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Abstract. Localization of computations plays a crucial role in solving
hard problems efficiently. We will refer to the techniques implementing
such localization as local computing. We relate local computing with par-
tial quantifier elimination (PQE). The latter is a generalization of regular
quantifier elimination where one can take a part of the formula out of
the scope of quantifiers. The objective of this paper is to show that PQE
can be viewed as a language of local computing and hence building effi-
cient PQE solvers is of great importance. We describe application of local
computing by PQE to three different problems of hardware verification:
property generation, equivalence checking and model checking. Besides,
we discuss using local computing by PQE for SAT solving. Finally, we
relate PQE and interpolation, a form of local computing.

1 Introduction

The complexity of many practical problems quickly grows with the problem
size. So some form of local computing is required to reduce problem complexity.
In the context of hardware verification, one can single out two types of local
computing. The first type is functionally-local computing where only a part
of the search space is involved. An example of this type of local computing
is testing. The second type is structurally-local computing where the algorithm
operates only on the parts of the formula at hand that matter. An example of the
second type of local computing is conflict analysis in SAT solving [1]. Arguably,
almost all efficient algorithms of hardware verification employ local computing
(see Appendix A). The objective of this paper is to relate local computing to
partial quantifier elimination (PQE) to show that building efficient PQE solvers
is of great importance.

PQE is a generalization of regular quantifier elimination (QE) that is defined
as follows [2]. Let F (X,Y ) be a propositional formula in conjunctive normal
form1 (CNF) where X,Y are sets of variables. Let G be a subset of clauses of
F . Given a formula ∃X[F ], the PQE problem is to find a quantifier-free formula
H(Y ) such that ∃X[F ] ≡ H∧∃X[F \G]. In contrast to full QE, only the clauses
of G are taken out of the scope of quantifiers hence the name partial QE. In this

1 Given a CNF formula F represented as the conjunction of clauses C0 ∧ · · · ∧Ck, we
will also consider F as the set of clauses {C0, . . . , Ck}.
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paper, we consider PQE for formulas with only existential quantifiers. We will
refer to H as a solution to PQE. Note that QE is just a special case of PQE
where G = F and the entire formula is unquantified. (As we show in Section 8,
interpolation can also be viewed as a special case of PQE.) The appeal of PQE
is twofold. First, it can be much more efficient than QE if G is a small subset
of F . Second, many old and new problems can be solved in terms of PQE.

The contributions of this paper are as follows. First, we relate local com-
puting to PQE. Second, we put some earlier results on property generation and
equivalence checking by PQE [3,4] in the context of local computing. So, we
demonstrate that PQE can improve the existing methods of local computing.
Third, we show that PQE can create new methods of local computing. Namely,
we illustrate local computing by PQE by the examples of model checking and
SAT solving. Fourth, we show the relation between PQE and interpolation that
is a form of local computing. Although we do not run any experiments in this
paper, we do mention some experiments of [3,4]. They show that even the current
PQE solvers whose performance can be drastically improved can be practical.

The main body of this paper is structured as follows. (Some additional in-
formation can be found in the appendix.) In Section 2, we give basic definitions.
A high-level view of PQE solving and some examples are presented in Section 3.
Sections 4 and 5 describe property generation and equivalence checking by PQE
in the context of local computing. In Sections 6 and 7, model checking and SAT-
solving by PQE are introduced as new examples of local computing. Section 8
relates PQE and interpolation. In Section 9, we make conclusions.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal
of a variable v is either v or its negation. A clause is a disjunction of literals.
A formula F is in conjunctive normal form (CNF) if F = C0 ∧ · · · ∧ Ck where
C0, . . . , Ck are clauses. We will also view F as the set of clauses {C0, . . . , Ck}.
We assume that every formula is in CNF unless otherwise stated.

Definition 2. Let F be a formula. Then Vars(F ) denotes the set of variables
of F and Vars(∃X[F ]) denotes Vars(F )\X.

Definition 3. Let V be a set of variables. An assignment #»q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in #»q as
Vars(q⃗). We will refer to #»q as a full assignment to V if Vars(q⃗) = V . We
will denote as #»q ⊆ #»r the fact that a) Vars(q⃗) ⊆ Vars(r⃗) and b) every variable
of Vars(q⃗) has the same value in #»q and #»r .

Definition 4. A literal and a clause are said to be satisfied (respectively fal-
sified) by an assignment #»q if they evaluate to 1 (respectively 0) under #»q .



Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and #»q be an assignment to Vars(H). If C is satisfied by #»q , then Cq⃗ ≡ 1. Oth-
erwise, Cq⃗ is the clause obtained from C by removing all literals falsified by #»q .
Denote by Hq⃗ the formula obtained from H by removing the clauses satisfied by
#»q and replacing every clause C unsatisfied by #»q with Cq⃗.

Definition 6. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if Gq⃗ = Hq⃗ for all full assign-
ments #»q to Vars(G) ∪Vars(H).

Definition 7. Let F (X,Y ) be a formula and G ⊆ F and G ̸= ∅. The clauses of
G are said to be redundant in ∃X[F ] if ∃X[F ] ≡ ∃X[F \G]. If F \G implies
G, the clauses of G are redundant in ∃X[F ] but the opposite is not true.

Definition 8. Given a formula ∃X[F (X,Y ))] and G where G ⊆ F , the Partial
Quantifier Elimination (PQE) problem is to find H(Y ) such that
∃X[F ] ≡ H ∧ ∃X[F \ G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Example 1. Consider formula F = C0∧· · ·∧C4 where C0 = x2∨x3, C1=y0∨x2,
C2 = y0 ∨ x3, C3 = y1∨x3, C4 = y1∨x3. Let Y = {y0, y1} and X = {x2, x3}.
Consider the PQE problem of taking C0 out of ∃X[F ] i.e., finding H(Y ) such
that ∃X[F ] ≡ H∧∃X[F \ {C0}]. One can show that ∃X[F ] ≡ y0∧∃X[F \ {C0}]
(see Subsection 3.3) i.e., H=y0 is a solution to this PQE problem.

Definition 9. Given a formula ∃X[F (X,Y ))] and G where G ⊆ F , the deci-
sion version of PQE is to check if G is redundant in ∃X[F ] i.e., if
∃X[F ] ≡ ∃X[F \G].

Definition 10. Let clauses C ′,C ′′ have opposite literals of exactly one variable
w∈Vars(C ′)∩Vars(C ′′). Then C ′,C ′′ are called resolvable on w.

Definition 11. Let C be a clause of a formula F and w ∈ Vars(C). The clause
C is said to be blocked [5] in F with respect to the variable w if no clause of F
is resolvable with C on w.

Proposition 1. Let a clause C be blocked in a formula F (X,Y ) with respect to
a variable x ∈ X. Then C is redundant in ∃X[F ], i.e., ∃X[F \ {C}] ≡ ∃X[F ].

The proofs of propositions are given in Appendix B.

3 PQE solving

In this section, we briefly describe a PQE-solver named START [6]. Our ob-
jective here is just to give an idea of how the PQE problem is solved. So, in
Subsection 3.2, we give a high-level description omitting some details. In Sub-
sections 3.3 and 3.4, we provide examples illustrating PQE solving.



3.1 Some background

Information on QE in propositional logic can be found in [7,8,9,10,11,12]. QE
by redundancy based reasoning is presented in [13,14]. One of the merits of
such reasoning is that it allows to introduce partial QE. A description of PQE
algorithms can be found in [2,4,6]. The sources of PQE algorithms can be be
downloaded from [15,16]. The PQE solver START described below can be viewed
as an implementation of a generic PQE algorithm introduced in [4].

3.2 High-level view

START is meant for taking out a single clause. Namely, given a formula
∃X[F (X,Y )] and a clause C ∈ F , START finds a formula H(Y ) such that
∃X[F ] ≡ H ∧ ∃X[F \ {C}]. To take a multi-clause formula G out of ∃X[F ],
one needs to apply START |G| times taking out the clauses of G one by one.
Like all existing PQE algorithms, START uses redundancy based reasoning
justified by the proposition below. This proposition shows that to solve the PQE
problem of taking a clause C out of ∃X[F (X,Y )], it suffices to find a formula
H(Y ) implied by F that makes C redundant in H ∧ ∃X[F ]. We refer to the
clause that START currently tries to prove redundant as the target clause.

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking a
clause C out of ∃X[F (X,Y )] (i.e., ∃X[F ] ≡ H ∧ ∃X[F \ {C}]) iff

1. F ⇒ H and
2. H ∧ ∃X[F ] ≡ H ∧ ∃X[F \ {C}]

START finds a solution H by branching on variables of F . The idea here is
to reach a subspace where C can be easily proved or made redundant in ∃X[F ].
To express the redundancy of C in subspace #»q , START generates a clause K
called a certificate that implies C in subspace #»q . The certificate K has the
property ∃X[K ∧ F ] ≡ ∃X[F ]. So, it can always be added to F . If the target
C was used to generate K, then START adds K to F to make C redundant in
subspace #»q . (Because C may not be redundant in subspace #»q without adding
K, see the example of Subsection 3.3.) If K was derived without using C, the
latter is already redundant in ∃X[F ] in subspace #»q . So, adding K is optional.
If a certificate K is added to F and it depends only on variables of Y , it is also
added to the solution H. Originally, H = ∅.

If the current target clause C becomes unit2 in subspace #»q , START tem-
porarily picks a different sequence of targets. Namely, START tries to prove

2 An unsatisfied clause is called unit if it has only one unassigned literal. Due to special
decision making of START (variables of Y are assigned before those of X), if the
target clause C becomes unit, its unassigned variable is always in X. We assume
here that C contains at least one variable of X. (Taking out a clause depending only
on unquantified variables, i.e. those of Y , is trivial.)



redundancy of the clauses resolvable with C on its only unassigned variable (de-
note this variable as xi). If these clauses are proved redundant in subspace #»q ,
clause C is blocked at xi and so is redundant in subspace #»q . Otherwise, a clause
implied by F and falsified by #»q is derived and added to F to make C redundant
in subspace #»q . The fact that START changes targets means that it may need
to prove redundancy of clauses other than C. The difference is that the main
target (i.e., C) must be proved globally whereas the secondary targets need to
be proved redundant only locally (in some subspaces). By resolving certificate
clauses derived in different branches START eventually produces a certificate
that simply implies C (in the entire search space). This certificate is a proof
that C is redundant in the current formula ∃X[F ] globally. At this point H is a
solution to the PQE problem.

3.3 An example of PQE solving

Here we show how START solves Example 1 introduced in Section 2. Recall that
one takes C0 out of ∃X[F (X,Y )] where F = C0 ∧ · · · ∧ C4 and C0 = x2 ∨ x3,
C1 = y0 ∨ x2, C2 = y0 ∨ x3, C3=y1∨x3, C4=y1∨x3 and Y = {y0, y1} and X =
{x2, x3}. That is, one needs to find H(Y ) such that ∃X[F ] ≡ H ∧∃X[F \ {C0}].

Consider branching on y0. In subspace y0 = 0, clauses C1, C2 become unit.
After assigning x2 = 1 to satisfy C1, the clause C0 turns into unit too and a
conflict occurs (to satisfy C0 and C2, one has to assign the opposite values to
x3). After a standard conflict analysis [1], a conflict clause K ′ = y0 is obtained
by resolving C1 and C2 with C0. Since K ′ is obtained using the target C0 itself,
START adds K ′ to F to make C0 redundant in subspace y0 = 0. (It is not hard
to check that C0 is indeed not redundant in ∃X[F ] in subspace y0 = 0 without
adding K ′.) The clause K ′ is a certificate of redundancy of C0 in the current
formula ∃X[F ] in subspace y0 = 0. Since K ′ depends only on variables of Y , it
is added to the solution H.

Now consider the subspace y0 = 1. Since the clause C1 is satisfied by y0 = 1,
no clause of F is resolvable with C0 on variable x2 in subspace y0 = 1. So, C0 is
blocked at variable x2 and hence redundant in ∃X[F ] in subspace y0 = 1. Then
START generates a certificate K ′′ = y0 ∨ x2 implying C0 in subspace y0 = 1.
(This certificate consists of the literal y0 specifying the subspace where C0 is
blocked and the literal x2 of C0 i.e., the literal of the variable x2 at which C0

is blocked. The details can be found in [6] and Appendix C.) The clause C0 is
already redundant in ∃X[F ] in subspace y0 = 1. So, adding K ′′ to F is optional.

By resolving K ′ = y0 and K ′′ = y0 ∨ x2 one obtains the certificate K = x2

that implies the target clause C0 = x2 ∨ x3 in the entire space. This proves that
C0 is redundant in the current formula ∃X[F ] globally. Recall that currently
H = K ′ and F = K ′ ∧ Finit where Finit is the initial formula F . Since H
is implied by Finit and adding H makes C0 redundant in H ∧ ∃X[Finit ], both
conditions of Proposition 2 are met. Hence H = K ′ = y0 is a solution to our
PQE problem i.e., ∃X[Finit ] ≡ y0 ∧ ∃X[Finit \ {C0}].



3.4 An example of changing the target clause

Let F = C0∧C1∧C2∧. . . where C0 = y0∨x1, C1 = x1∨x2∨x3, C2 = x1∨x2∨x3.
Let C1 and C2 be the only clauses of F with the literal x1. Consider the problem
of taking C0 out of ∃X[F (X,Y )] (we assume that y0 ∈ Y and x1, x2, x3 ∈ X).
Consider the subspace #»q = (y0 = 0). In this subspace, the target clause C0

turns into the unit clause x1. So, START changes the target C0 and switches
to proving redundancy of C1 and C2 in subspace #»q . That is C1 and then C2

consecutively become the target clause in subspace #»q .
Assume that certificates K1 = y0 ∨ x2 and K2 = y0 ∨ x3 are derived for

C1 and C2 respectively asserting their redundancy in subspace #»q . Then C0 is
blocked in subspace #»q and the certificate K0 = y0 ∨ x1 is derived as described
above (and Appendix C). K0 states the redundancy of C0 in subspace #»q .

Now assume that C1 or C2 is not redundant in subspace #»q . This is possible
only if F is unsatisfiable in subspace #»q . In this case, the certificate K0 = y0 is
derived. If K0 is obtained using C0, it is added to F . (Otherwise, adding K0 is
optional.) K0 asserts the redundancy of C0 in subspace #»q .

4 Property Generation And Local Computing

In this section, we discuss property generation by PQE [4] in the context of local
computing. We mostly describe property generation for combinational circuits
but in Subsection 4.5 we consider the case of sequential circuits. Property gen-
eration nicely illustrates the fact that PQE can be dramatically more efficient
than QE. The complexity of PQE can reduce even to linear (see Subsection 4.4.)

4.1 Motivation for property generation and some background

Roughly speaking, hardware design verification consists of two steps. First, a set
of specification properties is verified by formal tools [17]. Due to incompleteness
of specification, even if those properties hold for an implementation Impl , the
latter can still be buggy. Second, to address the problem above, some testing
(simulation) procedures are applied to Impl [18,19,20]. Testing can be viewed as
an example of local computing where only a tiny part of the search space is used.
As we show in Subsection 4.3, one can represent the input/output behavior of
Impl corresponding to a single test as a simple property. So, one can view the
second step as generation of simple properties aimed at producing an unwanted
one. Finding an unwanted property means that Impl is buggy. Since testing
checks only simple properties, it can overlook a more complex unwanted property
of Impl and hence miss a bug. The property generation procedure by PQE
described below can produce non-trivial unwanted properties. So it can be viewed
as a generalization of testing.

4.2 Property generation and local computing

Many design properties are inherently local for two reasons. First, some prop-
erties reflect the functionality of a small part of the design. These properties



are structurally-local. Second, some properties like tests relate to a particular
part of the functional space. Such properties are functionally-local. One can
use PQE to generate properties of both types.

4.3 Testing as property generation

In this subsection, we use combinational circuits to relate tests and properties.
Let M(X,V,W ) be a combinational circuit where X,V,W specify the set of the
internal, input, and output variables of M respectively. Let F (X,V,W ) denote
a formula specifying M . As usual, this formula is obtained by Tseitsin’s trans-
formations [21]. Namely, F = Fg0 ∧ · · · ∧Fgk where g0, . . . , gk are the gates of M
and Fgi specifies the functionality of gate gi.

Example 2. Let g be a 2-input AND gate defined as x2 = x0 ∧ x1 where x2

denotes the output value and x0, x1 denote the input values of g. Then g is
specified by the formula Fg=(x0∨x1∨x2)∧ (x0∨x2)∧ (x1∨x2). Every clause of
Fg is falsified by an inconsistent assignment (where the output value of g is not
implied by its input values). For instance, x0∨ x2 is falsified by the inconsistent
assignment x0 = 0, x2 = 1. So, every assignment satisfying Fg corresponds to a
consistent assignment to g and vice versa. Similarly, every assignment satisfying
the formula F above is a consistent assignment to the gates of M and vice versa.

The truth table T (V,W ) of M can be obtained by QE, namely, T ≡ ∃X[F ].
The formula T specifies the strongest property of M . However, computing T
for a large circuit is, in general, infeasible. (This is the case, for instance, if M
is obtained by unrolling a sequential circuit for k time frames.) Then one can
verify M by running single tests. Let #»v be a test i.e., a full assignment to V .
Let #»w be the output produced by M under the input #»v . Denote by Hv⃗(V,W )
the formula such that Hv⃗(

#»v ′, #»w ′) = 0 only if #»v ′ = #»v and #»w ′ ̸= #»w. (Otherwise,
Hv⃗(

#»v ′, #»w ′) = 1.) Formula Hv⃗ is implied by F and so is a property of M . This
property specifies the input/output behavior of M for a single test (i.e., the test
#»v ). We will refer to Hv⃗ as a single-test property. If the value #»w produced by
M under the input #»v is wrong, the property Hv⃗ above is unwanted and M is
buggy. Single-test properties are the weakest properties of M .

4.4 Property generation by PQE

Consider the PQE problem of taking a set of clauses G out of ∃X[F ]. Let
H(V,W ) be a solution, i.e., ∃X[F ] ≡ H ∧ ∃X[F \G]. Since F ⇒ H, the so-
lution H is a property of M . If H is an unwanted property, M has a bug.
(Every subset of H specifies a property of M too. This property can be un-
wanted as well.) In general, to produce a property of M one can also quantify
some input/output variables. For instance, by taking G out of ∃X∃V [F ] one
obtains a property H(W ) depending only on output variables. This property
asserts that M cannot produce an output falsifying H. Combining PQE with
clause splitting described below one can generate properties of M that, in terms
of strength, range from single-test properties to the truth table T above.



Using PQE for property generation is beneficial in three aspects. First, by
taking out G one can produce a structurally-local property related to the
part of the design specified by G. Second, if G is small, the property H can be
computed much more efficiently than the truth table T obtained by QE. Third,
by taking out different subsets of F one produces properties relating to different
parts of the design. So one can estimate the completeness of property generation
using some design coverage metric like it is done in testing. The intuition here is
that if G relates to a buggy part, one is likely to produce an unwanted property
identifying the bug. So, having a coverage metric helps to detect more bugs.

One can use clause splitting to compute functionally-local properties. Here
we consider clause splitting on (some) input variables v0, . . . , vp ∈ V but one
can split a clause on any subset of variables from Vars(F ). Let H be a property
obtained by taking out a single clause C i.e., G = {C}. Let F ′ denote the formula

F where C is replaced with the following p + 2 clauses: C0 = C ∨ l(v0),. . . ,
Cp = C ∨ l(vp), Cp+1 = C ∨ l(v0) ∨ · · · ∨ l(vp), where l(vi) is a literal of vi. The
idea is to obtain a weaker property H ′ by taking the clause Cp+1 out of ∃X[F ′]
rather than C out of ∃X[F ]. The formula H ′ describes a property related to the
subspace falsifying the literals l(v0), . . . , l(vp). (So this property can be viewed
as functionally-local.) One can show [4] that if {v0, . . . , vp}= V i.e., C is split
on all input variables, then a) PQE has linear complexity; b) taking out Cp+1

produces a single-test property Hv⃗ corresponding to the test #»v falsifying the
literals l(v0), . . . , l(vp).

4.5 Property generation for sequential circuits

In this subsection, we show how property generation for a combinational circuit
can be extended to a sequential circuitN . LetMk(X,V,W ) be the combinational
circuit obtained by unrolling N for k transitions. Here X and V denote the
internal and input variables of k time frames of N respectively and W denotes
the next state variables of k-th time frame. In other words, X,V,W specify the
internal, input and output variables of Mk. Let Fk be a formula specifying the
circuit Mk and Hk(W ) be a property obtained by taking a clause of C out of
∃X∃V [Fk]. That is ∃X∃V [Fk] ≡ Hk ∧ ∃X∃V [Fk \ {C}].

The idea here is to check if separate clauses of Hk are invariants of N . (Even
if Hk itself is not an invariant, some clauses of Hk may be.) Let Q be a clause
of Hk. This clause specifies the property of Mk stating that it cannot produce
an output #»w falsifying Q. In terms of N this means that no state #»w falsifying
Q can be reached in k transitions. To check if Q is an invariant, one can run a
model checker to see if every reachable state of N satisfies Q.

Assume Q holds. This means that any state falsifying Q is unreachable by
N . If Q is falsified by a state that is supposed to be reachable by N , then Q is an
unwanted invariant and N has a bug. Now assume that Q is supposed to hold
but it fails. This means that N has an unwanted property Q and hence is buggy.



4.6 Experimental results

In this subsection, to give an idea about the status quo, we describe some ex-
perimental results on property generation reported in [4]. Those results were ob-
tained by the PQE solver called EG-PQE+ that was introduced in [4]. EG-PQE+

was used to generate properties for the combinational circuit Mk obtained by un-
folding a sequential circuit N for k time frames. Those properties were employed
to generate invariants of N . A sample of HWMCC benchmarks containing from
100 to 8,000 latches was used in those experiments. With the time limit of 10
seconds, EG-PQE+ managed to generate a lot of properties of Mk that turned
out to be invariants of N . EG-PQE+ also successfully generated an unwanted
invariant of a tailor-made FIFO buffer and so identified a hard-to-find bug.

5 Equivalence Checking And Local Computing

In this section, we discuss equivalence checking by PQE [3] in the context of
local computing. Although this discussion is limited to combinational circuits,
the method introduced in [3] can be extended to equivalence checking of more
complex entities e.g. sequential circuits.

5.1 Motivation and some background

Equivalence checking is of great importance for two reasons. First, it is used in
design verification for proving that a modified circuit remains equivalent to some
golden reference model. Second, logic synthesis is only as powerful as equivalence
checking: when optimizing a circuit, only logic transformations that can be effi-
ciently checked for equivalence are used. So, making equivalence checking more
powerful has a profound effect on design quality.

In general, equivalence checking is hard even for combinational circuits. How-
ever, in practice, one usually deals with structurally similar circuits [22,23,24].
In this case, equivalence checking can be very efficient. The best methods here
employ computing simple predefined relations (e.g., equivalences) between in-
ternal points of the pair of circuits to compare [25,26,27]. Unfortunately, two
circuits can be structurally similar even if they have no internal points related
by predefined relations (or have very few of them). The method of equivalence
checking based on PQE [3] that we recall in Subsection 5.3 solves this problem.
This method can exploit the similarity of the circuits to compare without looking
for any predefined relations between internal points of these circuits.

5.2 Equivalence checking and local computing

Let M ′(X ′, V ′, w′) and M ′′(X ′′, V ′′, w′′) be the single-output combinational cir-
cuits to check for equivalence. Here Xα, V α are the sets of internal and input
variables and wα is the output variable ofMα where α ∈ {′ , ′′}. CircuitsM ′,M ′′

are called equivalent if they produce the same output for every full assignment



to V . Intuitively, if M ′,M ′′ are structurally similar, their equivalence can be es-
tablished locally due to the existence of simple relations between corresponding
internal points of M ′,M ′′. So one can derive these relations in an induction-like
manner from inputs to outputs until the equivalence of w′ and w′′ is proved.

Figure 1 illustrates a method capturing the intuition above. We will refer
to it as the CP method where “CP” stands for “Cut Propagation”. (Modern
equivalence checkers use a version of CP and so can be viewed as an exam-
ple of local computing. However, their version of CP is very limited, see be-
low.) The CP method creates a series of cuts Cut0, . . . ,Cutk in M ′,M ′′ where
Cut0 = V ′ ∪ V ′′ and Cutk = {w′, w′′}. For each cut Cut i, 0 < i ≤ k, the CP
method computes a formula Rel i relating variables of Cut i. For Cut0, the for-
mula Rel0 equals EQ(V ′, V ′′) where EQ( #»v ′, #»v ′′) = 1 iff #»v ′ = #»v ′′. Here #»v ′, #»v ′′

are full assignments to V ′ and V ′′ respectively. (EQ forces one to compare M ′

and M ′′ only for identical assignments to V ′ and V ′′.) Rel i is computed using
the relations of the previous cuts Rel j , 0 ≤ j < i. The CP method eventually
derives Relk for the last cut Cutk = {w′, w′′}. If Relk ⇒ (w′ ≡ w′′), then M ′

and M ′′ are equivalent.

Fig. 1: Proving equivalence by
the CP method

The CP method above does not explain
when to stop computing Rel i and move to
building Rel i+1. So, in practice, to implement
the CP method, the set of possible relations
in Rel i is dramatically reduced, typically, to
the functional equivalence of cut points of M ′

and M ′′. As mentioned above, equivalent cut
points may be scarce or not exist at all even if
M ′,M ′′ are very similar. In that case, the lim-
ited version of the CP method above cannot
prove M ′,M ′′ equivalent.

5.3 Equivalence checking by PQE

In this subsection, we describe a variation of
the CP method called CPpqe where relations Rel i are computed by PQE. In
contrast to CP, the CPpqe method describes how Rel i are constructed. So, CP

pqe

can be applied to any pair of circuits M ′,M ′′ but is especially efficient if M ′

and M ′′ are structurally similar. Below, we assume that neither M ′ nor M ′′ is
a constant, which can be verified by a few easy SAT-checks. (To show, say, that
M ′ is not a constant one just needs to check if M ′ can output both 0 and 1.)

Let F = F ′ ∧ F ′′ where F ′(X ′, V ′, w′) and F ′′(X ′′, V ′′, w′′) specify M ′ and
M ′′ respectively as described in Subsection 4.3. Let Z = X ′ ∪ X ′′ ∪ V ′ ∪ V ′′.
A straightforward (but hugely inefficient) method of equivalence checking is to
perform QE on ∃Z[F ]. LetH(w′, w′′) ≡ ∃Z[EQ ∧ F ]. CircuitsM ′,M ′′ are equiv-
alent iff H ⇒ (w′ ≡ w′′). The CPpqe method is based on the observation that
H(w′, w′′) can be computed by taking EQ out of ∃Z[EQ ∧ F ] i.e., by PQE.



Proposition 3. Assume that M ′,M ′′ are not constants. Assume that
∃Z[EQ ∧ F ] ≡ H∧ ∃Z[F ]. Then M ′ and M ′′ are equivalent iff H ⇒ (w′ ≡ w′′).

The CPpqe method solves this PQE problem incrementally by building a se-
quence of cuts. Like in the CP method, for each cut Cut i, 0 < i ≤ k, the CPpqe

method computes Rel i. As before, Rel0 = EQ . The formula Rel1 is obtained
by PQE [3], see Appendix D. It has the property ∃Z[Rel0 ∧ F ] ≡ ∃Z[Rel1 ∧ F ].
(In other words, adding Rel1 makes Rel0 redundant in ∃Z[Rel0 ∧ Rel1 ∧ F ].)
The CPpqe method uses this fact to replace Rel0 with Rel1. Similarly, adding
Rel i, 1 < i ≤ k makes Rel i−1 redundant in ∃Z[Rel i−1 ∧ Rel i ∧ F ], so Rel i re-
places Rel i−1. Eventually, CP

pqe produces Relk(w
′, w′′) such that ∃Z[EQ ∧ F ] ≡

∃Z[Rel0 ∧ F ] ≡ ∃Z[Rel1 ∧ F ] ≡ · · · ≡ ∃Z[Relk ∧ F ] ≡ Relk ∧ ∃Z[F ]. In other
words, Relk is a solution to the PQE problem of taking EQ out of ∃Z[EQ ∧ F ].
The circuits M ′ and M ′′ are equivalent iff Relk ⇒ (w′ ≡ w′′).

5.4 CPpqe and local computing

CPpqe facilitates exploiting the inherent locality of equivalence checking when
M ′ and M ′′ are structurally similar. First, CPpqe clearly identifies the moment
when constructing Rel i,i > 0 is over. Namely, this occurs when Rel i−1 becomes
redundant in ∃Z[Rel i−1 ∧ Rel i ∧ F ]. (After that CPpqe starts building Rel i+1.)
Second, Rel i itself consists of a set of short (i.e., “local”) clauses. This claim
is substantiated by the following result [3]. Consider the form of similarity of
M ′ and M ′′ where there is a small number p such that every cut point of Cuti
of M ′ (respectively M ′′) can be expressed as a function of no more than p cut
points of M ′′ (respectively M ′). Then there is Rel i consisting of clauses with no
more than p+1 literals that makes Rel i−1 redundant in ∃X[Rel i−1 ∧ Rel i ∧ F ].
So, CPpqe is able to exploit the similarity of M ′ and M ′′ via generating Rel i
consisting of short clauses. The version of the CP method (used in the current
commercial tools) that looks for functionally equivalent cut points of M ′,M ′′ is
just a special case of the similarity above where p=1.

5.5 Experimental results

An experiment with an implementation of CPpqe was presented in [3]. In that
experiment, pairs of M ′,M ′′ containing a multiplier of various sizes were checked
for equivalence. (The size of the multiplier ranged from 10 to 16 bits.) M ′,M ′′

were intentionally designed so that they were structurally similar but did not
have any functionally equivalent points. A high-quality tool called ABC [28]
showed very poor performance whereas CPpqe solved all examples efficiently. In
particular, CPpqe solved the example involving a 16-bit multiplier in 70 seconds
whereas ABC failed to finish it in 6 hours.

6 Model Checking And Local Computing

In this section, we consider finding the reachability diameter, which is a problem
of model checking. To solve this problem we use local computing by PQE.



6.1 Motivation and some background

An obvious application for an efficient algorithm for finding the reachability
diameter is as follows. Suppose one knows that the reachability diameter of
a sequential circuit N is less or equal to k. Then to verify any invariant of
N it suffices to check if it holds for the states of N reachable in at most k
transitions. This check can be done by bounded model checking [29]. Finding
the reachability diameter of a sequential circuit by existing methods essentially
requires computing the set of all reachable states [30,31], which does not scale
well. An upper bound on the reachability diameter called the recurrence diameter
can be found by a SAT-solver [32]. However, this upper bound is very imprecise.
Besides, its computing does not scale well either.

6.2 Some definitions

Let T (S′, S′′) denote the transition relation of a sequential circuit N where
S′, S′′ are the sets of present and next state variables. Let formula I(S) specify
the initial states of N . (A state is a full assignment to the set of state variables.)
A state #»sk of N with initial states I is called reachable in k transitions if there
is a sequence of states #»s0, . . . ,

#»sk such that I( #»s0) = 1 and T ( #»si−1,
#»si) = 1,

i = 1, . . . , k. For the reason described in Remark 1, we assume that N can
stutter that is, T ( #»s , #»s ) = 1 for every state #»s . (If N lacks stuttering, the latter
can be easily introduced.)

Remark 1. If N can stutter, its set of reachable states is easier to describe be-
cause a state of N reachable in p transitions is also reachable in k transitions
where k > p. So, the set of states of N reachable in k transitions is the same as
the set of states reachable in at most k transitions.

Let Rk be a formula specifying the set of states of N reachable in k tran-
sitions. That is Rk(

#»s ) = 1 iff #»s is reachable in k transitions. Formula Rk(Sk) can
be computed by performing QE on ∃S0,k−1[I0 ∧ T0,k−1] where
S0,k−1 = S0 ∪ · · · ∪ Sk−1 and T0,k−1 = T (S0, S1) ∧ · · · ∧ T (Sk−1, Sk). We will
call Diam(I,N) the reachability diameter of N with initial states I if any
reachable state of N requires at most Diam(I,N) transitions to reach it.

6.3 Computing reachability diameter and local computing

In this subsection, we consider the problem of deciding if Diam(I,N) ≤ k. A
straightforward way to solve this problem is to compute Rk and Rk+1 by per-
forming QE as described above. Diam(I,N) ≤ k iff Rk and Rk+1 are equivalent.
Unfortunately, computing Rk, Rk+1 even for a relatively small value of k can be
very hard or simply infeasible for large circuits. One can address this issue by
exploiting the locality of the problem. First, Rk,Rk+1 are different only in one
transition, so they are, in a sense, close. Second, checking if Rk ≡ Rk+1 holds
can be done without computing Rk and Rk+1 explicitly, i.e., “globally”.



Proposition 4. Let k ≥ 0. Let ∃S0,k[I0 ∧ I1 ∧ T0,k] be a formula where I0 and
I1 specify the initial states of N in terms of variables of S0 and S1 respectively,
S0,k = S0∪· · ·∪Sk and T0,k = T (S0, S1)∧· · ·∧T (Sk, Sk+1). Then Diam(I,N) ≤ k
iff I1 is redundant in ∃S0,k[I0 ∧ I1 ∧ T0,k].

Proposition 4 reduces checking if Diam(I,N) ≤ k to finding if I1 is redundant
in ∃S0,k[I0 ∧ I1 ∧ T0,k] (which is the decision version of PQE). Importantly, I1 is
a small piece of the formula. So, proving it redundant can be much more efficient
than computing Rk and Rk+1. (Computing Rk+1 by QE requires, for instance,
proving the entire formula I0 ∧ T0,k redundant in Rk+1 ∧ ∃S0,k[I0 ∧ T0,k].)

7 SAT And Local Computing

In this section, we discuss solving the satisfiability problem (SAT) by PQE in
the context of local computing. Given a formula F (X), SAT is to check if F is
satisfiable i.e., whether ∃X[F ]=1.

7.1 Motivation, some background, and locality of SAT

Our interest in solving SAT by PQE is motivated by the tremendous role SAT
plays in practical applications. Modern SAT solvers are descendants of the DPLL
procedure [33] that checks the satisfiability of a formula F (X) by looking for a
satisfying assignment. They identify subspaces where F is unsatisfiable and learn
conflict clauses to avoid re-visiting those subspaces (see e.g. [1,34,35,36]).

There are at least three cases where SAT has some form of locality that
cannot be fully exploited by the descendants of DPLL. The first case is that an
assignment #»x to X is known that could be close to an assignment satisfying F .
For instance, #»x satisfied F before the latter was modified. The second case is
that F has a small unsatisfiable core, which is typical for real-like formulas. The
third case occurs when a part of F becomes “unobservable” in a subspace i.e., re-
dundant in ∃X[F ] in this subspace. Some global unobservabilities, i.e., those that
hold in every subspace, can be removed by preprocessing procedures [37,38,39].
However, a real-life formula F can have a lot of local unobservabilites even after
all global ones are gone. Suppose, for instance, that F specifies a circuit and
the variable x ∈ X describes an input of a 2-input AND gate g. Then, in any
subspace where x = 0, the clauses of F specifying gates feeding the other input
of the gate g could become unobservable.

7.2 Reducing SAT to PQE

Proposition 5 below reduces SAT to the “decision version” of QE formulated in
terms of redundancy based reasoning. A traditional SAT algorithm solves this
QE problem either by finding a satisfying assignment to prove F redundant in
∃X[F ] or by deriving an empty clause to prove otherwise.

Proposition 5. Formula F (X) is satisfiable iff F is redundant in ∃X[F ].



The proposition below reduces SAT to the decision version of PQE.

Proposition 6. Let F (X) be a formula and #»x be a full assignment to X. Let
G denote the set of clauses of F falsified by #»x . Formula F is satisfiable iff G is
redundant in ∃X[F ].

In terms of redundancy based reasoning, the PQE of Proposition 6 is easier
than the QE of Proposition 5 in the following sense. In Proposition 5, one has
to check if all clauses are redundant in ∃X[F ]. Proposition 6 requires doing this
only for the subset G of F . Moreover, one does not need to prove redundancy
of G globally. It suffices to show that G is redundant in ∃X[F ] in some subspace
#»q where #»q ⊆ #»x . Then F is satisfiable in subspace #»q .

7.3 Solving SAT by PQE and local computing

Let SAT pqe be an algorithm solving SAT by using Proposition 6, i.e., by PQE.
In this subsection, we briefly discuss why using an efficient SAT pqe could be
beneficial for solving the three cases of SAT mentioned in Subsection 7.1. First,
assume that #»x is close to an assignment satisfying F . The benefit of using SAT pqe

here is based on the following observation. Let C be a clause of G. The fact that
x is close to a satisfying assignment makes it much easier to find a subspace
#»q ⊆ #»x where C is blocked and hence redundant in ∃X[F ]. In Appendix E, we
illustrate this observation by a simple example.

Now assume that F has an unsatisfiable core F ′ ⊂ F . Then at least one
clause of F ′ is in G. (Otherwise, #»x satisfies F ′.) The smaller G, the higher the
chance that an arbitrary clause of G is in F ′. If G has only one clause, the latter
is in F ′. As we mentioned in Section 3, a PQE solver tries to prove redundancy
of clauses that are structurally close. That is, if a target clause becomes unit,
the PQE solver proves redundancy of clauses that are resolvable with this target
clause. So, when proving the redundancy of a clause of C ∈ G present in F ′,
SAT pqe has a natural trend to stay focused on clauses of F ′. The formulas F
and G gradually change due to adding conflict clauses (i.e., conflict certificates).
And to make G redundant, SAT pqe eventually generates an empty clause.

Finally, assume that F has local unobservabilities. As we mentioned in Sec-
tion 3, in addition to the conflict certificates of redundancy, a PQE solver also
learns non-conflict certificates. The former identify the local inconsistencies of
F (like in SAT solving) and the latter record its local unobservabilites. So, re-
dundancy based reasoning employed by SAT pqe provides a natural way to locate
the part of F that matters, i.e., “observable”, in the current subspace.

8 PQE And Interpolation

In this section, we show that interpolation [40,41] can be viewed as a special case
of PQE. Our motivation here is twofold. First, one can think of interpolation as
a form of local computing. Second, PQE looks similar to interpolation. So, it is
natural to try to relate the two.



Let A(X,Y ) ∧B(Y, Z) be an unsatisfiable formula where X,Y, Z are sets of
variables. Let I(Y ) be a formula such that A∧B ≡ I ∧B and A ⇒ I. Replacing
A∧B with I∧B is called interpolation and I is called an interpolant. Now, let us
show that interpolation can be described in terms of PQE. Consider the formula
∃W [A ∧B] whereW = X∪Z and A,B are the formulas above. Let A∗(Y ) be ob-
tained by taking A out of the scope of quantifiers i.e., ∃W [A ∧B] ≡ A∗∧∃W [B].
Since A∧B is unsatisfiable, A∗ ∧B is unsatisfiable too. So, A ∧B ≡ A∗ ∧B. If
A ⇒ A∗, then A∗ is an interpolant.

The general case of PQE that takes A out of ∃W [A ∧B] is different from
the instance above in three aspects. First, A ∧B can be satisfiable. Second, one
does not assume that Vars(B) ⊂ Vars(A ∧B). In other words, in general, PQE
is not meant to remove variables of the original formula. Third, a solution A∗

is, in general, implied by A ∧ B rather than by A alone. Summarizing, one can
say that interpolation is a special case of PQE.

9 Conclusions

We use the term local computing (LC) to refer to various techniques that reduce
problem complexity by operating on a small piece of the formula or the search
space. We relate LC to Partial Quantifier Elimination (PQE). The latter is a
generalization of quantifier elimination where a part of the formula can be taken
out of the scope of quantifiers. We apply LC by PQE to property generation,
equivalence checking, model checking, SAT solving and interpolation.

LC by PQE allows to introduce a generalization of simulation (testing) called
property generation where one identifies a bug by producing an unwanted de-
sign property. LC by PQE facilitates constructing an equivalence checker that
exploits the similarity of the circuits to compare without searching for some
predefined relations between internal points. In model checking, LC by PQE
enables a procedure that finds the reachability diameter without computing the
set of all reachable states. LC by PQE can potentially solve the SAT problems
with various types of “locality” more efficiently. Finally, it can be shown that
interpolation (a form of LC) is a special case of PQE. The results above suggest
that studying PQE and designing fast PQE solvers is of great importance.
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Appendix

A Some Examples Of Local Computing

As we mentioned in the introduction, virtually all successful algorithms/techniques
of hardware verification use some form of local computing. In this appendix, we
give some examples of that.

A.1 Testing

Testing is a ubiquitous technique of functional verification. One of the reasons
for such omnipresence is that the output produced by a circuit for a single test



(i.e., an input assignment) can be efficiently computed. This efficiency, in turn,
is due to the fact that a single test examines only a tiny part of the search space.
So, testing can be viewed as an example of local computing.

A.2 Equivalence checking

Equivalence checking is one of the most efficient (and hence popular) techniques
of formal verification. Let N ′ and N ′′ be the circuits to check for equivalence.
In general, equivalence checking is a hard problem that does not scale well even
if circuits N ′, N ′′ are combinational. Fortunately, in practice, N ′ and N ′′ are
structurally similar. In this case, one can often prove the equivalence of N ′ and
N ′′ quite efficiently by using local computing. The latter is to locate internal
points of N ′ and N ′′ linked by simple relations like equivalence. These relations
are propagated from inputs to outputs until the equivalence of the corresponding
output variables of N ′ and N ′′ is proved. (If N ′ and N ′′ are sequential circuits,
relations between internal points are propagated over multiple time frames.)

A.3 Model checking

A significant boost in model checking has been achieved due to the appearance of
IC3 [42]. The idea of IC3 is as follows. Let N be a sequential circuit. Let P (S) be
an invariant to prove where S is the set of state variables of N . (Proving P means
showing that it holds in every reachable state of N .) IC3 looks for an inductive
invariant P ′ such that I ⇒ P ′ ⇒ P where I(S) specifies the initial states of
N . IC3 builds P ′ by constraining P via adding so-called inductive clauses. The
high scalability of IC3 can be attributed to the fact that in many cases P is
“almost” inductive. So, to turn P into P ′, it suffices to add a relatively small
number of clauses. Building P ′ as a variation of P can be viewed as a form of
local computing.

A.4 SAT solving

The success of modern SAT-solvers can be attributed to two techniques. The
first technique is the conflict analysis introduced by GRASP [1]. The idea is that
when a conflict occurs in the current subspace, one identifies the set of clauses
responsible for this conflict. This set is used to generate a so-called conflict clause
that is falsified in the current subspace. So, adding it to the formula diverts the
SAT algorithm from any subspace where the same conflict occurs. Since the set of
clauses involved in a conflict is typically very small (in comparison to the entire
formula), learning conflict clauses can be viewed as a form of local computing.

The second technique introduced by Chaff [34] is to employ decision making
that involves variables of recent conflict clauses. The reason why Chaff-like deci-
sion making works so well can be explained as follows. Assume that a SAT-solver
with conflict clause learning checks the satisfiability of a formula F . Assume that
F is unsatisfiable. (If F is satisfiable, the reasoning below can be applied to every



subspace visited by this SAT-solver where F was unsatisfiable.) Learning and
adding conflict clauses produces an unsatisfiable core of F that includes learned
clauses. This core gradually shrinks in size and eventually reduces to the core
consisting of an empty clause. The decision making of Chaff helps to locate the
subset of clauses/variables of F making up the current unsatisfiable core. So,
one can view the second technique as a form of local computing as well.

B Proofs Of Propositions

Proposition 1. Let a clause C be blocked in a formula F (X,Y ) with respect to
a variable x ∈ X. Then C is redundant in ∃X[F ] i.e., ∃X[F \ {C}] ≡ ∃X[F ].

Proof. It was shown in [5] that adding a clause B(X) blocked in G(X) to the
formula ∃X[G] does not change the value of this formula. This entails that
removing a clause B(X) blocked in G(X) does not change the value of ∃X[G]
either. So, B is redundant in ∃X[G].

Let #»y be a full assignment to Y . Then the clause C of the proposition at
hand is either satisfied by #»y or Cy⃗ is blocked in Fy⃗ with respect to x. (The latter
follows from the definition of a blocked clause.) In either case, Cy⃗ is redundant
in ∃X[Fy⃗]. Since this redundancy holds in every subspace #»y , the clause C is
redundant in ∃X[F ].

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking a
clause C out of ∃X[F (X,Y )] (i.e., ∃X[F ] ≡ H ∧ ∃X[F \ {C}]) iff

1. F ⇒ H and
2. H ∧ ∃X[F ] ≡ H ∧ ∃X[F \ {C}]

Proof. The if part. Assume that conditions 1, 2 hold. Let us show that
∃X[F ] ≡ H ∧ ∃X[F \ {C}]. Assume the contrary i.e., there is a full assignment
#»y to Y such that ∃X[F ] ̸= H ∧ ∃X[F \ {C}] in subspace #»y .

There are two cases to consider here. First, assume that F is satisfiable and
H ∧ ∃X[F \ {C}] is unsatisfiable in subspace #»y . Then there is an assignment
( #»x , #»y ) satisfying F (and hence satisfying F \ {C}). This means that ( #»x , #»y )
falsifies H and hence F does not imply H. So, we have a contradiction. Second,
assume that F is unsatisfiable and H ∧∃X[F \ {C}] is satisfiable in subspace #»y .
Then H ∧∃X[F ] is unsatisfiable too. So, condition 2 does not hold and we have
a contradiction.
The only if part. Assume that ∃X[F ] ≡ H ∧ ∃X[F \ {C}]. Let us show that
conditions 1 and 2 hold. Assume that condition 1 fails i.e., F ̸⇒ H. Then
there is an assignment ( #»x , #»y ) satisfying F and falsifying H. This means that
∃X[F ] ̸= H ∧ ∃X[F \ {C}] in subspace #»y and we have a contradiction. To
prove that condition 2 holds, one can simply multiply both sides of the equality
∃X[F ] ≡ H ∧ ∃X[F \ {C}] by H.

Proposition 3. Assume that M ′,M ′′ are not constants. Assume that
∃Z[EQ ∧ F ] ≡ H∧ ∃Z[F ]. Then M ′ and M ′′ are equivalent iff H ⇒ (w′ ≡ w′′).



Proof. The if part. Assume that H ⇒ (w′ ≡ w′′). From Proposition 2 it follows
that (EQ ∧F ) ⇒ H. So (EQ ∧F ) ⇒ (w′ ≡ w′′). Recall that F = F ′ ∧F ′′ where
F ′ and F ′′ specify M ′ and M ′′ respectively. So, for every pair of inputs #»v ′ and
#»v ′′ satisfying EQ(V ′, V ′′) (i.e., #»v ′ = #»v ′′), M ′ and M ′′ produce identical values
of w′ and w′′. Hence, M ′ and M ′′ are equivalent.

The only if part. Assume the contrary i.e., M ′ and M ′′ are equivalent but
H(w′, w′′) ̸⇒ (w′ ≡ w′′). There are two possibilities here: H(0, 1) = 1 or
H(1, 0) = 1. Consider, for instance, the first possibility i.e., w′ = 0, w′′ = 1.
Since, M ′ and M ′′ are not constants, there is an input #»v ′ for which M ′ out-
puts 0 and an input #»v ′′ for which M ′′ outputs 1. This means that the formula
H ∧ ∃Z[F ] is satisfiable in the subspace w′ = 0, w′′ = 1. Then the formula
∃Z[EQ ∧ F ] is satisfiable in this subspace too. This means that there is an input
#»v under which M ′ and M ′′ produce w′ = 0 and w′′ = 1. So, M ′ and M ′′ are
inequivalent and we have a contradiction.

Proposition 4. Let k ≥ 0. Let ∃S0,k[I0 ∧ I1 ∧ T0,k] be a formula where I0 and
I1 specify the initial states of N in terms of variables of S0 and S1 respectively,
S0,k = S0∪· · ·∪Sk and T0,k = T (S0, S1)∧· · ·∧T (Sk, Sk+1). Then Diam(I,N) ≤ k
iff I1 is redundant in ∃S0,k[I0 ∧ I1 ∧ T0,k].

Proof. The if part. Assume that I1 is redundant in ∃S0,k[I0 ∧ I1 ∧ T0,k] i.e.,
∃S0,k[I0 ∧ T0,k] ≡ ∃S0,k[I0 ∧ I1 ∧ T0,k]. The formula ∃S0,k[I0 ∧ T0,k] is logically
equivalent to Rk+1 specifying the set of states of N reachable in k+1 transitions.
On the other hand, ∃S0,k[I0 ∧ I1 ∧ T0,k] is logically equivalent to Rk (because
I0 and T (S0, S1) are redundant in ∃S0,k[I0 ∧ I1 ∧ T0,k]). So, redundancy of I1
means that Rk and Rk+1 are logically equivalent and hence, Diam(I,N) ≤ k.

The only if part. Assume the contrary i.e., Diam(I,N) ≤ k but I1 is not re-
dundant in ∃S0,k[I0 ∧ I1 ∧ T0,k]. Then there is an assignment #»p = ( #»s0, . . . ,

#»sk+1)
such that a) #»p falsifies at least one clause of I1; b)

#»p satisfies I0 ∧ T0,k; c) formula
I0 ∧ I1 ∧ T0,k is unsatisfiable in subspace #»sk+1. (So, I1 is not redundant because
removing it from I0 ∧ I1 ∧ Tm+1 makes the latter satisfiable in subspace #»sk+1.)
Condition c) means that #»sk+1 is unreachable in k transitions whereas condition
b) implies that #»sk+1 is reachable in k + 1 transitions. Hence Diam(I,N) > k
and we have a contradiction.

Proposition 5. Formula F (X) is satisfiable iff F is redundant in ∃X[F ].

Proof. The if part. Let F be redundant in ∃X[F ]. Then ∃X[F ] ≡ ∃X[F \ F ].
Since an empty set of clauses is satisfiable, F is satisfiable too.

The only if part. Assume the contrary i.e., F is satisfiable and F is not redun-
dant in ∃X[F ]. This means that there is a formula H where H ̸≡ 1 such that
∃X[F ] ≡ H∧ ∃X[F \ F ]. Since all variables of F are quantified in ∃X[F ], then
H is a constant. The only option here is H = 0. So, ∃X[F ] = 0 and we have a
contradiction.

Proposition 6. Let F (X) be a formula and #»x be a full assignment to X. Let
G denote the set of clauses of F falsified by #»x . Formula F is satisfiable (i.e.,
∃X[F ]=1) iff the formula G is redundant in ∃X[F ].



Proof. The if part. Let G be redundant in ∃X[F ]. Then ∃X[F ] ≡ ∃X[F \G].
Since #»x satisfies F \G, then ∃X[F \G] = 1. Hence ∃X[F ] = 1 too.

The only if part. Assume the contrary i.e., F is satisfiable and G is not redun-
dant in ∃X[F ]. This means that there is a formula H where H ̸≡ 1 such that
∃X[F ] ≡ H∧ ∃X[F \G]. Since all variables of F are quantified in ∃X[F ], then
H is a constant. The only option here is H = 0. So, ∃X[F ] = 0 and we have a
contradiction.

C Identification/Generation Of Certificates

In this appendix, we describe identification/generation of certificates by START
in more detail. Consider the problem of taking a clause out of the scope of quan-
tifiers in ∃X[F ]. Let C be the current target clause. Let K be a certificate
clause stating the redundancy of C in subspace #»q . That is, K implies C in sub-
space #»q . As we mentioned in Subsection 3.2, the certificate K has the property
∃X[K ∧ F ] ≡ ∃X[F ]. So, K can be safely added to F . The report [6] describes
the four different ways to identify/generate K listed below.

1. There is a clause K ∈ F that implies C in subspace #»q . In this case, K itself
serves as the certificate of redundancy of C in subspace #»q . (No generation
of a new certificate is needed.)

2. A conflict occurs in subspace #»q and a conflict clause K is generated. If C
was used to generate K, the latter is added to F to make C redundant in
subspace #»q . Otherwise, C is already redundant in subspace #»q and adding
K to F is optional. In either case, K serves as the certificate of redundancy
of C in subspace #»q .

3. A new certificate K is obtained by resolving two certificates K ′ and K ′′

identified/generated earlier. Let K ′ and K ′′ state the redundancy of C in
subspaces #»q ′ and #»q ′′ respectively. Let K ′,K ′′ be resolved on a variable v.
The certificate K states the redundancy of C in the subspace #»q equal to
#»q ′ ∪ #»q ′′ minus the assignments to v. Adding K to F is optional.

4. The clause C is blocked in subspace #»q at a variable v. Let l(v) be the literal
of v present in C. Then a certificate K of redundancy of C in subspace #»q is
built as follows. First, K contains l(v). Second, for every clause C ′ with the
literal l(v), the certificate K contains literals of variables “responsible” for
the fact that C ′ cannot be resolved with C on v in subspace #»q . Namely,
• if C ′ is satisfied by #»q , the certificate K contains the negation of a literal

of C ′ satisfied by #»q ;
• if C and C ′ have opposite literals of more than one variable, K contains
a literal l(w) (other than l(v)) such that C ′ contains l(w);

• if C ′ is proved redundant in subspace #»q with a certificate K ′, the cer-
tificate K contains all the literals of K ′ minus those present in C ′.

Adding the certificate K to F is optional in item 4.

Example 3. Consider the problem of taking a clause out of ∃X[F (X,Y )] were
F = C0 ∧ C1 ∧ C2 ∧ C3 ∧ . . . . Let C0 = x1 ∨ x2 ∨ x3 be the current target



clause and C1, C2, C3 be the only clauses of F containing the literal x1 where
C1 = y0 ∨ x1,C2 = x1 ∨ x3, C3 = x1 ∨ x5. As usual, we assume here that yi ∈ Y
and xi ∈ X. Let #»q = (y0 = 1, y4 = 0, ...) be the current assignment. Assume
that C3 is proved redundant in subspace #»q and this redundancy is asserted by
the certificate K ′ = y4 ∨ x5.

The clause C0 is blocked in subspace #»q at x1 because there is no clause
resolvable with C0 on x1 in this subspace. Namely, C1 is satisfied by #»q , the
clause C2 and C0 have the opposite literals of x1 and x3, and C3 is redundant
in subspace #»q . So, C0 is redundant in subspace #»q . This redundancy can be
asserted by the certificate K = y0 ∨ y4 ∨ x1 ∨ x3. (As required, K implies C0 in
subspace #»q .) The literal x1 of C0 is present in K because x1 is the variable at
which C0 is blocked. The literal y0 is in K because the literal y0 of C1 is satisfied
by #»q . The literal x3 is in K because C0 and C2 have the opposite literals of x3.
Finally, the literal y4 is in K because this literal is in the certificate K ′ asserting
the redundancy of C3 in subspace #»q and it is not in C3.

D Computing Rel i By CPpqe

Fig. 2: Computing Rel i in CPpqe

In Section 5, we recalled CPpqe , a method
of equivalence checking by PQE intro-
duced in [3]. In this appendix, we reuse
the notation of Section 5 to describe
how CPpqe computes the formula Rel i
specifying relations between cut points of
Cut i. Let formula Fi specify the logic of
M ′ and M ′′ located between their inputs
and Cut i (see Figure 2). Let Zi denote
the variables of Fi minus those of Cut i.
Then Rel i is obtained by taking Rel i−1

out of ∃Zi[Rel i−1 ∧ Fi] i.e., ∃Zi[Rel i−1 ∧ Fi] ≡ Rel i ∧ ∃Zi[Fi]. The formula Rel i
depends only on variables of Cut i. (All the other variables of Rel i−1 ∧ Fi are in
Zi and hence, quantified.)

Note that since Rel i is obtained by taking out Rel i−1, the latter is redundant
in ∃Zi[Rel i ∧ Rel i−1 ∧ Fi]. One can show that this implies redundancy of Rel i−1

in ∃Z[Rel i−1 ∧ Rel i ∧ F ]. Recall that F specifies the circuits M ′ and M ′′ and
Z = X ′ ∪ X ′′ ∪ V ′ ∪ V ′′. That is, Z includes all variables of F but the out-
put variables w′, w′′. Then the property mentioned in Section 5 holds. Namely,
∃Z[Rel i−1 ∧ F ] ≡ ∃Z[Rel i ∧ F ].

E Simple Example Illustrating Observation Of Section 7

Let ∃X[F (X)] specify the SAT problem to solve, #»x be a full assignment to X
and G be the set of clauses of F falsified by #»x . Let #»x be close to an assignment
satisfying F and C be a clause of G. In Section 7 we mentioned the observation
that the proximity of x to a satisfying assignment makes it easier to find a



subspace #»q ⊆ #»x where C is blocked in ∃X[F ]. (Hence, it is redundant in ∃X[F ]
in subspace #»q .) Below, we illustrate this observation by a simple example3.

Example 4. Consider formula ∃X[F ] where F = C0 ∧ C1 ∧ C2 ∧ . . . and
C0 = x0 ∨ x1 ∨ x2, C1 = x0 ∨ x3, C2 = x0 ∨ x4. Let the assignment #»x above be
equal to (x0 = 0, x1 = 1, x2 = 0, x3 = 1, x4 = 1, . . . ). Note that C0 is falsified
while C1, C2 are satisfied by #»x . Let C0 be the only clause of F falsified by #»x and
C1, C2 be the only clauses of F with the literal x0. This means that by flipping
the value of x0 one turns #»x into an assignment satisfying F i.e. #»x is very close
to a satisfying assignment.

It is not hard to find a subset #»q of #»x such that C0 is blocked in subspace #»q .
Consider for instance #»q = (x3 = 1, x4 = 1). Notice that C0 is blocked in subspace
#»q at variable x0 because C1 and C2 are satisfied by #»q . So C0 is redundant in
subspace #»q , which means that F is satisfiable. Finding the subspace #»q ⊆ #»x
where C0 is blocked is so easy because #»x is close to a satisfying assignment.

3 If #»x is close to a satisfying assignment, a straightforward way to solve the SAT
problem is to keep flipping values of #»x until the latter satisfies F . This approach is
used in so-called local search algorithms [43,44]. It works well for random formulas
but fails on real-life ones. SAT pqe provides a more powerful approach where one can
learn conflict and non-conflict certificates thus pruning big chunks of space.
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