 

 Firstly, the set of variables to fix is limited to those of 
clauses that are falsified by the current point p.   Secondly, p can 
not be changed arbitrarily. Recall, that FI  either fixes an 
assignment to a variable xi that agrees with p (in which case p 
does not change) or it flips the value of xi and then fixes it. In this 
case, the new point is at distance 1 from the previous one. In other 
words, FI can not flip more than one bit of p at a time and 
moreover, only bits corresponding to the variables of clauses 
falsified by p may be flipped.  This means that only a negligible   
number of search trees built by DPLL can be simulated by FI.  
Surprisingly, in spite of this dramatic reduction of the proof space, 
FI is competitive  in the number of backtracks with current SAT-
solvers operating on partial assignments (see Section 9.) Our 
explanation of this fact is given in Section 6. 

To  simulate the DPLL procedure, FI  should be “extended”.  
By testing  these extensions one can study various decision 
heuristics. Basically there are two ways to extend FI. First 
extension is to allow FI to make “non-local”  moves (where more 
than one bit of p can be changed at once) and/or to allow to flip 
the bits of p that are not in a clause falsified by p.  Importantly, 
one can control the degree of “non-locality” , for example, by 
limiting moves that are allowed. 

The second type of extension is to maintain more than one 
complete assignment. This type of extension seems to be more 
promising for the following reason.  By allowing “non-local”  
changes of p  one makes FI more “non-deterministic”  and hence 
more DPLL-like. On the other hand, by keeping more than one 
point, FI  can improve its decision making  without introducing 
“extra”  non-determinism.   

 

5.3 Traditional semantics of DPLL may be 
very misleading 

 The underlying semantics of  a SAT-solver operating on 
partial assignments is that this SAT-solver has to cover the entire 
search space. (At each step it generates branches  xi=0 and xi=1, 
which guarantees complete search space coverage.) Suppose that  
an initial formula F  contains a unit clause xi or such clause can be 
“easily”   derived from F. From the semantics of DPLL it follows 
that by setting xi to 1, one reduces the search space by half and so 
“half the work”  is done by making this assignment. However, it is 
well known that derivation of unit clauses usually does not reduce 
the amount of work to do as  dramatically as one can conclude 
from the search space covering semantics. 

An explanation of this phenomenon can be easily given in 
terms of point images. Suppose,  an original CNF formula F  
contains a unit clause xi and F is unsatisfiable. Then in a point 
image T of a proof R that  F  is unsatisfiable there will be only one  

point falsifying clause xi. (Here we assume that both R and T are 
not “artificially”  inflated by obvious redundancies.) The rest of 
the points of T will have xi assigned to 1. So the fact that xi is 
fixed at 1 does not mean that a lot of work is done because only 
one point of the subspace xi=0  is in T. (On the other hand, if the 
unit clause xi is derived and this derivation is “ long” , then a lot of 
points with xi=0 may be added to T.  This means that the 
derivation of this clause  is a “ large piece of work” .) 
 

6. Compar ison of decision making based 
on complete and par tial assignments 

In this section, we discuss one important advantage of 
decision making of FI  over SAT-solvers operating on partial 
assignments like Chaff, BerkMin and many others.   We also 
describe one obvious “ flaw” of FI’ s decision making. 

Let F be an unsatisfiable CNF formula  and F′  be an 
unsatisfiable subset of clauses of F. Let p be a complete 
assignment to variables of F and M(p) be the set of clauses of F 
falsified by p. Note, that regardless of the choice of p, at least one 
clause of F′ has to be in M(p). So in spite of the fact that the 
decision-making choices of FI are very limited, it still has good 
decisions to make because variables of F′ are always available for 
decision making. (Here we assume  that making decisions on  
variables of F′  is a good idea.)  So according to definition of 
subsection 5.1, using a complete assignment to guide decision-
making can be viewed as determinization of tree-like resolution. 

One may think that the argument above is applicable only if 
the original formula is unsatisfiable and has a small irredundant 
core of clauses.  In reality, this argument is applicable to any CNF 
formula. Indeed, if an original formula F is satisfiable, after fixing 
values of some variables, F may become unsatisfiable. Besides, 
even if the original formula F  is irredundant it becomes 
redundant after fixing values of variables. Eventually, unless a 
satisfying assignment is found, an unsatisfiable clause is 
encountered. This clause  forms an “unsatisfiable core”  of F under 
the current set of assignments. 

One more universal source of redundancy is adding derived 
clauses (e.g. conflict clauses.)  On the one hand, if a clause C is 
implied by F, then obviously C is redundant in F ∧ C.  On the 
other hand, some clauses of F may become redundant in F ∧ C .  
Adding clauses to F by a resolution based SAT-solver, in general, 
leads to forming a small unsatisfiable core.  Indeed, eventually, an 
empty clause is derived. This clause forms an unsatisfiable core of 
the formula F ∧ D where D is the set of derived clauses. 

The advantage of FI’ s decision making mentioned above, 
due to its universal applicability, can explain good experimental 
results of FI (see Section 9.) Note that the observation that local 
search can be used for identifying an unsatisfiable core of the 
initial formula was made  in [12]. 

An obvious disadvantage of the decision making of FI in 
comparison to that of SAT-solvers operating on partial 
assignments is the restriction on variables whose value can be 
fixed. Note that we do not contradict our claim above about merits 
of FI’ s decision-making. If  the current formula F contains an 
unsatisfiable core F′, current point p necessarily falsifies a clause 
C of F′. However,   variables of C  may be not the best variables 
of F′ to fix. Had we chosen another point p∗, it would have 



falsified some other clause C* of F′ with “better”  variables to fix.  
However, FI can not fix a variable of C* if it is not in a clause 
falsified by the current point. (As we mentioned in subsection 5.2, 
one of  the natural extensions of FI is to maintain more than one 
complete assignment, which could mitigate  the problem above.) 

 

7. Does FI build a point image of its 
proof? 

Let F be an unsatisfiable formula and R be a resolution proof 
found by FI when solving F. Let T be the set of points visited by 
FI.  In this section, we show that after a “natural”  extension of the 
set T, it becomes a point image of R.  In subsection 7.1 we 
describe this natural extension and in subsection 7.2 we show that 
the extended set T is a point image of R. 

7.1 Extension of set T of visited points 
The extension above is due to the fact that during BCP FI 

may fix  assignments of variables of clauses that are not in M(p).  
Let  C be a unit clause (i.e all the literals of C but one are set to 0 
by fixed assignments). Suppose, the assignment satisfying C 
agrees with  the current complete assignment p. (So C is not 
M(p).) After this assignment is fixed by FI, the clause C may get 
involved in a conflict without being falsified by any point of T. 
However, the necessary condition for T to be a point image of R is 
that every clause of  R  is falsified by a point of T. So, obviously, 
T is not an image of R. 

Suppose we extend T by the set of points that falsify all 
clauses that became unit during a run of BCP and from which an 
(implied) assignment was derived.  This extension can be built in 
the following way. If, during BCP a unit clause C is satisfied by 
fixing an assignment to a variable xi that agrees with the current 
point p we add to T the point p′′′′  obtained from p by flipping the 
value of xi. Obviously, p′′′′  falsifies C. This extension of T is 
“natural”  in the sense that the only reason why FI does not visit 
the  points like p′′′′  “explicitly”  is that they can not be a satisfying 
assignment. 

 

7.2 FI builds  image of  proof it generates 
Let Ccnfl be the conflict clause produced in the latest conflict. 

The conflict clause generation based on the first-UIP scheme (that 
is used by FI) is well described in [20].  According to this scheme 
Ccnfl is generated by resolving clauses from which an assignment 
was deduced at the conflict level and the clause that became 
unsatisfiable. Let Ccnfl be  obtained by resolving clauses C1,..,Ck  
of the current CNF formula F. Here  C1,..,Ck-1 are  clauses from 
which assignments were deduced during BCP at the conflict level 
and Ck is  the unsatisfiable clause. (Note that during BCP at the 
conflict level, assignments may have been deduced from clauses 
other than C1,..,Ck-1. But we are interested only in the clauses 
involved in the conflict.)  Assume that  C1,..,Ck-1 are numbered in 
the order in which they were processed by BCP (that is if i < j, 
then an assignment was deduced from Ci before another 
assignment was deduced from Cj). 

In the first-UIP scheme, Ccnfl is obtained from C1,..,Ck by 
resolving them in the “ reverse order” . That is, first, Ck is resolved 
with Ck-1. Then Ck-2 is resolved with the resolvent of Ck and Ck-1 
and so on.  

Proposition. The extended set of points T is a point image of 
the proof  generated by FI. 

Proof. We need to show that for each of k-1 resolution 
operations performed to generate Ccnfl, the extended set T contains 
two points forming an image of this operation. This can be proven 
by induction in the number of resolutions. Note that by definition 
of the conflict situation, the last conflict clause Ck has to be 
falsified by the current point pcnfl. 

Basis. The fact that  T contains point pcnfl falsifying Ck and  
that the variables of Vars(Ck) have fixed assignments is the basis 
of our inductive proof.  

Denote by Rm the clause equal to Ck for m=1 or the result of 
resolving the clauses Ck,Ck-1,Ck-m-1 for m > 1.   

The inductive statement of our proof is as follows. We 
assume that Rm is falsified by the point pcnfl  and all the variables 
of Vars(Rm) have assignments fixed before an assignment was 
deduced from Ck-m-1.  

Using this assumption  we will show that  
1) the inductive statement holds for the next value of m; 
2) T contains a point pm falsifying the clause Ck-m such 

that pcnfl and pm form the point image of the 
resolution operation over Rm and Ck-m.  

Proof of the first condition. The resolvent Rm+1 is obtained 
by resolving Rm and Ck-m. Denote by Ded_var(Ck-m) the variable 
whose value was deduced from Ck-m during BCP. Note that before 
a value was deduced from Ded_var(Ck-m), the literals of the other 
variables of Ck-m were set to 0 by  fixed assignments. So the clause 
Rm+1 is falsified by pcnfl. Note that the assignments to the variables 
of Vars(Ck-m) \ { Ded_var(Ck-m)}  were fixed before deducing a 
value of Ded_var(Ck-m). So all the literals of Rm+1 were fixed at 0 
before derivation of Ded_var(Ck-m). 

Proof of the second condition. Let p be the point that was 
the current complete assignment of FI at the time an assignment 
was deduced from Ck-m. Denote by pm the point of T defined as 
follows. If Ck-m was falsified by p, then pm = p. If Ck-m was 
satisfied by p, then pm=p′′′′ where p′′′′ is obtained by the extension of 
T described above (i.e. by flipping the value  of variable 
Ded_var(Ck-m)). In either case, Ck-m(pm)=0.  Now we need to 
show that both pm and pcnfl  falsify the resolvent Rm+1 of Ck-m and 
Rm. We already showed above that pcnfl falsifies Rm+1.  

Now we show that pm sets to 0 all the literals of Rm (except 
maybe the literal of Ded_var(Ck-m)) and hence, taking into 
account that Ck-m(pm)=0, the point pm falsifies Rm+1. Let lit(xj) be a 
literal of Rm (where xj is different from Ded_var(Ck-m)). Note that 
according to our inductive statement the value of xj was fixed 
before variable Ded_var(Ck-m-1). Since Ded_var(Ck-m) and xj are 
different, the assignment xj was also fixed before  Ded_var(Ck-m) 
was fixed. This assignment to xj sets lit(xj) to 0 (otherwise pcnfl 
would satisfy Rm). So pm  falsifies Rm+1. 
 

8. Relation of FI to DPLL and local 
search 

In this section, we compare our approach with local search 
SAT-algorithms and SAT-solvers based on the DPLL procedure 
and give some background information. 

There have been many tries to combine local search 
algorithms pioneered in [16],[17] and SAT-solvers based on the 
DPLL procedure [2].  In [12], in every node of the DPLL 
procedure, a local search procedure is invoked to identify the next 
variable to branch on . This approach was also tried in   [9] with 
the following modification. Before running a local search 



procedure at a node of the search  tree, dependencies between 
variables of the current formula were computed.  In [14] random 
backtracking was used to improve the scalability of the DPLL 
procedure. In [10], BCP was used to correct values of a complete 
assignment p. The values of p were re-assigned in a random order, 
every assignment being followed by BCP. A complete local 
search algorithm augmented by clause generation was introduced 
in [4]. Clause generation was used in [4] for escaping local 
minima.  

The only feature that FI shares with local search SAT-solvers 
is its operating on complete assignments. At the same time, a 
typical local search procedure [11] has at least one of the 
following three features: 1) it is incomplete; 2) it tries to optimize 
a “straightforward”  cost function (like the number of falsified 
clauses); 3) making random decisions plays an important role in 
SAT-solver’s performance. On the other hand, FI is complete, 
does not optimize any “straightforward”  cost function and random 
decisions are not of crucial importance. Probably, the best way to 
position FI is to view it as a resolution-based SAT-solver that 
operates on complete assignments and so makes one more step 
away from the DPLL procedure. The SAT-solver of [4] is also 
complete and based on resolution but it introduces new clauses in 
“a mechanical way”  just to escape a local minimum. Our 
experiments show that the SAT-solver of [4] generates an 
enormous number of new clauses and so fails to prove the 
unsatisfiability of even very small CNF formulas. 

 

9. Exper imental Results 
In this section, we give results of some experiments with an 

implementation of FI. The main objective of experiments was to 
show that FI is competitive with state-of-the-art SAT-solvers in 
the number of backtracks (or, equivalently, in the number of 
conflicts). So  we used a very simple implementation that lacked 
the techniques commonly employed to speed up a SAT-solver 
(like fast BCP, efficient formula representation, special treatment 
of binary clauses and so on.)   Besides, we tried to keep  our 
implementation of FI as simple as possible (to facilitate changing 
the code of FI).  For that reason we do not report runtimes.  
However in subsection 9.1 we give experimental data suggesting 
that overhead for maintaining complete assignment p and the set 
M(p) for  large CNF formulas is small. We also discuss how this 
overhead can be further reduced. 

In our  exper iments, we used the first decision-making heur istic 
descr ibed in subsection 4.3 for  the formulas of Tables 1-5. (I t 
was slightly modified for  the formulas of Table 4 as descr ibed 

below).  For  the formulas of  

Table 6 we used the second decision-making heuristic of 
subsection 4.3 In all the experiments, (except for those reported in 
Table 5) a restart was performed every 150 conflicts. 

In subsection 9.2, we compare FI with other SAT-solvers in 
terms  of the number of conflicts. In the following three 
subsections we try to highlight some advantages of decision 
making of FI. In subsection 9.3, we show that FI is able to find 
unsatisfiable subformulas that can not be found by SAT-solvers 
operating on partial assignments. Subsection 9.4 shows that 
employing complete assignments allows FI to use more frequent 
restarts because subproofs found in different iterations become 
more “coherent” . Finally,  in subsection 9.5 we show that decision 
making of FI is more “precise”  than that of a SAT-solver 

operating on  complete assignments. As a result,  FI  makes fewer 
decisions. 

9.1 About efficient implementation of FI 
In contrast to regular resolution-based SAT-solvers, FI has to 

maintain the set M(p) of clauses of F falsified by the current 
complete assignment p, which may affect FI’ s performance. Every 
time a decision or implied assignment to a variable is fixed  and it  
disagrees with the current complete assignment p,  the latter 
changes and M(p) has to be recomputed. Let xi be the flipped 
variable (whose value is fixed after flipping) and p′′′′  be the point 
obtained from p by flipping the value of xi. The recomputation 
involves removing clauses that are satisfied by p′′′′ from M(p) and 
adding to M(p) the clauses falsified by p′′′′  (that were satisfied by 
p). Note that only clauses having literals of xi are involved in 
recomputation of M(p). 

Removing from M(p) the clauses satisfied by p′′′′ is “cheep”. If 
for every literal  of F, one maintains the subset of clauses of M(p) 
that have this literal, then one just needs to “empty”  this subset for 
the corresponding literal of xi. Finding the clauses with variable xi 
that one has to add to M(p) is more time consuming.  In a naive 
implementation, one needs to examine every clause C  of F with 
the literal  of xi of the corresponding polarity and check if C is 
falsified by p′′′′. To reduce the complexity of this part of updating 
M(p) one can use watched literals  introduced in [13][19].  

The idea is as follows. For every clause C of F  we pick a 
literal lit(xj) of C such that the variable xj is not fixed and the 
value of  xj in the current complete assignment sets lit(xj) to 1. So 
C is satisfied by the current complete assignment and hence C is 
not in M(p). (This watched literal is different from the two 
watched literals used to check if C is unit). Then, to add the 
clauses of F that are falsified after flipping the value of  xi, one 
just needs to examine those of them for which the corresponding 
literal of xi is “watched”. So, C will be accessed only if its 
watched literal is set to 0 by a fixed value. Then a new watched 
literal is searched for in C. If there is no variable of Vars(C) that is 
not fixed and  whose assignment satisfies C, then C is added to 
M(p). Otherwise, a new watched literal is picked. 

In regular BCP, to check if a clause is unit, two watched 
literals are maintained and this clause is accessed every time at 
least one of them is assigned. The check if a  clause C has to be 
added to M(p) as described above is performed only if one 
watched literal is assigned. That is  checking if a clause C should 
be added to M(p), is performed less frequently then checking if C 
is unit. 

As we mentioned above,  one needs to recompute M(p) only if 
the assignment to xi disagrees  with the value of xi in the current 
complete assignment. Table 1 shows how often FI had to 
recompute M(p).  The second, third and fourth columns of Table 1 
contain the number of variables, clauses and generated conflicts 
(in thousands). The fifth column contains the number of 
assignments (both decision and deduced) in millions. The last 
column of Table 1, gives the percentage of assignments for which 
FI  had to  recompute M(p). 

One can make the following two conclusions from Table 1. 
First, for all formulas, the number of assignments where FI  had to 
recompute M(p), was smaller than that of assignments where the 
value to be fixed agreed with the current complete assignment.  
Second, while for small size formulas (like c3540, c5315) 



recomputations of M(p) occurred in more than 1/3 of all 
assignments, for larger formulas this percentage dropped below 
10%.  This means that the overhead for maintaining M(p) in  FI 
for large formulas should be negligible. The reason why the 
percentage of assignments requiring recomputation of M(p) 
dropped for large formulas was  that for those formulas the 
majority of clauses remained satisfied by the original complete 
assignment. So only a small fraction of the clauses appeared in 
M(p). 

 

Table 1. Percentage of times FI had to recompute M(p) 

Name #Vars 

∗ 103 

#Clauses 

∗ 103 

#Cnfl. 

∗ 103 

#assgns 

∗ 106 

 disagr. 

(%) 

2bitadd_10 0.6 1.4 219 9.1 21.9 

c3540 3.5 9.3 101 35.3 34.0 

c5315 5.4 15.0 42 11.7 38.2 

6pipe 15.8 395 112 64.2 3.4 

ci 218 639 9.5 135 5.8 

ldv4.0.100 308 902 68 1335 8.1 

raven.50 756 2,243 30 349 8.0 

s104 1306 3864 7.1 57 3.7 

smv 1377 4213 12.0 552 3.8 

 

9.2 Compar ison in terms of the number of 
conflicts 

Although the efficiency of the current implementation of FI 
can be significantly improved, its performance was sufficient to 
collect statistics on a large variety of formulas. First, we give 
results of applying FI to Dimacs formulas (Table 2) and some 
other known families of formulas (Table 3). Dimacs, Beijing, 
blocksworld, bmc formulas can be downloaded from [21]. 
Formulas bmc1 (consisting of subclasses barrel, longmult, 
queueinvar) are described in [22].  Formulas  vliw-sat.1.0, fvp-
unsat.1.0 and Npipe (of fvp-unsat.2.0) can be found in [23]. 

Table 2. Dimacs formulas 

Name #form-
ulas 

Forklift 

#conflicts 

Minisat 

#conflicts 

FI  

#conflicts 

aim 72   3,303   3,587   3,256 

bf 4   774   383   379 

dubois 13   3,062   4,904   3,260 

hanoi 2   26,156   65,428 223,040 

hole 5   227,102 1,538,350   56,884 

ii 41   6,505   4,088   1,254 

jnh 49   2,151   2,096   2,069 

par16 10   42,934   47,568   70,915 

par8 10   304   162   83 

pret 8   4,342   6,892   2,942 

ssa 8   744   367   348 

We compare FI’ s results (in terms of the number of conflicts) 
with that of Forklift , the winner of the SAT-2003 contest in the 
industrial category, and Minisat , the runner-up of the SAT-2005 
contest in the industrial category [3]. In Table 3, if Minisat was 
not able to finish all formulas, we report the number of conflicts 
only for the formulas it solved and give the number of unsolved 
formulas (in parentheses). The main conclusion we draw from 
Table 2 and Table 3 is that decision making of FI is quite 
competitive with those of resolution based SAT-solvers operating 
on partial assignments.   

Since the decision-making of FI is extremely “ local” , such a 
result is hard to understand from the viewpoint of the current 
DPLL semantics (that every complete assignment of the search 
space has to be “covered”). However,  this result is implied by the 
theory of Section 3 showing that resolution proofs can be driven 
by complete assignments. Besides, in Section 6 we explained why  
the decision-making of FI should work.  The results of 
experiments seem to confirm our arguments. 

 

Table 3. Some other  known formulas 

Name # 
for- 

mu- 

las 

Forklift 

 
#conflicts   

Minisat 

#conflicts 
(#aborted) 

FI  

 
#conflicts 

 

Beijing 16 494,534 > 721,258(1) 106,896 

blocksworld 7 2,116 4,732 8,209 

bmc 13 54,098 44,195 48,568 

bmc1 31 1,033,434 1,326,812 1,568,729  

planning 6 29,415 17,153 24,426 

Velev’s formulas 

vliw-sat.1.0 100 679,827 1,413,027 527,416  

fvp-
unsat.1.0 

4 101,991 180,240 92,333 

3pipe 4 24,738 66,567 33,856 

4pipe 5 125,850 538,932 154,321 

5pipe 6 268,463 1,261,229 231,975 

6pipe 2 218,461 >470,779(1) 176,067 

7pipe 2 386,396 > 0 (2) 211,667 

 

9.3 Finding unsatisfiable subformulas 
In Table 4 we consider the performance of Forklift, Minisat 

and FI on 8 “artificial”  formulas with small unsatisfiable 
subformulas.  Formulas f2k10_i and f3k50_i, i=1,2,3  are 
obtained from formulas f2k10 and f3k50 by  random permutation 
of variables. The formula f2k10 was obtained  by adding to a hard 
random formula F of 2000 variables the clauses of a random 
unsatisfiable formula G of 10 new variables. The formula f3k50 
was obtained in the same way as f2k10. The only difference is that 
formula F has 3000 variables and G has 50 new variables.  (Note 
that we got results similar to those of Table 4 even if variables of 
F and G had a “weak”  overlap.) 



 

Table 4. Formulas with small unsatisfiable cores 

Names Forklift 

#conflicts 

Minisat 

#conflicts 

FI 

#conflicts 

 f2k10_1 > 2,897,607 > 997,377 756  

 f2k10_2 > 2,904,869 > 997,376 935 

 f2k10_3 > 2,898,438 > 997,376 908  

 f2k10 4   6 1,209  

 f3k50_1 > 6,402,459 > 5,050,044 48 

 f3k50_2 > 6,507,802 > 5,050.047 18,127  

 f3k50_3 44    66 18,890 

 f3k50 71   62 15,447 

 

As we mentioned in Section 6, one of the advantages of 
operating on complete assignments is easy identification of 
unsatisfiable subformulas.  For a formula F ∧ G  of Table 4, no 
matter how FI picks a complete assignment p, the set  M(p) will 
contain a clause of  the unsatisfiable subformula G.  In this 
experiment, we modified the decision-making heuristic of FI as 
follows. For every clause C of the formula, its activity was 
maintained. This activity was computed as the number of conflicts 
in which C was involved. Every 100 decisions FI picked the 
clause C′ of M(p) with the “ lowest”  activity and fixed an 
assignment to a variable of C′. This way we made FI look for 
unsatisfiable subformulas (because the modification above made 
FI  fix an assignment to a variable of G once in a while). Note that 
this modification does not change FI’ s performance on other 
formulas much because in 99% cases FI makes a “ regular”  
decision. As one can see from Table 4, Forklift and Minisat easily 
solved three formulas, but for  the rest of them, they “got stuck”  in 
the hard  subformula F. On the other hand, FI easily solved all 8 
formulas. 

 

9.4 More frequent restar ts, smaller  proofs 
As we mentioned  in subsection 4.5,  after a  restart, FI  uses 

the last point reached after the previous restart as the initial point 
p of the new iteration. This makes  subproofs generated by FI in 
different iterations more “coherent” . In this subsection, we give 
experimental evidence of FI’ s benefiting from making frequent 
restarts. 

In Table 5, we apply FI to equivalence checking formulas.  
We compare FI to its CounterParT (called CPT(FI)) operating on  
partial assignments. CPT(FI) gets as close to FI as it is possible 
without maintaining a complete assignment p and the set of 
falsified clauses M(p).  The only difference between the two is 
that CPT(FI) makes decisions taking into account all clauses that 
remain unsatisfied by the current set of fixed assignments while FI 
makes decisions based only on the clauses of M(p). (But literal 
activity computation, conflict clause generation and so on are 
identical.) 

Either SAT-solver was run in the  ” rare”  restart mode (a 
restart occurs every 150 conflicts) and the “ frequent”  restart mode 
(a restart occurs every 5 conflicts). In the rare restart mode, both 
SAT-solvers generated similar numbers of conflicts (251,165 for 
CPT(FI) and 236,937 for FI).  On the contrary, in the frequent 
restart mode, FI  noticeably reduced the number of conflicts to 
138,927  while CPT(FI) did not (255,024 conflicts). 

 

Table 5. Equivalence checking formulas 

CPT(FI) FI Name 

rare restarts freq. restarts rare restarts freq. restarts 

c1355 5,241 2,563  3,832 1,960  

c1908_bug 14,161 4,199   3,575 3,088  

c1908  22,449 16,628   16,807 4,096  

c2670_bug  117 51   3 3  

c2670  5342 4,668   2,572 2,629  

c3540_bug 0  0   743 59  

c3540  65,017 46,636  96,548 46,818  

c432  659 556  657 632  

c499  2,766 2,090   2,762 1,296  

c5315_bug  3,483 7,885  2,705 514  

c5315 47,918 42,618  41,942 22,342  

c7552_bug 175 2,174   296 1,645  

c7552  80,644 120,526  60,450 50,143  

c880-s 3,193 4,430  4,045 3,702  

Total  251,165 255,024  236,937 138,927  

 

 

9.5 Making fewer decisions 
In this subsection, we show that FI, in general, makes fewer 
decisions per  conflict than a typical resolution based SAT-

solver .  In  

Table 6, we give some results of applying FI and Minisat to 
large BMC formulas.  (The names of satisfiable formulas are 
marked with  ‘ *’  in the first column).  The number of variables 
and clauses  (in thousands) is given in second and third columns.  
For both FI and Minisat, we report the number of conflicts and 
the number of decisions. When solving these formulas, Minisat 
and FI generated about the same number of conflicts (243,773 
and 226,860 respectively). However,  Minisat made  almost 5 
times the number of decisions made by FI (15,436,775 and 
3,192,567 respectively). 

 

10. Conclusions 
We introduced a new resolution based SAT-solver operating 

on complete assignments. As a theoretical justification for the new 
solver, we showed  that for a resolution proof R, there is always a 
set of points T completely “specifying”  R. The size of T is at most 
twice the size of R measured in the number of resolution 



operations. Experimental results show the viability of our 
approach. Determinization of resolution by an algorithm operating 
on complete assignments seems to be a promising way for 
building more powerful resolution-based SAT-solvers. 

 

Table 6. Bounded model checking formulas 

Minisat FI Name #vars 

∗103 

#clause 

∗103 #confl. #decis. #confl. #decis. 

CI  218 639 9,930 46,943 10,885 42,723 

PA0 331 980 234 14,945 24 119 

SMV* 1,377 4,212 32,896 195,594 12,320 51,085 

BAR* 199 591 532 98,965 253 773 

BIU16* 76 228 147 3,243 12 96 

EMIF3* 1,879 5,582 8,459 86,309 40,330 119,113 

GMTX* 234 684 70 10,248 0 1 

LBQ* 166 538 53,957 10,208,072 16,069 1,933,380 

LIR* 301 881 4,057 371,577 1507 11,705 

PA1* 741 2,194 13,312 406,077 19,633 517,172 

S104* 1,306 3,864 6,485 2,204,831 6,536 13,947 

W2_2* 350 1,014 65 718,935 11 1,108 

LDV.100 308 902 59,986 338,201 78,194 247,112 

PA.25 337 995 2,328 94,515 96 815 

PA.50 726 2,145 46,014 604,583 7,901 59,218 

RAVEN.25 340 1,010 779 4,084 546 2,156 

RAVEN.50 756 2,242 4,522 29,653 32,543 192,044 

Total 243,773 15,436,775 226,860 3,192,567 
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