
ar
X

iv
:1

71
1.

05
69

8v
2

 [
cs

.L
O

]
 9

 M
ar

 2
01

8

Efficient Verification of Multi-Property Designs

(The Benefit of Wrong Assumptions)∗

Eugene Goldberg, Matthias Güdemann, Daniel Kroening

Diffblue Ltd.

Oxford, UK

Rajdeep Mukherjee

University of Oxford

UK

Abstract—We consider the problem of efficiently checking a
set of safety properties P1, . . . ,Pk of one design. We introduce a
new approach called JA-verification, where JA stands for “Just-
Assume” (as opposed to “assume-guarantee”). In this approach,
when proving a property Pi, one assumes that every property
Pj for j 6= i holds. The process of proving properties either
results in showing that P1, . . . ,Pk hold without any assumptions
or finding a “debugging set” of properties. The latter identifies a
subset of failed properties that are the first to break. The design
behaviors that cause the properties in the debugging set to fail
must be fixed first. Importantly, in our approach, there is no need
to prove the assumptions used. We describe the theory behind
our approach and report experimental results that demonstrate
substantial gains in performance, especially in the cases where a
small debugging set exists.

1. INTRODUCTION

The advent of powerful model checkers based on SAT [1]–

[4] has created a new wave of research in property checking.

This research has been mostly focused on algorithms that

verify a single property for a given design. However, in

practice, engineers write many properties for one design (some-

times hundreds and even thousands). This demands efficient

and scalable techniques for automatic verification of multiple

properties for one design.

More specifically, the problem we address is as follows. We

are given a transition relation and a set of initial states, which

specify the design. In addition, we are given a set of safety

properties P1, . . . ,Pk that are expected to hold. (In Section 5, we

consider the case where some properties are expected to fail.)

We want to check if every property Pi holds. If not, we want

to have an efficient way to identify failed properties that point

to wrong design behaviors. (Thus, identification of all failed

properties is not mandatory.) One way to solve this problem is

to check whether the property P := P1∧ . . .∧Pk holds. We will

call P the aggregate property. If P holds, then all properties

Pi are proven. Otherwise, the generated counterexample (CEX

for short) identifies a subset of the failed properties, but no

information is gained about the remaining properties. The

latter can be verified by removing the failed properties from

the set, and re-iterating the procedure with a new aggregate

property.

∗ This is an extended version of the paper published at DATE-2018.
Supported by ERC project 280053 “CPROVER”, the H2020 FET OPEN

712689 SC2 and SRC contracts no. 2012-TJ-2269 and 2016-CT-2707.

In this paper, we study an alternative approach where

the properties Pi are verified separately. We will refer to

this approach as separate verification as opposed to joint

verification of a set of properties. We will highlight three main

reasons for our interest in separate verification. First, we want

to study multi-property verification in the context of an IC3-

like model checker [3]. Such a model checker will benefit

from separate verification by generating proofs that take into

account the specifics of each property. Besides, a property

Pi is a weaker version of the aggregate property P. Thus,

proving Pi should be easier than P. Second, each property Pi

is an over-approximation of the same set of reachable states.

Therefore, inductive invariants of already proven properties

can be re-used. The third reason is as follows. If all Pi are

true, there is a common proof of this fact, namely a proof

that P holds. However, if some Pi properties fail, there may

not be one universal CEX that explains all failures if the latter

are property specific. Separate verification is more relevant in

such a context.

In this paper, we introduce a version of separate verification

called JA-verification. Here, JA stands for “Just-Assume”, as

opposed to “assume-guarantee”. In JA-verification, one proves

property Pi, assuming that every other property Pj, for j 6= i,

holds, regardless whether it is true. We will call such a proof

local as opposed to a global proof that Pi is true where no

assumptions are made. JA-verification results in constructing

the set of properties Pi that failed locally (if any). We show that

if the aggregate property P fails, there is at least one property

Pi that fails both globally and locally. Thus, if all properties

Pi hold locally it also means they hold globally.

If Pi holds locally, it either holds globally as well or every

CEX that breaks Pi fails some other property Pj before this

CEX fails Pi. That is, a CEX for Pi contains a shorter CEX

for Pj. This suggests that if Pi holds locally, its failure (if

any) is most likely caused by failures of other properties.

For this reason, we call the set of properties that fail locally

a debugging set. This debugging set of properties points to

design behaviors that need to be fixed in the first place. The

approach guarantees that the failure of a property from the

debugging set is not preceded by a failure of any other property.

JA-verification constructs a debugging set as follows: when

proving Pi it assumes that all Pj, for j 6= i, hold even when

some of them fail. Thus, even the wrong assumption that all

Pj, j 6= i hold proves to be useful. For that reason, we use the

http://arxiv.org/abs/1711.05698v2

term “Just Assume” to name our approach.

To improve the efficiency of JA-verification, we exploit

the fact that IC3 proves a property by strengthening it to

make this property inductive. Specifically, we show that the

strengthening clauses generated by IC3 can be re-used when

making any other property inductive if the same transition

relation and initial states are used. Thus, in JA-verification,

clauses generated to make Pi inductive are re-used when

proving Pj, j 6= i.

Our contribution is threefold. First, we describe a new

method of multi-property verification called JA-verification

(see Section 4). It is based on the machinery of local proofs

(Sections 2 and 3) and re-use of strengthening clauses (Sec-

tion 6). Second, we show that JA-verification generates CEXs

only for a special subset of failed properties called a debugging

set. This is very important since computing a CEX can be quite

expensive (e.g., if a counter is involved). Third, we provide

implementation details (Section 7) and experimental results

showing the viability of JA-verification (Sections 9, 10,11). In

particular, in Section 11, we give evidence that JA-verification

facilitates parallel computing.

2. LOCAL AND GLOBAL PROOFS

Separate verification is based on the assumption that, in

general, proving Pi is easier than P1 ∧ . . .∧Pk because Pi is a

weaker property. In this section, we discuss how one can make

a proof of a property simpler if this proof is only needed in

the context of proving a stronger property.

A. Definitions

We will denote the predicates of the transition relation and

the initial states as T (S,S ′) and I(S) respectively. Here S and

S′ are sets of present and next state variables respectively. An

assignment s to variables S is called a state. We will refer to

a state satisfying a predicate Q(S) as a Q-state. A property is

just a predicate P(S). We will say that a P-state (respectively

P-state) is a good (respectively bad) state. A property P is

called inductive with respect to T if P∧T → P ′ holds where

a primed predicate symbol means that the predicate in question

depends on next state variables S ′.

We will call a sequence of states (s j,. . . ,sk) a trace if

T (si,si+1) is true for i = j, . . . ,k − 1. We will call the trace

above initialized if s j is an I-state. Given a property P(S)
where I → P, a CEX is an initialized trace (s0,. . . ,sk) where

si, i = 0, . . . ,k − 1 are P-states and sk is a P-state. We will

refer to a state transition system with initial states I and

transition relation T as an (I,T)-system. Given an (I,T)-
system, checking a property P is to find a CEX for P or to

show that none exists.

B. Hardness of proving strong and weak properties

Let P and Q be two properties where Q is weaker than

P, i.e., P → Q. On the one hand, verification of Q should be

easier because one needs to prove unreachability of a smaller

set of bad states. On the other hand, P can be inductive even if

Q is not. In fact, the essence of IC3 is to turn a non-inductive

property into an inductive one by adding strengthening clauses.

This makes the modified property easier to prove despite the

fact that it is stronger from a logical point of view.

The reason for the paradox above is as follows. The set of

traces one needs to consider to prove Q is not a subset of those

one considers when proving P. To prove P, one needs to show

that there is no initialized trace of P-states leading to a P-state.

Thus, one does not consider traces where two P-states occur.

Proving Q is reduced to showing that there is no initialized

trace of Q-states leading to a Q-state. Since P → Q, a Q-state

is a P-state as well. On the other hand, a Q-state can also be

a P-state. Thus, in contrast to the case when we prove P, to

prove Q one has to consider traces that may include two or

more different P-states.

We will refer to a regular proof of Q (where one shows

that no initialized trace of Q-states leads to a Q-state) as a

global one. In the next subsection, we discuss reducing the

complexity of proving Q using the machinery of local proofs.

C. Local proofs

The intuition behind local proofs is as follows. Suppose

that one needs to prove a property Q as a step in proving a

stronger property P. Then it is reasonable to ignore traces that

do not make sense from the viewpoint of proving P. Proving

Q locally in the context of P, or just locally for short, is to

show that there does not exist an initialized trace of P-states

(rather than Q-states) leading to a Q-state.

The importance of local proofs is twofold. First, to prove

Q locally, one needs to consider only a subset of the traces

to prove P (because the set of Q-states is a subset of that of

P-states). Thus, in terms of the set of traces to consider, a

weaker property becomes also “easier”. Second, as we show

in Section 4, to prove the aggregate property P := P1∧ . . .∧Pk,

it suffices to prove all properties Pi locally with respect to P.

It is convenient to formulate the notion of a local proof in

terms of a modified transition relation T . We will call this

modification the projection of T onto property P and denote

it as T P. It is defined as follows.

• T P(s,s′) = T (s,s′), if s is a P-state.

• T P(s,s′) = 0 if s is a P-state and s 6= s′.

• T P(s,s′) = 1 if s is a P-state and s = s′.

Informally, T P is obtained from T by excluding any tran-

sitions from a P-state other than a transition to itself. Hence,

a trace in (I,T P)-system cannot have two different P-states.

Thus, a local proof of Q with respect to property P, as we

introduced above, is just a regular proof with respect to T P.

(In turn, proving Q globally is done with respect to T .)

Proposition 1: Let P be inductive with respect to transition

relation T . Then any property Q weaker than P (i.e., P → Q)

is inductive with respect to T P.

Proof: Assume the contrary. That is Q is not inductive with

respect to T P and hence Q∧ T P → Q′ does not hold. Then

there is a transition (s, s′) such that

• T P(s,s′) = 1 and

• Q(s) = 1 and Q(s′) = 0 (and hence s 6= s′)

Since P → Q, then P(s′) = 0 as well. Since s 6= s′ and

T P(s,s′) = 1, from definition of T P it follows that P(s) = 1

and T (s,s′) = 1. So (s, s′) is a transition from a P-state to a

P-state allowed by T . Then P is not inductive with respect to

T . We have a contradiction. QED

Proposition 1 states that in terms of proofs by induction,

proving Q locally with respect to a stronger property P is at

most as hard as proving P itself.

3. LOCAL PROOFS AND DEBUGGING

In this section, we explain how the machinery of local

proofs can be used to address the following problem. Given a

property P that failed, find a weaker property Q that is false

as well and can be viewed as an explanation for failure of P.

The subtlety here is that not every failed property Q where

P → Q can be viewed as a reason for why P fails. We will

refer to this problem as the debugging problem.

To address the debugging problem one first needs to clarify

the relation between local and global proofs.

Proposition 2: Let P → Q.

A) If property Q holds with respect to transition relation

T (i.e., globally), it also holds with respect to T P (i.e.,

locally).

The opposite is not true.

B) If Q holds with respect to T P, it either holds with respect

to T or it fails with respect to T and every CEX contains

at least two P-states si and s j where si 6= s j.

Proof: A) Assume that Q does not hold with respect to T P.

Then there is an initialized trace of P-states leading to a Q-

state. Since T P inherits all transitions of T from P-states, this

trace is valid with respect to T . Since P → Q, every P-state

is also a Q-state. So there is an initialized trace of Q-states

leading to a Q-state that is valid with respect to T . Hence Q

does not hold with respect to T and we have a contradiction.

B) Assume the contrary, i.e. Q holds with respect to T P

and there is a CEX with respect to T containing only one P-

state. (So neither Q holds globally nor every CEX contains at

least two P-states). The CEX above is also a CEX with respect

to T P and hence Q fails locally. So we have a contradiction.

QED

Informally, Proposition 2 means that proving Q locally is

“as good as” proving globally modulo CEXs that do not make

sense from the viewpoint of proving P. These CEXs have at

least two P-states.

One can use Proposition 2 for solving the debugging prob-

lem as follows. Suppose that Q does not hold locally. This

means that there is a CEX of P-states leading to a Q-state.

Since P → Q, a Q-state is a P-state as well. So this CEX is

also a regular CEX for P. In other words, the fact that Q fails

locally means that Q can be viewed as a reason for failure of

P.

Suppose that Q holds locally. Assume that Q fails globally

and (s0,. . . ,sm) is a CEX where sm is a Q-state. From Proposi-

tion 2, it follows that this CEX has at least two P-states. One

of these states is sm (because P → Q). Another P-state is one

of Q-states si, i = 1, . . . ,m− 1. This means that failure of Q

is not a reason for failure of P. Indeed, in every CEX for Q,

property P fails before Q does.

Summarizing, if property Q fails (respectively holds) locally

with respect to P, failure of Q is a reason (respectively cannot

be a reason) for failure of P.

4. JA-VERIFICATION

In this section, we present a version of separate verification

called “Just-Assume” or JA-verification. As before, P denotes

the aggregate property P1∧ . . .∧Pk and T P denotes the projec-

tion of T onto P (see Subsection 2-C). Since every property Pi

is a weaker version of P, one can use the results of Sections 2

and 3 based on the machinery of local proofs.

We now provide a justification of proving weaker properties

locally in the context of multi-property verification. By using

the transition relation T P to prove Pi, one essentially assumes

that every property Pj, j 6= i holds. While this may not be the

case, nevertheless it works for two reasons. The first reason

is that if the aggregate property P fails, there is a time frame

where P (and hence some property Pi) fails for the first time.

Let this be time frame number m. For every time frame number

p where p < m, the assumption that every property Pj, j 6= i

holds is true. Thus, if P fails, there is at least one property (in

our case Pi) that fails even with respect to T P.

Here is the second reason why assuming Pj, j 6= i works.

To get some debugging information when proving property

Pi, one is interested in traces where Pi fails before any other

property does. By assuming Pj, j 6= i is true, one drops the

traces where Pi fails after some Pj, j 6= i has failed.

The propositions below formalize the relation between local

proofs and multi-property verification.

Proposition 3: Property P holds with respect to T iff every

Pj, j = 1, . . . ,k holds with respect to T .

Proof: If part. Let Pj, j = 1, . . . ,k hold with respect to T .

Assume the contrary i.e. P does not hold. Then there is a CEX

(s0,. . . ,sm) where si, i = 0, . . . ,m− 1 are P-states and sm is a

P-state. This means that sm falsifies some property Pj. Since a

P-state is also a Pj-state, the CEX above is an initialized trace

of Pj-states leading to a Pj state. Hence Pj does not hold and

we have contradiction.

Only if part. Let P hold with respect to T . Assume the

contrary i.e. a property Pj does not hold. Then there is a CEX

(s0,. . . ,sm) where si, i = 0, . . . ,m− 1 are Pj-states and sm is a

Pj-state. Since P → Pj holds, sm is a P-state as well. As far

as states si, i = 0, . . . ,m− 1 are concerned one can have the

following two situations.

• All these states are P-states as well. Then the CEX above

breaks P and we have a contradiction.

• At least one state si, 0 ≤ i ≤ m− 1 is a P-state. In this

case, trace (s0,. . . ,si) is a CEX breaking P and we have

a contradiction. QED

Proposition 4: Property P holds with respect to T iff P holds

with respect to T P.

Proof: Any trace of P-states leading to a P-state is valid

both with respect to T and T P. So if P fails with respect to T

it also does with respect to T P and vice versa. QED

Proposition 5: Property P holds with respect to T iff every

Pi, i = 1, . . . ,k holds with respect to T P.

Proof: From Proposition 4 it follows that P holds with

respect to T iff it holds with respect to T P. After replacing

T with T P in Proposition 3, one concludes that P holds with

respect to T P iff every Pi, i = 1, . . . ,k holds with respect to

T P. QED

We will refer to the subset of {P1, . . . ,Pk} that consists

of properties that fail with respect to T P, i.e., locally as a

debugging set. The following proposition justifies this name.

Proposition 6: Let the aggregate property P fail. Let D

denote the debugging set of properties. Then the failure of

properties of D is the reason for the failure of P in the

following sense. For each CEX (s0,. . . ,sm) for property P, the

state sm that falsifies P also falsifies at least one property

Pi ∈ D.

Proof: Assume the contrary, i.e., there is a CEX for P such

that sm falsify only properties of {P1, . . . ,Pk} that are not in D.

Let Pi be a property falsified by sm. Since this CEX consists

of P-states leading to a Pi-state, then Pi fails locally and so it

is in D. Thus, we have a contradiction. QED

Example 1: The Verilog code below gives an example of an

8-bit counter. This counter increments its value every time the

enable signal is true. Once the counter reaches the value of

rval it resets its value to 0. We also want to reset the counter

when signal req is true (regardless of the current value of the

counter). However, the code contains a buggy line (marked in

blue), which prohibits a reset only unless req is true.

module counter(enable ,clk ,req);

parameter rval = 1 << 7;

input enable , clk , req;

reg [7:0] val;

wire reset;

initial val = 0;

assign reset = ((val == rval) && req);

always @(posedge clk) begin

if (enable) begin

if (reset) val = 0;

else val = val +1;

end

end

P0: assert property (req == 1);

P1: assert property (val <= rval);

endmodule

Let us consider verification of properties P0 and P1 specified

by the last two lines of the module counter. Property P0 fails

globally in every time frame because req is an input variable

taking values 0 and 1. Property P1 fails globally due to the

bug above. Note however, that only property P0 fails locally.

Indeed, P0 fails even under assumption P1 ≡ 1. However, P1

becomes true if one assumes P0 ≡ 1. The latter means that

req ≡ 1 and so the counter always resets on reaching value

TABLE I
Example with a counter. Time limit is 1 hour

#bits solving globally solving

ABC (bmc) ABC (pdr) locally

#time frames time #time frames time

8 128 0.3 s 10 0.1 s 0.01 s

12 2,048 723 s 51 1.7 s 0.02 s

14 ∗ ∗ 118 9.9 s 0.02 s

16 ∗ ∗ 269 113 s 0.02 s

18 ∗ ∗ 315 1,278 s 0.02 s

20 ∗ ∗ ∗ ∗ 0.02 s

rval. So the debugging set consists only of P0. The fact that

P1 holds locally means that either P1 is true globally or that

any CEX failing P1 first fails P0. The latter implies that the

failure of P1 is caused by incorrect handling of variable req.

Note that proving P1 false globally is hard for a large counter

because a CEX consists of all states of the counter from 0

to rval. On the contrary, proving P1 true under assumption

P0 ≡ 1 is trivial because P1 is inductive under this assumption.

In Table I, we compare proving properties P0 and P1 above

globally and locally. The first column gives the size of the

counter. The next four columns give the results of solving

P0 and P1 globally by ABC, a mature tool developed at

UC Berkeley [5]. The first pair of columns gives the results

of Bounded Model Checking [1] (the largest number of used

time frames and run time). The next pair of columns provides

results of PDR (i.e., IC3). Finally, we give the results of solving

P0 and P1 locally by our tool (see Section 7).

The results show that bounded model checking soon be-

comes impractical, as the number of time frames increases

exponentially. ABC’s PDR solves more cases, but to generate

a CEX, it has to consider a quickly increasing number of time

frames as well. For JA-verification, the size of the counter

has no influence on the run time. While the counter is a

purely synthetic example, in practice, one often has to find

so-called deep counterexamples. A system with complex inner

state might require a long sequence of steps to reach a buggy

state.

5. HANDLING PROPERTIES EXPECTED TO FAIL

When proving properties Pi, i = 1, . . . ,k in JA-verification,

as introduced in Section 4, one excludes the traces where

a property Pj, j 6= i fails before Pi does. This is based on

the assumption that the properties that are the first to fail

indicate design behaviors that need to be fixed first. However,

this assumption is unreasonable when a property Pj that fails

before Pi is Expected To Fail (ETF). For instance, to ensure

that a state s is reachable, one may formulate an ETF property

Pj where s is a P j-state. In this case, excluding the traces

where Pj fails before Pi is a mistake.

One can easily extend JA-verification to handle ETF prop-

erties as follows. Suppose that our objective is to prove every

property Pi that is Expected To Hold (ETH). In addition, for

every ETF property we want to find a CEX that does not break

any ETH property. Then, to solve Pi, i = 1, . . . ,k locally one

assumes that every ETH Pj, j 6= i is true. Thus, we exclude the

traces where ETH properties fail before Pi, even if the latter

is an ETF property.

6. IC3 AND CLAUSE RE-USING

So far, we discussed the machinery of local proofs without

specifying the algorithm used to prove a property. In this

section, we describe an optimization technique applicable if

property checking is performed by IC3 [3]. The essence of

this technique is to re-use strengthening clauses generated by

IC3 for property Pi to strengthen another property Pj, j 6= i.

Before describing clause re-using, we give a high-level view

of IC3.

A. Brief description of IC3

Let Q be a property of an (I,T)-system where I → Q. If

Q holds, there always exists a predicate G(S) such that Q∧G

is inductive with respect to T . Then (Q∧G∧T)→ (Q′∧G′).
(Recall that a primed predicate symbol means that the pred-

icate in question depends on next state variables S′.) The

fact that Q ∧ G is inductive implies that Q∧ G is an over-

approximation of the set of states reachable in the (I,T)-
system in question. Therefore, for every state s reachable in

(I,T)-system, Q(s)∧G(s) = 1.

Let F denote Q∧G i.e property Q strengthened by G. In IC3,

formulas are represented in conjunctive normal form and the

predicate F is constructed as a set of clauses (disjunctions of

literals). Let Rch(I,T, j) denote the set of states reachable from

I-states in at most j transitions. To construct the formula F ,

IC3 builds a sequence of formulas F0, . . . ,Fm where F0 = I and

Fj, j = 1, . . . ,m specifies an over-approximation of Rch(I,T, j).
That is, if a state s is in Rch(I,T, j), then s satisfies Fj, i.e.,

Fj(s) = 1. A formula Fj, j > 0 is initialized with Q. Then

Fj is strengthened by adding so called inductive clauses. The

objective of this strengthening is to exclude the Fj-states from

which a bad state is reachable in one transition. The exclusion

of an Fj-state may require excluding Fi-states, i< j (by adding

inductive clauses to Fi) from which a bad state can be reached

in j− i+ 1 transitions. If Q∧Fi becomes inductive for some

value of i, i ≤ j, property Q holds. Clause C is called inductive

relative to Fj if I →C and C∧Fj ∧T →C′ hold. In this case,

every s ∈ Rch(I,T, j) satisfies C and so Fj ∧C is still an over-

approximation of Rch(I,T, j).

B. Re-using strengthening clauses

The idea of re-using strengthening clauses is based on the

following observation. Suppose that GQ is a set of clauses

which makes Q inductive in the (I,T)-system. This means

that Q∧GQ is an over-approximation of the set of all states

reachable in the (I,T)-system. Hence a state s ∈ Rch(I,T, j)
satisfies GQ, for any value j ≥ 0. Suppose one needs to prove

some other property R. Then, when constructing a formula

over-approximating Rch(I,T, j), one can initialize this formula

with R∧GQ, rather than with R.

C. State lifting in IC3

In this subsection, we briefly describe an important tech-

nique of IC3 called state lifting [4], [6]. This description

is used in Section 7 when explaining how local proofs are

implemented. Let s be a state from which a bad state is reach-

able. IC3 tries to exclude s by generating an inductive clause

falsified by s. If such a clause cannot be built immediately,

IC3 tries to exclude every state q of the previous time frame

from which there is a transition to state s. The number of those

states q can be very large. So, IC3 tries to “lift” q to a cube Cq

that not only contains the state q itself, but many other states

that are one transition away from state s. Subsequently, IC3

tries to exclude all states of Cq in one shot. Informally, the

larger Cq, the greater the performance boost by lifting.

7. IMPLEMENTATION

We use a version of IC3 developed in our research group.

We will refer to it as Ic3-db where “db” stands for Diffblue.

Ic3-db uses the front-end of EBMC [7]. We will refer to our

implementation of JA-verification based on Ic3-db as Ja-ver.

The latter is a Perl script that calls Ic3-db in a loop for proving

individual properties.

A. Using properties as constraints

Let P1, . . . ,Pk be the set of properties to be proved. Proving

Pi locally means showing that there is no initialized trace of P-

states that leads to a Pi-state, where P is the aggregate property

P1 ∧ . . . ∧ Pk. To guarantee that all present states satisfy P,

Ic3-db adds constraints to the transition relation T that force Pj,

j 6= i to be equal to 1. Adding constraints to T affects the lifting

procedure of IC3 (see Subsection 6-C). The reason is that

one needs to guarantee that all states of the cube Cq obtained

by lifting a state q satisfy the constraints in question. In our

case, all states of Cq must be P-states. Unfortunately, this can

drastically decrease the size of Cq and therefore reduce the

effectiveness of lifting. For that reason, Ic3-db has an option

to make the lifting procedure ignore the constraints forcing

Pj, j 6= i to be equal 1.

The relaxation of lifting above can lead to appearance of

“spurious” CEXs that contain transitions from P-states to other

states. (This can occur only if P does not hold). If a spurious

CEX is generated when proving property Pi, then Ic3-db is

invoked again. This time the lifting procedure is forced to

respect the constraints specified by Pj, j 6= i.

B. Implementation of clause re-using

The correctness of re-using strengthening clauses is dis-

cussed in Subsection 6-B. Assume that properties P1, . . . ,Pk

are processed in the order they are numbered. Let GP1
denote

the strengthening of property P1, i.e., P1 ∧ GP1
is inductive

with respect to T . Ja-ver maintains an external file clauseDB

that collects strengthening clauses. Therefore, after making P1

inductive, the clauses of GP1
are written to clauseDB.

When Ic3-db is invoked to prove P2, the clauses of GP1
are

extracted from clauseDB. When proving P2, the formula over-

approximating Rch(I,T, j) is initialized with P2 ∧GP1
(rather

than with P2). Let GP2
denote the strengthening clauses added

to P2 ∧ GP1
to make the latter inductive with respect to T .

These clauses are written to clauseDB (that already contains

GP1
). In general, when Ic3-db is invoked to prove Pj, all

clauses
⋃

i< j GPi
are extracted from clauseDB to be used in

the proof.

8. COMPARING LOCAL AND GLOBAL PROOFS

In Sections 9, 10 and 11, we experimentally compare

methods based on local and global proofs. In this section,

we summarize the information we provided earlier to help

better understand these experimental results. We will refer to

methods proving properties locally (respectively globally) as

a local (respectively global) approach.

Let P denote the set {P1, . . . ,Pk} of properties to verify.

There are two cases where local and global approaches provide

the same information. Assume one managed to prove every

property of P locally. In this case, every property of P holds

globally as well. Thus global and local approaches provide

the same information here. Now assume that one proved Pi ∈
P false locally (and hence globally). Assume also that in a

global approach one proved Pi false and in the generated CEX

property Pi is the first to fail. Then, Pi is “inadvertently” proved

false not only globally but locally too. In this case, both local

and global approaches provide the same information for Pi.

Now consider the cases where local and global approaches

provide different information for a failed property. Assume that

one proved Pi false globally and the generated CEX falsifies

at least one property Pj ∈ P, i 6= j before Pi. Consider the

following two cases. The first case is that one proves Pi false

locally. Then the local approach provides more information

than its global counterpart because in addition to proving Pi

false is shows that Pi is in the debugging set. The second case

is that one proves Pi true locally. In this situation, local and

global approaches do not have a clear winner. On the one

hand, the global approach gives more information by finding

a CEX for Pi. On the other hand, the local approach provides

more information by showing that every CEX falsifying Pi (if

any) first falsifies some other property of P. Note that from

the viewpoint of debugging, the information provided by the

local approach in the second case is more useful since Pi is

shown not to be in the debugging set.

Finally, lets us consider the following situation. Let P ′ ⊂ P

be the subset of properties proved true locally and P
′′ = P\P ′.

A property is in P
′′ if it is proved false locally or it is too hard

to solve or it has not been tried yet. Since P
′′ 6= /0, the fact that

Pi ∈ P
′ holds locally does not mean that it holds globally as

well. Thus, proving Pi true globally provides more information

than in the local approach. However, from the debugging point

of view, proving Pi true locally is almost as good as globally.

This proof means that Pi cannot fail “on its own”. So one first

needs to focus on properties of P
′′, in particular, to fix the

design behaviors causing property failures.

9. JA-VERIFICATION VERSUS JOINT VERIFICATION

In this section, we experimentally compare JA-verification

and joint verification to show the viability of our approach

to multi-property verification. We use benchmarks from the

multi-property track of the HWMCC-12 and 13 competitions.

As we mentioned in Section 7, JA-verification is implemented

as a Perl script Ja-ver that calls Ic3-db to process individual

properties sequentially. In this paper, we do not exploit the

possibility to improve JA-verification by processing properties

in a particular order.1 Properties are verified in the order they

are given in the design description. Joint verification is also

implemented as a Perl script called Jnt-ver, where Ic3-db is

called to verify the aggregate property P := P1 ∧ . . .∧Pk. If P

fails, the individual properties refuted by the generated CEX

are reported false. Jnt-ver forms a new aggregate property by

conjoining the properties Pi that are unsolved yet and calls

Ic3-db again. This continues until every property is solved.

Ideally, we would like to use designs with as many proper-

ties as possible. However, for a design with a very large num-

ber of properties, JA-verification usually outperforms joint ver-

ification (see Subsection 9-A). This problem can be addressed

by partitioning P1, . . . ,Pk into smaller clusters of properties [8],

which is beyond the scope of this paper. To make joint

verification more competitive, in Subsections 9-B and 9-C, we

picked sixteen designs (eight designs per subsection) that have

less than a thousand properties. For these designs, we cross-

checked the results of Ic3-db in joint verification with those

reported by the latest version of ABC [5].2

The time limit for joint verification was set to 10 hours.

The time limit used by Ic3-db in JA-verification to prove one

property is indicated in the tables of results. If a property of a

benchmark was not solved by Ic3-db, the time limit was added

to the total time of solving this benchmark. Unfortunately,

the HWMCC competitions do not identify properties of multi-

property benchmarks that are expected to fail, if any (see

Section 5). So, in the experiments we just assumed that every

property was expected to hold.

A. A few designs with a large number of properties

In this subsection, we compare JA-verification with joint

verification on a few benchmarks that have a very large number

of properties. The point we are making here is that for such

benchmarks, JA-verification is typically more robust than joint

verification. One of the reasons for that is as follows. When

one conjoins a set of very different properties joint verification

may fail to prove the aggregate property even if all properties

are simple individually. For instance, it may be the case that

each property of this set depends on a small subset of state

variables and hence can be easily proved separately. However,

if different properties depend on different subsets of variables,

the aggregate property depends on a large subset of state

1A rule of thumb here is to verify easier properties first to accumulate
strengthening clauses and use them later for harder properties.

2Joint verification is the natural mode of operation for ABC. However, in
contrast to Jnt-ver, ABC does not re-start when a property is proved false and
goes on with solving the remaining properties.

variables and becomes very hard to prove. Another reason for

the poor performance of joint verification is that the presence

of a few too-hard-to-solve properties Pi can blow up the

complexity of the aggregate property P.

TABLE II
A few designs with a large number of properties

name #all #props Joint verification JA-verification

props tried #un- time time #un- time

solved limit solved

6s400 13,784 100 100 10 h 0.3 h 3 3,167 s

6s355 13,356 100 100 10 h 0.3 h 2 2,175 s

100 0 2,817 s 0.3 h 0 1,974 s

6s289 10,789 200 0 1,095 s 0.3 h 2 1.1 h

500 100 10 h 0.3 h 3 2.1 h

100 0 919 s 0.3 h 0 1,126 s

6s403 2,382 200 0 828 s 0.3 h 1 2,329 s

500 0 717 s 0.3 h 1 3,265 s

In this experiment, we used JA-verification and joint verifi-

cation to verify the first k properties of a benchmark. (Joint

verification was performed by Ic3-db). The results of the

experiment are given in Table II. The value of k is given in

the third column. The first and second columns of this table

provide the name of a benchmark and the total number of

properties. For benchmarks 6s400 and 6s355, JA-verification

clearly outperformed joint verification. For benchmark 6s289

both JA-verification and joint verification performed well for

k = 100 and k = 200. However, for k = 500 JA-verification

outperformed joint verification. Benchmark 6s403 was the

only one out of four where joint verification outperformed

JA-verification.

B. Designs with failing properties

In this section, we describe an experiment where we verified

designs with failing properties. Our objective was to show

that solving properties locally can be much more efficient

than globally. The results are given in Table III. The first

column provides the name of the benchmark. The second

and third columns give the number of latches and properties,

respectively. The next two pairs of columns provide the results

of joint verification performed by ABC and Ic3-db. The first

column of the pair gives the number of false and true properties

that ABC or Ic3-db managed to solve within the time limit.

The second column of the pair reports the amount of time

TABLE III
Designs with failed properties. Many properties of 6s258, 6s207, 6s254,

6s335, and 6s380 are false globally in joint verification but true locally in

JA-verification. ‘mem’ means running out of memory

name #latch #pro Joint verification JA-verification by Ic3-db

pert. ABC Ic3-db with clause re-use

#false #false time #false total

(#true) time (#true) time limit (#true) time

6s104 84,925 124 1 (0) 10 h 1 (0) mem 0.3 h 1 (123) 2.5 h

6s260 2,179 35 1 (0) 10 h 1 (0) 10 h 0.5 h 1 (34) 1,686 s

6s258 1,790 80 25 (0) 10 h 30 (0) 10 h 0.3 h 1 (72) 2.4 h

6s175 7,415 3 2 (0) 10 h 2 (0) 10 h 0.3 h 2 (1) 554 s

6s207 3,012 33 6 (0) 10 h 10 (0) 10 h 0.3 h 2 (31) 22 s

6s254 762 14 13 (1) 25 s 13 (1) 225 s 0.3 h 1 (13) 2 s

6s335 1,658 61 26 (35) 2 h 26 (35) 260 s 0.3 h 20 (41) 56 s

6s380 5,606 897 399 (0) 10 h 395 (0) 10 h 0.3 h 3 (894) 550 s

TABLE IV
All properties are true

name #latch #pro- Joint verification JA-verification by Ic3-db

pert. with clause re-use

ABC Ic3-db time #un- total

time time limit solved time

6s124 6,748 630 >10 h 2.9 h 0.8 h 0 1.9 h

6s135 2,307 340 123 s 335 s 0.8 h 0 746 s

6s139 16,230 120 4.7 h 1.7 h 2.8 h 2 6.5 h

6s256 3,141 5 >10 h 602 s 2.8 h 1 2.9 h

bob12m09 285 85 1,692 s 930 s 0.8 h 0 784 s

6s407 11,379 371 1.3 h 3.4 h 0.8 h 0 2,077 s

6s273 15,544 42 1.8 s 325 s 0.8 h 0 290 s

6s275 3,196 673 334 s 1,154 s 0.8 h 0 1,611 s

taken by ABC or Ic3-db. The last three columns report data

about JA-verification: the time limit per property, the number

of false and true properties solved within the time limit, and

the total time taken by Ic3-db. In all tables of experimental

sections, the run times that do not exceed one hour are given

in seconds.

For all examples but 6s258, JA-verification solved all prop-

erties locally. On the other hand, for many examples, in joint

verification, only a small fraction of properties were solved

by Ic3-db and ABC globally. Let us consider example 6s207

in more detail. JA-verification solved all properties of 6s207

fairly quickly generating the debugging set of two properties.

On the other hand, joint verification by Ic3-db proved that

ten properties failed globally within 10 hours. Since JA-

verification showed that only two properties failed locally,

eight out of those ten failed properties were true locally. Let

Pi be one of those eight properties. The CEX found for Pi by

joint verification first falsifies a property of the debugging set.

Thus, we do not know if there is a CEX where Pi fails before

other properties. JA-verification does not determine whether Pi

fails but guarantees that every CEX for Pi (if any) first fails

some other property.

C. Designs where all properties hold

In this subsection, we describe an experiment with eight

designs where all properties were true. The results are given

in Table IV. The first three columns are the same as in Table III.

The next two columns give run times of ABC and Ic3-db in

joint verification. The last three columns provide information

about JA-verification: time limit per property, number of

unsolved properties and total run time. The best of the run

times obtained in joint verification and JA-verification based

on Ic3-db is given in bold. In three cases, joint verification

based on ABC was the fastest but we needed a comparison

that uses a uniform setup.

Table IV shows that joint verification performed slightly

better. In particular, for benchmarks 6s139 and 6s256, JA-

verification failed to solve some properties with the time limit

of 2.8 hours. However, when we verified properties in an order

different from the one of design description, both benchmarks

were solved in time comparable with joint verification.

TABLE V
Separate verification with global and local proofs for examples of Table III.
Time limit per property is the same as in Table III. The total time limit per

benchmark is 10 hours

name #properties global proofs local proofs

#unsolved time #unsolved time

6s104 124 123 10 h 0 2.5 h

6s260 35 36 10 h 0 1,686 s

6s258 80 70 10 h 7 2.4 h

6s175 3 1 1,070 s 0 554 s

6s207 33 23 7.0 h 0 22 s

6s254 14 0 237 s 0 2 s

6s335 61 3 3,243 s 0 56 s

6s380 897 698 10 h 0 550 s

10. STUDYING JA-VERIFICATION IN MORE DETAIL

A. Comparison of local and global proofs

In this subsection, we describe an experiment where we

compared separate verification with global and local proofs.

Both versions of separate verification employed clause re-

using. (Thus, separate verification with local proofs is JA-

verification). In Table V, we compare global and local proofs

on benchmarks with failing properties from Table III. The first

two columns provide the name of a benchmark and its number

of properties. The next two columns specify the performance

of separate verification with global proofs. The first column

of the two shows how many properties were solved within a

10-hour time limit for the entire benchmark. The time limit

per property was the same as in Table III. The second column

gives the overall time for a benchmark. The last two columns

provide the same information for separate verification with

local proofs. Table V shows that separate verification with

local proofs dramatically outperforms the one with global

proofs.

In Table VI, we compare global and local proofs on

benchmarks from Table IV where all properties are true. The

structure of Table VI is the same as that of Table V. Table VI

demonstrates that both versions of separate verification show

comparable performance. A noticeable difference is observed

only on benchmarks 6s256 and 6s407. So one can conclude

that it is more likely to see the effect of using local proofs

on benchmarks with failed properties. On the other hand, the

advantage of using local proofs may become more pronounced

even on correct designs if the number of properties is large

(see Section 11).

TABLE VI
Separate verification with global and local proofs for examples of Table IV.

Time limit per property is the same as in Table IV

name #properties global proofs local proofs

#unsolved time #unsolved time

6s124 630 0 2.1 h 0 1.9 h

6s135 340 0 764 s 0 746 s

6s139 120 2 8.1 h 2 6.5 h

6s256 5 2 5.7 h 1 2.9 h

bob12m09 85 0 809 s 0 784 s

6s407 317 5 5.4 h 0 2,077 s

6s273 42 0 278 s 0 290 s

6s275 673 0 1.542 s 0 1,611 s

TABLE VII
Re-using strengthening clauses in JA-verification. Time limit per property is
the same as in Table IV. Verification of 6s124, 6s139, and 6s407 (without

clause re-use) was aborted after 10 hours

name #properties without clause re-use with clause re-use

#unsolved time #unsolved time

6s124 630 505 10 h 0 1.9 h

6s135 340 0 2.7 h 0 746 s

6s139 120 116 10 h 2 6.5 h

6s256 5 0 892 s 1 2.9 h

bob12m09 85 0 1.1 h 0 784 s

6s407 317 270 10 h 0 2,077 s

6s273 42 0 1,445 s 0 290 s

6s275 673 0 3,273 s 0 1,611 s

B. Benefit of clause re-using

To illustrate the benefit of re-using strengthening clauses,

Table VII compares JA-verification with and without re-using

strengthening clauses on the examples of Table IV. Table VII

shows that JA-verification with re-using strengthening clauses

significantly outperforms its counterpart. The only exception

is 6s256 which has only five properties to check.

TABLE VIII
JA-verification with lifting respecting or ignoring property constraints for

examples of Table III. Time limit per property is the same as in Table III

name #properties respecting prop. constr. ignoring prop. constr.

#unsolved time #unsolved time

6s104 124 0 2.5 h 0 2.5 h

6s260 35 2 1 h 0 1,686 s

6s258 80 0 69 s 7 2.4 h

6s175 3 0 294 s 0 554 s

6s207 33 0 33 s 0 22 s

6s254 14 0 2 s 0 2 s

6s335 61 0 120 s 0 56 s

6s380 897 0 878 s 0 550 s

C. JA-verification and state-lifting

As we said in Subsection 7-A, Ic3-db proves property Pi

locally by treating all the properties Pj, j 6= i as constraints.

We also mentioned that this may affect the state lifting

procedure used by IC3. In this subsection, we study this issue

experimentally by considering two versions of Ic3-db. In the

first version, property constraints are respected when lifting

a state q whereas in the second version these constraints are

ignored. Respecting and ignoring property constraints means

the following. Let Cq be the cube obtained by lifting state

q. When proving property Pi, the first version of Ic3-db

guarantees that the states of Cq satisfy Pj, j 6= i whereas this

is, in general, not true for the second version.

Table VIII shows the results of both versions of Ic3-db

on the failed designs of Table III. The first two columns

give the name of a benchmark and the total number of

properties. The next two columns show the results of the first

version of Ic3-db. These columns give the number of unsolved

properties and the total run time. The last two columns provide

the same information for the second version. The results of

Table VIII show that both versions of Ic3-db have comparable

performance.

Table IX shows the results of both versions of Ic3-db on the

designs of Table IV where all properties are true. The structure

TABLE IX
JA-verification with lifting respecting or ignoring property constraints for
examples of Table IV. Time limit per property is the same as in Table IV.

The total time limit per benchmark is 10 hours

name #properties respecting prop. constr. ignoring prop. constr.

#unsolved time #unsolved time

6s124 630 618 10 h 0 1.9 h

6s135 340 248 10 h 0 746 s

6s139 120 98 10 h 2 6.5 h

6s256 5 0 1,282 s 1 2.9 h

bob12m09 85 0 1,070 s 0 784 s

6s407 317 0 1.0 h 0 2,077 s

6s273 42 0 537 s 0 290 s

6s275 673 0 6.4 h 0 1,611 s

TABLE X
Verification of single properties of benchmark 6s289 (10,789 properties)

using global and local proofs

prop. global proof local proof

index #time frames time #time frames time

20 11 213 s 1 4.0 s

137 13 289 s 1 3.0 s

500 12 370 s 1 7.7 s

1,001 10 10 s 1 2.5 s

1,310 9 30 s 1 2.4 s

2,678 9 21 s 1 2.3 s

4,789 14 32 s 1 3.5 s

6,600 14 75 s 1 2.8 s

10,002 10 9.9 s 1 2.7 s

max 14 370 s 1 7.7 s

of this table is the same as that of Table VIII. Table IX shows

that the first version is faster than the second version only on

one benchmark. On the other benchmarks the second version

outperforms the first version, sometimes quite dramatically.

11. JA-VERIFICATION AND PARALLEL COMPUTING

Intuitively, JA-verification can significantly benefit from

parallel computing. In this section, we give the results of a

simple experiment substantiating this intuition. Our interest

in a discussion of JA-verification in the context of parallel

computing is based on the following two observations. Let P

denote the set of properties {P1, . . . ,Pk} to prove. The first

observation is that the larger P, the easier proving Pi ∈ P

locally due to growing number of constraints Pj, j 6= i. The

second observation is that the larger P, the smaller an inductive

invariant for property Pi ∈ P. Hence, when proving different

properties of P locally, the exchange of information (in the

form of strengthening clauses) reduces as P grows. The ob-

servations above suggest that by proving properties in parallel

one can significantly decrease verification time.

In Table X, we report the results of a simple experiment

where we randomly picked individual properties of bench-

mark 6s289 and proved them both locally and globally. (The

total number of properties of 6s289 is 10,789.) The proofs

were generated independently of each other i.e. there was

no exchange of strengthening clauses. The index of selected

property is shown in the first column of Table X. The next two

columns provide information about the performance of Ic3-db

when proving the selected property globally. The first column

gives the number of time frames Ic3-db had to unfold. The

second column of the two shows the run time taken by Ic3-db.

The next pair of columns provide the same information when

Ic3-db proved the selected property locally. Table X shows that

proving the properties we tried locally was very easy. Assume

that finding a local proof for each of the remaining properties

of 6s289 takes a very small amount of time as well. Then, if

one had, say, 10,789 processors to prove each property Pi on a

separate processor, verification would be finished in a matter

of seconds.

12. RELATED WORK

We found only a few references to research on multi-

property verification. In [9], some modifications of ABC are

presented that let it handle multi-property designs. In [8],

[10], the idea of grouping similar properties and solving them

together is introduced. The similarity of properties is decided

based on design structure (e.g., properties with similar cones of

influence are considered similar). The main difference of this

approach from ours is that the latter is purely semantic. Thus,

the optimizations of separate verification we consider (local

proofs and re-using strengthening clauses) can be incorporated

in any structure-aware approach. One further difference is that

the idea of grouping favors correct designs. Grouping may

not work well for designs with broken properties that fail for

different reasons and thus have vastly different CEXs.

Assume-guarantee reasoning is an important method for

compositional verification [11], [12]. It reduces verification of

the whole system to checking properties of its components

under some assumptions. To guarantee the correctness of

verification one needs to prove these assumptions true. As

we mentioned earlier, JA-verification uses yet-unproven prop-

erties as assumptions without subsequent justification. This

is achieved by our particular formulation of multi-property

verification. Instead of proving or refuting every property, JA-

verification builds a subset of failed properties that are the first

to break or proves that this subset is empty.

13. CONCLUSIONS

We consider the problem of verifying multiple properties

P1, . . . ,Pk of the same design. We make a case for separate

verification where properties are proved one by one as opposed

to joint verification where the aggregate property P1 ∧ . . .∧Pk

is used. Our approach is purely semantic, i.e., we do not rely

on any structural features a design may or may not have.

We introduce a novel variant of separate verification called

JA-verification. JA-verification checks if Pi holds locally, i.e.,

under the assumption that all other properties are true. We

show that if all properties hold locally, they also hold globally,

i.e., without any assumptions. Instead of finding the set of

all failed properties, JA-verification identifies a “debugging”

subset. The properties in the debugging subset highlight design

behaviors that need to be fixed first, which can yield substantial

time savings in the design-verification cycle.

We experimentally compare conventional joint verification

and JA-verification. We give examples of designs with failed

properties where JA-verification dramatically outperforms its

counterpart, especially for designs where a small debugging set

D exists. For these designs, one needs to find only |D| CEXs

which are typically shallow. Computation of deeper CEXs for

false properties that are not in D is replaced with proving

them true locally. Re-using inductive invariants generated for

individual properties that are locally true significantly speeds

up JA-verification. In particular, for correct designs, it makes

JA-verification competitive with joint verification even for

benchmarks that favor the latter.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in DAC, 1999, pp.
317–320.

[2] K. L. Mcmillan, “Interpolation and SAT-based model checking,” in CAV.
Springer, 2003, pp. 1–13.

[3] A. Bradley, “SAT-based model checking without unrolling,” in VMCAI,
2011, pp. 70–87.

[4] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in FMCAD, 2011.

[5] B. L. Synthesis and V. Group, “ABC: A system for sequential synthesis
and verification,” 2017, http://www.eecs.berkeley.edu/∼alanmi/abc.

[6] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in FMCAD, 2011.

[7] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification
using software analyzers,” in IEEE Computer Society Annual Symposium

on VLSI. IEEE, 2015, pp. 7–12.
[8] G. Cabodi and S. Nocco, “Optimized model checking of multiple

properties,” in DATE, 2011.
[9] Http://people.eecs.berkeley.edu/∼alanmi/presentations/

updating engines00.ppt.
[10] P. Camurati, C. Loiacono, P. Pasini, D. Patti, and S. Quer, “To split

or to group: from divide-and-conquer to sub-task sharing in verifying
multiple properties,” in DIFTS, 2014.

[11] C. Jones, “Specification and design of (parallel) programs,” in IFIP 9th

World Congress, 1983, pp. 321–332.
[12] A. Pnueli, “In transition from global to modular temporal reasoning

about programs,” in Logic and Models of Conc. Sys., vol. 13, 1984, pp.
123–144.

	1 Introduction
	2 Local And Global Proofs
	2-A Definitions
	2-B Hardness of proving strong and weak properties
	2-C Local proofs

	3 Local Proofs And Debugging
	4 Ja-verification
	5 Handling Properties Expected To Fail
	6 Ic3 And Clause Re-using
	6-A Brief description of Ic3
	6-B Re-using strengthening clauses
	6-C State lifting in Ic3

	7 Implementation
	7-A Using properties as constraints
	7-B Implementation of clause re-using

	8 Comparing local and global proofs
	9 Ja-verification Versus Joint Verification
	9-A A few designs with a large number of properties
	9-B Designs with failing properties
	9-C Designs where all properties hold

	10 Studying Ja-verification In More Detail
	10-A Comparison of local and global proofs
	10-B Benefit of clause re-using
	10-C Ja-verification and state-lifting

	11 Ja-Verification And Parallel Computing
	12 Related Work
	13 Conclusions
	References

