
Noname manuscript No.
(will be inserted by the editor)

Quantifier Elimination by Dependency Sequents

Eugene Goldberg, Panagiotis Manolios

the date of receipt and acceptance should be inserted later

Abstract We consider the problem of existential quantifier elimination for
Boolean CNF formulas. We present a new method for solving this problem
called Derivation of Dependency-Sequents (DDS). A Dependency-sequent (D-
sequent) is used to record that a set of variables is redundant under a partial
assignment. We introduce the join operation that produces new D-sequents
from existing ones. We show that DDS is compositional, i.e., if our input for-
mula is a conjunction of independent formulas, DDS automatically recognizes
and exploits this information. We introduce an algorithm based on DDS and
present experimental results demonstrating its potential.

1 Introduction

In this paper, we consider the problem of eliminating quantifiers from formulas
of the form ∃X[F] where F is a Boolean CNF formula and some variables
of F may be free. We will refer to such formulas as ∃CNF. The Quantifier
Elimination (QE) problem, is to find a quantifier-free CNF formula G such
that G ≡ ∃X[F]. The equivalence “≡” is semantic. That is for every complete
assignment y to the free variables of ∃X[F], the logical value of Gy is equal to
that of ∃X[Fy]. Here Fy and Gy are formulas F and G under assignment y.

Our interest in the QE problem is twofold. First, the QE problem occurs
in numerous areas of hardware design and verification, e.g., in symbolic model
checking [9,10,24] when computing reachable states. So it is important to de-
velop new QE algorithms. Second, studying QE can help better understand
and advance the existing algorithms that do not use QE explicitly. For exam-
ple, many successful theorem proving methods such as interpolation [26] and
IC3 [5] avoid QE and use SAT-based reasoning instead. However, one can ar-
gue that these methods can be viewed as solving specialized versions of the QE
problem that can be dealt with efficiently. For example, finding an interpolant

Northeastern University, USA E-mail: {eigold,pete}@ccs.neu.edu

2 Eugene Goldberg, Panagiotis Manolios

I(Y) of formula A(X,Y) ∧ B(Y,Z) comes down to solving a special case of
QE where I ≡ ∃X[A] needs to hold only in subspaces where B ≡ 1.

The success of resolution-based SAT-solvers [23,27] has led to the hunt for
efficient SAT-based algorithms for the QE problem [25,20,6,14]. In this paper,
we continue in this direction by introducing a resolution-based QE algorithm
operating on CNF formulas. Such formulas are ubiquitous in hardware verifi-
cation because a circuit N can be represented by a CNF formula whose size
is linear in that of N and that has the same set of variables as N .

Our approach is based on the following observation. The QE problem is
trivial if F does not depend on variables of X. In this case, dropping the
quantifiers from ∃X[F] produces an equivalent formula. If F depends on X,
after adding to F a set of clauses implied by F , the variables of X may be-
come redundant in ∃X[F]. That is, the clauses of F depending on X can be
dropped and the resulting CNF formula G is equivalent to the original for-
mula ∃X[F]. The problem is that one needs to know when the variables of X
become redundant.

Let y be an assignment to all free variables of ∃X[F]. If Fy is unsatisfiable,
then a clause C falsified by y can be derived by resolving clauses of F . After
adding C to F , to obtain F ′, the variables of X are redundant in ∃X[F ′y].
Detecting redundancy in this case is easy. Assume, however, that Fy is sat-
isfiable; in the context of the QE problem, this is the common case. Then,
the variables of X are also redundant in ∃X[Fy] because Fy remains satisfi-
able after removing any set of clauses. We want to identify such redundancies
efficiently, without having to perform all possible resolutions.

To address this problem, we introduce the notion of Dependency sequents
(D-sequents)1. A D-sequent has the form (∃X[F], q) → Z where q is a partial
assignment to variables of F and Z ⊆ X. This D-sequent states that in the sub-
space specified by q, the variables of Z are redundant in ∃X[F]. That is, in this
subspace, after dropping clauses with variables of Z from F one gets a formula
equivalent to ∃X[F]. In particular, the D-sequent (∃X[F],y) → X holds, if
formula Fy is satisfiable where y is an assignment to the non-quantified vari-
ables of ∃X[F]. For the sake of brevity, in the following exposition we use the
same symbol F to denote the initial and the current CNF formula consisting
of the initial clauses and resolvents. So symbol F used in the D-sequent above
is the current CNF formula. We note that the formal definition of D-sequents,

1 In this paper, we consider D-sequents presented at FMCAD-12 [17] that state redun-
dancy of quantified variables. At FMCAD-13 [19], we introduced D-sequents stating the
redudnancy of clauses containing quantified variables. Formally, D-sequents based on vari-
able redundancy are just a special case of those based on clause redundancy. However, there
is an important difference that justifies a special attention to D-sequents based on variable
redundancy. The set X of quantified variables in formula ∃X[F] remains the same while the
set of clauses containing variables of X may grow exponentially in |X|. If a QE-algorithm
using D-sequents based on clause redundancy “gets lost”, it may generate a large number of
irrelevant clauses whose redundancy it will have to prove. QE-algorithms based on variable
redundancy do not have this problem.

Quantifier Elimination by Dependency Sequents 3

given in Section 5, is somewhat more involved than we have let on in the
introduction, e.g., it includes a scope parameter.

In this paper, we introduce a QE algorithm called Derivation of D-Sequents
(DDS). In DDS , adding resolvent clauses to F is accompanied by computing
D-sequents. The algorithm terminates when the D-sequent (∃X[F], ∅) → X
is derived, where F is the final CNF formula that includes the initial and
resolvent clauses. Upon termination, the variables of X are unconditionally
redundant and a solution to the QE problem is obtained by dropping the
clauses containing variables of X from F .

DDS produces new D-sequents from existing D-sequents using the join
operation. Let (∃X[F], q′)→Z and (∃X[F], q′′)→Z be valid D-sequents where
q′ and q′′ have opposite assignments to exactly one variable v. Then a new,
valid D-sequent (∃X[F], q) → Z can be obtained by joining the D-sequents
above, where q contains all assignments of q′ and q′′ except those to v.

In this paper, we compare DDS with its counterparts both theoretically
and experimentally. In particular, we show that DDS is compositional while al-
gorithms based on enumeration of satisfying assignments [25,21,14,6] are not.
Compositionality here means that given an ∃CNF formula ∃X[F1 ∧ · · · ∧ Fk]
where formulas Fi depend on non-overlapping sets of variables, DDS breaks
the QE problem into k independent subproblems. DDS is a branching algo-
rithm and yet it remains compositional no matter how branching variables are
chosen. Compositionality of DDS means that its performance can be expo-
nentially better than that of enumeration-based QE algorithms. Since DDS is
a branching algorithm it can process variables of different branches in dif-
ferent orders. This gives DDS a big edge over QE algorithms that eliminate
quantified variables one by one using a global order [20,16].

D-sequents are related to boundary points [15]. A boundary point is a
complete assignment to variables of F with certain properties. To make vari-
ables of Z ⊆ X redundant in ∃X[F] one needs to eliminate a particular set
of boundary points. This elimination is performed by adding to F resolvent
clauses that do not depend on variables of Z. DDS does not compute bound-
ary points explicitly. Nevertheless, we introduce them in this paper because
boundary points are used to define the semantics of DDS.

The contribution of this paper is as follows. First, we relate the notion
of variable redundancy with the elimination of boundary points. Second, we
introduce the notion of scoped redundancy of variables that is a generalization
of that of blocked and monotone variables. Third, we introduce the notion of
D-sequents and the operation of joining D-sequents. Fourth, we describe DDS ,
a QE algorithm; we prove its correctness and evaluate it experimentally. Fifth,
we show that DDS is compositional.

This paper is structured as follows. In Section 2, we relate the notions of
variable redundancy and boundary points. Section 3 explains the strategy of
DDS in terms of boundary point elimination. Two simple cases of variable
redundancy are described in Section 4 and D-sequents are introduced in Sec-
tion 5. A run of DDS on a simple formula is explained in Section 6. Sections 7
and 8 give a formal description of DDS and discuss its compositionality. Sec-

4 Eugene Goldberg, Panagiotis Manolios

tion 9 gives experimental results. Background is discussed in Section 10, and
conclusions are presented in Section 11.

2 Redundant Variables, Boundary Points and Quantifier
Elimination

The main objective of this section is to introduce the notion of redundant
variables and to relate it to the elimination of removable boundary points.

2.1 Redundant Variables and Quantifier Elimination

Definition 1 An ∃CNF formula is a quantified CNF formula of the form
∃X[F] where F is a CNF formula, and X is a set of Boolean variables. If we
do not explicitly specify whether we are referring to CNF or ∃CNF formulas,
when we write “formula” we mean either a CNF or ∃CNF formula. Let q be
an assignment, F be a CNF formula, and C be a clause. Vars(q) denotes the
variables assigned in q; Vars(F) denotes the set of variables of F ; Vars(C)
denotes the variables of C; and Vars(∃X[F]) = Vars(F) \X.

Definition 2 Let C be a clause, H be a formula, and p be an assignment.
Cp is true if C is satisfied by p; otherwise it is the clause obtained from C by
removing all literals falsified by p. Hp denotes the formula obtained from H
by removing every clause C ∈ H for which Cp=true and replacing C with Cp

if Cp 6= true. If Vars(H) ⊆ Vars(p), then Hp is semantically equivalent to a
constant, and in the sequel, we will make use of this without explicit mention.

Definition 3 Let G,H be formulas. We say that G,H are equivalent, written
G ≡ H, if for all assignments, q, such that Vars(q) ⊇ (Vars(G)∪Vars(H)), we
have Gq = Hq. Notice that Gq and Hq have no free variables, so by Gq = Hq

we mean semantic equivalence.

Definition 4 The Quantifier Elimination (QE) problem for ∃CNF formula
∃X[F] consists of finding a CNF formula G such that G ≡ ∃X[F].

Definition 5 A clause C of F is called a Z-clause if Vars(C) ∩ Z 6= ∅.
Denote by FZ the set of all Z-clauses of F .

Definition 6 The variables of Z are redundant in CNF formula F if F ≡
(F \ FZ). The variables of Z are redundant in ∃CNF formula ∃X[F] if
∃X[F] ≡ ∃X[F \ FZ]. We note that since F \ FZ does not contain any Z
variables, we could have written ∃(X \ Z)[F \ FZ]. To simplify notation, we
avoid explicitly using this optimization in the rest of the paper.

Note that F ≡ (F \ FZ) implies ∃X[F] ≡ ∃X[F \ FZ] but the opposite is
not true.

Quantifier Elimination by Dependency Sequents 5

2.2 Redundant Variables and Boundary Points

Definition 7 Given assignment p and a formula F , we say that p is an F -
point (or a point of F) if Vars(F) ⊆ Vars(p).

In the sequel, by “assignment” we mean a possibly partial one. To refer to
a complete assignment we will use the term “point”.

Definition 8 A point p of CNF formula F is called a Z-boundary point
of F if a) Z 6= ∅ and b) Fp = false and c) every clause of F falsified by p is a
Z-clause and d) the previous condition breaks for every proper subset of Z.

Example 1 Let F be a CNF formula of four clauses: C1 = v1∨v2, C2 = v1∨v3,
C3 = v1 ∨ v4, C4 = v3 ∨ v5. The set of clauses of F falsified by point p =
(v1 = 0, v2 = 0, v3 = 0, v4 = 1, v5 = 1) consists of C1 and C3. One can verify
that p and the set Z = {v1} satisfy the four conditions of Definition 8, which
makes p a {v1}-boundary point. The set Z above is not unique. One can easily
check that p is also a {v2, v4}-boundary point.

The term “boundary” is justified as follows. Let F be a satisfiable CNF
formula with at least one clause. Then there always exists a {v}-boundary
point of F , v ∈ Vars(F) that is different from a satisfying assignment only in
value of v.

Definition 9 Given a CNF formula F and a Z-boundary point, p, of F :

• p is X-removable in F if 1) Z ⊆ X ⊆ Vars(F); and 2) there is a clause
C such that a) F ⇒ C; b) Cp = false; and c) Vars(C) ∩X = ∅.

• p is removable in ∃X[F] if p is X-removable in F .

In the above definition, notice that p is not a Z-boundary point of F ∧ C
because p falsifies C and Vars(C)∩Z = ∅. So adding clause C to F eliminates
p as a Z-boundary point.

Example 2 Let us consider the {v1}-boundary point p = (v1 = 0, v2 = 0, v3 =
0, v4 = 1, v5 = 1) of Example 1. Let C denote the resolvent v2 ∨ v3 of C1

and C2 on v1. Note that the set X = {v1} and C satisfy the conditions a),b)
and c) of Definition 9. So p is a {v1}-removable {v1}-boundary point. After
adding C to F , p is not a {v1}-boundary point any more. Notice, however, that
if X = {v1, v2, v4}, then p is not X-removable. Indeed, to satisfy conditions
a),b),c) for X and p there should exist clause C implied by F that is falsified
by p and does not contain the variables of X. The only clauses satisfying
conditions b) and c) are clause C = v3 ∨ v5 and any clause subsuming C. But
C is not implied by F and hence breaks condtion a). The same applies to any
clause subsuming C.

Proposition 1 A Z-boundary point p of F is removable in ∃X[F], iff one
cannot turn p into an assignment satisfying F by changing only the values of
variables of X.

6 Eugene Goldberg, Panagiotis Manolios

The proofs are given in the appendix.

Proposition 2 The variables of Z ⊆ X are not redundant in ∃X[F] iff there
is an X-removable W -boundary point of F , W ⊆ Z.

Proposition 2 justifies the following strategy of solving the QE problem.
Add to F a set G of clauses that a) are implied by F ; b) eliminate all X-
removable Z-boundary points for all Z ⊆ X. By dropping all X-clauses of F ,
one produces a solution to the QE problem.

Below we introduce the notion of scoped redundancy of variables that is
used in the definition of dependency sequents (Section 5).

Definition 10 Let Z be a set of variables redundant in ∃X[F] where Z ⊆ X.
We will say that variables of Z are redundant in ∃X[F] with scope W
where W ⊇ Z if for any non-empty subset V ⊆ Z, the set of W -removable V -
boundary points is empty. In other words, any V -boundary point of F where
V ⊆ Z can be turned into an assignment satisfying F by flipping only variables
of W . We will say that the variables of Z are locally redundant in ∃X[F] if
the scope of their redundancy is equal to Z.

Example 3 Let ∃X[F] be an ∃CNF formula where F = C1∧C2, C1 = y ∨ x1,
C2 = y ∨ x1 ∨ x2 and X = {x1, x2}. Notice that F does not contain literal x2
and hence x2 is monotone in F . From Proposition 5 below it follows that x2 is
redundant in ∃X[F] with scope {x2}. In other words, x2 is locally redundant
in ∃X[F]. After removing clause C2 from F as containing x2, variable x1
becomes monotone and hence redundant in ∃X[F \ {C2}] with scope {x1}.
From Propostion 4 below if follows that x1 is redundant in ∃X[F] with scope
{x1, x2}.

Notice that if variables of Z are redundant in ∃X[F] with scope W they
are also redundant in ∃X[F] in terms of Definition 6 i.e. ∃X[F] ≡ ∃X[F \FZ].
The opposite is not true. The notion of scoped redundancy is used in this
paper2 instead of that of virtual redundancy introduced in [17]. As we show in
Section 4, scoped redundancy can be viewed as a generalization of the notion
of a blocked variable. From now on, when we say that variables of Z are
redundant in ∃X[Fq] with scope W we assume that W ∩Vars(q) = ∅.

2 In [17], we used the notion of virtual redundancy to address the following problem.
The fact that ∃X[Fs] ≡ ∃X[Fs \ (Fs)Z] does not imply that ∃X[Fq] ≡ ∃X[Fq \ (Fq)Z]
where s ⊂ q. That is redundancy of variables Z in subspace s specified by Definition 6 does
not imply such redundancy in subspace q contained in subspace s. The notion of virtual
redundancy solves this paradox by weakening Definition 6. Namely, variables of Z are
redundant in q even if ∃X[Fq] 6≡ ∃X[Fq \ (Fq)Z] but ∃X[Fs] ≡ ∃X[Fs \ (Fs)Z] for some s
such that s ⊂ q. In this paper, we solve the problem above by using scoped redundancy i.e.
by strengthening Definition 6. The trick is that we forbid to assign variables of scope W .
Then (see Lemma 2 of the appendix), redundancy of Z with scope W in subspace q where
W ∩Vars(s) = ∅ implies redundancy of Z in any subspace q where s ⊂ q if W ∩Vars(q) = ∅.

Quantifier Elimination by Dependency Sequents 7

3 Boundary Points And Divide-And-Conquer Strategy

In this section, we provide the semantics of the QE algorithm DDS described
in Section 7. DDS is a branching algorithm. Given an ∃CNF formula ∃X[F],
it branches on variables of F until proving redundancy of variables of X in the
current subspace becomes trivial. Then DDS merges the results obtained in
different branches to prove that the variables of X are redundant in the entire
search space. Below we give propositions justifying the divide-and-conquer
strategy of DDS. Proposition 3 shows how to perform elimination of removable
boundary points of F in the subspace specified by assignment q. This is done
by using formula Fq, a “local version” of F . Proposition 4 justifies proving
local redundancy of variables of X in Fq one by one.

Let q and r be assignments to a set of variables Z. Since q and r are sets
of value assignments to individual variables of Z one can apply set operations
to them. We will denote by r ⊆ q the fact that q contains all the assignments
r. The assignment consisting of value assignments of q and r is represented
as q ∪ r.

Proposition 3 Let ∃X[F] be an ∃CNF formula and q be an assignment to
Vars(F). Let p be a Z-boundary point of F where q ⊆ p and Z ⊆ X. Then if
p is removable in ∃X[F] it is also removable in ∃X[Fq].

The opposite is not true: a boundary point may be X-removable in Fq and
not X-removable in F . For instance, if X = Vars(F), a Z-boundary point p
of F is removed from ∃X[F] for any Z ⊆ X only by adding an empty clause
to F . So if F is satisfiable, p is not removable. Yet p may be removable in
∃X[Fq] if Fq is unsatisfiable.

Proposition 4 Let ∃X[F] be a CNF formula and q be an assignment to vari-
ables of F . Let the variables of Z be redundant in ∃X[Fq] with scope W where
Z ⊆ (X \Vars(q)). Let a variable v of X \(Vars(q)∪Z) be locally redundant in
∃X[Fq \ (Fq)Z]. Then the variables of Z ∪ {v} are redundant in ∃X[Fq] with
scope W ∪ {v}.

Proposition 4 shows that one can prove redundancy of, say, a set of variables
{v1, v2} in ∃X[Fq] incrementally. This can be done by a) proving redundancy
of variable v1 in ∃X[Fq], b) removing all the {v1}-clauses from Fq, and c)
proving redundancy of v2 in formula ∃X[Fq \ (Fq){v1}].

4 Two Simple Cases of Local Variable Redundancy

In this section, we describe two easily identifiable cases where variables are
locally redundant. These cases are specified by Propositions 5 and 6. We also
show that scoped redundancy can be viewed as a generalization of the notion
of a blocked variable.

8 Eugene Goldberg, Panagiotis Manolios

Definition 11 Let C ′ and C ′′ be clauses having opposite literals of exactly
one variable v ∈ Vars(C ′) ∩ Vars(C ′′). The clause C consisting of all literals
of C ′ and C ′′ but those of v is called the resolvent of C ′,C ′′ on v. Clause C is
said to be obtained by resolution on v. Clauses C ′,C ′′ are called resolvable
on v.

Definition 12 A variable v of a CNF formula F is called blocked if no two
clauses of F are resolvable on v. A variable v is called monotone if it is a
pure literal variable [12] (i.e. literals of only one polarity of v are present in
F). A monotone variable is a special case of a blocked variable.

Example 4 Let CNF formula F (v1, v2, v3) consist of clauses C1, C2, C3 where
C1 = v1 ∨ v2, C2 = v1 ∨ v3, C3 = v1 ∨ v2. Since clauses C1 and C2 are
resolvable on v1 the latter is not blocked. On the contrary, variables v2 and v3
are blocked. Variable v2 is blocked because C1 and C3, the only clauses with
oppposite literals of v2, are not resolvable on v2. In addition to being blocked,
variable v3 is also monotone since no clause of F contains literal v3.

The notion of blocked variables is related to that of blocked clauses introduced
in [22] (not to confuse with blocking clauses [25]). A clause C of F is blocked
at v if no clause C ′ of F is resolvable with C on v. Variable v is blocked in F
if every {v}-clause of F is blocked at v.

Proposition 5 Let ∃X[F] be an ∃CNF formula and q be an assignment to
Vars(F). Let a variable v of X \ Vars(q) be blocked in Fq. Then v is locally
redundant in ∃X[Fq].

Note that a blocked variable v can be viewed as a special case of a vari-
able redundant in ∃X[Fq] with scope W where {v} ⊆ W . Indeed, let v be
redundant with scope W . This means that for every {v}-boundary p, one can
find an assignment satisfying Fq by flipping only variables of W . Notice that
redundancy of v in ∃X[Fq] with scope W is possible even if Fq has clauses
that can be resolved on v. The only exception is when W = {v}. In this case,
a {v}-boundary point turns into an assignment satisfying Fq by flipping the
value of v. This means that Fq cannot have clauses that can be resolved on
variable v and so, v is blocked in Fq.

Proposition 6 Let ∃X[F] be an ∃CNF formula and q be an assignment to
Vars(F). Let Fq have an empty clause. Then the variables of X \Vars(q) are
locally redundant in ∃X[Fq].

5 Dependency Sequents (D-sequents)

In this section, we define D-sequents and describe the operation of joining
D-sequents. We also introduce the notion of composable D-sequents.

Quantifier Elimination by Dependency Sequents 9

5.1 Definition of D-sequents

Definition 13 Let ∃X[F] be an ∃CNF formula. Let q be an assignment to
Vars(F) and Z be a subset of X \ Vars(q). Let W be a set of variables such
that Z ⊆ W ⊆ (X \ Vars(q)). A dependency sequent (D-sequent) has the
form (∃X[F], q,W) → Z. It states that the variables of Z are redundant in
∃X[Fq] with scope W .

Example 5 Consider an ∃CNF formula ∃X[F] where F = C1∧C2, C1 = x∨y1
and C2 = x ∨ y2 and X = {x}. Let q={(y1 = 1)}. Then Fq = C2 because
C1 is satisfied. Notice that x is monotone and so locally redundant in Fq

(Proposition 5). Hence, the D-sequent (∃X[F], q, {x}) → {x} holds.

According to Definition 13, a D-sequent holds with respect to a particular
∃CNF formula ∃X[F]. Proposition 7 shows that this D-sequent also holds after
adding to F resolvent clauses.

Proposition 7 Let ∃X[F] be an ∃CNF formula. Let H = F ∧ G where
F ⇒ G. Let q be an assignment to Vars(F). Then if (∃X[F], q,W) → Z
holds, (∃X[H], q,W) → Z does too.

The proposition below shows that it is safe to increase the scope of a D-sequent.

Proposition 8 Let D-sequent (∃X[F], q,W) → Z hold. Let W ′ be a superset
of W where W ′ ∩Vars(q) = ∅. Then (∃X[F], q,W ′) → Z holds as well.

5.2 Join Operation for D-sequents

In this subsection, we introduce the operation of joining D-sequents. The join
operation produces a new D-sequent from two D-sequents derived earlier.

Definition 14 Let q′ and q′′ be assignments in which exactly one variable v ∈
Vars(q′) ∩Vars(q′′) is assigned different values. The assignment q consisting
of all the assignments of q′ and q′′ but those to v is called the resolvent of
q′,q′′ on v. Assignments q′,q′′ are called resolvable on v.

Proposition 9 Let ∃X[F] be an ∃CNF formula. Let D-sequents (∃X[F], q′,W ′)
→ Z and (∃X[F], q′′,W ′′) → Z hold and (Vars(q′) ∩ W ′′) = (Vars(q′′) ∩
W ′) = ∅. Let q′, q′′ be resolvable on v ∈ Vars(F) and q be the resolvent of q′

and q′′. Then, the D-sequent (∃X[F], q,W ′ ∪W ′′) → Z holds too.

Definition 15 We will say that the D-sequent (∃X[F], q,W ′ ∪W ′′) → Z of
Proposition 9 is produced by joining D-sequents (∃X[F], q′,W ′) → Z and
(∃X[F], q′′,W ′′) → Z at v.

10 Eugene Goldberg, Panagiotis Manolios

5.3 Composable D-sequents

In general, the fact that D-sequents (∃X[F], q,W) → {v′} and (∃X[F], q,W)
→ {v′′} hold does not imply that (∃X[F], q,W) → {v′, v′′} does too. The
reason is that derivation of D-sequent (∃X[F], q,W) → {v′, v′′} may involve
circular reasoning where {v′}-clauses are used to prove redundancy of v′′ and
vice versa. Proposition 10 below shows how to avoid circular reasoning.

Definition 16 Let q′ and q′′ be assignments to a set of variables Z. We will
say that q′ and q′′ are compatible if every variable of Vars(q′) ∩ Vars(q′′)
is assigned the same value in q′ and q′′.

Proposition 10 Let s and q be assignments to variables of F where s ⊆
q. Let D-sequents (∃X[F], s,W) → Z and (∃X[F \ FZ], q, {v}) → {v} hold
where Vars(q) ∩ Z = Vars(q) ∩W = ∅. Then D-sequent (∃X[F], q,W ∪ {v})
→ Z ∪ {v} holds.

Definition 17 Let S′ and S′′ be D-sequents (∃X[F], q′,W) → Z and
(∃X[F], q′′, {v}) → {v} respectively where q′ and q′′ are compatible assign-
ments to Vars(F) and v 6∈ Vars(q′),Vars(q′′)∩Z = ∅, Vars(q′′)∩W = ∅. We
will call S′ and S′′ composable if D-sequent S equal to (∃X[F], q,W ∪ {v})
→ Z ∪ {v} holds where q = q′ ∪ q′′. From Proposition 10 it follows that if
D-sequent (∃X[F \ FZ], q, {v}) → {v} holds, then S′, S′′ are composable.

6 A Run Of DDS On A Simple Formula

In this section, we describe a run of DDS on a simple formula. A detailed
explanation of DDS is given in Section 7.

Problem formulation. Let ∃X[F] be an ∃CNF formula where F = C1 ∧C2,
C1 = y1 ∨ x, C2 = y2 ∨ x and X = {x}. The problem is to find formula
G(y1, y2) such that G ≡ ∃X[F].

Short notion for D-sequents. In this section, we will use a short notation of
D-sequents. In this notation, one writes s → Z instead (∃X[F], s,W) → Z
omitting parameters ∃X[F] and W . (See explanation in Section 7.)

Active D-sequents. DDS derives D-sequents s → {x} stating the redun-
dancy of variable x. We will call D-sequent s → {x} active in the branch
specified by assignment q if s ⊆ q i.e. if this D-sequent provides a proof of
redundancy of x in subspace q.

The big picture. As far as the example at hand is concerned, the goal of
DDS is to derive D-sequent ∅ → {x} stating unconditional redundancy of
variable x. As we mentioned before, DDS is a branching algorithm. It proves
redundancy of x in subspaces and then merges the results of different branches.
The work of DDS is shown in Figures 1 and 2. To make variable x redundant,
DDS has to generate a new clause (see below). When x is proved redundant,
the {x}-clauses of F are marked as redundant. When DDS enters the subspace
where the current D-sequent stating redundancy of x is not active anymore, the

Quantifier Elimination by Dependency Sequents 11

{x}-clauses of F (that are currently unsatisfied) are unmarked. This indicates
that x is not proved redundant in the new subspace yet.

Fig. 1: Search tree

Search tree. Figure 1 shows the search tree
built by DDS . To identify a node of the search
tree we will use the assignment q leading to this
node. The root node is specified by assignment
q = ∅. DDS branches on variables of Vars(F) \
X = {y1, y2} before those of X (see Subsec-
tion 7.3). The search tree has four leaf nodes shown
in dotted ovals. DDS backtracks as soon as vari-
able x is assigned or proved redundant. For ex-
ample, x is proved redundant at node (y1 = 0)
and assigned at node (y1 = 1, y2 = 0, x = 1).

Fig. 2: Derivation of D-sequents

Generation of a new clause. DDS
generates a new clause at node (y1 =
1, y2 = 0) after branching on x. At node
(y1 = 1, y2 = 0, x = 1), clause C1 gets fal-
sified and DDS immediately backtracks.
Similarly, DDS falsifies clause C2 at node
(y1 = 1, y2 = 0, x = 0). As described in
Subsection 7.5, in this case, DDS resolves
clauses C1 and C2 on the branching vari-
able x. The resolvent C3 = y1∨y2 is added
to F .

Generation of atomic D-sequents. Fig-
ure 2 describes derivation of D-sequents.
Ω specifies the set of D-sequents that are

active at the corresponding node. DDS has at most one active D-sequent for
every quantified variable that is currently unassigned. Since in our example,
only one variable is quantified, Ω is either empty or contains one active D-
sequent. The dotted boxes show D-sequents obtained by the join operation.
The D-sequents in the dotted ovals record trivial cases of redundancy discussed
in Section 4. Such D-sequents are called atomic. For instance, DDS generates
D-sequent S1 equal to (y1 = 0) → {x} at node (y1 = 0). S1 holds because
F(y1=0)=y2 ∨ x and so x is a blocked (monotone) variable of F(y1=0). The
atomic D-sequent S2 is derived by DDS at node (y1 = 1, y2 = 0). As we men-
tioned above, at node (y1 = 1, y2 = 0), DDS adds clause C3 = y1∨y2 to F . This
clause is empty in F(y1=1,y2=0). So D-sequent S2 equal to (y1 =1, y2 =0)→ {x}
is generated where (y1 =1, y2 =0) is the shortest assignment falsifying C3.

Switching from left to right branch. Let us consider switching between
branches at the root node where y1 is picked for branching. The set of D-
sequents returned by the left branch equals {S1} where S1 is equal to (y1 =
0) → {x}. The only clause y2 ∨ x of F(y1=0) is marked as redundant because
it contains x that is currently redundant. Before starting the right branch
y1 = 1, DDS computes the set of D-sequents that become inactive in the right
branch. Since S1 contains assignment y1 = 0 as the condition of redundancy of

12 Eugene Goldberg, Panagiotis Manolios

x, this D-sequent becomes inactive in the right branch. Hence DDS removes
S1 from Ω. So, before DDS starts exploring branch y1 = 1, variable x becomes
non-redundant and clause C2 = y2∨x is unmarked because it does not contain
a redundant variable.

Branch merging. Consider how branch merging is performed by DDS at

node (y1 = 1). In the left branch y2 = 0, the set Ω={S2} is computed where

S2 is (y1 = 1, y2 = 0) → {x}. In the right branch y2 = 1, the set Ω={S3} is

computed where S3 is (y2 = 1)→ {x}. By joining S2 and S3 at y2, D-sequent

S4 is derived that equals (y1 = 1)→ {x}. S4 states redundancy of x in F(y1=1).

Termination. When DDS terminates, F = C1∧C2∧C3 where C3 = y1∨y2
and D-sequent ∅ → {x} is derived. After dropping the X-clauses C1, C2 in
∃X[F], one obtains formula ∃X[G] where G(y1, y2) = C3. Since G does not
depend on x, the quantifier can be dropped. So G ≡ ∃X[C1 ∧ C2], which makes
G is a solution to the QE problem.

7 Description of DDS

In this section, we describe a QE algorithm called DDS (Derivation of D-
Sequents). We will continue using the short notation of D-sequents we intro-
duced in Section 6. Namely we will write s → {x} instead of (∃X[F], s,W)→
{x}. We will assume that the parameter ∃X[F] missing in s → {x} is the
current ∃CNF formula (with all resolvent clauses added to F so far) and the
missing parameter W is the set of variables that are currently redundant. One
can omit ∃X[F] from D-sequents because from Proposition 7 it follows that
once D-sequent (∃X[F], s,W) → {x} is derived it holds after adding any set
of resolvent clauses to F . The scope parameter W can be dropped because
Proposition 8 entails that it is safe to increase the scope of a D-sequent. So
one can just assume that all the D-sequents that are currently active have the
same scope equal to the current set of redundant variables.

A description of DDS is given in Figure 3. DDS accepts an ∃CNF formula
∃X[F] (denoted as Φ), an assignment q to Vars(F) and a set Ω of active
D-sequents stating redundancy of some variables of X \ Vars(q) in ∃X[Fq].
DDS returns a modified formula ∃X[F] (where resolvent clauses have been
added to F), a set Ω of active D-sequents stating redundancy of every variable
of X \ Vars(q) in ∃X[Fq] and a clause C. If Fq is unsatisfiable, then C is a
clause of F falsified by q. Otherwise, C is equal to nil meaning that no clause
implied by F is falsified by q.

To build a quantifier-free CNF formula equivalent to Φ, one needs to call
DDS with q = ∅, Ω = ∅ and discard the X-clauses of the CNF formula F
returned by DDS .

Quantifier Elimination by Dependency Sequents 13

// Φ denotes ∃X[F], q is an assignment to Vars(F)
// Ω denotes a set of active D-sequents
// If DDS returns clause nil (respectively a non-nil clause),
// Fq is satisfiable (respectively unsatisfiable)

DDS(Φ,q,Ω){
1 (Ω, ans, C) := atomic D seqs(Φ, q, Ω);
2 if (ans = solved) return(Φ,Ω,C);
3 v := pick variable(F, q, Ω);
4 (Φ,Ω,C0) :=DDS(Φ,q ∪ {(v = 0)},Ω);
5 (Ωsym , Ωasym) := split(F,Ω, v);
6 if (Ωasym = ∅) return(Φ,Ω,C0);
7 Ω := Ω \Ωasym ;
8 (Φ,Ω,C1) :=DDS(Φ,q ∪ {(v = 1)},Ω);
9 if ((C0 6= nil) and (C1 6= nil)){
10 C := resolve clauses(C0, C1, v);
11 F := F ∧ C;
12 Ω := process unsat clause(Φ,C,Ω);
13 return(Φ,Ω,C);}
14 Ω := merge(Φ, q, v, Ωasym , Ω);
15 return(Φ,Ω,nil);}

Fig. 3: DDS procedure

7.1 The Big Picture

First, DDS looks for variables whose redundancy is trivial to prove (lines 1-2).
If some variables of X \ Vars(q) are not proved redundant yet, DDS picks a
branching variable v (line 3). Then it extends q by assignment (v = 0) and
recursively calls itself (line 4) starting the left branch of v. Once the left branch
is finished, DDS extends q by (v = 1) and explores the right branch (line 8).
The results of the left and right branches are then merged (lines 9-15).

DDS terminates when for every variable x of X \ Vars(q) it derives a
D-sequent s → {x} where s ⊆ q. As we show in the appendix (Lemma 7)
D-sequents derived by DDS are composable. So derivation of D-sequents for
individual variables also means that a D-sequent s∗ → (X \Vars(q)) holds
where s∗ ⊆ q. Thus, DDS terminates when the QE problem is solved for
Φ in subspace q. The composability of D-sequents is achieved by DDS by
guaranteeing that

• for every path of the search tree leading to a leaf, variables are proved
redundant in a particular order (but for different paths the order may be
different);

• all the {v}-clauses are marked as redundant and ignored as long as variable
v stays redundant.

So there is no path leading to a leaf of the search tree on which circular
reasoning is employed where {v′}-clauses are used to prove redundancy of
variable v′′ and vice versa.

14 Eugene Goldberg, Panagiotis Manolios

atomic D seqs(Φ, q, Ω){
1 if (∃ clause C ∈ F falsif. by q){
2 Ω :=process unsat clause(Φ,C,Ω);
3 return(Ω, solved , C);}
4 Ω:=new redund vars(Φ,q,Ω);
5 if (all unassgn vars redund(Φ, q, Ω)) return(Ω, solved ,nil);
6 return(Ω, unsolved ,nil);}

Fig. 4: atomic D seqs procedure

7.2 Building Atomic D-sequents

Procedure atomic D seqs is called by DDS to compute D-sequents for trivial
cases of variable redundancy listed in Section 4. We refer to such D-sequents
as atomic. Procedure atomic D seqs returns an updated set of active D-
sequents Ω, answer solved or unsolved (depending on whether the satisfia-
bility/unsatisfiability of F has been established) and a clause C. If there is a
clause of F falsified by q, then C is this clause. Otherwise, C is nil .

Lines 1-3 of Figure 4 show what is done when F contains a clause C
falsified by q. In this case, every unassigned variable of F becomes redundant
(Proposition 6). So, for every variable of x ∈ X \Vars(q) for which Ω does not
contain a D-sequent yet, procedure process unsat clause generates D-sequent
s → {x} and adds it to Ω. Here s is the shortest assignment falsifying C.
Once Ω contains a D-sequent for every variable of X \Vars(q), atomic D seqs
terminates returning set Ω, answer solved and clause C.

Suppose no clause of F is falsified by q. Then for every variable x of
X \ Vars(q) that does not have a D-sequent in Ω and that is blocked, a D-
sequent is built as explained below. This D-sequent is then added to Ω (line 4).
If every variable of X \Vars(q) has a D-sequent in Ω, then Fq is satisfiable. (If
Fq is unsatisfiable, the variables of X \ Vars(q) can be made redundant only
by adding a clause falsified by q.) So, atomic D seqs returns set Ω, answer
solved and clause nil (line 5).

Given a blocked variable x ∈ X \ Vars(q) of Fq, a D-sequent s → {x} is
built as follows. The fact that x is blocked in Fq means that for any pair of
clauses C ′,C ′′ resolvable on x, C ′ or C ′′ is either satisfied by q or redundant
(as containing a variable proved redundant in ∃X[Fq] earlier). Assume for the
sake of clarity that it is always clause C ′. The assignment s is a subset of
q guaranteeing that every clause C ′ remains satisfied by s or redundant in
∃X[Fs] and so x remains blocked in Fs. If C ′ is satisfied by q, then s contains
a single-variable assignment of q satisfying C ′. If C ′ is not satisfied by q
but contains a variable x∗ proved redundant earlier, s contains all the single-
variable assignments of s∗ where s∗ → {x∗} is the D-sequent of Ω stating
redundancy of x∗.

A straightforward search for blocked variables of F for every call of DDS may
be too expensive. To reduce the cost of search for blocked variables one can use
an approach similar to that of watched literals [27]. Let x be a variable of X.
To guarantee that x is not blocked in the current subspace one can maintain

Quantifier Elimination by Dependency Sequents 15

a pair of “watched” clauses C ′, C ′′ that are resolvable on x and are neither
satisfied nor proved redundant yet. As soon as C ′ or C ′′ is satisfied or proved
redundant one needs to replace the failed watched clause. If such replacement
is not possible, then x is currently blocked. So variable x is processed only
when watched clauses responsible for x change their state. In the implementa-
tion of DDS we used in experiments, no optimization techniques were applied
when searching for blocked variables.

7.3 Selection of a Branching Variable

Let DDS be called with assignment q and set of D-sequents Ω and Xred be
the set of variables of X whose D-sequents are in Ω. Let Y = Vars(F) \ X.
DDS branches only on a subset of free (i.e., unassigned) variables of X and
Y . A free variable x ∈ X \Vars(q) is picked for branching only if x 6∈ Xred .

Although Boolean Constraint Propagation (BCP) is not shown explicitly in
Figure 3, it is included into the pick variable procedure as follows: a) preference
is given to branching on variables of unit clauses of Fq (if any); b) if v is a
variable of a unit clause of C of Fq and v is picked for branching, then the value
falsifying C is assigned first to cause immediate termination of this branch. In
the description of DDS of Figure 3, the left branch always explores assignment
v = 0. But, obviously, v can be first assigned value 1.

To simplify making the branching variable v redundant when merging re-
sults of the left and right branches (see Subsection 7.5), DDS first assigns
values to variables of Y . This means that pick variable never selects a vari-
able x ∈ X for branching, if there is an unassigned variable of Y . In particular,
BCP does not assign values to variables of X if there are unassigned variables
of Y .

7.4 Switching from Left to Right Branch

DDS prunes big chunks of the search space by not branching on redundant
variables of X. One more powerful pruning technique of DDS discussed in this
subsection is to reduce the size of right branches.

Let s → {x} be a D-sequent of the set Ω computed by DDS in the left
branch v = 0 (line 4 of Figure 3). Notice that if s has no assignment (v=0),
variable x remains redundant in ∃X[Fq1] where q1 = q ∪ {(v = 1)}. This is
because s → {x} is still active in the subspace specified by q1. DDS splits the
set Ω into subsets Ωsym and Ωasym of D-sequents symmetric and asymmetric
with respect to variable v (line 5). We call a D-sequent s → {x} symmetric
with respect to v, if s does not contain an assignment to v and asymmetric
otherwise.

Denote by Xsym and Xasym the variables of Xred \ Vars(q) whose redun-
dancy is stated by D-sequents of Ωsym and Ωasym respectively. Before explor-
ing the right branch (line 8), the variables of Xasym become non-redundant

16 Eugene Goldberg, Panagiotis Manolios

merge(Φ, q, v, Ωasym , Ω){
1 Ω := join D seqs(v,Ωasym , Ω);
2 if (v ∈ X) Ω := Ω ∪ {atomic D seq for v(F, q, v, Ω)};
3 return(Ω);}

Fig. 5: merge procedure

again. Every clause C of Fq with a variable of Xasym is unmarked as currently
non-redundant unless Vars(C) ∩Xsym 6= ∅.

Reducing the set of free variables of the right branch to Xasym allows to
prune big parts of the search space. In particular, if Xasym is empty there is
no need to explore the right branch. In this case, DDS just returns the results
of the left branch (line 6). Pruning the right branch when Xasym is empty is
similar to non-chronological backtracking well known in SAT-solving [23].

7.5 Branch Merging

Let q0 = q∪{(v = 0)} and q1 = q∪{(v = 1)}. The goal of branch merging is to
extend the redundancy of all unassigned variables of X proved in ∃X[Fq0] and
∃X[Fq1] to formula ∃X[Fq]. If both Fq0 and Fq1 turned out to be unsatisfiable,
this is done as described in lines 10-13 of Figure 3. In this case, the unsatisfied
clauses C0 and C1 of Fq0 and Fq1 returned in the left and right branches
respectively are resolved on v. The resolvent C is added to F . Since F contains
a clause C that is falsified by q, for every variable x ∈ X \ Vars(q) whose D-
sequent is not in Ω, DDS derives an atomic D-sequent and adds it to Ω. This
is performed by procedure process unsat clause described in Subsection 7.2.
If v 6∈ Vars(C1), then resolve clauses (line 10) returns C1 itself since C1 is
falsified by q and no new clause is added to F . (The situation v 6∈Vars(C0) is
impossible because DDS does not branch after a clause is falsified.)

If at least one branch returns answer sat, then DDS calls procedure merge
described in Figure 5. First, merge takes care of the variables of Xasym (see
Subsection 7.4). Note that redundancy of variables of Xasym is already proved
in both branches. If a D-sequent of a variable from Xasym returned in the
right branch is asymmetric in v, then join D seqs (line 1) replaces it with a
D-sequent symmetric in v as follows. Let x ∈ Xasym and S0 and S1 be the
D-sequents stating the redundancy of x derived in the left and right branches
respectively. Procedure join D seqs joins S0 and S1 at v producing a new D-
sequent S. The latter also states the redundancy of x but is symmetric in v.
D-sequent S1 is replaced in Ω with S.

Let us consider the case3 where S1 is symmetric in v. If Fq0 was unsat-
isfiable, then S1 remains in Ω untouched. Otherwise, join D seqs does the
following. Let S1 be equal to s → {x}. First, the right branch assignment

3 The description of this case given in [17] says that if S1 is symmetric in v it remains in
Ω untouched. It is an error because, as we mentioned above, the set of D-sequent produced
for subspace q may turn out to be uncomposable.

Quantifier Elimination by Dependency Sequents 17

v = 1 is added to s. Then S1 is joined with S0 at v to produce a new D-
sequent S that is symmetric in v. S replaces S1 in Ω. The reason one cannot
simply keep S1 in Ω untouched is as follows. As we mentioned above, the com-
posability of D-sequents built by DDS is based on the assumption that for
every path of the search tree, variables are proved redundant in a particular
order. Using D-sequent S1 in subspace q would violate this assumption and so
would break the composability of D-sequents.

Finally, if the branching variable v is in X, DDS derives a D-sequent stat-
ing the redundancy of v. Notice that v is not currently redundant in ∃X[Fq]
because DDS does not branch on redundant variables. As we mentioned in
Subsection 7.3, the variables of Y = Vars(F) \X are assigned in DDS before
those of X. This means that before v was selected for branching, all variables of
Y had been assigned. Besides, every variable of X\Vars(q) but v has just been
proved redundant in ∃X[Fq]. So, Fq can only contain unit clauses depending
on v. Moreover, these unit clauses cannot contain literals of both polarities of
v because merge is called only when either branch v = 0 or v = 1 is satisfied.
Therefore, v is monotone. An atomic D-sequent S stating the redundancy of
v is built as described in Subsection 7.2 and added to Ω (line 2). Then merge
terminates returning Ω.

7.6 Correctness of DDS

Let DDS be called on formula Φ = ∃X[F] with q = ∅ and Ω = ∅. Informally,
DDS is correct because a) the atomic D-sequents built by DDS are correct;
b) joining D-sequents produces a correct D-sequent; c) every clause added to
formula F is produced by resolution and so is implied by F ;d) by the time
DDS backtracks to the root of the search tree, for every variable x ∈ X, D-
sequent ∅ → {x} is derived; e) the D-sequents derived by DDS are composable,
which implies that the D-sequent ∅ → X holds for the formula ∃X[F] returned
by DDS .

Proposition 11 DDS is sound and complete.

8 Compositionality of DDS

We will call a CNF formula F compositional if F = F1 ∧ . . . ∧ Fk where
Vars(Fi) ∩ Vars(Fj) = ∅, i 6= j. We will say that an algorithm solves the QE
problem specified by ∃X[F] compositionally if it breaks this problem down
into k independent subproblems of finding Gi equivalent to ∃X[Fi]. A formula
G equivalent to ∃X[F] is then built as G1 ∧ . . . ∧Gk.

There are at least two reasons to look for compositional QE algorithms.
First, even if the original formula F is not compositional, a formula Fq ob-
tained from F by making assignment q may be compositional. Second, a prac-
tical formula F typically can be represented as F1(X1, Y1) ∧ . . . ∧ Fk(Xk, Yk)
where Xi are internal variables of Fi and Yi are communication variables i.e.

18 Eugene Goldberg, Panagiotis Manolios

ones shared by subformulas Fi. One can view Fi as describing a “design block”
with external variables Yi. The size of Yi is usually much smaller than that
of Xi. The latter fact is, arguably, what one means by saying that F has
structure. One can view compositional formulas as a degenerate case where
|Yi| = 0, i = 1, . . . , k and so Fi do not “talk” to each other. Intuitively, an
algorithm that does not scale even if |Yi| = 0 will not do well when |Yi| > 0.

A QE algorithm based on enumeration of satisfying assignments is not
compositional. The reason is that the set of assignments satisfying F is a
Cartesian product of those satisfying Fi,i = 1, . . . , k. So if, for example, all Fi

are identical (modulo variable renaming), the complexity of an enumeration
based QE algorithm is exponential in k. A QE algorithm based on BDDs [7] is
compositional only for variable orderings where variables of Fi and Fj , i 6= j
do not interleave.

Now we show the compositionality of DDS. By a decision branching variable
mentioned in the proposition below, we mean that this variable was not present
in a unit clause of the current formula when it was selected for branching.

Proposition 12 (compositionality of DDS) Let T be the search tree built
by DDS when solving the QE problem ∃X[F1 ∧ . . . ∧ Fk] above. Let Xi = X ∩
Vars(Fi) and Yi = Vars(Fi) \ X. The size of T in the number of nodes is
bounded by |Vars(F)| · (η(X1 ∪ Y1) + . . . + η(Xk ∪ Yk)) where η(Xi ∪ Yi) =
2 · 3|Xi∪Yi| · (|Xi|+ 1), i = 1, . . . , k no matter how decision branching variables
are chosen.

Proposition 12 is proved in the appendix for a slightly modified version of
DDS . Notice that the compositionality of DDS is not ideal. For example, if
all subformulas Fi are identical, DDS is quadratic in k as opposed to being
linear. Informally, DDS is compositional because D-sequents it derives have
the form s → {x} where Vars(s) ∪ {x} ⊆ Vars(Fi). The only exception are
D-sequents derived when the current assignment falsifies a clause of F . This
exception is the reason why DDS is quadratic in k.

Importantly, the compositionality of DDS is achieved not by using some
ad hoc techniques but is simply a result of applying the machinery of D-
sequents. This provides some evidence that DDS can be successfully applied
to non-compositional formulas of the form F1(X1, Y1)∧ . . .∧Fk(Xk, Yk) where
|Yi| > 0 and |Yi| � |Xi|, i = 1, . . . , k.

Notice that a QE algorithm that resolves out variables one by one as in
the DP procedure [13] is also compositional. (If Vars(Fi)∩Vars(Fj) = ∅, then
clauses of Fi and Fj cannot be resolved with each other). However, although
such an algorithm may perform well on some classes of formulas, it is not
very promising overall. This is due to the necessity to eliminate a variable in
one big step, which may lead to generation of a very large number of new
resolvent clauses. On the contrary, being a branching algorithm, DDS is very
opportunistic and eliminates the same variable differently in different sub-
spaces trying to reduce the number of new resolvents to be added (if any).
The lack of flexibility in variable elimination is exactly the cause of the poor
scalability of the DP procedure in SAT-solving. There is no reason to believe

Quantifier Elimination by Dependency Sequents 19

that DP-like procedures will scale better for the harder problem of quantifier
elimination.

As we mentioned above, QE algorithms based on BDDs are compositional
only for particular variable orders. This limitation coupled with the necessity
for a BDD to maintain one global variable order may cripple the performance
of BDD based algorithms even on very simple formulas. Suppose, for instance,
that H and G are compositional CNF formulas where H = H1 ∧ . . .∧Hk and
G = G1 ∧ . . .∧Gm. Suppose that variables of subformulas of H and G overlap
with each other so that every variable order for which a BDD of G is small
renders a large BDD for H and vice versa. Let F be a CNF formula equivalent
to (w∨H)∧ (w∨G) where w 6∈ Vars(H)∪Vars(G). (A CNF formula for, say,
w ∨H is trivially obtained by adding literal w to every clause of H.) Notice
that F is compositional in branches w = 0 and w = 1 since Fw=0 = H and
Fw=1 = G. However, a BDD based QE algorithm cannot benefit from this fact
because the same variable order has to be used in either branch and no order
is good for both H and G. Notice, that DDS will not have any problem in
handling formula F because DDS is compositional for any choice of decision
variables in branches w = 0 and w = 1.

9 Experimental Results

In this section, we describes results of experiments with an implementation of
DDS . In Subsection 9.1, the implementation of DDS tested in experiments is
described in more detail. In Subsection 9.2, some problems arising in model
checking are used to compare DDS with other QE based algorithms. Sub-
section 9.3 showcases the compositionality of DDS . Finally, Subsection 9.4
compares backward model checking based on DDS and BDDs.

9.1 Some Implementation Details

In this section, we describe some features of the implementation of DDS we
used in experiments.

• In Figure 3, DDS is described in terms of recursive calls. It is more con-
venient to consider our implementation of DDS as building a search tree.
Let n be the node of the search tree built by DDS at which a variable
v of Vars(F) is assigned. Then the depth Depth(n) of n is equal to the
recursion depth at which variable v is assigned by the algorithm described
in Figure 3.

• When implementing DDS we followed the common practice of using stack
for implementing branching algorithms. When a new node n of the search
tree is created, all the relevant information about n is pushed on the stack.
When backtracking from node n, all the information about n is popped off
the stack.

20 Eugene Goldberg, Panagiotis Manolios

• To make our implementation of DDS easy to modify, we did not use opti-
mization techniques like employing watched literals to speed up BCP, spe-
cial representation of two-literal clauses and so on. We believe, however,
that D-sequent re-using discussed below will have much more dramatic
effect on performance of DDS than any of these optimization techniques.

• In Figure 3, a D-sequent depending on an assignment to the branching
variable is discarded when the current DDS call terminates. On the other
hand, keeping such D-sequents may lead to dramatic performance improve-
ments. The reason is that a D-sequent S stating redundancy of x ∈ X that
is currently inactive may become active again in a different part of the
search space. S can be used in that part of the space to avoid branching
on x. This is similar to reusing conflict clauses to avoid entering the parts
of the search space already proved unsatisfiable. However, our research
showed that re-using D-sequents indiscriminately may lead to circular rea-
soning. This problem is easily solved by imposing some restrictions on the
order in which D-sequents are re-used. However, finding the best way to
implemenmt D-sequent re-using needs furhter research.

• In Figure 3, if both branches are unsatisfiable, DDS adds the resolvent C
of clauses C0 and C1 falsified in left and right branches respectively. Recall
that C is falsified by the current assignment q. Let Depth(C) describe
the maximum recursion depth at which an assignment of q falsifying a
literal of C is made. In our implementation of DDS , clause C is not added
to F if another clause C ′ falsified by q can be derived later such that
Depth(C ′) < Depth(C). This is similar to the conflict clause generation
procedure of a SAT-solver. In such a procedure, all intermediate resolvents
produced in the course of generation of a conflict clause are discarded.

The condition above means that our implementation of DDS keeps a re-
solvent clause C only if it is an empty clause of F or if in the node of the
search tree located at depth Depth(C)
– the left branch is currently explored or
– the right branch is currently explored and formula F was satisfiable in

the left branch.
In terms of a conflict clause generation procedure, our implementation
backtracks to the closest decision assignment of the current path of the
search tree or to the root of the tree if the current path does not have any
decision assignments.

9.2 Comparison of various QE algorithms

In this subsection, we compare DDS with three other QE algorithms. The first
QE algorithm of the three is based on enumeration of satisfying assignments [6]
(courtesy of Andy King). We will refer to it as EnumSA. The second QE

algorithm that we compared with DDS is called C2D [30]. It is based on
the idea of compiling CNF to Determenistic Decomposable Negation Normal
Forms [11].

Quantifier Elimination by Dependency Sequents 21

Table 1: Experiments with model checking formulas. The time limit is 1min

model
check-

EnumSA C2D QE-GBL DDS

ing mode solved time solved time solved time solved time
(%) (s.) (%) (s.) (%) (s.) (%) (s.)

forward 425 (56%) 466 538 (71%) 10,314 561 (74%) 4,865 664 (88%) 1,530
backward 97 (12%) 143 333 (44%) 5,172 522 (68%) 2,744 563 (74%) 554

The third algorithm we used in the experiments of this section is based on
explicit elimiantion of boundary points [16]. We will refer to this algorithm
as QE-GBL. Here GBL stands for global. Given a formula ∃X[F], QE-GBL
eliminates variables of X globally, one by one, as in the DP procedure. How-
ever, when resolving out a variable x ∈ X, QE-GBL adds a new resolvent to
F only if it eliminates an {x}-removable {x}-boundary point of F . Variable
x is redundant in ∃x[F] if all {x}-removable {x}-boundary points of F are
eliminated. QE-GBL does not generate so many redundant clauses as DP, but
still has the flaw of eliminating variables globally.

We used QE-GBL for two reasons. First, DDS can be viewed as a branching
version of QE-GBL. In Section 8, we argued that branching gives DDS more
flexibility in variable elimination in comparison to procedures eliminating vari-
ables globally. So we wanted to confirm that DDS indeed benefited from
branching. Second, one can consider QE-GBL as an algorithm similar to that
of [20]. The latter solves ∃x[F (x, Y)] by looking for a Boolean function H(Y)
such that F (H(Y), Y) ≡ ∃x[F (x, Y)]. We used QE-GBL to get an idea about
the performance of the algorithm of [20] since it was not implemented as a
stand-alone tool.Our implementation of QE-GBL was quite efficient. In par-
ticular, we employed Picosat [4] for finding boundary points.

In this subsection, we describe two experiments with the 758 model check-
ing benchmarks of HWMCC’10 competition [31]. In the first experiment (the
first line of Table 3) we used EnumSA, C2D, QE-GBL and DDS to compute
the set of states S1

reach reachable in the first transition. In this case, CNF for-
mula F describes the transition relation and the initial state. CNF formula G
equivalent to ∃X[F] specifies S1

reach .

In the second experiment, (the second line of Table 3) we used the same
benchmarks to compute the set of “bad” states in backward model checking.
In this case, F specifies the output function and the property in question. If F
evaluates to 1 for some assignment p to Vars(F), this property is broken and
the state given by the state bits of p is bad. Formula G equivalent to ∃X[F]
specifies the set of all bad states (that may or may not be reachable from the
initial state).

Table 3 shows the comparison of the four programs with respect to the num-
ber of formulas solved, percentage of this number to the total number (758)
and time taken for the solved problems. With 1-minute time limit, DDS solved
more formulas than EnumSA, C2Dand QE-GBL in forward and backward
model checking. Figures 6 and 7 give the number of formulas of Table 3 solved
by the four programs in t seconds, 0 ≤ t ≤ 60. These figures show the supe-

22 Eugene Goldberg, Panagiotis Manolios

Fig. 6: Forward model checking (1 iteration)

Fig. 7: Backward model checking (1 iteration)

Quantifier Elimination by Dependency Sequents 23

riority of DDS over EnumSA, C2D and QE-GBL on the set of formulas we
used.

The size of the 1,227 formulas solved by DDS peaked at 98,105 variables,
the medium size being 2,247 variables. The largest number of non-quantified
(i.e., state) variables was 7,880 and 541 formulas had more than 100 state vari-
ables. The size of resulting formula G peaked at 32,769 clauses, 361 resulting
formulas had more than 100 clauses. We used Picosat [4] to remove redundant
literals and clauses of G. Namely, for every clause C of G we checked if G was
equivalent to G \ {C}. If so, C was removed from G. Otherwise, we tested
every literal l of C if removal l from C changed the function of G. If not, l
was removed from C. The total runtime for the optimization of G by Picosat
was limited by 4 seconds. Overall, the resulting formulas built by DDS were
smaller than those of EnumSA and QE-GBL. For instance, out of 1069 formu-
las solved by both DDS and QE-GBL, the size of G built by DDS was smaller
(respectively equal or larger) in 267 (respectively 798 and 4) cases.

9.3 Compositionality of DDS

In this subsection, we describe an experiment showcasing the compositionality
of DDS . We also confirm that EnumSA is not compositional (see Section 8).

Table 2: Compositionality of QE algorithms. Time
limit = 1 hour

#co- #vars, |Y | EnumSA DDS DDS
pies #clauses (s.) rand

(s.)
(s.)

5 20,30 10 0 0.01 0.01
10 40,60 20 10.5 0.01 0.01
15 60,90 30 >1hour 0.01 0.01
500 2000,3000 1,000 >1hour 1.95 0.04

In this experiment,both
programs computed the out-
put assignments produced
by a combinational circuit
N composed of small identi-
cal circuits N1, . . . , Nk with
independent sets of vari-
ables. In this case, one needs
to eliminate quantifiers from
∃X[F] where F = F1 ∧ . . .∧
Fk. CNF formula Fi speci-
fies Ni and Vars(Fi)\X and

Vars(Fi) ∩ X are the sets of output and non-output variables of Ni respec-
tively. So a CNF formula equivalent to ∃X[F] specifies the output assignments
of N .

The first column of Table 2 shows k (the number of copies of Ni). The
next two columns give the size of CNF formula F and the number of outputs
in circuit N . The last three columns show the run time of EnumSA and two
versions of DDS . In the first version, the choice of branching variables was
random. In the second version, this choice was guided by the compositional
structure of N . While DDS solved all the formulas easily, EnumSA could
not finish the formulas F with k ≥ 15 in 1 hour. Notice that DDS was able
to quickly solve all the formulas even with the random choice of branching
variables.

24 Eugene Goldberg, Panagiotis Manolios

Fig. 8: Performance of model checkers on 247 examples solved by MC-DDS

9.4 Backward model checking based on DDS and BDDs

In this subsection, we compare backward model checkers based on DDS and
BDDs [7]. Our implementation of a model checker based on DDS was straight-
forward: DDS was used to compute backward images until an initial state or a
fixed point were reached. We will refer to the model checker based on DDS as
MC-DDS .

In experiments, we used the BDD-based model checker incorporated into
the latest version of a tool called PdTrav [32] (courtesy of Gianpiero Cabodi).
We ran PdTrav in the backward model checking mode with ternary simulation
turned off (as a non-BDD optimization). The other non-BDD optimizations,
e.g. computation of the cone of influence, remained active because there was
no way to switch them off. Since DDS maintaints single search tree, we also
forced PdTrav to represent the transition relation by a monolithic BDD. (A
D-sequent based QE algorithm does not have to build a single search tree e.g.
it can employ restarts. However, using restarts requires storing and re-using
D-sequents.) We will refer to PdTrav with the options above as MC-BDD .

Table 3: Results on examples solved by
MC-DDS. The time limit is 2,000s

mod. checker MC-BDD MC-DDS

#solved 193 247
#timeouts 54 0
time for sol-
ved by both 9,080s 11,293s

We ran MC-DDS and MC-
BDD on the 758 benchmarks of the
HWMCC-10 competition. With the
time limit of 2,000 seconds, MC-
BDD and MC-DDS solved 374 and
247 benchmarks respectively. This
is not surprising taking into ac-
count the maturity of current BDD
algorithms and their re-using of

learned information via subgraph hashing. An important fact however is that
MC-DDS solved many problems that MC-BDD could not.

Quantifier Elimination by Dependency Sequents 25

Table 3 shows the results of both model checkers on the 247 benchmarks
solved by MC-DDS (i.e. favored by DDS). The second line of this table gives
the number of benchmarks solved under 2,000s. The third line shows how
many examples out of 247 were not solved in the time limit. The last line gives
the total time in seconds for the benchmarks solved by both model checkers.
Table 3 shows that a large number of problems solved by MC-DDS were hard
for MC-BDD . Figure 8 gives the performance of both model checkers on the
benchmarks solved by MC-DDS in terms of the number of problems finished
in a given amount of time.

Table 4: Comparison on some concrete benchmarks solved by MC-DDS . The time limit is
2,000s.

benchmark #lat- #gates #ite- bug MC- MC-

ches rati- BDD DDS

ons (s.) (s.)
pdtvistwoall0 33 1,713 2 no timeout 41
pdtvisvending02 34 958 5 no 0.7 1,635
bj08amba4g5 36 13,637 4 no timeout 113
pdtvisbakery3 48 7,514 2 yes 1.3 12
texasifetch1p5 57 663 21 yes 1.5 368
visprodcellp01 78 2,885 5 no 19 7.9
pdtpmss1269b 99 811 3 no timeout 64
texasparsesysp1 312 12,173 10 yes 0.7 231
bobmiterbm1or 381 3,720 1 yes 0.7 0.1
bobsynthand 3,015 15,397 2 no 1.2 0.6
mentorbm1and 4,344 31,684 2 no timeout 1.8

Results of the model checkers on some concrete benchmarks solved by MC-
DDS are given in Table 4. The column iterations show the number of backward
images computed by the algorithms before finding a bug or reaching a fixed
point.

10 Background

The relation between a resolution proof and the process of elimination of
boundary points was described in [15]. In terms of the present paper, [15] dealt
only with a special kind of Z-boundary points of formula F where |Z| = 1.
In the present paper, we consider the case where Z is an arbitrary subset of
the set of quantified variables X of an ∃CNF formula ∃X[F]. This extension
is crucial for describing the semantics of D-sequents. The notion of D-sequents
was introduced in [18]. There, we formulated a QE algorithm that branched
only on quantified variables of ∃X[F]. This algorithm is more complex than
DDS because it computed boundary points explicitly.

As far as quantifier elimination is concerned, QE algorithms and QBF
solvers can be partitioned into two categories. (Although, in contrast to a QE
algorithm, a QBF-solver is a decision procedure, they both employ methods
of quantifier elimination. Since this paper is focused on SAT-based solvers, we
omit references to papers on QE algorithms that use BDDs [7,8].) The mem-
bers of the first category employ various techniques to eliminate quantified

26 Eugene Goldberg, Panagiotis Manolios

variables of the formula one by one in some order [29,3,2,20,1]. For exam-
ple, in [20], quantified variables are eliminated by interpolation [26]. All these
solvers face the problem that we already discussed in Section 8. The necessity
to eliminate a variable in one big step deprives the algorithm of flexibility and,
in general, leads to generation of prohibitively large sets of clauses.

The solvers of the second category are based on enumeration of satisfying
or unsatisfying assignments [25,21,14,6,28]. Since such assignments are, in
general, “global” objects, it is hard for such solvers to follow the fine structure
of the formula, e.g., such solvers are not compositional. In a sense, DDS tries
to take the best of both worlds. It branches and so can use different variable
orders in different branches as the solvers of the second category. At the same
time, in every branch, DDS eliminates quantified variables individually as
the solvers of the first category, which makes it easier to follow the formula
structure.

11 Conclusion

We introduced Derivation of Dependency-sequents (DDS), a new method for
eliminating quantifiers from a formula ∃X[F] where F is a CNF formula. The
essence of DDS is to add resolvent clauses to F to make the variables of X
redundant. The process of making variables redundant is described by de-
pendency sequents (D-sequents) specifying conditions under which variables
of X are redundant. In contrast to methods based on the enumeration of
satisfying assignments, DDS is compositional. Our experiments with a proof-
of-the-concept implementation show the promise of DDS . Our future work will
focus on studying various ways to improve the performance of DDS , including
lifting the constraint that non-quantified variables are assigned before quanti-
fied variables and reusing D-sequents instead of discarding them after one join
operation (as SAT-solvers reuse conflict clauses).

Acknowledgment

This research was supported in part by DARPA under AFRL Cooperative
Agreement No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and CCF-
1319580.

Appendix

The appendix contains proofs of the propositions listed in the paper. We also give proofs
of lemmas used in the proofs of propositions.

Quantifier Elimination by Dependency Sequents 27

Propositions of Section 2: Redundant Variables, Boundary Points
and Quantifier Elimination

Proposition 1 A Z-boundary point p of F is removable in ∃X[F], iff one cannot turn p
into an assignment satisfying F by changing only the values of variables of X.

Proof: If part. Assume the contrary. That is p is not removable while no satisfying as-
signment can be obtained from p by changing only assignments to variables of X. Let
Y = Vars(F) \ X and C be a clause consisting only of variables of Y and falsified by p.
Since p is not removable, clause C is not implied by F . This means that there is an assign-
ment s that falsifies C and satisfies F . By construction, s and p have identical assignments
to variables of Y . Thus, s can be obtained from p by changing only values of variables of X
and we have a contradiction.

Only if part. Assume the contrary. That is p is removable but one can obtain an assignment
s satisfying F from p by changing only values of variables of X. Since p is removable, there
is a clause C that is implied by F and falsified by p and that depends only of variables of
Y . Since s and p have identical assignments to variables of Y , point s falsifies C. However,
since s satisfies F , this means that C is not implied by F and we have a contradiction. �

Proposition 2 The variables of Z ⊆ X are not redundant in ∃X[F] iff there is an X-
removable W -boundary point of F , W ⊆ Z.

Proof: Let H denote F \FZ and Y denote Vars(F)\X. Given a point p, let (x,y) specify
the assignments of p to the variables of X and Y respectively.
If part. Assume the contrary, i.e., there is an X-removable W -boundary point p=(x,y) of F
where W ⊆ Z but the variables of Z are redundant and hence ∃X[F] ≡ ∃X[H]. Since p is a
boundary point, F (p) = 0. Since p is removable, (∃X[F])y = 0. On the other hand, since p
falsifies only W -clauses of F it satisfies H. Hence (∃X[H])y = 1 and (∃X[F])y 6= (∃X[H])y ,
which leads to a contradiction.

Only if part. Assume the contrary, i.e., the variables of Z are not redundant (and hence
∃X[F] 6≡ ∃X[H]) and there does not exist an X-removable W -boundary point of F , W ⊆ Z.
Let y be an assignment to Y such that (∃X[F])y 6= (∃X[H])y . One has to consider the
following two cases.

• (∃X[F])y = 1 and (∃X[H])y = 0. Then there exists an assignment x to X such that
(x,y) satisfies F . Since every clause of H is in F , formula H is also satisfied by p. So
we have a contradiction.

• (∃X[F])y = 0 and (∃X[H])y = 1. Then there exists an assignment x to variables of
X such that (x,y) satisfies H. Since Fy ≡ 0, point (x,y) falsifies F . Since H(p) = 1
and every clause of F that is not in H is a Z-clause, (x,y) is a W -boundary point of F
where W ⊆ Z. Since Fy ≡ 0, (x,y) is an X-removable W -boundary point of F , which
leads to a contradiction. �

Propositions of Section 3: Boundary Points And Divide-And-Conquer
Strategy

Proposition 3 Let ∃X[F] be an ∃CNF formula and q be an assignment to Vars(F). Let
p be a Z-boundary point of F where q ⊆ p and Z ⊆ X. Then, if p is removable in ∃X[F]
it is also removable in ∃X[Fq].

Proof: Let Y denote Vars(F) \X. Assume the contrary. That is p is removable in ∃X[F]
but is not removable in ∃X[Fq]. The fact that p is removable in ∃X[F] means that there is
a clause C implied by F and falsified by p that consists only of variables of Y . Since p is not
removable in ∃X[Fq], from Proposition 1 it follows that an assignment s satisfying Fq can
be obtained from p by changing only values of variables of X \ Vars(q). By construction,
p and s have identical assignments to variables of Y . So s has to falsify C. On the other
hand, by construction, q ⊆ s. So, the fact that s satisfies Fq implies that s satisfies F too.
Since s falsifies C and satisfies F , C is not implied by F and we have a contradiction. �

28 Eugene Goldberg, Panagiotis Manolios

Proposition 4 Let ∃X[F] be a CNF formula and q be an assignment to variables of F .
Let the variables of Z be redundant in ∃X[Fq] with scope W where Z ⊆ (X \Vars(q)). Let
a variable v of X \(Vars(q)∪Z) be locally redundant in ∃X[Fq \ (Fq)Z]. Then the variables
of Z ∪ {v} are redundant in ∃X[Fq] with scope W ∪ {v}.

Proof: Assume the contrary, that is the variables of Z ∪{v} are not redundant with scope
W ∪ {v}. Then from Definition 10 it follows that Fq has a Z′-boundary point p where
Z′ ⊆ Z ∪ {v}, q ⊆ p that is (W ∪ {v})-removable in Fq . Let us consider the two possible
cases:

• v 6∈ Z′ (and so Z′ ⊆ Z). Since p is (W ∪{v})-removable in Fq , it is also W -removable in
Fq . Hence, the variables of Z are not redundant in ∃X[Fq] with scope W and we have
a contradiction.

• v ∈ Z′ (and so Z′ 6⊆ Z). Then p is a {v}-boundary point of Fq \ (Fq)Z . Indeed, there
has to be a clause C of Fq falsified by p that contains variable v. Otherwise, condition
d) of the definition of a boundary point is broken because v can be removed from Z′

(see Definition 8) .

Let P denote the set of all points obtained from p by flipping values of variables of
W ∪ {v}. Let us consider the following two possibilities.
– Every point of P falsifies Fq \ (Fq)Z . This means that p is a {v}-removable {v}-

boundary point of Fq \ (Fq)Z . So v is not locally redundant in ∃X[Fq \ (Fq)Z] and
we have a contradiction.

– A point d of P satisfies Fq \ (Fq)Z . Let us consider the following two cases.
• d satisfies Fq . This contradicts the fact that p is a (W ∪ {v})-removable Z′-

boundary point of Fq . (By flipping variables of W ∪{v} one can obtain a point
satisfying Fq .)

• d falsifies some clauses of Fq . Since Fq and Fq \ (Fq)Z are different only in
Z-clauses, d is a Z′′-boundary point of Fq where Z′′ ⊆ Z. By construction, p
and d are different only in values of variables from W ∪ {v}. So, the fact that
p is a (W ∪ {v})-removable Z′-boundary point of Fq implies that d is a W -
removable Z′′-boundary point of Fq . So the variables of Z are not redundant
in Fq with scope W , which leads to a contradiction. �

Propositions of Section 4: Two Simple Cases of Local Variable Re-
dundancy

Lemma 1 Let p be a {v}-boundary point of CNF formula G(Z) where v ∈ Z. Let p′

be obtained from p by flipping the value of v. Then p′ either satisfies G or it is also a
{v}-boundary point of G.

Proof: Assume the contrary, i.e., p′ falsifies a clause C of G that does not have a literal
of v. (That is p′ is neither a satisfying assignment nor a {v}-boundary point of G.) Since p
is different from p′ only in the value of v, it also falsifies C. Then p is not a {v}-boundary
point of G and we have a contradiction. �

Proposition 5 Let ∃X[F] be an ∃CNF formula and q be an assignment to Vars(F). Let
a variable v of X \Vars(q) be blocked in Fq. Then v is locally redundant in ∃X[Fq].

Proof: Assume the contrary i.e. v is not locally redundant in ∃X[Fq]. Then there is a
v-removable {v}-boundary point p of Fq . Note that the clauses of Fq falsified by p have the
same literal l(v) of variable v. Let p′ be the point obtained from p by flipping the value of
v. According to Lemma 1, one needs to consider only the following two cases.

• p′ satisfies Fq . Since p′ is obtained from p by changing only the value of v, p is not
{v}-removable in Fq . So we have a contradiction.

Quantifier Elimination by Dependency Sequents 29

• p′ falsifies only the clauses of Fq with literal l(v). (Point p′ cannot falsify a clause
with literal l(v).) Then there is a pair of clauses C and C′ of Fq falsified by p and p′

respectively that have opposite literals of variable v. Hence v is not a blocked variable
of Fq and we have a contradiction. �

Proposition 6 Let ∃X[F] be an ∃CNF formula and q be an assignment to Vars(F). Let
Fq have an empty clause. Then the variables of X\Vars(q) are locally redundant in ∃X[Fq].

Proof: Let X′ = X \Vars(q). Assume the contrary i.e. the variables of X′ are not locally
redundant in ∃X[Fq]. Then there is an X′-removable Z-boundary point where Z ⊆ X′.
However, the set of Z-boundary points of Fq is empty, which leads to a contradiction.
Indeed, on the one hand, Fq contains an empty clause C that is falsified by any point. On
the other hand, according to Definition 8, if p is a Z-boundary point, then Z is a non-empty
set that has to contain at least one variable of every clause falsified by p, in particular, a
variable of clause C. �

Propositions of Section 5: Dependency Sequents (D-sequents)

Proposition 7 Let ∃X[F] be an ∃CNF formula. Let H = F ∧ G where F implies G.
Let q be an assignment to Vars(F). Then if (∃X[F], q,W) → Z holds, the D-sequent
(∃X[H], q,W) → Z does too.

Proof: Assume the contrary, i.e., (∃X[F], q,W) → Z holds but (∃X[H], q,W) → Z does
not. According to Definition 13, this means that variables of Z are not redundant in ∃X[Hq]
with scope W . That is, there is a W -removable Z′-boundary point p of Hq where Z′ ⊆ Z.
The fact that the variables of Z are redundant in ∃X[Fq] with scope W means that p is not
a W -removable Z′′-boundary point of Fq where Z′′ ⊆ Z. This can happen for the following
three reasons.

• p satisfies Fq . Then it also satisfies Hq and hence cannot be a boundary point of Hq .
So we have a contradiction.

• p is not a Z′′-boundary point of Fq where Z′′ ⊆ Z. That is p falsifies a clause C of Fq
that does not contain a variable of Z. Since Hq also contains C, point p cannot be a
Z′-boundary point of Hq where Z′ ⊆ Z. So we have a contradiction again.

• p is a Z′′-boundary point of Fq where Z′′ ⊆ Z but it is not W -removable in Fq . This
means that one can obtain a point s satisfying Fq by flipping values of variables of W
in p. Since s also satisfies Hq , one has to conclude that p is not a W -removable point
of Hq . Thus we have a contradiction. �

Proposition 8 Let D-sequent (∃X[F], q,W) → Z hold. Let W ′ be a superset of W where
W ′ ∩Vars(q) = ∅. Then (∃X[F], q,W ′) → Z holds as well.

Proof: Assume that (∃X[F], q,W ′) → Z does not hold. Then there is a V -boundary
point p of Fq where V ⊆ Z that is W ′-removable in Fq . Since W ⊆ W ′, point p is
also W -removable. This means that (∃X[F], q,W) → Z does not hold, which leads to a
contradiction. �

Proposition 9 Let ∃X[F] be an ∃CNF formula. Let D-sequents (∃X[F], q′,W ′) → Z and
(∃X[F], q′′,W ′′) → Z hold and (Vars(q′) ∩W ′′) = (Vars(q′′) ∩W ′) = ∅. Let q′, q′′ be
resolvable on v ∈ Vars(F) and q be the resolvent of q′ and q′′. Then, the D-sequent
(∃X[F], q,W ′ ∪W ′′) → Z holds too.

Proof: Assume the contrary, that is D-sequent (∃X[F], q,W ′ ∪W ′′) → Z does not hold
and so the variables of Z are not redundant in ∃X[Fq] with scope W ′ ∪W ′′. Then there is
a Z∗-boundary point p where Z∗ ⊆ Z and q ⊆ p that is (W ′ ∪W ′′)-removable in Fq . By
definition of q, the fact that q ⊆ p implies that q′ ⊆ p or q′′ ⊆ p. Assume, for instance, that

30 Eugene Goldberg, Panagiotis Manolios

q′ ⊆ p. The fact that p is a Z∗-boundary point of Fq implies that p is also a Z∗-boundary
point of Fq′ . Since p is (W ′ ∪W ′′)-removable in Fq it is also W ′-removable in Fq′ . So the

variables of Z are not redundant in Fq′ with scope W ′ and D-sequent (∃X[F], q′,W ′) → Z
does not hold. So we have a contradiction. �

Lemma 2 Let D-sequent (∃X[F], q,W) → Z hold and r be an assignment such that q ⊆ r
and Vars(r) ∩W = ∅. Then D-sequent (∃X[F], r,W) → Z holds too.

Proof: Assume the contrary i.e. the variables of Z are not redundant in Fr with scope W .
Then there is a Z′-boundary point p where Z′ ⊆ Z that is W -removable in Fr . Note that
p is also a Z′-boundary point of Fq and it is also W -removable in Fq . This implies that the
variables of Z are not redundant in Fq with scope W . So we have a contradiction. �

Proposition 10 Let s and q be assignments to variables of F where s ⊆ q. Let D-sequents
(∃X[F], s,W) → Z and (∃X[F \ FZ], q, {v}) → {v} hold where Vars(q) ∩ Z = ∅ and
Vars(q) ∩W = ∅. Then D-sequent (∃X[F], q,W ∪ {v}) → Z ∪ {v} holds.

Proof: From Lemma 2 it follows that (∃X[F], q,W) → Z holds. Proposition 4 implies
that the variables of Z ∪ {v} are redundant in Fq with scope W ∪ {v}. Hence D-sequent
(∃X[F], q,W ∪ {v}) → Z ∪ {v} holds �

Proposition of Section 7: Description of DDS

In this section, we prove the correctness of DDS (Proposition 11). First we introduce a few
new definitions and prove a few lemmas.

Definition 18 Let ∃X[F] be an ∃CNF formula, q be an assignment to Vars(F) and
Z ⊆ (X\Vars(q)). We will call (∃X[F], q,W) → Z a single-variable D-sequent if |Z|=1.

Definition 19 D-sequents (∃X[F], q′,W ′) → {v′} and (∃X[F], q′′,W ′′) → {v′′} are called
compatible if

• q′ and q′′ are compatible
• (Vars(q′) ∪Vars(q′′)) ∩ (W ′ ∪W ′′ ∪ {v′} ∪ {v′′} = ∅

Definition 20 Let Ω be a set of single-variable D-sequents for an ∃CNF formula ∃X[F].
We will say that Ω is a set of compatible D-sequents if every pair of D-sequents of Ω is
compatible.

Definition 21 Let Ω be a set of compatible D-sequents for an ∃CNF formula ∃X[F].
Denote by aΩ the assignment that is the union of all s occurring in D-sequents

(∃X[F], s,W) →W of Ω. We will call aΩ the axis of Ω. Denote by WΩ the union of the
scopes W of the D-sequents of Ω.

Definition 22 Let Ω be a set of compatible D-sequents for an ∃CNF formula ∃X[F].

Denote by XΩ the set of all variables of X whose redundancy is stated by D-sequents of

Ω. In the following write-up we assume that |XΩ | = |Ω|. That is for every variable v of

XΩ , set Ω contains exactly one D-sequent stating the redundancy of v.

Definition 23 Let Ω be a set of compatible D-sequents for an ∃CNF formula ∃X[F]. We

will call D-sequent (∃X[F],aΩ ,WΩ) → XΩ the composite D-sequent for Ω. We will
call set Ω composable if the composite D-sequent of Ω holds for ∃X[F].

Lemma 3 Let v be the branching variable picked by DDS after making assignment q.
Assume for the sake of clarity that v = 0 and v = 1 are assignments of left and right
branches respectively. Denote by Ω0 and Ω1 the sets of D-sequents derived in branches
v = 0 and v = 1 respectively. Denote by Ω the set of D-sequents produced by procedure
join D seqs of Figure 5. Let Ψ ,Ψ0,Ψ1 be subsets of Ω,Ω0, Ω1 and XΨ=XΨ0=XΨ1 . Let the
composite D-sequents of Ψ0 and Ψ1 hold. Then the composite D-sequent of Ψ holds too.

Quantifier Elimination by Dependency Sequents 31

Proof: Assume the contrary i.e. (∃X[F],aΨ ,WΨ) → XΨ does not hold. Then there is
a Z-boundary point p of F

aΨ
where Z ⊆ XΨ that is WΨ -removable. Let v be a variable

of XΨ . Denote by q0 and q1 the points q ∪ {(v = 0)} and q ∪ {(v = 1)} respectively. Let
(∃X[F], s0,W0) → {v}, (∃X[F], s1,W1) → {v}, (∃X[F], s,W) → {v} be the D-sequents
derived in subspaces q0, q1 and q respectively. We can have two situations here. First, all
three D-sequents are equal to each other because the D-sequent of subspace q0 is symmetric
in v. In this case, W=W0=W1. Second, the D-sequent of subspace q is obtained by joining
the D-sequents of subspaces q0 and q1 at variable v. In this case, W = W0 ∪W1. In either
case W0 ⊆W and W1 ⊆W hold. Hence WΨ0 ⊆WΨ and WΨ1 ⊆WΨ .

By construction, q0 ⊆ p or q1 ⊆ p. Assume for the sake of clarity that q0 ⊆ p holds.
Then point p is a Z-boundary point of F

aΨ0 where Z ⊆ XΨ0 that is WΨ0 -removable.

Hence, the composite D-sequent (∃X[F],aΨ0 ,WΨ0) → XΨ0 does not hold. So we have a
contradiction. �

Lemma 4 Let D-sequent (∃X[F], q,W) → Z hold. Let V be a subset of Z. Then D-sequent
(∃X[F], q,W) → V holds too.

Proof: Assume that (∃X[F], q,W) → V does not hold. Then there is a V ′-boundary
point p where V ′ ⊆ V that is W -removable in Fq . Since V ′ ⊆ Z this means that Z is not
redundant in ∃X[Fq] with scope W . So we have a contradiction. �

Lemma 5 Let Ω be a compatible set of D-sequents for an ∃CNF formula ∃X[F]. Let q be
an assignment to variables of Vars(F) such that aΩ ⊆ q where aΩis the axis of Ω. Let

v ∈ X \ (Vars(q) ∪ XΩ) be a blocked variable of Fq. Let s be an assignment defined as
follows. For every pair of clauses A,B of F that can be resolved on variable v, s contains
either

1. an assignment satisfying A or B or
2. all the assignments of r such that

• a D-sequent (∃X[F], r,W ′) → {v′} is in Ω and
• A or B contains variable v′

Denote by Ψ the subset of Ω comprising of all D-sequents (∃X[F], r)→{w} that were used
in the second condition above. Let the composite D-sequent (∃X[F],aΨ ,WΨ) → XΨ hold.
Then a D-sequent (∃X[F], s,WΨ ∪ {v}) → {v} holds.

Proof: Notice that variable v is blocked in formula Fs \ (Fs)X
Ψ

. Then Proposition 5

entails that v is redundant in Fs \ (Fs)X
Ψ

. Since, by construction, aΨ ⊆ s, then Lemma 2
implies that D-sequent (∃X[F], s,WΨ) → XΨ holds. Then from Proposition 4 it follows
that the D-sequent (∃X[F], s,WΨ ∪ {v}) → XΨ ∪ {v} holds. Then Lemma 4 entails that
the D-sequent (∃X[F], s,WΨ ∪ {v}) → {v} holds �

Lemma 6 Let ∃X[F] be an ∃CNF. Let C be a clause of F falsified by an assignment q.
Let v be a variable of X \ Vars(q). Then D-sequent (∃X[F], s, {v}) → {v} holds where s
is the shortest assignment falsifying C.

Proof: The proof is similar to that of Proposition 6.

Lemma 7 Any subset of active D-sequents derived by DDS is composable.

Proof: Let us first give an informal argument. As we mentioned in Subsection 5.3, D-
sequents (∃X[F], q′,W ′) → {v′} and (∃X[F], q′′,W ′) → {v′′} may be uncomposable if
proving redundancy of both v′ and v′′ involves circular reasoning where {v′}-clauses are
used to prove redundancy of variable v′′ and vice versa. DDS avoids circular reasoning by
keeping the {v}-clauses removed from ∃X[F] as long as a D-sequent for variable v remains
active. Thus, if, for instance, {v′}-clauses are used to prove redundancy of variable v′′, the
{v′′}-clauses are removed from F and cannot be used to prove redundancy of variable v′.
In other words, for every path of the search tree, variables v′ and v′′ are proved redundant
in a particular order (but this order may be different for different paths).

Let Ψ be a set of active D-sequents. To show composability of D-sequents from Ψ one
needs to consider the following three cases.

32 Eugene Goldberg, Panagiotis Manolios

1. All D-sequents of Ψ are atomic. Assume for the sake of simplicity that Ψ = {S′, S′′}
where S′ and S′′ are equal to (∃X[F], q′,W ′) → {v′} and (∃X[F], q′′,W ′) → {v′′}
respectively. One can have two different cases here.
• S′ and S′′ are independent of each other. That is there is no clause C of F that has

variables v′ and v′′ and is not blocked at v′ or v′′. In this case, one can easily show
that the D-sequent (∃X[F], q′ ∪ q′′,W ′ ∪W ′′) → {v′, v′′} holds.

• S′ and S′′ are interdependent. This can happen only if S′ and S′′ are D-sequents
derived when v′ and v′′ are blocked. Atomic D-sequents derived due to the presence
of a clause falsified by q (see Lemma 6) are independent of each other or D-sequents
of blocked variables. Suppose the fact that v′ is blocked is used to prove that v′′ is
blocked as well. Then Lemma 5 entails that q′ ⊆ q′′ and W ′ ⊆ W ′′ and that D-
sequent (∃X[F], q′′,W ′′) → Z holds where {v′, v′′} ⊆ Z. Then the composability
of S′ and S′′ simply follows from Lemma 4.

2. The set Ψ is obtained from set Ψ0 and Ψ1 when merging branches v = 0 and v = 1.
Then Lemma 3 entails that if Ψ0 and Ψ1 are composable, then Ψ is composable as well.

3. Ψ is a mix of atomic and non-atomic D-sequents. Assume for the sake of simplic-
ity that Ψ = {S′, S′′} where S′ and S′′ are equal to (∃X[F], q′,W ′) → {v′} and
(∃X[F], q′′,W ′) → {v′′} respectively. Assume that S′ is a result of join operations
while S′′ is atomic. Let S′1, . . . , S

′
k be the set of atomic D-sequents that are ancestors

of S′. Here S′i = (∃X[F], q′i,W
′
i) → {v′}. Let S′′1 , . . . , S

′′
k be the set of D-sequents ob-

tained from S′′ where S′′i = (∃X[F], q′i ∪ q
′′,W ′′) → {v′′}. Due to Lemma 2, each

D-sequent S′′i holds. Since S′i, S
′′
i are atomic this case is covered by item 1 above and

so they are composable. Then the D-sequents obtained by composition of S′i, S
′′
i can be

joined producing correct D-sequents (due to correctness of operation join). Eventually,
a correct D-sequent that is the composite of S′ and S′′ will be derived �

Proposition 11 DDS is sound and complete.

Proof: First, we show that DDS is complete. DDS builds a binary search tree and visits
every node of this tree at most three times (when starting the left branch, when backtracking
to start the right branch, when backtracking after the right branch is finished). So DDS is
complete.

Now we prove that DDS is sound. DDS terminates in two cases. First, it terminates when
an empty clause is derived, which means that F is unsatisfiable. In this case, the formula G
returned by DDS consists only of an empty clause. This result is correct because this clause
is built by resolving clauses of F and resolution is sound. Second, DDS terminates after
building a sequence of D-sequents (∃X[F], ∅, Xi1) → {xi1}, . . . ,(∃X[F], ∅, Xik) → {xik}.
Here xi1 , ..., xik are the variables forming X and {xim} ⊆ Xim ⊆ X, m = 1, . . . , k. We
need to show that these D-sequents are correct and composable. The latter means that the
D-sequent (∃X[F], ∅, X)→ X holds and so the variables of X are redundant in the formula
∃X[F] returned by DDS .

Let us carry out the proof by induction in the number of steps of DDS . The algorithm
has two kinds of steps. A step of the first kind is to add a new atomic D-sequent to an
existing set Ω of active D-sequents. A step of the second kind is to produce a new set of
D-sequents Ω from the sets of D-sequents Ω0 and Ω1 obtained in branches v = 0 and v = 1.

Let qk be the assignment made by DDS after steps 1, . . . , k. Let Ωk be the set of D-
sequents maintained by DDS that are active in subspace qk. (We assume here that every
D-sequent is discarded after it takes part in a join operation. So for one redundant variable
Ω contains only one active D-sequent.)

The induction hypothesis is as follows. The fact that D-sequents of Ωk are individually
correct and every subset of Ωk is composable implies that the D-sequents of Ωk+1 are
correct and every subset of Ωk+1 is composable.

The base step, k=1. We need to consider the following two situations.

• The first atomic D-sequent S is derived. In this case, its correctness follows Lemmas 5, 6.
Since Ω1 consists only of one D-sequent, every subset of Ω1 is obviously composable.

• The first step consists of merging empty sets of D-sequents Ω1
0 and Ω1

1 derived in
branches v = 0 and v = 1. In this case, Ω is empty. So the claims that every D-sequent
of Ω is correct and all subsets are composable are vacuously true.

Quantifier Elimination by Dependency Sequents 33

The induction step. We need to consider the following two situations.

• The set Ωk+1 is produced by adding an atomic D-sequent S to Ωk. The correctness of S
follows from Lemmas 5, 6. Notice that to apply Lemma 5 we need to use the induction
hypothesis. The fact that every subset of D-sequents of Ωk ∪ {S} is composable can be
proved using the reasoning of Lemma 7. (Notice that we cannot directly apply Lemma 7
because this lemma itself needs to be proved by induction. In the sketch of a proof of
Lemma 7, we just gave reasoning one can use to perform such a proof.)

• The set Ωk+1 is produced by merging sets of D-sequents Ωk0 and Ωk1 derived in branches
v = 0 and v = 1. The correctness of individual D-sequents of Ωk+1 follows from the
induction hypothesis and the correctness of operation join (Proposition 9). Lemma 3 and
the induction hypothesis entail that every subset of D-sequents of Ωk+1 is composable. �

Proposition of Section 8: Compositionality of DDS

Definition 24 We will refer to D-sequents derived due to appearance of an empty clause
in formula Fq (see Subsection 7.2) as clause D-sequents.

Proposition 12 (compositionality of DDS) Let T be the search tree built by DDS when
solving the QE problem ∃X[F1 ∧ . . . ∧ Fk], Vars(Fi) ∩ Vars(Fj) = ∅, i 6= j. Let Xi =
X ∩Vars(Fi) and Yi = Vars(Fi) \X. The number of nodes in T is bounded by |Vars(F)| ·
(η(X1 ∪ Y1) + . . .+ η(Xk ∪ Yk)) where η(Xi ∪ Yi) = 2 · 3|Xi∪Yi| · (|Xi|+ 1), i = 1, . . . , k no
matter how decision branching variables are chosen.

Proof: Denote by Y the set of variables Vars(F) \X.
Let P be a path of T and n(v) be a node of T on P . Here v is the branching variable

selected in the node n by DDS. We will call n(v) a BCP node, if the variable v was selected
due to its presence in a unit clause of Fq . We will call P an essential path, if for every
BCP node n(v) lying on P (if any) the latter corresponds to the right branch of n. That is
variable v is currently assigned the value satisfying the unit clause C of Fq due to which v
was picked. Recall that the first value assigned to v by DDS falsifies C.

Let d denote the total number of nodes of essential paths. Notice that the number of all
nodes of T is bounded by 2 ·d. The reason is that a non-essential path contains a BCP node
n(v) where v is assigned the value falsifying the unit clause due to which v was selected.
So the last node of this path is the left child of node n(v). Thus the number of nodes lying
only on non-essential paths is bounded by the number of BCP nodes of T . Since every BCP
node lies on an essential path, the total number of nodes of T is bounded by 2 ·d.

Denote by Ness paths the total number of essential paths of T . Denote by Nres cl the
total number of resolvent clauses generated by DDS . Denote by ND seqs the total number
of D-sequents generated by DDS with the exception of clause D-sequents.

We do the rest of the proof in two steps. First we show thatNess paths ≤ Nres cl +ND seqs .
Since a path of T cannot contain more than |X ∪ Y | nodes, this means that the to-
tal number of nodes of T is bounded by 2 · |X ∪ Y | · (Nres cl + ND seqs). In the sec-
ond step, we show that 2 · (Nres cl + ND seqs) ≤ η(X1 ∪ Y1) + . . . + η(Xk ∪ Yk) where

η(Xi ∪ Yi) = 2 · 3|Xi∪Yi| · (|Xi|+ 1), i = 1, . . . , k.

FIRST STEP: To prove that Ness paths ≤ Nres cl + ND seqs we show that every essential
path of T corresponds to a new resolvent clause or a new D-sequent generated by DDS that
is not a clause D-sequent. Let P be an essential path of T . Let v ∈ X∪Y be the first variable
of P picked by DDS for branching. The very fact that v was selected means that some of the
variables of X were not proved redundant in ∃X[F] yet. Let us assume the contrary, that is
DDS is able to finish P without generating a new clause or a new D-sequent that is not a
clause D-sequent. This only possible if DDS can assign all free non-redundant variables of
X without running into a conflict (in which case a new clause is generated) or producing a
new blocked variable (in which case a new non-clause D-sequent is generated).

Let x ∈ X be the last variable assigned by DDS on path P . That is every variable of
X \ {x} is either assigned or proved redundant before making an assignment to x. Let q be

34 Eugene Goldberg, Panagiotis Manolios

the set of assignments on path P made by DDS before reaching the node n(x), and X′ be
the set of all redundant variables of X in Fq . Since variables of Y are assigned before those

of X, the current formula, i.e., formula Fq \FX
′

q can only contain unit clauses that depend
on variable x. The two possibilities for the unit clauses depending on x are as follows.

• Fq \ FX
′

q contains both clauses x and x. Then, DDS generates a new clause and we
have contradiction.

• Fq \ FX
′

q does not contain either x or x or both. Then x is blocked and DDS generates
a new non-clause D-sequent. Thus we have a contradiciton again.

SECOND STEP: Notice that no clause produced by resolution can share variables of two
different subformulas Fi and Fj . This means that for every clause C produced by DDS ,
Vars(C) ⊆ (Xi ∪ Yi) for some i. The total number of clauses depending on variables of
Xi ∪ Yi is 3|Xi∪Yi|. So Nres cl ≤ 3|X1∪Y1| + . . .+ 3|Xk∪Yk|.

Now we show that ND seqs ≤ |X1|·3|X1∪Y1|+. . .+|Xk|·3|Xk∪Yk| and hence 2·(Nres cl +
ND seqs) ≤ η(X1 ∪ Y1) + . . . + η(Xk ∪ Yk). The idea is to prove that every non-clause D-
sequent generated by DDS is limited to Fi, i.e., has the form (∃X[F], s,W) → {x} where
Vars(s) ⊆ Xi ∪ Yi , W ⊆ Xi and x ∈ Xi. Recall that due to Proposition 7, D-sequent
(∃X[F], s,W) → {x} is invariant to adding resolvent clauses to F . For that reason, we will
ignore the parameter ∃X[F] when counting the number of D-sequents limited to Fi. Besides,
due to Proposition 8, one can always increase the scope of a D-sequent. For that reason,
when counting D-sequents, we will also ignore the parameter W . Then the total number
of D-sequents limited to Fi is equal to |Xi| · 3|Xi∪Yi|. So the total number of D-sequents
limited to Fi, i = 1, . . . , k is bounded by |X1| · 3|X1∪Y1| + . . .+ |Xk| · 3|Xk∪Yk|. The factor
|Xi| is the number of variables appearing on the right side of a D-sequent limited to Fi. The
factor 3|Xi∪Yi| specifies the total number of all possible assignments s.

Now we prove that every non-clause D-sequent derived by DDS is limited to a formula
Fi. We carry out this proof by induction. Our base statement is that D-sequents of an
empty set are limited to Fi. It is vacuously true. Assume that the non-clause D-sequents
generated so far are limited to Fi and then show that this holds for the next non-clause
D-sequent S. Let S be a D-sequent (∃X[F], s,W) → {x} generated for a blocked variable
x ∈ Xi. Such a D-sequent is built as described in Lemma 5. Then s consists of assignments
that either satisfy {x}-clauses of F or are the reason for redundancy of {x}-clauses. Since
clauses of different subformulas cannot be resolved with each other, every {x}-clause of F
can only have variables of Fi where x ∈ Vars(Fi). By the induction hypothesis every non-
clause D-sequent is limited to some subformula. On the other hand, DDS looks for blocked
variables when Fq has no empty clause. So, at the time S is derived, no variable of Fq can
be redundant due to a clause D-sequent. This means that if a variable x∗ of an {x}-clause
of F is redundant due to D-sequent (∃X[F], s∗,W ∗) → {x∗} then Vars(s∗) ⊆ Vars(Fi).
So Vars(s) ⊆ Vars(Fi).

Now consider the case when S is obtained by joining two D-sequents S′, S′′. Let us
consider the following three possibilities

• Neither S′ nor S′′ is a clause D-sequent. Then according to the induction hypothesis they
should be limited to Fi. (They cannot be limited to different subformulas because then
they cannot be joined due to absence of a common variable.) Then due to Definition 15,
the D-sequent produced by joining S′ and S′′ is also limited to Fi.

• Either S′ or S′′ is a clause D-sequent. Let us assume for the sake of clarity that this
is the D-sequent S′. This means that S′ has the form (∃X[F], s, {x}) → {x} where s
is the minimum set of assignments falsifying a clause C of F and x ∈ X \ Vars(s).
Since for any resolvent C of F , Vars(C) ⊆ Vars(Fi), then Vars(s) ⊆ Vars(Fi). By the
induction hypothesis, S′′ is limited to Fj . Since S′ and S′′ have at least one common
variable (at which they are joined), j has to be equal to i. So x ∈ Xi. Then joining S′

with S′′ produces a D-sequent that is also limited to Fi.

• Both S′ and S′′ are clause D-sequents. We do not care about this situation because by
joining S′ and S′′ one obtains a clause D-sequent �

Quantifier Elimination by Dependency Sequents 35

References

1. Abdulla, P., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-solvers.
In: Proceedings of the 6th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, TACAS’00, pp. 411–425 (2000)

2. Ayari, A., Basin, D.: Qubos: Deciding quantified boolean logic using propositional sat-
isfiability solvers. In: Proc. 4 th Intl. Conf. on Formal Methods in Computer-Aided
Design, vol 2517 of LNCS, FMCAD’02, pp. 187–201 (2002)

3. Biere, A.: Resolve and expand. In: The Seventh International Conference on Theory
and Applications of Satisfiability Testing, SAT’04, pp. 59–70 (2004)

4. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Compu-
tation (JSAT) 4(2-4), 75–97 (2008)

5. Bradley, A.R.: Sat-based model checking without unrolling. In: Proceedings of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI’11, pp. 70–87 (2011)

6. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental sat. In: Pro-
ceedings of the 23rd International Conference on Computer Aided Verification, CAV’11,
pp. 191–207. Springer-Verlag (2011)

7. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers C-35(8), 677–691 (1986)

8. Chauhan, P., Clarke., E., Jha, S., Kukula, J., Veith, H., Wang, D.: Using combinatorial
optimization methods for quantification scheduling. In: Proceedings of the 11th IFIP
WG 10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, CHARME ’01, pp. 293–309 (2001)

9. Clarke, E., Emerson, A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of Programs, Workshop, pp. 52–71 (1982)

10. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge, MA, USA
(1999)

11. Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48 (2001)
12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Com-

munications of the ACM 5(7), 394–397 (1962)
13. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of

the ACM 7(3), 201–215 (1960)
14. Ganai, M., Gupta, A., Ashar, P.: Efficient sat-based unbounded symbolic model check-

ing using circuit cofactoring. In: Proceedings of the 2004 IEEE/ACM International
Conference on Computer-aided Design, ICCAD’04, pp. 510–517 (2004)

15. Goldberg, E.: Boundary points and resolution. In: Theory and Applications of Satisfi-
ability Testing, 12th International Conference, SAT’09, pp. 147–160 (2009)

16. Goldberg, E., Manolios, P.: Sat-solving based on boundary point elimination. In: 6th
International Haifa Verification Conference, pp. 93–111 (2011)

17. Goldberg, E., Manolios, P.: Quantifier elimination by dependency sequents. In: Formal
Methods in Computer-Aided Design, FMCAD’12, pp. 34–44 (2012)

18. Goldberg, E., Manolios, P.: Removal of quantifiers by elimination of boundary
points. Tech. Rep. arXiv:1204.1746v2 [cs.LO], Northeastern University (2012). URL
http://arxiv.org/pdf/1204.1746v2

19. Goldberg, E., Manolios, P.: Quantifier elimination via clause redudnancy. In: Formal
Methods in Computer-Aided Design, FMCAD’13, pp. 85–92 (2013)

20. Jiang, R.: Quantifier elimination via functional composition. In: Proceedings of the 21st
International Conference on Computer Aided Verification, CAV’09, pp. 383–397 (2009)

21. Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying assignments to
boolean circuits. In: Proceedings of the 42nd Annual Design Automation Conference,
DAC’05, pp. 750–753 (2005)

22. Kullmann, O.: New methods for 3-sat decision and worst-case analysis. Theor. Comput.
Sci. 223(1-2), 1–72 (1999)

23. Marques-Silva, J., Sakallah, K.: Grasp – a new search algorithm for satisfiability. In:
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided De-
sign, ICCAD’96, pp. 220–227 (1996)

36 Eugene Goldberg, Panagiotis Manolios

24. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA (1993)

25. McMillan, K.: Applying sat methods in unbounded symbolic model checking. In: Pro-
ceedings of the 14th International Conference on Computer Aided Verification, CAV’02,
pp. 250–264 (2002)

26. Mcmillan, K.L.: Interpolation and sat-based model checking. In: Computer Aided Ver-
ification, 15th International Conference, CAV’03, pp. 1–13. Springer (2003)

27. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference,
DAC’01, pp. 530–535 (2001)

28. Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formu-
lae. Discrete Appl. Math. 130(2), 291–328 (2003)

29. Williams, P., Biere, A., Clarke, E., Gupta, A.: Combining decision diagrams and sat pro-
cedures for efficient symbolic model checking. In: Proceedings of the 12th International
Conference on Computer Aided Verification, CAV’00, pp. 124–138 (2000)

30. C2D, http://reasoning.cs.ucla.edu/c2d
31. HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html
32. Http://fmgroup.polito.it/index.php/download/

