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Abstract 
In the paper, we consider the problem of checking 

whether cubes from a set S are implicants of a DNF 
formula D, at the same time minimizing the overall time 
taken by the checks. An obvious but inefficient way of 
solving the problem is to perform all the checks 
independently. In the paper, we consider a different 
approach. The key idea is that when checking whether a 
cube C from S is an implicant of D we can deduce (learn) 
implieants of D that are not implicants of C. These cubes 
can be used in the following checks for search pruning. 
Experiments on random DNF formulas, DIMACS 
benchmarks and DNF formulas describing circuits show 
that the proposed learning procedure reduces the overall 
time taken by checks by up to two orders of magnitude. 

1. Introduction 

In the paper, we consider the problem of performing 
multiple implication checks. Given, a disjunctive normal 
form (DNF) D and a cube C, an implication check is to 
answer the question if C implies D. By multiple 
implication checks we mean that, such checks are done for 
all the cubes from a set S i.e. for each cube Ci E S it is 
checked whether Ci implies D. DNF D is further referred 
to as the basic one. Besides just checking if cubes from S 
are implicants our objective is also to minimize the overall 
time taken by all the checks. 

This problem arises in synthesis [ I ] ,  verification [ 2 ]  of 
combinational circuits (e.g. false negative identification) 
where one often needs to check whether a vector A of 
assignments to intermediate variables is consistent. The 
vector specifies a cube C in the Boolean space of circuit 
variables. To see if A is consistent one needs to check if C 
is an implicant of a DNF D specifying the set of consistent 
assignments to circuit variables. 

A common way of checking whether a cube C is an 
implicant of a DNF D is as follows. First, we form the 
cofactor Dc of D with respect to cube C and then check if 
Dc is a tautology [ 11. ( A  DNF D is a tautology if it is equal 
to 1 for any value assignment to the variables of 0.) In 
other words, we check if D turns into a tautology after 
making the assignments setting the literals of C to I .  (For 

example, if C is equal toabc then these assignments are 
a=l ,b=O,c=I). Each tautology check is a CO-NP complete 
problem [4]. If all the checks are performed separately, 
then the more cubes are in set S the harder the problem of 
multiple implication checks becomes. 

In general, one can make use of previous implication 
checks by adding to basic DNF D every cube Ci E S that 
has been proven to be an implicant of D. There are two 
problems in such an approach. Firstly, this kind of learning 
doesn’t work if there are no implicants in S. Secondly, 
even if a cube Ci E S is an implicant, learning just this 
fact is a small share of information one can actually get 
during implication check. 

The point is that if one uses conflict analysis [ 1 11 then 
when checking if C, is an implicant it is possible to deduce 
implicants of D that are not implicants of Ci. (For 
tautology checking, conflict is the situation when under a 
set of assignments A a cube C of the original DNF D 
cannot be set to 0, so the current DNF is a tautology.) 
Conflict analysis is based on the observation that some 
assignments on a path P leading to a conflict are 
redundant. This means that one will get the same conflict 
for all the paths that can be obtained from P by flipping 
redundant assignments. This fact can be stored in a 
database as the cube specified by an irredundant subset of 
the set of assignments on path P .  GRASP [9] is an 
example of an algorithm storing a database of conflicts to 
prune search tree. 

Similar conflict analysis can be used for implication 
checks. Suppose that C=abc is a cube to be checked if i t  is 
an implicant of D. If we construct Dc for tautology 
checking, we lose information about the original formula 
D. It means that for any conflict encountered during 
tautology check of Dc we consider assignments 
a=l,b=l,c=l to be irredundant. In our approach we rather 
consider implication check as examining a branch (starting 
with assignments a= 1 ,b= 1 ,e= 1) of the search tree 
constructed when tautology checking formula D (not Dc). 
This allows one to check in each encountered conflict 
whether assignments a=l ,b=l ,c=l are irredundant. As the 
result we can obtain implicants of D that are not 
implicants of C.  In other words we can deduce implicants 
whose influence on other implication checks goes 
”beyond” cube C itself. To limit the number of cubes to be 
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stored, in the current version of our algorithm only cubes 
whose number of literals is below a threshold are stored. 

Treating implication check as examination of a branch 
of the search tree constructed when tautology checking D 
looks like a minor technical issue. However, it means an 
important paradigm shift. Instead of asking the same 
question about different objects (is this cofactor of D a 
tautology?) we ask different questions about the same 
object, which is the basic DNF D (is this cube an implicant 
of D?). This allows one to become increasingly 
knowledgeable about this object. It should be noted that 
the fact, that adding implicants to basic DNF D makes it 
easier to perform next implication checks, is obvious. The 
point however is that we get implicants of D without any 
extra effort just as a by-product of implication checks. 

In [5],[10] a similar problem has been addressed. 
Rephrased in tautology checking language it can be 
formulated as the problem of multiple tautology checks 
performed on a set of DNFs sharing many cubes. [n [ 101 a 
technique of storing “pervasive” cubes was proposed. The 
difference between our approach and this technique is 
explained in detail in section 5. 

Our experiments on random and circuit DNFs show 
that the proposed learning procedure reduces the overall 
time taken by the checks by up to 2 orders of magnitude. 

2. Unit cube rule and BCP 

Suppose that we perform a tautology check on DNF D 
and the latter contains a unit cube i.e. a cube containing 
one literal, say cube C=a. Then we can immediately 
conclude that no solution exists with a=l (by solution we 
mean an assignment proving that D is a non-tautology i.e. 
an assignment under which D=O). So from the uni t  cube C 
we can deduce that the value taken by variable a in any 
solution (if D is a non-tautology) is equal to 0. This way of 
deducing values is called the unit cube rule. Now we can 
simplify D by making assignment a=O and discarding all 
cubes having literal a and removing literal 5 from all 
cubes that have it. 

After applying the unit cube rule once, new unit cubes 
may appear in the current DNF so the rule can be applied 
again. The procedure of iterative application of the unit 
cube rule is called Boolean Constraint Propagation (BCP). 
BCP stops when 

a solution is found; 
a conflict is encountered. 

When performing a tautology check on a DNF D, conflict 
means the situation when all literals are removed from a 
cube C of D under current assignment (we will say that a 
conflict on cube C is encountered). So no solution can be 
obtained by branching on unassigned yet variables. 

there are no unit cubes in the current DNF; 

3. Conflict analysis 

Conflict analysis is based on the following observation. 
Let A be a set of assignments that after performing BCP 
lead to a conflict on a cube C. It means that under 
assignment A followed by BCP all literals of C are 
removed and it can’t be set to 0. It may happen that even 
after removing some subset A’of assignments from A, the 
rest of assignments lead to the same conflict on C [ 1 11. So 
assignments A ’ are redundant with respect to the conflict. 
This observation allows one to prune some paths different 
from the current one. Suppose for example, that having 
made assignments A={ a=l,b=O, v=l,m=l,s=O,d=l} we get 
a conflict. This means that cube C = abvmsd specified by 
assignments A is an implicant of the original DNF. Storing 
the cube doesn’t make sense because the algorithm will 
never explore a path containing all the assignments from 
A .  Suppose, however, that conflict analysis shows that 
assignments a=l,s=O are redundant. Then we can claim 
that cube C* = bvmd strictly containing C is an implicant 
of D too. Storing cube C* does make sense. Suppose that 
a=l and s=O are first assignments to variables a and s i.e. 
assignments a=O and s=l are yet to be examined. Then 
storing C* will help to prune branches corresponding to 
the sets of assignments obtained from A by flipping values 
of variable a and/or variable s. 

It is convenient to use a special term for a set of 
assignments leading to a conflict. We will call it conflict 
recipe. As it was mentioned above, conflict recipes can be 
redundant, which means that the same conflict can be 
described by different recipes. Cube C* = bvmd specifies 
an irredundant recipe (b=O,v= 1 ,M= 1 ,d= 1 ] of the same 
conflict as recipe A above. Moreover, the same conflict 
can have different irredundant recipes. Recipes differ in 
their quality and a number of techniques have been 
proposed for recipe optimization. In [7] a procedure for 
reducing recipe size by replacing conscious (i.e. decision) 
assignments of the recipe with deduced ones is introduced. 
In [9] a technique for splitting a recipe into two shorter 
ones is suggested. These techniques are used in our 
experiments described in section 6. 

4. Problem formulation and algorithm 
description 

The problem of multiple implication checks is 
formulated as follows. Given a DNF formula D (called 
basic DNF) and a set of cubes S=(C‘,, ..., Cn], check for 
every cube Ci ,i=l,..,n if it is an implicant of D minimizing 
the overall time taken by all n checks. Ci is an implicant of 
D if for any assignment for which Ci is equal to 1 ,  D is 
equal to 1 as well. 

Our algorithm performs implication checks one by one, 
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with no particular order. For the sake of simplicity, let us 
assume that cubes are checked according to their numbers 
i.e. C1 is the first to check and C,, is the last. (Though one 
has every reason to believe that the order in which cubes 
of S are processed may dramatically affect algorithm 
performance, finding a good ordering is not the focus of 
the paper). Let C, be the next cube to check. The key idea 
of our algorithm is to store (i.e. to add to D )  implicants of 
D obtained when performing implication check on C,. The 
reason for keeping such implicants is that conflict analysis 
allows one to deduce implicants of D which are not 
implicants of C,. These implicants may be useful for next 
implication checks. To limit the number of implicants of D 
we keep only the ones whose number of literals is less 
than a threshold are stored. 

Let us first describe the difference between our and 
traditional approaches. Assume for the sake of clarity that 
C, = abc is the next cube to check. A common way of 
performing implication check on C, is to compute the 
cofactor Dc, of basic DNF D by making assignments 

a=l,b=l,c=l and then perform a tautology check on Dc, . 
The drawback of such approach is that we assume that all 
three assignments above "contribute" to any conflict 
encountered when performing tautology check on Dc, . 

So all implicants of Dc, that are deduced are implicants 
of C, (because we have to add all three literals a,b,c to any 
implicant deduced when performing tautology check on 

The key point of our approach is that instead of 
checking if Dc, is a tautology we examine the branch 

a=l,b=l,c=l of the tree constructed when checking if 
basic DNF D is a tautology. If no solution is found in this 
branch, then C, is an implicant of D, otherwise it is not. 
This may look like a minor trick but in fact, it means an 
important paradigm shift. In a traditional approach we ask 
the same question (is this DNF a tautology?) about 
different objects, which are cofactors Dc, ,..., DCn . In our 

approach we ask different questions (is this cube an 
implicant of the basic DNF D?) about the same object, 
which is the basic DNF. Accumulating implicants of D, 
the algorithm becomes more and more "knowledgeable" 
about the object it deals with. 

Let us consider in more detail how an implication 
check is performed. Let C, be the cube to perform 
implication check on. First, the assignments setting all 
literals of C, to 1 are made in D (we will refer to them as 
initial assignments). If, for example, C,=abc then the set of 
initial assignments is a=l,b=l ,c=l. This means that all 
cubes having at least one of the literals Z,b,F are 
discarded and literals a,b,c are removed from all the cubes 
having them. If necessary, BCP is applied. After making 

Dc, )- 

the initial assignments the following three situations are 
possible. 

1) A conflict if found. It means that the cube specified 
by the initial assignments (in our example it is cube abc) is 
an implicant of D. 

2) A solution is found i.e. D is set to 0. Then Ci is not 
an implicant of D. 

3) If neither of the cases above occurs then the 
algorithm starts branching trying to find an assignment 
setting all the cubes of D to 0. If a conflict is encountered, 
a recipe of the conflict is constructed and added to D. 
Nonchronological backtracking is performed [9]. If a 
solution is found, which proves that Ci is not an implicant 
of D, the implication check stops. If algorithm backtracks 
to one of the initial assignments, which means that Ci is an 
implicant of D, the implication check stops. 

When an implication check of cube C, is completed, all 
found implicants added to D during of C, checking and 
containing more literals then the threshold value are 
deleted from D. So D accumulates only short implicants 
which have more chances to be useful in the implication 
checks to follow. 

Let us illustrate the method by the following example. 
Let S = ab v ag v b g f  be the DNF specifying the set of 
cubes to check if they are implicants of a basic DNF 
D = ac v bgh v cgh v h f v hf . Let cube ab be the first to 
be checked. After making the initial assignments a = l  and 
b = l  we get DNF c v i h v i g h v h f v h f .  It contains 
single unit cube c from which we deduce c=O. By making 
the assignment we reduce the DNF to g h  v gh v h f v hf . 
Since BCP stops here, we need to choose a variable to 
branch on. Suppose that we branch on variable g and 
branch g=O is examined first. Substituting g for 0 we get 
DNF h v h f  vhf  . From the unit cube we deduce h=O. 

After assigning h=O we get DNF f v 7. Now deducing 
either assignment f=O or f = 1  leads to a conflict on cube 
h f  or cube hf of the basic DNF D. 

The conflict depends on chosen assignments b=l  and 
g=O (and does not depend on assignment a = l ) .  Indeed, 
after making assignments b= l  and g=O we get DNF 
D = a c v  h v h f  vhf  . After deducing h=O and applying 

BCP we get the same conflict on cube i f  or cube hf as 
before. So the set of assignments (b=l,g=O} can be 
considered as a recipe of the conflict. The recipe specifies 
an implicant bg of the basic DNF which is not an 
implicant of cube ab for which implication check is 
performed. Now we need to backtrack and flip the 
assignment to the last chosen variable responsible for the 
conflict i.e. variable g. Assignment g=1 leads to the same 
DNF h v h f v hf that was considered in the branch g=O. 

- 
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After performing BCP we obtain a conflict with recipe 
(a= I,g= 1 1. Again this recipe specifies an implicant ag of 
the basic DNF which is not an implicant of ab. 

Now we need to backtrack to variable b which is an 
initial variable. This means that implication check is over 
and cube ab is an implicant of D. 

Suppose the threshold is equal to 2. So the two found 
implicantsbg, ag can be added to the basic DNF D. 

So D = ac v bgh v cgh v h  f v hf v bg v ag v a b .  Now 

checking ag, bgf becomes trivial because ag is already 

contained in D and bg contains bgf (that is bgf implies 

b g  ). So after making initial assignments b=1, g=O, f i l  

we get a conflict on cube b g  and immediately conclude 

that bg f is an implicant of D. 

5. Our approach versus storing pervasive 
cubes 

In [ 5 ] , [  101 the problem of multiple tautology checks 
performed on a set of "similar" DNFs D,, ..., Dn was 
addressed. The DNFs are similar in the sense that they 
share a substantial set of cubes. In [ IO]  a technique of 
storing "pervasive" cubes was introduced. Let W* be the 
set of cubes shared by all the DNFs to be tautology 
checked. A cube C is pervasive if it is an implicant of 
DNF D*. Since D* is contained in every DNF D, then 

obviously C is an implicant of Di as well. So storing a 
pervasive cube is useful because it is an implicant of all 
the DNFs and can be employed in the following tautology 
checks. 

As it was mentioned in the introduction the problem of 
checking if a cube C is an implicant of F reduces to the 
tautology check of the cofactor FC . So checking if cubes 
from the set S=(C, ,  ..., C,} are implicants of a DNF D 
reduces to multiple tautology checks performed on the set 
of cofactors D,, ,.., DCn . Then the technique of storing 

pervasive cubes can be applied to reduce the overall time 
of tautology checks. However there are at least three 
reasons why our approach is superior when applied to the 
problem of multiple implication checks. 

1 )  Our approach is applicable even when the set S of 
cubes to perform implication check on is not 
known beforehand. In this case the set of cofactors 
D,, ,.., DCn is not known beforehand either and 

so the set D* of shared cubes cannot be computed. 
2) Even if set S is specified before starting 

implication checks it is quite possible that the set 
D* of cubes shared by the cofactor DNFs is very 
small. (It can be actually empty if in cubes of S 
either literal of each variable of DNF D appears at 
least once because then for each cube C of D 
there is a cofactor DNF from which C is 
discarded.) 

V 
1 100 

2 100 

3 100 

Table 1. Results on random functions 
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3) Storing only cubes which are implicants of D* is 
unnecessarily restrictive. Indeed, suppose that set 
S consists just of two cubes C1=ubc and C2=xyz. 
Then the set D* of cubes shared by the cofactors 
D ,  , , Dc2 consists of all the cubes of D that don't 

contain (positive and negative) literals of variables 
u,b,c,x,y,z. However it is not hard to show that 
using cubes of D containing, say, literal b our 

6. Experimental results 

In our experiments we used a conflict analysis based 
algorithm which employs a number of known techniques 
like the one of using deduced assignments in conflict 
recipes [7] and the procedure of dominator identification 
[9]. However it doesn't use the concept of decision levels 
[9] to make search tree size computation easier. In each 
experiment a basic DNF D and a set S of cubes, to be 
checked if they are implicants, are given. After processing 
a cube C, E S all the found implicants of D whose size is 
less than a threshold value F are added to D. (The size of 
a cube is equal to the number of its literals.) If F equals 0 
no implicants are added to D which corresponds to 
performing implication checks separately. The algorithm 
is implemented in Visual C++ 4.0 for Windows 95. The 
experiments were run on a computer with AMD-230 CPU 
and 32 Mbytes of RAM. 

In table 1 results on random DNF formulas are given. 
We consider three basic DNFs that are hard non- 
tautologies [6],[ 121. Each DNF consists of 3-literal cubes 
and the number of cubes in it is 4.1 times the number of 
variables. For all three DNFs we use the same set S of 
5000 cubes to perform implication checks, each cube 
having 3 literals. The basic DNFs are selected so as to 
cover all three possible cases of splitting S into implicants 
and non-implicants: the majority of implicants (first DNF), 
the majority of non-implicants (second DNF), equal shares 
of implicants and non-implicants (third DNF). In table 1 
results after every 1000 implication checks are given. 

Columns V and C specify the number of variables and 
cubes in the basic DNF. Columns L and I specify the 
number of checked cubes and the number of implicants 
among them. Column Tree gives the average tree size (the 
number of nodes) over every processed set of 1000 cubes. 
Column New gives the number of implicants added to D. 
Column T specifies the overall time (in seconds) of 1000 
implication checks for threshold value F=O (independent 
checks). Column %T specifies the ratio (percent) of the 
overall time taken by 1000 checks for a non-zero value of 
F and for F=O . 

It is not hard to see that for thresholds F=4,5,6 average 
tree size Tree and overall runtime decrease every 1000 
cubes as does the number New of added implicants. For 

algorithm may obtain a cube C* (having literal b 
and not having literals a,c) which is an implicant 
of D and is not an implicant of CI. Cube C* may 
turn to be useful when checking if C, is an 
implicant of D, for example, in branch b=l if b is 
chosen as a branching variable (and in many other 
cases). 

example for the first basic DNF, processing 1000 cubes is 
sufficient to reduce the average tree size from 182 nodes 
for F=O to 4 nodes for threshold F=5 for all the next 
implication checks. Besides, the process of learning is 
nearly complete after processing first lo00 cubes, since 
only 5 new implicants are added to the basic DNF. 

In table 2 results on some DNFs that are 
representatives of DIMACS suite classes [3] are given. 
Column Type specifies the DNF type: B denotes the basic 
DNF and S means that the cubes of this DNF are checked 
if they are implicants of B .  Column N gives the total 
number of nodes in the search trees built for all the 
implication checks performed for cubes of S. Column %N 
specifies the ratio of the total number of nodes for a non- 
zero value of F and for F=O. Column %T gives the ratio of 
the overall time taken by all checks for a non-zero value of 
F and for F=O. 

It should be mentioned that all the basic DNFs from 
table 2 are tautologies, which means that all cubes of S are 
implicants of B .  One can see from the table that for 
example for threshold F=5 the average tree size is just 
3.3% of the tree size for F=O and for threshold F=4 the 
average total time of checks is just 2.1% of the time for 
F=O. 

In table 3 results for DNFs from the DIMACS class 
Aim200 are given. Here the basic DNFs are not 
tautologies. Class Aim200 consists of 6 subclasses: 
Aim200-1-6yes, Aim200-2-0yes, Aim200-3-4yes, 
Aim200-6-0yes, Aim200- 1 -6n0, Aim200-2-Ono. The first 
four subclasses are non-tautologies and DNFs of the 
subclasses are used as basic DNFs B. The DNFs of the last 
two subclasses that are tautologies are used to represent 
sets of cubes S. Each of the six subclasses contains 4 
DNFs. So in total we have 16 multiple implication checks 
problems for each pair (DNF B from a class of non- 
tautologies, DNF S from a class of tautologies). Table 3 
gives average results for each set of 16 problems. Column 
I ,  specifies the average number of implicants of B in set S 
for each set of 16 problems. Column NI,  specifies the 
average number of non-implicants in set S for each set of 
16 problems. In contrast to columns with the same name 
from previous tables columns N ,  T, C, YON, %T, New are 
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averaged over sets of 16 problems. 

Table 2. Results on DIMACS representatives of different classes 

Name V C Type Threshold Threshold 
F=O, 1 F=2 
N T %h %TNeu 

Dubois2O 60 160 B 40582 7 8 6.7 15 
Pret60-25 60 160 S 

Threshold Threshold Threshold 
F=3 ‘ F=4 F=5 

%N %T Nen %N %T Nen %N %T Nen 
6.1 6.3 77 3.5 5.1 107 2.2 4.3 155 

Table 3. Results on DIMACS class Aim200 
I -  set of cubes S from subclass Aim200-1-6no; 2- set of cubes S from subclass Aim200-2-Ono 

Basic DNF Set of Threshold Threshold Threshold Threshold Threshold 
subclass cubes S F=O F= 1 F=2 F=3 F=4 

I~ NI, N T C %N % T  New %N % T  New %N % T  New %N % T  New 
1 Aim200-1-6yes 279 40 43234 13 318 43 40 19 6,s 8.7 127 3.6 6.7 199 3,9 7.2 242 

Aim200-2-Oyes 282 37 61589 26 397 21 17 30 4.7 5.3 136 2.7 4.2 245 2,9 4.6 289 
Aim200-3-4yes 278 41 56729 72 678 18 12 35 3.6 2,6 127 2,6 2.0 205 2.8 2.1 254 
Aim200-6-Oyes 279 40 48025 97 1185 1 1  6,8 9 3.7 2.1 80 3.5 2.2 135 3.6 2.5 194 

2 Aim200-I-6yes 347 51 53196 16 318 39 37 21 7.6 9.1 145 3.6 6.4 243 3.6 7,O 273 

As one can see from table 3 for threshold F=3 the 
average tree size is only 3.1 % of the tree size for F=O and 
time is 3.7% and on average 180 implicants are added to 
basic DNFs. 

In table 4 the results for checking consistency of 
assignments to intermediate variables of circuits are given. 
Given a circuit N ,  the basic DNF D here is a DNF 
specifying all consistent (observable) assignments to 
variables of N .  To check if a set of assignments to a few 
variables of N is observable one must check if the cube 
specified by the assignments is an implicant of D. In each 
experiment 5000 cubes of 3-literals were randomly 

generated, each cube specifying a combination of 
assignments to 3 intermediate variables of N .  

Columns V and C specify the number of variables and 
cubes in the basic DNF D. Column Tree gives the average 
tree size for F=O. The next 3 columns specify results for 
the threshold (indicated in column F’) for which the 
greatest average tree size reduction is achieved. Column 
Tree’ gives the average tree size over the last 1000 
implication checks and New’ is the total number of 
impiicants added to D (after all 5000 checks). It should be 
noted that though the average tree size is computed only 
for the last 1000 checks, the learning process for threshold 
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F' is nearly complete after a fraction of the total 5000 
checks which doesn't exceed a few hundred checks. 

The last 3 columns give results for the threshold 
(specified in column F ' )  for which the greatest runtime 

reduction is achieved. Column %TI specifies the ratio 
(percent) of the overall runtime for threshold values F=O 
and F ' .  Column New" gives the total number of implicants 
added to the basic DNF D. 

Table 4. Results for circuit DNFs 

7. Conclusions 

We consider the problem of checking if cubes C,,,.,Cn 
are implicants of a DNF D and suggest an efficient 
procedure of "on-the-fly'' learning. We introduce a 
technique that allows one during the implication check of 
Ci to  deduce cubes that are implicants of D but not 
implicants of Ci . The technique gives a "cheap" and 
effective way of reducing the complexity of subsequent 
implication checks. 

One of the possible directions for future research is 
studying how order in which cubes C,,..,C,, are processed 
affects the overall runtime and finding heuristics allowing 
one to select best orders. 
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