# Partial Quantifier Elimination And Property Generation

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We study partial quantifier elimination (PQE) for propositional CNF formulas with existential quantifiers. PQE is a generalization of quantifier elimination where one can limit the set of clauses taken out of the scope of quantifiers to a small subset of clauses. The appeal of PQE is that many verification problems (e.g., equivalence checking and model checking) can be solved in terms of PQE and the latter can be dramatically simpler than full quantifier elimination. We show that PQE can be used for property generation that can be viewed as a generalization of testing. The objective here is to produce an *unwanted* property of a design implementation thus exposing a bug. We introduce two PQE solvers called EG-PQE and  $EG-PQE^+$ . EG-PQE is a very simple SAT-based algorithm.  $EG-PQE^+$  is more sophisticated and robust than EG-PQE. We use these PQE solvers to find an unwanted property (namely, an unwanted invariant) of a buggy FIFO buffer. We also apply them to invariant generation for sequential circuits from a HWMCC benchmark set. Finally, we use these solvers to generate properties of a combinational circuit that mimic symbolic simulation.

# 1 Introduction

In this paper, we consider the following problem. Let F(X, Y) be a propositional formula in conjunctive normal form  $(CNF)^1$  where X, Y are sets of variables. Let G be a subset of clauses of F. Given a formula  $\exists X[F]$ , find a quantifier-free formula H(Y) such that  $\exists X[F] \equiv H \land \exists X[F \setminus G]$ . In contrast to *full* quantifier elimination (QE), only the clauses of G are taken out of the scope of quantifiers here. So, we call this problem *partial* QE (PQE) [1]. (In this paper, we consider PQE only for formulas with *existential* quantifiers.) We will refer to H as a *solution* to PQE. Like SAT, PQE is a way to cope with the complexity of QE. But in contrast to SAT that is a *special* case of QE (where all variables are quantified), PQE generalizes QE. The latter is just a special case of PQE where G = F and the entire formula is unquantified. Interpolation [2,3] is a special case of PQE as well [4] (see also Appendix A).

<sup>&</sup>lt;sup>1</sup> Every formula is a propositional CNF formula unless otherwise stated. Given a CNF formula F represented as the conjunction of clauses  $C_1 \wedge \cdots \wedge C_k$ , we will also consider F as the *set* of clauses  $\{C_1, \ldots, C_k\}$ .

The appeal of PQE is threefold. First, it can be much more efficient than QE if G is a small subset of F. Second, many verification problems like SAT, equivalence checking, model checking can be solved in terms of PQE [1,5,6,7]. So, PQE can be used to design new efficient methods for solving known problems. Third, one can apply PQE to solving *new* problems like property generation considered in this paper. In practice, to perform PQE, it suffices to have an algorithm that takes a single clause out of the scope of quantifiers. Namely, given a formula  $\exists X[F(X,Y)]$  and a clause  $C \in F$ , this algorithm finds a formula H(Y) such that  $\exists X[F] \equiv H \land \exists X[F \setminus \{C\}]$ . To take out k clauses, one can apply this algorithm k times. Since  $H \wedge \exists X[F] \equiv H \wedge \exists X[F \setminus \{C\}]$ , solving the PQE above reduces to finding H(Y) that makes C redundant in  $H \wedge \exists X[F]$ . So, the PQE algorithms we present here employ redundancy based reasoning. Namely, we describe two PQE algorithms called EG-PQE and EG- $PQE^+$  where "EG" stands for "Enumerate and Generalize". EG-PQE is a very simple SATbased algorithm that can sometimes solve very large problems.  $EG-PQE^+$  is a modification of EG-PQE that makes the algorithm more powerful and robust.

In [6], we showed the viability of an equivalence checker based on PQE. In particular, we presented instances for which this equivalence checker outperformed ABC [8], a high quality tool. In this paper, we describe and check experimentally one more important application of PQE called property generation. Our motivation here is as follows. Suppose a design implementation *Imp* meets the set of specification properties  $P_1, \ldots, P_m$ . Typically, this set is incomplete. So, *Imp* can still be buggy even if every  $P_i, i = 1, \ldots, m$  holds. Let  $P_{m+1}^*, \ldots, P_n^*$  be *desired* properties adding which makes the specification complete. If *Imp* meets the properties  $P_1, \ldots, P_m$  but is still buggy, a missed property  $P_i^*$  above fails. That is, *Imp* has the *unwanted* property  $\overline{P_i^*}$ . So, one can detect bugs by generating unspecified properties of *Imp* and checking if there is an unwanted one.

Currently, identification of unwanted properties is mostly done by massive testing. (As we show later, the input/output behavior specified by a single test can be cast as a simple property of *Imp*.) Another technique employed in practice is *guessing* a list of unwanted properties that may hold and formally checking if this is the case. The problem with these techniques is that they can miss an unwanted property. In this paper, we describe property generation by PQE. The benefit of PQE is that it can produce much more complex properties than those corresponding to single tests. So, using PQE one can detect bugs that testing overlooks or cannot find in principle. Importantly, PQE generates properties covering different parts of *Imp*. This makes the search for unwanted properties more systematic and facilitates discovering bugs that can be missed if one simply guesses unwanted properties that may hold.

In this paper, we experimentally study generation of invariants of a sequential circuit N. An invariant of N is unwanted if a state that is supposed to be reachable in N falsifies this invariant and hence is unreachable. Note that finding a formal proof that N has no unwanted invariants is impractical. (It is hard to efficiently prove a large set of states reachable because different states are reached by different execution traces.) So developing practical methods for finding unwanted invariants if very important. We also study generation of properties mimicking symbolic simulation for a combinational circuit obtained by unrolling a sequential circuit. An unwanted property here exposes a wrong execution trace.

The main body of this paper is structured as follows. (Some additional information can be found in appendices.) In Section 2, we give basic definitions. Section 3 presents property generation for a combinational circuit. In Section 4, we describe invariant generation for a sequential circuit. Sections 5 and 6 present EG-PQE and EG- $PQE^+$  respectively. In Section 7, invariant generation is used to find a bug in a FIFO buffer. Experiments with invariant generation for HWMCC benchmarks are described in Section 8. Section 9 presents an experiment with property generation for combinational circuits. In Section 10 we give some background. Finally, in Section 11, we make conclusions and discuss directions for future research.

### 2 Basic Definitions

In this section, when we say "formula" without mentioning quantifiers, we mean "a quantifier-free formula".

**Definition 1.** We assume that formulas have only Boolean variables. A literal of a variable v is either v or its negation. A clause is a disjunction of literals. A formula F is in conjunctive normal form (CNF) if  $F = C_1 \land \cdots \land C_k$  where  $C_1, \ldots, C_k$  are clauses. We will also view F as the set of clauses  $\{C_1, \ldots, C_k\}$ . We assume that every formula is in CNF.

**Definition 2.** Let F be a formula. Then Vars(F) denotes the set of variables of F and  $Vars(\exists X[F])$  denotes  $Vars(F) \setminus X$ .

**Definition 3.** Let V be a set of variables. An assignment  $\vec{q}$  to V is a mapping  $V' \to \{0,1\}$  where  $V' \subseteq V$ . We will denote the set of variables assigned in  $\vec{q}$  as  $Vars(\vec{q})$ . We will refer to  $\vec{q}$  as a full assignment to V if  $Vars(\vec{q}) = V$ . We will denote as  $\vec{q} \subseteq \vec{r}$  the fact that a)  $Vars(\vec{q}) \subseteq Vars(\vec{r})$  and b) every variable of  $Vars(\vec{q})$  has the same value in  $\vec{q}$  and  $\vec{r}$ .

**Definition 4.** A literal, a clause, and a formula are said to be **satisfied** (respectively **falsified**) by an assignment  $\vec{q}$  if they evaluate to 1 (respectively 0) under  $\vec{q}$ .

**Definition 5.** Let C be a clause. Let H be a formula that may have quantifiers, and  $\vec{q}$  be an assignment to Vars(H). If C is satisfied by  $\vec{q}$ , then  $C_{\vec{q}} \equiv 1$ . Otherwise,  $C_{\vec{q}}$  is the clause obtained from C by removing all literals falsified by  $\vec{q}$ . Denote by  $H_{\vec{q}}$  the formula obtained from H by removing the clauses satisfied by  $\vec{q}$  and replacing every clause C unsatisfied by  $\vec{q}$  with  $C_{\vec{q}}$ .

**Definition 6.** Given a formula  $\exists X[F(X,Y)]$ , a clause C of F is called a quantified clause if  $Vars(C) \cap X \neq \emptyset$ . If  $Vars(C) \cap X = \emptyset$ , the clause C depends only on free, i.e., unquantified variables of F and is called a **free clause**.

**Definition 7.** Let G, H be formulas that may have existential quantifiers. We say that G, H are **equivalent**, written  $\mathbf{G} \equiv \mathbf{H}$ , if  $G_{\vec{q}} = H_{\vec{q}}$  for all full assignments  $\vec{q}$  to  $Vars(G) \cup Vars(H)$ .

**Definition 8.** Let F(X, Y) be a formula and  $G \subseteq F$  and  $G \neq \emptyset$ . The clauses of G are said to be **redundant** in  $\exists X[F]$  if  $\exists X[F] \equiv \exists X[F \setminus G]$ . Note that if  $F \setminus G$  implies G, the clauses of G are redundant in  $\exists X[F]$ .

**Definition 9.** Given a formula  $\exists X[F(X,Y))]$  and G where  $G \subseteq F$ , the **Partial Quantifier Elimination** (**PQE**) problem is to find H(Y) such that  $\exists X[F] \equiv H \land \exists X[F \setminus G]$ . (So, PQE takes G out of the scope of quantifiers.) The formula H is called a solution to PQE. The case of PQE where G = F is called **Quantifier Elimination** (**QE**).

Example 1. Consider the formula  $F = C_1 \wedge C_2 \wedge C_3 \wedge C_4$  where  $C_1 = \overline{x}_3 \vee x_4$ ,  $C_2 = y_1 \vee x_3$ ,  $C_3 = y_1 \vee \overline{x}_4$ ,  $C_4 = y_2 \vee x_4$ . Let Y denote  $\{y_1, y_2\}$  and X denote  $\{x_3, x_4\}$ . Consider the PQE problem of taking  $C_1$  out of  $\exists X[F]$ , i.e., finding H(Y) such that  $\exists X[F] \equiv H \wedge \exists X[F \setminus \{C_1\}]$ . As we show later,  $\exists X[F] \equiv y_1 \wedge \exists X[F \setminus \{C_1\}]$ . That is,  $H = y_1$  is a solution to the PQE problem above.

*Remark 1.* Let D be a clause of a solution H to the PQE problem of Definition 9. If  $F \setminus G$  implies D, then  $H \setminus \{D\}$  is a solution to this PQE problem too.

**Proposition 1.** Let H be a solution to the PQE problem of Definition 9. That is,  $\exists X[F] \equiv H \land \exists X[F \setminus G]$ . Then  $F \Rightarrow H$  (i.e., F implies H).

The proofs of propositions are given in Appendix B.

**Definition 10.** Let clauses C', C'' have opposite literals of exactly one variable  $w \in Vars(C') \cap Vars(C'')$ . Then C', C'' are called **resolvable** on w. The clause C having all literals of C', C'' but those of w is called the **resolvent** of C', C''. The clause C is said to be obtained by **resolution** on w.

**Definition 11.** Let C be a clause of a formula G and  $w \in Vars(C)$ . The clause C is said to be **blocked** [9] in G with respect to the variable w if no clause of G is resolvable with C on w.

**Proposition 2.** Let a clause C be blocked in a formula F(X, Y) with respect to a variable  $x \in X$ . Then C is redundant in  $\exists X[F]$ , i.e.,  $\exists X[F \setminus \{C\}] \equiv \exists X[F]$ .

# **3** Property Generation By PQE

Many known problems can be formulated in terms of PQE, thus facilitating the design of new efficient algorithms. In Appendix C, we recall some results on solving SAT, equivalence checking and model checking by PQE presented in [1,5,6,7]. In this section, we describe application of PQE to property generation for a combinational circuit. The objective of property generation is to expose a bug via producing an *unwanted* property.

Let M(X, V, W) be a combinational circuit where X, V, W specify the sets of the internal, input, and output variables of M respectively. Let F(X, V, W)denote a formula specifying M. As usual, this formula is obtained by Tseitin's transformations [10]. Namely, F equals  $F_{G_1} \wedge \cdots \wedge F_{G_k}$  where  $G_1, \ldots, G_k$  are the gates of M and  $F_{G_i}$  specifies the functionality of gate  $G_i$ .

Example 2. Let G be a 2-input AND gate defined as  $x_3 = x_1 \wedge x_2$  where  $x_3$  denotes the output value and  $x_1, x_2$  denote the input values of G. Then G is specified by the formula  $F_G = (\overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee \overline{x}_3) \wedge (x_2 \vee \overline{x}_3)$ . Every clause of  $F_G$  is falsified by an inconsistent assignment (where the output value of G is not implied by its input values). For instance,  $x_1 \vee \overline{x}_3$  is falsified by the inconsistent assignment  $x_1 = 0, x_3 = 1$ . So, every assignment satisfying  $F_G$  corresponds to a consistent assignment to G and vice versa. Similarly, every assignment satisfying the formula F above is a consistent assignment to the gates of M and vice versa.

#### 3.1 High-level view of property generation by PQE

One generates properties by PQE until an unwanted property exposing a bug is produced. (Like in testing one runs tests until a bug-exposing test is encountered.) The benefit of property generation by PQE is fourfold. First, by property generation one can identify bugs that are hard or simply impossible to find by testing. Second, using PQE makes property generation efficient. Third, by taking out different clauses one can generate properties covering different parts of the design. This increases the probability of discovering a bug. Fourth, every property generated by PQE specifies a large set of high-quality tests.

In this paper (Sections 7, 9), we consider cases where identifying an unwanted property is easy. However, in general, such identification is not trivial. A detailed discussion of this topic is beyond the scope of this paper. (Nevertheless, in Appendix D, we give the main idea of the procedure for deciding if a property is unwanted.)

#### 3.2 Property generation as generalization of testing

The behavior of M corresponding to a single test can be cast as a property. Let  $w_i \in W$  be an output variable of M and  $\vec{v}$  be a test, i.e., a full assignment to the input variables V of M. Let  $B^{\vec{v}}$  denote the longest clause falsified by  $\vec{v}$ , i.e.,  $Vars(B^{\vec{v}}) = V$ . Let  $l(w_i)$  be the literal satisfied by the value of  $w_i$  produced by M under input  $\vec{v}$ . Then the clause  $B^{\vec{v}} \vee l(w_i)$  is satisfied by every assignment satisfying F, i.e.,  $B^{\vec{v}} \vee l(w_i)$  is a property of M. We will refer to it as a **single-test property** (since it describes the behavior of M for a single test). If the input  $\vec{v}$  is supposed to produce the opposite value of  $w_i$  (i.e., the one falsifying  $l(w_i)$ ), then  $\vec{v}$  exposes a bug in M. In this case, the single-test property above is an **unwanted** property of M exposing the same bug as the test  $\vec{v}$ .

A single-test property can be viewed as a weakest property of M as opposed to the strongest property specified by  $\exists X[F]$ . The latter is the truth table of Mthat can be computed explicitly by performing QE on  $\exists X[F]$ . One can use PQE to generate properties of M that, in terms of strength, range from the weakest ones to the strongest property inclusively. (By combining clause splitting with PQE one can generate single-test properties, see the next subsection.) Consider the PQE problem of taking a clause C out of  $\exists X[F]$ . Let H(V, W) be a solution to this problem, i.e.,  $\exists X[F] \equiv H \land \exists X[F \setminus \{C\}]$ . Since H is implied by F, it can be viewed as a **property** of M. If H is an **unwanted** property, M has a bug. (Here we consider the case where a property of M is obtained by taking a clause out of formula  $\exists X[F]$  where only the *internal* variables of M are quantified. Later we consider cases where some external variables of M are quantified too.)

We will assume that the property H generated by PQE has no redundant clauses (see Remark 1). That is, if  $D \in H$ , then  $F \setminus \{C\} \neq D$ . Then one can view H as a property that holds due to the presence of the clause C in F.

### 3.3 Computing properties efficiently

If a property H is obtained by taking only one clause out of  $\exists X[F]$ , its computation is much easier than performing QE on  $\exists X[F]$ . If computing H still remains too time-consuming, one can use the two methods below that achieve better performance at the expense of generating weaker properties. The first method applies when a PQE solver forms a solution *incrementally*, clause by clause (like the algorithms described in Sections 5 and 6). Then one can simply stop computing H as soon as the number of clauses in H exceeds a threshold. Such a formula H is still implied by F and hence specifies a property of M.

The second method employs clause splitting. Here we consider clause splitting on input variables  $v_1, \ldots, v_p$ , i.e., those of V (but one can split a clause on any subset of variables from Vars(F)). Let F' denote the formula F where a clause C is replaced with p + 1 clauses:  $C_1 = C \vee \overline{l(v_1)}, \ldots, C_p = C \vee \overline{l(v_p)},$  $C_{p+1} = C \vee l(v_1) \vee \cdots \vee l(v_p)$ , where  $l(v_i)$  is a literal of  $v_i$ . The idea is to obtain a property H by taking the clause  $C_{p+1}$  out of  $\exists X[F']$  rather than C out of  $\exists X[F]$ . The former PQE problem is simpler than the latter since it produces a weaker property H. One can show that if  $\{v_1, \ldots, v_p\} = V$ , then a) the complexity of PQE reduces to **linear**; b) taking out  $C_{p+1}$  actually produces a **single-test property**. The latter specifies the input/output behavior of M for the test  $\vec{v}$ falsifying the literals  $l(v_1), \ldots, l(v_p)$ . (See Appendix E for more details.)

#### 3.4 Using design coverage for generation of unwanted properties

Arguably, testing is so effective in practice because one verifies a *particular design*. Namely, one probes different parts of this design using some coverage metric rather than sampling the truth table (which would mean verifying *every possible design*). The same idea works for property generation by PQE for the following two reasons. First, by taking out a clause, PQE generates a property inherent to the *specific* circuit M. (If one replaces M with an equivalent but structurally different circuit, PQE will generate different properties.) Second, by taking out different clauses of F one generates properties corresponding to different parts

of M thus "covering" the design. This increases the chance to take out a clause corresponding to the buggy part of M and generate an unwanted property.

#### 3.5 High-quality tests specified by a property generated by PQE

In this subsection, we show that a property H generated by PQE, in general, specifies a large set of high-quality tests. Let H(V, W) be obtained by taking C out of  $\exists X[F(X, V, W)]$ . Let Q(V, W) be a clause of H. As mentioned above, we assume that  $F \setminus \{C\} \neq Q$ . Then there is an assignment  $(\vec{x}, \vec{v}, \vec{w})$  satisfying formula  $(F \setminus \{C\}) \land \overline{Q}$  where  $\vec{x}, \vec{v}, \vec{w}$  are assignments to X, V, W respectively. (Note that by definition,  $(\vec{v}, \vec{w})$  falsifies Q.) Let  $(\vec{x}^*, \vec{v}, \vec{w}^*)$  be the execution trace of M under the input  $\vec{v}$ . So,  $(\vec{x}^*, \vec{v}, \vec{w}^*)$  satisfies F. Note that the output assignments  $\vec{w}$  and  $\vec{w}^*$  must be different because  $(\vec{v}, \vec{w}^*)$  has to satisfy Q. (Otherwise,  $(\vec{x}^*, \vec{v}, \vec{w}^*)$  satisfies  $F \land \overline{Q}$  and so  $F \neq Q$  and hence  $F \neq H$ .) So, one can view  $\vec{v}$  as a test "detecting" disappearance of the clause C from F. Note that different assignments satisfying  $(F \setminus \{C\}) \land \overline{Q}$  correspond to different tests  $\vec{v}$ . So, the clause Q of H, in general, specifies a very large number of tests. One can show that these tests are similar to those detecting stuck-at faults and so have very high quality (see Appendix F for more details).

### 4 Invariant Generation By PQE

In this section, we extend property generation for combinational circuits to sequential ones. Namely, we generate *invariants*. Note that generation of *desired* auxiliary invariants is routinely used in practice to facilitate verification of a predefined property. The problem we consider here is different in that our goal is to produce an *unwanted* invariant. We picked generation of invariants (over that of weaker properties just claiming that a state cannot be reached in k transitions or less) because identification of an unwanted invariant is, arguably, easier. This simplifies bug detection by property generation.

#### 4.1 Bugs making states unreachable

Let N be a sequential circuit and S denote the state variables of N. Let I(S)specify the initial state  $\vec{s}_{ini}$  (i.e.,  $I(\vec{s}_{ini})=1$ ). Let T(S', V, S'') denote the transition relation of N where S', S'' are the present and next state variables and V specifies the (combinational) input variables. We will say that a state  $\vec{s}$  of N is reachable if there is an execution trace leading to  $\vec{s}$ . That is, there is a sequence of states  $\vec{s_0}, \ldots, \vec{s_k}$  where  $\vec{s_0} = \vec{s}_{ini}, \vec{s_k} = \vec{s}$  and there exist  $\vec{v_i}$  $i = 0, \ldots, k-1$  for which  $T(\vec{s_i}, \vec{v_i}, \vec{s_{i+1}}) = 1$ . Let N have to satisfy a set of **in**variants  $P_0(S), \ldots, P_m(S)$ . That is,  $P_i$  holds iff  $P_i(\vec{s}) = 1$  for every reachable state  $\vec{s}$  of N. We will denote the **aggregate invariant**  $P_0 \land \cdots \land P_m$  as  $P_{agg}$ . We will call  $\vec{s}$  a **bad state** of N if  $P_{agg}(\vec{s}) = 0$ . If  $P_{agg}$  holds, no bad state is reachable. We will call  $\vec{s}$  a **good state** of N if  $P_{agg}(\vec{s}) = 1$ . Typically, the set of invariants  $P_0, \ldots, P_m$  is incomplete in the sense that it does not specify all states that must be *unreachable*. So, a good state can well be unreachable. We will call a good state **operative** (or **op-state** for short) if it is supposed to be used by N and so should be *reachable*. We introduce the term *an operative state* just to factor out "useless" good states. We will say that N has an **op-state reachability bug** if an op-state is unreachable in N. In Section 7, we consider such a bug in a FIFO buffer. The fact that  $P_{agg}$  holds says *nothing* about reachability of op-states. Consider, for instance, a trivial circuit  $N_{triv}$  that simply stays in the initial state  $\vec{s}_{ini}$  and  $P_{agg}(\vec{s}_{ini}) = 1$ . Then  $P_{agg}$  holds for  $N_{triv}$  but the latter has op-state reachability bugs (assuming that the correct circuit must reach states other than  $\vec{s}_{ini}$ ).

Let  $R_{\vec{s}}(S)$  be the predicate satisfied only by a state  $\vec{s}$ . In terms of CTL, identifying an op-state reachability bug means finding  $\vec{s}$  for which the property  $EF.R_{\vec{s}}$  must hold but it does not. The reason for assuming  $\vec{s}$  to be unknown is that the set of op-states is typically too large to explicitly specify every property  $ET.R_{\vec{s}}$  to hold. This makes finding op-state reachability bugs very hard. The problem is exacerbated by the fact that reachability of different states is established by different traces. So, in general, one cannot efficiently prove many properties  $EF.R_{\vec{s}}$  (for different states) at once.

#### 4.2 Proving op-state unreachability by invariant generation

In practice, there are two methods to check reachability of operative states for large circuits. The first method is testing. Of course, testing cannot prove a state unreachable, however, the examination of execution traces may point to a potential problem. (For instance, after examining execution traces of the circuit  $N_{triv}$  above one realizes that many operative states look unreachable.) The other method is to check **unwanted invariants**, i.e., those that are supposed to fail. If an unwanted invariant holds for a circuit, the latter has an op-state reachability bug. For instance, one can check if a state variable  $s_i \in S$  of a circuit never changes its initial value. To break this unwanted invariant, one needs to find an operative state where the initial value of  $s_i$  is flipped. (For the circuit  $N_{triv}$  above this unwanted invariant holds for every state variable.) The potential unwanted invariant are formed manually, i.e., simply guessed.

The two methods above can easily overlook an op-state reachability bug. Testing cannot prove that an op-state is unreachable. To correctly guess an unwanted invariant that holds, one essentially has to know the underlying bug. Below, we describe a method for invariant generation by PQE that is based on property generation for combinational circuits. The appeal of this method is twofold. First, PQE generates invariants "inherent" to the implementation at hand, which drastically reduces the set of invariants to explore. Second, PQE is able to generate invariants related to different parts of the circuit (including the buggy one). This increases the probability of generating an unwanted invariant. We substantiate this intuition in Section 7.

Let formula  $F_k$  specify the combinational circuit obtained by unfolding a sequential circuit N for k time frames and adding the initial state constraint

 $I(S_0)$ . That is,  $F_k = I(S_0) \wedge T(S_0, V_0, S_1) \wedge \cdots \wedge T(S_{k-1}, V_{k-1}, S_k)$  where  $S_j, V_j$ denote the state and input variables of *j*-th time frame respectively. Let  $H(S_k)$ be a solution to the PQE problem of taking a clause C out of  $\exists X_k[F_k]$  where  $X_k = S_0 \cup V_0 \cup \cdots \cup S_{k-1} \cup V_{k-1}$ . That is,  $\exists X_k[F_k] \equiv H \wedge \exists X_k[F_k \setminus \{C\}]$ . Note that in contrast to Section 3, here some external variables of the combinational circuit (namely, the input variables  $V_0, \ldots, V_{k-1}$ ) are quantified too. So, H depends only on state variables of the last time frame. H can be viewed as a **local invariant** asserting that no state falsifying H can be reached in k transitions.

One can use H to find global invariants (holding for *every* time frame) as follows. Even if H is only a local invariant, a clause Q of H can be a *global* invariant. The experiments of Section 8 show that, in general, this is true for many clauses of H. (To find out if Q is a global invariant, one can simply run a model checker to see if the property Q holds.) Note that by taking out different clauses of  $F_k$  one can produce global single-clause invariants Q relating to different parts of N. From now on, when we say "an invariant" without a qualifier we mean a **global invariant**.

## 5 Introducing EG-PQE

In this section, we describe a simple SAT-based algorithm for performing PQE called EG-PQE. Here 'EG' stands for 'Enumerate and Generalize'. EG-PQE accepts a formula  $\exists X[F(X,Y)]$  and a clause  $C \in F$ . It outputs a formula H(Y) such that  $\exists X[F_{ini}] \equiv H \land \exists X[F_{ini} \setminus \{C\}]$  where  $F_{ini}$  is the initial formula F. (This point needs clarification because EG-PQE changes F by adding clauses.)

#### 5.1 An example

Before describing the pseudocode of EG-PQE, we explain how it solves the PQE problem of Example 1. That is, we consider taking clause  $C_1$  out of  $\exists X[F(X,Y)]$ where  $F = C_1 \land \cdots \land C_4$ ,  $C_1 = \overline{x}_3 \lor x_4$ ,  $C_2 = y_1 \lor x_3$ ,  $C_3 = y_1 \lor \overline{x}_4$ ,  $C_4 = y_2 \lor x_4$ and  $Y = \{y_1, y_2\}$  and  $X = \{x_3, x_4\}$ .

EG-PQE iteratively generates a full assignment  $\vec{y}$  to Y and checks if  $(C_1)_{\vec{y}}$ is redundant in  $\exists X[F_{\vec{y}}]$  (i.e., if  $C_1$  is redundant in  $\exists X[F]$  in subspace  $\vec{y}$ ). Note that if  $(F \setminus \{C_1\})_{\vec{y}}$  implies  $(C_1)_{\vec{y}}$ , then  $(C_1)_{\vec{y}}$  is trivially redundant in  $\exists X[F_{\vec{y}}]$ . To avoid such subspaces, EG-PQE generates  $\vec{y}$  by searching for an assignment  $(\vec{y}, \vec{x})$  satisfying the formula  $(F \setminus \{C_1\}) \wedge \overline{C_1}$ . (Here  $\vec{y}$  and  $\vec{x}$  are full assignments to Y and X respectively.) If such  $(\vec{y}, \vec{x})$  exists, it satisfies  $F \setminus \{C_1\}$  and falsifies  $C_1$  thus proving that  $(F \setminus \{C_1\})_{\vec{y}}$  does not imply  $(C_1)_{\vec{y}}$ .

Assume that EG-PQE found an  $\operatorname{assignment}(y_1 = 0, y_2 = 1, x_3 = 1, x_4 = 0)$ satisfying  $(F \setminus \{C_1\}) \wedge \overline{C}_1$ . So  $\vec{y} = (y_1 = 0, y_2 = 1)$ . Then EG-PQE checks if  $F_{\vec{y}}$  is satisfiable.  $F_{\vec{y}} = (\overline{x}_3 \vee x_4) \wedge x_3 \wedge \overline{x}_4$  and so it is *unsatisfiable*. This means that  $(C_1)_{\vec{y}}$ is not redundant in  $\exists X[F_{\vec{y}}]$ . (Indeed,  $(F \setminus \{C_1\})_{\vec{y}}$  is satisfiable. So, removing  $C_1$  makes F satisfiable in subspace  $\vec{y}$ .) EG-PQE makes  $(C_1)_{\vec{y}}$  redundant in  $\exists X[F_{\vec{y}}]$  by **adding** to F a clause B falsified by  $\vec{y}$ . The clause B equals  $y_1$ and is obtained by identifying the assignments to individual variables of Y that made  $F_{\vec{y}}$  unsatisfiable. (In our case, this is the assignment  $y_1 = 0$ .) Note that derivation of clause  $y_1$  generalizes the proof of unsatisfiability of F in subspace  $(y_1=0, y_2=1)$  so that this proof holds for subspace  $(y_1=0, y_2=0)$  too.

Now EG-PQE looks for a new assignment satisfying  $(F \setminus \{C_1\}) \land \overline{C}_1$ . Let the assignment  $(y_1 = 1, y_2 = 1, x_3 = 1, x_4 = 0)$  be found. So,  $\vec{y} = (y_1 = 1, y_2 = 1)$ . Since  $(y_1 = 1, y_2 = 1, x_3 = 0)$  satisfies F, the formula  $F_{\vec{y}}$  is satisfiable. So,  $(C_1)_{\vec{y}}$  is already redundant in  $\exists X[F_{\vec{y}}]$ . To avoid re-visiting the subspace  $\vec{y}$ , EG-PQE generates the **plugging** clause  $D = \overline{y}_1 \lor \overline{y}_2$  falsified by  $\vec{y}$ .

EG-PQE fails to generate a new assignment  $\vec{y}$  because the formula  $D \wedge (F \setminus \{C_1\}) \wedge \overline{C}_1$  is unsatisfiable. Indeed, every full assignment  $\vec{y}$  we have examined so far falsifies either the clause  $y_1$  added to F or the plugging clause D. The only assignment EG-PQE has not explored yet is  $\vec{y} = (y_1 = 1, y_2 = 0)$ . Since  $(F \setminus \{C_1\})_{\vec{y}} = x_4$  and  $(C_1)_{\vec{y}} = \overline{x}_3 \vee x_4$ , the formula  $(F \setminus \{C_1\}) \wedge \overline{C}_1$  is unsatisfiable in subspace  $\vec{y}$ . In other words,  $(C_1)_{\vec{y}}$  is implied by  $(F \setminus \{C_1\})_{\vec{y}}$  and hence is redundant. Thus,  $C_1$  is redundant in  $\exists X[F_{ini} \wedge y_1]$  for every assignment to Y where  $F_{ini}$  is the initial formula F. That is,  $\exists X[F_{ini}] \equiv y_1 \land \exists X[F_{ini} \setminus \{C_1\}]$  and so the clause  $y_1$  is a solution H to our PQE problem.

#### 5.2 Description of EG-PQE

EG-PQE(F, X, Y, C) {  $Plg := \emptyset; F_{ini} := F$ while (true) {  $G := F \setminus \{C\}$ 3  $\vec{y} := Sat_1(Plg \wedge G \wedge \overline{C})$ 4 if  $(\vec{y} = nil)$ 5 return $(F \setminus F_{ini})$ 6  $(\vec{x}^*, B) := Sat_2(F, \vec{y})$ 7 if  $(B \neq nil)$  { 8 9  $F := F \cup \{B\}$ 10 continue }  $D := PlugCls(\vec{y}, \vec{x}^*, F)$ 11  $Plg := Plg \cup \{D\}\}\}$ 12

The pseudo-code of EG-PQE is shown in Fig. 1. EG-PQE starts with storing the initial formula F and initializing formula Plgthat accumulates the plugging clauses generated by EG-PQE (line 1). As we mentioned in the previous subsection, plugging clauses are used to avoid re-visiting the subspaces where the formula F is proved satisfiable.

All the work is carried out in a while loop. First, EG-PQE checks if there is a new subspace  $\vec{y}$  where  $\exists X[(F \setminus \{C\})_{\vec{y}}]$  does not imply  $F_{\vec{y}}$ . This is done by searching for an assignment  $(\vec{y}, \vec{x})$  satisfying  $Plg \land (F \setminus \{C\}) \land \overline{C}$ (lines 3-4). If such an assignment does not exist, the clause C is redundant in  $\exists X[F]$ . (Indeed, let  $\vec{y}$  be a full assignment to Y.

Fig. 1: Pseudocode of *EG-PQE* 

The formula  $Plg \wedge (F \setminus \{C\}) \wedge \overline{C}$  is unsatisfiable in subspace  $\vec{y}$  for one of the two reasons. First,  $\vec{y}$  falsifies Plg. Then  $C_{\vec{y}}$  is redundant because  $F_{\vec{y}}$  is satisfiable. Second,  $(F \setminus \{C\})_{\vec{y}} \wedge \overline{C_{\vec{y}}}$  is unsatisfiable. In this case,  $(F \setminus \{C\})_{\vec{y}}$  implies  $C_{\vec{y}}$ .) Then EG-PQE returns the set of clauses added to the initial formula F as a solution H to the PQE problem (lines 5-6).

If the satisfying assignment  $(\vec{y}, \vec{x})$  above exists, EG-PQE checks if the formula  $F_{\vec{y}}$  is satisfiable (line 7). If not, then the clause  $C_{\vec{y}}$  is not redundant in  $\exists X[F_{\vec{y}}]$  (because  $(F \setminus \{C\})_{\vec{y}}$  is satisfiable). So, EG-PQE makes  $C_{\vec{y}}$  redundant by generating a clause B(Y) falsified by  $\vec{y}$  and adding it to F (line 9). Note that adding *B* also prevents *EG-PQE* from re-visiting the subspace  $\vec{y}$  again. The clause *B* is built by finding an *unsatisfiable* subset of  $F_{\vec{y}}$  and collecting the literals of *Y* removed from clauses of this subset when obtaining  $F_{\vec{y}}$  from *F*.

If  $F_{\vec{y}}$  is satisfiable, EG-PQE generates an assignment  $\vec{x}^*$  to X such that  $(\vec{y}, \vec{x}^*)$  satisfies F (line 7). The satisfiability of  $F_{\vec{y}}$  means that every clause of  $F_{\vec{y}}$  including  $C_{\vec{y}}$  is redundant in  $\exists X[F_{\vec{y}}]$ . At this point, EG-PQE uses the longest clause D(Y) falsified by  $\vec{y}$  as a plugging clause (line 11). The clause D is added to Plg to avoid re-visiting subspace  $\vec{y}$ . Sometimes it is possible to remove variables from  $\vec{y}$  to produce a shorter assignment  $\vec{y}^*$  such that  $(\vec{y}^*, \vec{x}^*)$  still satisfies F. Then one can use a shorter plugging clause D involving only the variables assigned in  $\vec{y}^*$ .

#### 5.3 Discussion

EG-PQE is similar to the QE algorithm presented at CAV-2002 [11]. We will refer to it as CAV02-QE. Given a formula  $\exists X[F(X,Y)]$ , CAV02-QE enumerates full assignments to Y. In subspace  $\vec{y}$ , if  $F_{\vec{y}}$  is unsatisfiable, CAV02-QE adds to F a clause falsified by  $\vec{y}$ . Otherwise, CAV02-QE generates a plugging clause D. (In [11], D is called "a blocking clause". This term can be confused with the term "blocked clause" applied to a completely different kind of a clause. So, we use the term "a plugging clause" instead.) To apply the idea of CAV02-QE to PQE, we reformulated it in terms of redundancy based reasoning.

The main flaw of EG-PQE inherited from CAV02-QE is the necessity to use plugging clauses produced from a satisfying assignment. Consider the PQE problem of taking a clause C out of  $\exists X[F(X,Y)]$ . If F is proved unsatisfiable in subspace  $\vec{y}$ , typically, only a small subset of clauses of  $F_{\vec{y}}$  is involved in the proof. Then the clause generated by EG-PQE is short and thus proves C redundant in many subspaces different from  $\vec{y}$ . On the contrary, to prove F satisfiable in subspace  $\vec{y}$ , every clause of F must be satisfied. So, the plugging clause built off a satisfying assignment includes almost every variable of Y. Despite this flaw of EG-PQE, we present it for two reasons. First, it is a very simple SAT-based algorithm that can be easily implemented. Second, EG-PQE has a powerful advantage over CAV02-QE since it solves PQE rather than QE. Namely, EG-PQE does not need to examine the subspaces  $\vec{y}$  where C is implied by  $F \setminus \{C\}$ . Surprisingly, for many formulas this allows EG-PQE to completely avoid examining subspaces where F is satisfiable. In this case, EG-PQE is very efficient and can solve very large problems. Note that when CAV02-QE performs complete QE on  $\exists X[F]$ , it *cannot* avoid subspaces  $\vec{y}$  where  $F_{\vec{y}}$  is satisfiable unless F itself is unsatisfiable (which is very rare in practical applications).

# 6 Introducing $EG-PQE^+$

In this section, we describe  $EG-PQE^+$ , an improved version of EG-PQE.

#### 6.1 Main idea

The pseudocode of EG- $PQE^+$  is shown in Fig 2. It is different from that of EG-PQE only in line 11 marked with an asterisk. The motivation for this change is as follows. Line 11 describes proving redundancy of C for the case where  $C_{\vec{y}}$  is not implied by  $(F \setminus \{C\})_{\vec{y}}$  and  $F_{\vec{y}}$  is satisfiable. Then EG-PQE simply uses a satisfying assignment as a proof of redundancy of C in subspace  $\vec{y}$ . This proof is unnecessarily strong because it proves that every clause of F (including C) is redundant in  $\exists X[F]$  in subspace  $\vec{y}$ . Such a strong proof is hard to generalize to other subspaces.

 $\begin{array}{ll} EG\text{-}PQE^+(F,X,Y,C) \ \{ \\ 1 & Plg := \emptyset; \ F_{ini} := F \\ 2 & \text{while } (true) \ \{ \\ & \cdots \\ 11^* & D := PrvClsRed(\overrightarrow{y},F,C) \\ 12 & Plg := Plg \cup \{D\} \} \end{array}$ 

The idea of EG- $PQE^+$  is to generate a proof for a much weaker proposition namely a proof of redundancy of C (and only C). Intuitively, such a proof should be easier to generalize. So, EG- $PQE^+$  calls a procedure PrvClsRed generating such a proof. EG- $PQE^+$  is a generic algorithm in the sense that any suitable procedure can be employed as PrvClsRed. In our current implementation, the procedure DS-PQE [1] is used as PrvClsRed. DS-PQE generates a proof stat-

Fig. 2: Pseudocode of EG- $PQE^+$ 

ing that C is redundant in  $\exists X[F]$  in subspace  $\vec{y}^* \subseteq \vec{y}$ . Then the plugging clause D falsified by  $\vec{y}^*$  is generated. Importantly,  $\vec{y}^*$  can be much shorter than  $\vec{y}$ . Appendix G gives a brief description of DS-PQE.

*Example 3.* Consider the example solved in Subsection 5.1. That is, we consider taking clause  $C_1$  out of  $\exists X[F(X,Y)]$  where  $F = C_1 \wedge \cdots \wedge C_4$ ,  $C_1 = \overline{x}_3 \vee x_4$ ,  $C_2 = y_1 \vee x_3$ ,  $C_3 = y_1 \vee \overline{x}_4$ ,  $C_4 = y_2 \vee x_4$  and  $Y = \{y_1, y_2\}$  and  $X = \{x_3, x_4\}$ . Consider the step where EG-PQE proves redundancy of  $C_1$  in subspace  $\vec{y} = (y_1 = 1, y_2 = 1)$ . EG-PQE shows that  $(y_1 = 1, y_2 = 1, x_3 = 0)$  satisfies F, thus proving every clause of F (including  $C_1$ ) redundant in  $\exists X[F]$  in subspace  $\vec{y}$ . Then EG-PQE generates the plugging clause  $D = \overline{y}_1 \vee \overline{y}_2$  falsified by  $\vec{y}$ .

In contrast to EG-PQE,  $EG-PQE^+$  calls PrvClsRed to produce a proof of redundancy for the clause  $C_1$  alone. Note that F has no clauses resolvable with  $C_1$  on  $x_3$  in subspace  $\vec{y}^* = (y_1 = 1)$ . (The clause  $C_2$  containing  $x_3$  is satisfied by  $\vec{y}^*$ .) This means that  $C_1$  is blocked in subspace  $\vec{y}^*$  and hence redundant there (see Proposition 2). Since  $\vec{y}^* \subset \vec{y}$ ,  $EG-PQE^+$  produces a more general proof of redundancy than EG-PQE. To avoid re-examining the subspace  $\vec{y}^*$ ,  $EG-PQE^+$ generates a shorter plugging clause  $D = \overline{y}_1$ .

#### 6.2 Discussion

Consider the PQE problem of taking a clause C out of  $\exists X[F(X,Y)]$ . There are two features of PQE that make it easier than QE. The first feature mentioned earlier is that one can ignore the subspaces  $\vec{y}$  where  $F \setminus \{C\}$  implies C. The second feature is that when  $F_{\vec{y}}$  is satisfiable, one only needs to prove redundancy of the clause C alone. Among the three algorithms we run in experiments, namely, DS-PQE, EG-PQE, and  $EG-PQE^+$  only the latter exploits both features. (In addition to using DS-PQE inside  $EG-PQE^+$  we also run it as a stand-alone PQE solver.) DS-PQE does not use the first feature [1] and EG-PQE does not exploit the second one. As we show in Sections 7 and 8, this affects the performance of DS-PQE and EG-PQE.

# 7 Experiment With FIFO Buffers

In this and the next two sections we describe some experiments with DS-PQE, EG-PQE and  $EG-PQE^+$  (their sources are available at [12], [13] and [14] respectively). We used Minisat2.0 [15] as an internal SAT-solver. The experiments were run on a computer with Intel Core i5-8265U CPU of 1.6 GHz.

if (write == 1 && currSize < n)\* if (dataIn != Val)begin Data[wrPnt] = dataIn; wrPnt = wrPnt + 1;end ...

Fig. 3: A buggy fragment of Verilog code describing *Fifo*  In this section, we give an example of bug detection by invariant generation for a FIFO buffer. Our objective here is threefold. First, we want to give an example of a bug that can be overlooked by testing and guessing the unwanted properties to check (see Subsection 7.3). Second, we want to substantiate the intuition of Subsection 3.4 that property generation by PQE (in our case, invariant generation by PQE) has the same reasons to be effective as testing. In particular, by taking out different clauses one generates invariants re-

lating to different parts of the design. So, taking out a clause of the buggy part is likely to produce an unwanted invariant. Third, we want to give an example of an invariant that can be easily identified as unwanted<sup>2</sup>.

### 7.1 Buffer description

Consider a FIFO buffer that we will refer to as *Fifo*. Let *n* be the number of elements of *Fifo* and *Data* denote the data buffer of *Fifo*. Let each *Data*[*i*], *i* = 1,...,*n* have *p* bits and be an integer where  $0 \leq Data[i] < 2^p$ . A fragment of the Verilog code describing *Fifo* is shown in Fig 3. This fragment has a buggy line marked with an asterisk. In the correct version without the marked line, a

<sup>&</sup>lt;sup>2</sup> Let  $P(\hat{S})$  be an invariant for a circuit N depending only on a subset  $\hat{S}$  of the state variables S. Identifying P as an unwanted invariant is much easier if  $\hat{S}$  is meaningful from the high-level view of the design. Suppose, for instance, that assignments to  $\hat{S}$ specify values of a high-level variable v. Then P is unwanted if it claims unreachability of a value of v that is supposed to be reachable. Another simple example is that assignments to  $\hat{S}$  specify values of high-level variables v and w that are supposed to be *independent*. Then P is unwanted if it claims that some combinations of values of v and w are unreachable. (This may mean, for instance, that an assignment operator setting the value of v erroneously involves the variable w.)

new element dataIn is added to Data if the write flag is on and Fifo has less than n elements. Since Data can have any combination of numbers, all Datastates are supposed to be reachable. However, due to the bug, the number Valcannot appear in Data. (Here Val is some constant  $0 < Val < 2^p$ . We assume that the buffer elements are initialized to 0.) So, Fifo has an *op-state reachability bug* since it cannot reach operative states where an element of Data equals Val.

### 7.2 Bug detection by invariant generation

Let N be a circuit implementing Fifo. Let S be the set of state variables of N and  $S_{data} \subset S$  be the subset corresponding to the data buffer *Data*. We used DS-PQE, EG-PQE and  $EG-PQE^+$  to generate invariants of N as described in Section 4. Note that an invariant Q depending only on  $S_{data}$  is an **unwanted** one. If Q holds for N, some states of *Data* are unreachable. Then *Fifo* has an op-state reachability bug since every state of *Data* is supposed to be reachable. To generate invariants, we used the formula  $F_k = I(S_0) \wedge T(S_0, V_0, S_1) \wedge \cdots \wedge$  $T(S_{k-1}, V_{k-1}, S_k)$  introduced in Subsection 4.2. Here I and T describe the initial state and the transition relation of N respectively and  $S_j$  and  $V_j$  denote state variables and combinational input variables of j-th time frame respectively. First, we used a PQE solver to generate a local invariant  $H(S_k)$  obtained by taking a clause C out of  $\exists X_k[F_k]$  where  $X_k = S_0 \cup V_0 \cup \cdots \cup S_{k-1} \cup V_{k-1}$ . So,  $\exists X_k[F_k] \equiv$  $H \land \exists X_k[F_k \setminus \{C\}]$ . (Since  $F_k \Rightarrow H$ , no state falsifying H can be reached in k transitions.) In the experiment, we took out only clauses of  $F_k$  containing an unquantified variable, i.e., a state variable of the k-th time frame. The time limit for solving the PQE problem of taking out a clause was set to 10 sec.

| buff. | lat- | time | total | l <i>pqe</i> p | robs      | finish | ed pqe | probs   | unv            | vant. i        | nvar    | ru         | ntime (s | s.)     |
|-------|------|------|-------|----------------|-----------|--------|--------|---------|----------------|----------------|---------|------------|----------|---------|
| size  | ches | fra- | ds-   | eg-            | eg-       | ds-    | eg-    | eg-     | ds-            | eg-            | eg-     | ds-        | eg-      | eg-     |
| n     |      | mes  | pqe   | pqe            | $pqe^+$   | pqe    | pqe    | $pqe^+$ | pqe            | pqe            | $pqe^+$ | pqe        | pqe      | $pqe^+$ |
| 8     | 300  | 5    | 1,236 | 311            | 8         | 2%     | 36%    | 35%     | no             | yes            | yes     | 12,141     | 2,138    | 52      |
| 8     | 300  | 10   | 560   | 737            | 39        | 2%     | 1%     | 3%      | $\mathbf{yes}$ | $\mathbf{yes}$ | yes     | 5,551      | 7,681    | 380     |
| 16    | 560  | 5    | 2,288 | 2,288          | 16        | 1%     | 65%    | 71%     | no             | no             | yes     | $22,\!612$ | 9,506    | 50      |
| 16    | 560  | 10   | 653   | 2,288          | <b>24</b> | 1%     | 36%    | 38%     | yes            | no             | yes     | 6,541      | 16,554   | 153     |

Table 1: FIFO buffer with n elements of 32 bits. Time limit is 10 sec. per PQE problem

For each clause Q of every local invariant H generated by PQE, we checked if Q was a global invariant. Namely, we used a public version of IC3 [16,17] to verify if the property Q held (by showing that no reachable state of N falsified Q). If so, and Q depended only on variables of  $S_{data}$ , N had an *unwanted invariant*. Then we stopped invariant generation. The results of the experiment for buffers with 32-bit elements are given in Table 1. When picking a clause to take out, i.e., a clause with a state variable of k-th time frame, one could make a good choice by pure luck. To address this issue, we picked clauses to take out *randomly* and performed 10 different runs of invariant generation and then computed the average value. So, the columns four to twelve of Table 1 actually give the average value of 10 runs.

Let us use the first line of Table 1 to explain its structure. The first two columns show the number of elements in Fifo implemented by N and the number

of latches in N (8 and 300). The third column gives the number k of time frames (i.e., 5). The next three columns show the total number of PQE problems solved by a PQE solver before an unwanted invariant was generated, e.g., 8 problems for  $EG-PQE^+$ . On the other hand, DS-PQE failed to find an unwanted invariant and had to solve all 1,236 PQE problems of taking out a clause of  $F_k$  with an unquantified variable. The following three columns show the share of PQE problems finished in the time limit of 10 sec. For instance, EG-PQE finished 36% of 311 problems. The next three columns show if an unwanted invariant was generated by a PQE solver. (EG-PQE and  $EG-PQE^+$  found one whereas DS-PQE did not.) The last three columns give the total run time. Table 1 shows that only  $EG-PQE^+$  managed to generate an unwanted invariant for all four instances of Fifo. This invariant asserted that Fifo cannot reach a state where an element of Data equals Val.

#### 7.3 Detection of the bug by conventional methods

The bug above (or its modified version) can be overlooked by conventional methods. Consider, for instance, testing. It is hard to detect this bug by random tests because it is exposed only if one tries to add Val to Fifo. The same applies to testing using the line coverage metric [18]. On the other hand, a test set with 100% branch coverage [18] will find this bug. (To invoke the else branch of the if statement marked with '\*' in Fig. 3, one must set dataIn to Val.) However, such a test set is not hard to beat. Consider a slightly modified bug. Namely, assume that the buggy line is if ((dataIn != Val) && (dataIn != Val')) and in the else branch of this if statement, the element Val' is pushed to Fifo. So, instead of just ignoring the element Val, the modified bug replaces it with Val' in Fifo. Similarly to the bug of Subsection 7.1, Val does not appear in Fifo. So, the modified bug can also be detected by generating an unwanted invariant. On the other hand, it can be overlooked by tests with 100% branch coverage because either branch of the modified if statement can be activated without assigning dataIn to Val.

Now consider the "manual" generation of unwanted properties. It is virtually impossible to guess an unwanted *invariant* of *Fifo* exposing the bug of Subsection 7.1 unless one knows exactly what this bug is. However, one can detect this bug by checking a property asserting that the element *dataIn* must appear in the buffer if *Fifo* is ready to accept it, i.e., (write == 1)&&(currSize < n)holds. Note that this is a *non-invariant* property involving states of different time frames. The more time frames are used in such a property, the more guesswork is required to pick it. Consider, for instance, the following bug. Suppose *Fifo* does not reject the element *Val*. So, the non-invariant property above holds. However, if *dataIn* == *Val*, then *Fifo* changes the *previous* accepted element if that element was *Val* too. So, *Fifo* cannot have two consecutive elements *Val*. Our method will detect this bug via generating an unwanted invariant falsified by states with consecutive elements *Val*. One can also identify this bug by checking a property involving two consecutive elements of *Fifo*. But picking it requires a lot of guesswork and so the modified bug can be easily overlooked.

# 8 Experiments With HWMCC Benchmarks

In this section, we describe three experiments with 98 multi-property benchmarks of the HWMCC-13 set [19]. (We use this set because it has a multiproperty track, see the explanation below.) The number of latches in those benchmarks range from 111 to 8,000. More details about the choice of benchmarks and the experiments can be found in Appendix H. Each benchmark consists of a sequential circuit N and invariants  $P_0, \ldots, P_m$  to prove. Like in Section 4, we call  $P_{agg} = P_0 \land \cdots \land P_m$  the aggregate invariant. In experiments 2 and 3 we used PQE to generate new invariants of N. Since every invariant P implied by  $P_{agg}$ is a desired one, the necessary condition for P to be unwanted is  $P_{agg} \neq P$ . The conjunction of many invariants  $P_i$  produces a stronger invariant  $P_{agg}$ , which makes it harder to generate P not implied by  $P_{agg}$ . (This is the reason for using multi-property benchmarks in our experiments.) The circuits of the HWMCC-13 set are anonymous, so, we could not know if an unreachable state is supposed to be reachable. For that reason, we just generated invariants not implied by  $P_{agg}$ without deciding if some of them were unwanted.

Similarly to the experiment of Section 7, we used the formula  $F_k = I(S_0) \wedge T(S_0, V_0, S_1) \wedge \cdots \wedge T(S_{k-1}, V_{k-1}, S_k)$  to generate invariants. The number k of time frames was in the range of  $2 \le k \le 10$ . As in the experiment of Section 7, we took out only clauses containing a state variable of the k-th time frame. In all experiments, the **time limit** for solving a PQE problem was set to 10 sec.

#### 8.1 Experiment 1

In the first experiment, we generated a local invariant H by taking out a clause C of  $\exists X_k[F_k]$  where  $X_k = S_0 \cup V_0 \cup \cdots \cup S_{k-1} \cup V_{k-1}$ . The formula H asserts that no state falsifying H can be reached in k transitions. Our goal was to show that PQE can find H for large formulas  $F_k$  that have hundreds of thousands of clauses. We used EG-PQE to partition the PQE problems we tried into two groups. The first group consisted of 3,736 problems for which we ran EG-PQE with the time limit of 10 sec. and it never encountered a subspace  $\vec{s_k}$  where  $F_k$  was satisfiable. Here  $\vec{s_k}$  is a full assignment to  $S_k$ . Recall that only the variables  $S_k$  are unquantified in  $\exists X_k[F_k]$ . So, in every subspace  $\vec{s_k}$ , formula  $F_k$  was either unsatisfiable or  $(F_k \setminus \{C\}) \Rightarrow C$ . (The fact that so many problems meet the condition of the first group came as a big surprise.) The second group consisted of 3,094 problems where EG-PQE encountered subspaces where  $F_k$  was satisfiable.

For the first group, DS-PQE finished only 30% of the problems within 10 sec. whereas EG-PQE and EG- $PQE^+$  finished 88% and 89% respectively. The poor performance of DS-PQE is due to not checking if  $(F_k \setminus \{C\}) \Rightarrow C$  in the current subspace. For the second group, DS-PQE, EG-PQE and EG- $PQE^+$ finished 15%, 2% and 27% of the problems respectively within 10 sec. EG-PQEfinished far fewer problems because it used a satisfying assignment as a proof of redundancy of C (see Subsection 6.2). To contrast PQE and QE, we employed a high-quality tool *CADET* [20,21] to perform QE on the 98 formulas  $\exists X_k[F_k]$  (one formula per benchmark). That is, instead of taking a clause out of  $\exists X_k[F_k]$  by PQE, we applied *CADET* to perform full QE on this formula. (Performing QE on  $\exists X_k[F_k]$  produces a formula  $H(S_k)$  specifying all states unreachable in k transitions.) *CADET* finished only 25% of the 98 QE problems with the time limit of 600 sec. On the other hand, EG- $PQE^+$  finished 60% of the 6,830 problems of both groups (generated off  $\exists X_k[F_k]$ ) within 10 sec. So, PQE can be much easier than QE if only a small part of the formula gets unquantified.

### 8.2 Experiment 2

The second experiment was an extension of the first one. Its goal was to show that PQE can generate invariants for realistic designs. For each clause Q of a local invariant H generated by PQE we used IC3 to verify if Q was a global invariant. If so, we checked if  $P_{agg} \neq Q$  held. To make the experiment less time consuming, in addition to the time limit of 10 sec. per PQE problem we imposed a few more constraints. The PQE problem of taking a clause out of  $\exists X_k[F_k]$  terminated as soon as H accumulated 5 clauses or more. Besides, processing a benchmark aborted when the summary number of clauses of all formulas H generated for this benchmark reached 100 or the total run time of all PQE problems generated off  $\exists X_k[F_k]$  exceeded 2,000 sec.

Table 2: Invariant generation

| pqe            | #bench | results |        |              |  |  |
|----------------|--------|---------|--------|--------------|--|--|
| solver         |        |         |        | not imp.     |  |  |
|                |        | invar.  | invar. | by $P_{agg}$ |  |  |
| ds- $pqe$      |        | 5,556   |        |              |  |  |
| eg- $pqe$      | 98     | 9,498   | 4,839  | 4,009        |  |  |
| $eg$ - $pqe^+$ | 98     | 9,303   | 4,773  | 3,940        |  |  |

Table 2 shows the results of the experiment. The third column gives the number of local single-clause invariants (i.e., the total number of clauses in all H over all benchmarks). The fourth column shows how many local single-clause invariants turned out to be global. (Since global in-

variants were extracted from H and the summary size of all H could not exceed 100, the number of global invariants per benchmark could not exceed 100.) The last column gives the number of global invariants not implied by  $P_{agg}$ . So, these invariants are candidates for checking if they are unwanted. Table 2 shows that EG-PQE and  $EG-PQE^+$  performed much better than DS-PQE.

#### 8.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses  $Q_1, \ldots, Q_n$  to make  $P \wedge Q_1 \wedge \cdots \wedge Q_n$  inductive. If IC3 succeeds, every  $Q_i$  is an invariant. Moreover,  $Q_i$  may be an *unwanted* invariant. The goal of the third experiment was to demonstrate that PQE and IC3, in general, produce different invariant clauses. The intuition here is twofold. First, IC3 generates clauses  $Q_i$  to prove a *predefined* invariant rather than find an unwanted one. Second, the closer P to being inductive, the fewer new invariant clauses are generated by IC3. Consider the circuit  $N_{triv}$  that simply stays in the initial state  $\vec{s}_{ini}$  (Section 4). Any invariant satisfied by  $\vec{s}_{ini}$  is already *inductive* for  $N_{triv}$ . So, IC3 will not generate a single *new invariant* clause. On the other hand, if the correct circuit is supposed to leave the initial state,  $N_{triv}$  has unwanted invariants that our method will find.

In this experiment, we used IC3 to generate  $P_{agg}^*$ , an *inductive* version of  $P_{agg}$ . The experiment showed that in 88% cases, an invariant clause generated by EG- $PQE^+$  and not implied by  $P_{agg}$  was not implied by  $P_{agg}^*$  either. (See Appendix H.3 for more detail.)

## 9 Properties Mimicking Symbolic Simulation

Let M(X, V, W) be a combinational circuit where X, V, W are internal, input and output variables. In this section, we describe generation of properties of Mthat mimic symbolic simulation [22]. Every such a property Q(V) specifies a cube of tests that produce the same values for a given subset of variables of W. We chose generation of such properties because deciding if Q is an unwanted property is, in general, simple. The procedure for generation of these properties is slightly different from the one presented in Section 3.

Let F(X, V, W) be a formula specifying M. Let B(W) be a clause. Let H(V) be a solution to the PQE problem of taking a clause  $C \in F$  out of  $\exists X \exists W[F \land B]$ . That is,  $\exists X \exists W[F \land B] \equiv H \land \exists X \exists W[(F \setminus \{C\}) \land B]$ . Let Q(V) be a clause of H. Then M has the **property** that for every full assignment  $\vec{v}$  to V falsifying Q, it produces an output  $\vec{w}$  falsifying B (see Proposition 3 of Appendix B). Suppose, for instance,  $Q = v_1 \lor \overline{v_{10}} \lor v_{30}$  and  $B = w_2 \lor \overline{w_{40}}$ . Then for every  $\vec{v}$  where  $v_1 = 0, v_{10} = 1, v_{30} = 0$ , the circuit M produces an output where  $w_2 = 0, w_{40} = 1$ . Note that Q is implied by  $F \land B$  rather than F. So, it is a property of M under constraint B rather than M alone. The property Q is **unwanted** if there is an input falsifying Q that should not produce an output falsifying B.

To generate combinational circuits, we unfolded sequential circuits of the set of 98 benchmarks used in Section 8 for invariant generation. Let N be a sequential circuit. (We reuse the notation of Section 4). Let  $M_k(S_0, V_0, \ldots, S_{k-1}, V_{k-1}, S_k)$ denote the combinational circuit obtained by unfolding N for k time frames. Here  $S_j, V_j$  are state and input variables of j-th time frame respectively. Let  $F_k$  denote the formula  $I(S_0) \wedge T(S_0, V_0, S_1) \wedge \cdots \wedge T(S_{k-1}, V_{k-1}, S_k)$  describing the unfolding of N for k time frames. Note that  $F_k$  specifies the circuit  $M_k$  above under the input constraint  $I(S_0)$ . Let  $B(S_k)$  be a clause. Let  $H(S_0, V_0, \ldots, V_{k-1})$  be a solution to the PQE problem of taking a clause  $C \in F_k$  out of formula  $\exists S_{1,k}[F_k \wedge B]$ . Here  $S_{1,k} = S_1 \cup \cdots \cup S_k$ . That is,  $\exists S_{1,k}[F_k \wedge B] \equiv H \wedge \exists S_{1,k}[(F_k \setminus \{C\}) \wedge B]]$ . Let Q be a clause of H. Then for every assignment  $(\vec{s}_{ini}, \vec{v}_0, \ldots, \vec{v}_{k-1})$  falsifying Q, the circuit  $M_k$  outputs  $\vec{s}_k$  falsifying B. (Here  $\vec{s}_{ini}$  is the initial state of Nand  $\vec{s}_k$  is a state of the last time frame.)

In the experiment, we used DS-PQE, EG-PQE and  $EG-PQE^+$  to solve 1,586 PQE problems described above. In Table 3, we give a sample of results by  $EG-PQE^+$ . (More details about this experiment can be found in Appendix I.) Below, we use the first line of Table 3 to explain its structure. The first column gives the benchmark name (6s326). The next column shows that 6s326 has 3,342 latches. The third column gives the number of time frames used to produce a

combinational circuit  $M_k$  (here k = 20). The next column shows that the clause B introduced above consisted of 15 literals of variables from  $S_k$ . (Here and below we still use the index k assuming that k = 20.) The literals of B were generated randomly. When picking the length of B we just tried to simulate the situation where one wants to set a particular subset of output variables of  $M_k$  to specified values. The next two columns give the size of the subcircuit  $M'_k$  of  $M_k$  that feeds the output variables present in B. When computing a property H we took a clause out of formula  $\exists S_{1,k}[F'_k \land B]$  where  $F'_k$  specifies  $M'_k$  instead of formula  $\exists S_{1,k}[F_k \land B]$  where  $F'_k$  specifies  $M_k$  not feeding a variable of B is irrelevant for computing H.) The first column of the pair gives the number of gates in  $M'_k$  (i.e., 348,479). The second column provides the number of input variables feeding  $M'_k$  (i.e., 1,774). Here we count only variables of  $V_0 \cup \cdots \cup V_{k-1}$  and ignore those of  $S_0$  since the latter are already assigned values specifying the initial state  $\vec{s}_{ini}$  of N.

Table 3: Property generation for combinational circuits

| name  | lat-      | $\operatorname{time}$ | size | subc. $M'_k$ |            | results |        |               |        |
|-------|-----------|-----------------------|------|--------------|------------|---------|--------|---------------|--------|
|       | ches      | fra-                  | of   | gates        | inp.       | min     | $\max$ | $_{\rm time}$ | 3-val. |
|       |           | mes                   | B    |              | vars       |         |        | (s.)          | sim.   |
| 6s326 | 3,342     | 20                    | 15   | 348,479      | 1,774      | 27      | 28     | 2.9           | no     |
| 6s40m | $5,\!608$ | 20                    | 15   | 406,474      | 3,450      | 27      | 29     | 1.1           | no     |
| 6s250 | 6,185     | 20                    | 15   | 556,562      | 2,456      | 50      | 54     | 0.8           | no     |
| 6s395 | 463       | 30                    | 15   | 36,088       | 569        | 24      | 26     | 0.7           | yes    |
| 6s339 | 1,594     | 30                    | 15   | 179,543      | 3,978      | 70      | 71     | 3.1           | no     |
| 6s292 | 3,190     | 30                    | 15   | 154,014      | 978        | 86      | 89     | 1.1           | no     |
| 6s143 | 260       | 40                    | 15   | 551,019      | $16,\!689$ | 526     | 530    | 2.5           | yes    |
| 6s372 | 1,124     | 40                    | 15   | $295,\!626$  | 2,766      | 513     | 518    | 1.7           | no     |
| 6s335 | 1,658     | 40                    | 15   | 207,787      | 2,863      | 120     | 124    | 6.7           | no     |
| 6s391 | 2,686     | 40                    | 15   | 240,825      | 7,579      | 340     | 341    | 8.9           | no     |

The next four columns show the results of taking a clause out of  $\exists S_{1,k}[F'_k \wedge B]$ . For each PQE problem the time limit was set to 10 sec. Besides,  $EG-PQE^+$  terminated as soon as 5 clauses of property  $H(S_0, V_0, \ldots, V_{k-1})$  were generated. The first three columns out of four describe the minimum and

maximum sizes of clauses in H and the run time of  $EG-PQE^+$ . So, it took for  $EG-PQE^+$  2.9 sec. to produce a formula H containing clauses of sizes from 27 to 28 variables. A clause Q of H with 27 variables, for instance, specifies  $2^{1747}$ tests falsifying Q that produce the same output of  $M'_k$  (falsifying the clause B). Here 1747 = 1774 - 27 is the number of input variables of  $M'_k$  not present in Q. The last column shows that at least one clause Q of H specifies a property that cannot be produced by 3-valued simulation (a version of symbolic simulation [22]). To prove this, one just needs to set the input variables of  $M'_k$  present in Q to the values falsifying Q and run 3-valued simulation. (The remaining input variables of  $M'_k$  are assigned a don't-care value.) If after 3-valued simulation some output variable of  $M'_k$  is assigned a don't-care value, the property specified by Q cannot be produced by 3-valued simulation.

Running DS-PQE, EG-PQE and  $EG-PQE^+$  on the 1,586 PQE problems mentioned above showed that a) EG-PQE performed poorly producing properties only for 28% of problems; b) DS-PQE and  $EG-PQE^+$  showed much better results by generating properties for 62% and 66% of problems respectively. When DS-PQE and  $EG-PQE^+$  succeeded in producing properties, the latter could not be obtained by 3-valued simulation in 74% and 78% of cases respectively.

# 10 Some Background

In this section, we discuss some research relevant to PQE and property generation. Information on BDD based QE can be found in [23,24]. SAT based QE is described in [11,25,26,27,28,29,30,31,20]. Our first PQE solver called DS-PQE was introduced in [1]. It was based on redundancy based reasoning presented in [32] in terms of variables and in [33] in terms of clauses. The main flaw of DS-PQE is as follows. Consider taking a clause C out of  $\exists X[F]$ . Suppose DS-PQE proved C redundant in a subspace where F is satisfiable and some quantified variables are assigned. The problem is that DS-PQE cannot simply assume that C is redundant every time it re-enters this subspace [34]. The root of the problem is that redundancy is a *structural* rather than semantic property. That is, redundancy of a clause in a formula  $\xi$  (quantified or not) does not imply such redundancy in every formula logically equivalent to  $\xi$ . Since our current implementation of  $EG-PQE^+$  uses DS-PQE as a subroutine, it has the same learning problem. We showed in [35] that this problem can be addressed by the machinery of certificate clauses. So, the performance of PQE can be drastically improved via enhanced learning in subspaces where F is satisfiable.

We are unaware of research on property generation for combinational circuits. As for invariants, the existing procedures typically generate some auxiliary *desired* invariants to prove a predefined property (whereas our goal is to generate invariants that are *unwanted*). For instance, they generate loop invariants [36] or invariants relating internal points of circuits checked for equivalence [37]. Another example of auxiliary invariants are clauses generated by IC3 to make an invariant inductive [16]. As we showed in Subsection 8.3, the invariants produced by PQE are, in general, different from those built by IC3.

### 11 Conclusions And Directions For Future Research

We consider Partial Quantifier Elimination (PQE) on propositional CNF formulas with existential quantifiers. In contrast to *complete* quantifier elimination, PQE allows to unquantify a *part* of the formula. We show that PQE can be used to generate properties of combinational and sequential circuits. The goal of property generation is to check if there is an *unwanted* property identifying a bug. We used PQE to generate an unwanted invariant for a FIFO buffer exposing a non-trivial bug. We also applied PQE to invariant generation for HWMCC benchmarks. Finally, we used PQE to generate properties of combinational circuits mimicking symbolic simulation. Our experiments show that PQE can efficiently generate properties for realistic designs.

There are at least three directions for future research. The first direction is to improve the performance of PQE solving. As we mentioned in Section 10, the most promising idea here is to enhance the power of learning in subspaces where the formula is satisfiable. The second direction is to use the improved PQE solvers to design new, more efficient algorithms for well-known problems like SAT, model checking and equivalence checking. The third direction is to look for new problems that can be solved by PQE.

# References

- E. Goldberg and P. Manolios, "Partial quantifier elimination," in *Proc. of HVC-14*. Springer-Verlag, 2014, pp. 148–164.
- 2. W. Craig, "Three uses of the herbrand-gentzen theorem in relating model theory and proof theory," *The Journal of Symbolic Logic*, vol. 22, no. 3, pp. 269–285, 1957.
- K. McMillan, "Interpolation and sat-based model checking," in CAV-03. Springer, 2003, pp. 1–13.
- E. Goldberg, "Property checking by logic relaxation," Tech. Rep. arXiv:1601.02742 [cs.LO], 2016.
- E. Goldberg and P. Manolios, "Software for quantifier elimination in propositional logic," in *ICMS-2014, Seoul, South Korea, August 5-9*, 2014, pp. 291–294.
- E. Goldberg, "Equivalence checking by logic relaxation," in *FMCAD-16*, 2016, pp. 49–56.
- —, "Property checking without inductive invariant generation," Tech. Rep. arXiv:1602.05829 [cs.LO], 2016.
- B. L. Synthesis and V. Group, "ABC: A system for sequential synthesis and verification," 2017, http://www.eecs.berkeley.edu/~alanmi/abc.
- O. Kullmann, "New methods for 3-sat decision and worst-case analysis," Theor. Comput. Sci., vol. 223, no. 1-2, pp. 1–72, 1999.
- G. Tseitin, "On the complexity of derivation in the propositional calculus," Zapiski nauchnykh seminarov LOMI, vol. 8, pp. 234–259, 1968, english translation of this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.
- K. McMillan, "Applying sat methods in unbounded symbolic model checking," in Proc. of CAV-02. Springer-Verlag, 2002, pp. 250–264.
- 12. The source of DS-PQE, http://eigold.tripod.com/software/ds-pqe.tar.gz.
- 13. The source of *EG-PQE*, http://eigold.tripod.com/software/eg-pqe.1.0.tar.gz.
- 14. The source of  $EG-PQE^+$ , http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz.
- N. Eén and N. Sörensson, "An extensible sat-solver," in SAT, Santa Margherita Ligure, Italy, 2003, pp. 502–518.
- A. R. Bradley, "Sat-based model checking without unrolling," in VMCAI, 2011, pp. 70–87.
- 17. An implementation of IC3 by A. Bradley, https://github.com/arbrad/IC3ref.
- 18. M. Aniche, Effective Software Testing: A developer's guide. Manning publications, 2022.
- HardWare Model Checking Competition 2013 (HWMCC-13), http://fmv.jku.at/hwmcc13/.
- M. Rabe, "Incremental determinization for quantifier elimination and functional synthesis," in CAV, 2019.
- 21. CADET, https://github.com/MarkusRabe/cadet.
- R. Bryant, "Symbolic simulation—techniques and applications," in DAC-90, 1990, pp. 517–521.
- —, "Graph-based algorithms for Boolean function manipulation," *IEEE Transactions on Computers*, vol. C-35, no. 8, pp. 677–691, August 1986.
- P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang, "Using combinatorial optimization methods for quantification scheduling," ser. CHARME-01, 2001, pp. 293–309.
- H. Jin and F.Somenzi, "Prime clauses for fast enumeration of satisfying assignments to boolean circuits," ser. DAC-05, 2005, pp. 750–753.

- M. Ganai, A.Gupta, and P.Ashar, "Efficient sat-based unbounded symbolic model checking using circuit cofactoring," ser. ICCAD-04, 2004, pp. 510–517.
- J. Jiang, "Quantifier elimination via functional composition," in *Proceedings of the* 21st International Conference on Computer Aided Verification, ser. CAV-09, 2009, pp. 383–397.
- J. Brauer, A. King, and J. Kriener, "Existential quantification as incremental sat," ser. CAV-11, 2011, pp. 191–207.
- W. Klieber, M. Janota, J.Marques-Silva, and E. Clarke, "Solving qbf with free variables," in CP, 2013, pp. 415–431.
- N. Bjorner, M. Janota, and W. Klieber, "On conflicts and strategies in qbf," in LPAR, 2015.
- 31. N. Bjorner and M. Janota, "Playing with quantified satisfaction," in LPAR, 2015.
- E. Goldberg and P. Manolios, "Quantifier elimination by dependency sequents," in *FMCAD-12*, 2012, pp. 34–44.
- "Quantifier elimination via clause redundancy," in *FMCAD-13*, 2013, pp. 85–92.
- E. Goldberg, "Quantifier elimination with structural learning," Tech. Rep. arXiv: 1810.00160 [cs.LO], 2018.
- 35. —, "Partial quantifier elimination by certificate clauses," Tech. Rep. arXiv:2003.09667 [cs.LO], 2020.
- I. Dillig, T. Dillig, B. Li, and K. McMillan, "Inductive invariant generation via abductive inference," vol. 48, 10 2013, pp. 443–456.
- J.Baumgartner, H. Mony, M. Case, J. Sawada, and K. Yorav, "Scalable conditional equivalence checking: An automated invariant-generation based approach," in 2009 Formal Methods in Computer-Aided Design, 2009, pp. 120–127.
- A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, "Symbolic model checking using sat procedures instead of bdds," in *DAC*, 1999, pp. 317–320.

## Appendix

### A PQE And Interpolation

In this appendix, we recall the observation of [4] that interpolation is a special case of PQE. Let  $A(X, Y) \wedge B(Y, Z)$  be an unsatisfiable formula. Let I(Y)be a formula such that  $A \wedge B \equiv I \wedge B$  and  $A \Rightarrow I$ . Then I is called an *interpolant* [2]. Now, let us show that interpolation can be described in terms of PQE. Consider the formula  $\exists W[A \wedge B]$  where A and B are the formulas above and  $W = X \cup Z$ . Let  $A^*(Y)$  be obtained by taking A out of the scope of quantifiers i.e.  $\exists W[A \wedge B] \equiv A^* \wedge \exists W[B]$ . Since  $A \wedge B$  is unsatisfiable,  $A^* \wedge B$  is unsatisfiable too. So,  $A \wedge B \equiv A^* \wedge B$ . If  $A \Rightarrow A^*$ , then  $A^*$  is an interpolant.

The general case of PQE that takes A out of  $\exists W[A \land B]$  is different from the instance above in three aspects. First, one does not assume that  $A \land B$  is unsatisfiable. Second, one does not assume that  $Vars(B) \subset Vars(A \land B)$ . In other words, in general, PQE *does not* remove any variables from the original formula. Third, a solution  $A^*$  is implied by  $A \land B$  rather than by A alone. Summarizing, one can say that interpolation is a special case of PQE.

### **B** Proofs Of Propositions

**Proposition 1.** Let H be a solution to the PQE problem of Definition 9. That is  $\exists X[F] \equiv H \land \exists X[F \setminus G]$ . Then  $F \Rightarrow H$  (i.e. F implies H).

*Proof.* By conjoining both sides of the equality with H one concludes that  $H \wedge \exists X[F] \equiv H \wedge \exists X[F \setminus G]$  and hence  $H \wedge \exists X[F] \equiv \exists X[F]$ . Then  $\exists X[F] \Rightarrow H$  and thus  $F \Rightarrow H$ .

**Proposition 2.** Let a clause C be blocked in a formula F(X, Y) with respect to a variable  $x \in X$ . Then C is redundant in  $\exists X[F]$  i.e.  $\exists X[F \setminus \{C\}] \equiv \exists X[F]$ .

Proof. It was shown in [9] that adding a clause B(X) blocked in G(X) to the formula  $\exists X[G]$  does not change the value of this formula. This entails that removing a clause B(X) blocked in G(X) does not change the value of  $\exists X[G]$  either. So, B is redundant in  $\exists X[G]$ . Let  $\vec{y}$  be a full assignment to Y. Then the clause C is either satisfied by  $\vec{y}$  or  $C_{\vec{y}}$  is blocked in  $F_{\vec{y}}$  with respect to x. (The latter follows from the definition of a blocked clause.) In either case  $C_{\vec{y}}$  is redundant in  $\exists X[F_{\vec{y}}]$ . Since  $C_{\vec{y}}$  is redundant in  $\exists X[F_{\vec{y}}]$  in every subspace  $\vec{y}$ , C is redundant in  $\exists X[F]$ .

**Proposition 3.** Let M(X, V, W) be a combinational circuit where X, V, W are the internal, input and output variables. Let F(X, V, W) be a formula specifying M. Let B(W) be a clause. Let H(V) be a formula obtained by taking a clause  $C \in$ F out of  $\exists X \exists W[F \land B]$ . That is  $\exists X \exists W[F \land B] \equiv H \land \exists X \exists W[(F \setminus \{C\}) \land B]$ . Let Q(V) be a clause of H. Then for every full assignment  $\vec{v}$  to V falsifying Q, the circuit M outputs an assignment  $\vec{w}$  falsifying the clause B.

*Proof.* From Proposition 1 it follows that  $F \wedge B \Rightarrow H$  and hence  $F \wedge B \Rightarrow Q$ . This entails that  $\overline{Q} \Rightarrow \overline{B} \vee \overline{F}$ . Let  $\vec{v}$  be a full assignment to V i.e. an input to M. Let  $(\vec{x}, \vec{v}, \vec{w})$  be the execution trace produced by M under the input  $\vec{v}$ . Here  $\vec{x}, \vec{w}$  are full assignments to X and W respectively. Suppose,  $\vec{v}$  satisfies  $\overline{Q}$  (and so falsifies Q). Then  $(\vec{x}, \vec{v}, \vec{w})$  satisfies  $\overline{B} \vee \overline{F}$ . Since  $(\vec{x}, \vec{v}, \vec{w})$  is an execution trace, it satisfies F and so falsifies  $\overline{F}$ . This entails that  $(\vec{x}, \vec{v}, \vec{w})$  (and specifically  $\vec{w}$ ) satisfies  $\overline{B}$  and hence falsifies B.

# C Examples Of Problems That Reduce To PQE

**SAT-solving by PQE** [1]. Consider the SAT problem of checking if formula  $\exists X[F(X)]$  is true. One can view traditional SAT-solving as proving *all* clauses redundant in  $\exists X[F]$  e.g. by finding a satisfying assignment or by deriving an empty clause and adding it to F. The reduction to PQE below facilitates developing an incremental SAT-algorithm that needs to prove redundancy only for a *fraction* of clauses.

Let  $\vec{x}$  be a full assignment to X and G denote the clauses of F falsified by  $\vec{x}$ . Checking the satisfiability of F reduces to taking G out of the scope of quantifiers i.e. to finding H such that  $\exists X[F] \equiv H \land \exists X[F \setminus G]$ . Since all variables of F are quantified in  $\exists X[F]$ , the formula H is a Boolean constant 0 or 1. If H = 0, then F is unsatisfiable. If H = 1, then F is satisfiable because  $F \setminus G$  is satisfied by  $\vec{x}$ .

Equivalence checking by PQE [6]. Let N'(X', V', w') and N''(X'', V'', w'')be single-output combinational circuits to check for equivalence. Here X', V' are the sets of internal and input variables and w' is the output variable of N'. (Definition of X'', V'', w'' for N'' is the same.) The reduction to PQE below facilitates the design of a *complete* algorithm able to exploit the similarity of N'and N''. This is important because the current equivalence checkers exploiting such similarity are *incomplete*. If N' and N'' are not "similar enough", e.g. they have no functionally equivalent internal points, the equivalence checker invokes a complete (but inefficient) procedure ignoring similarities between N' and N''.

Let eq(V', V'') specify a formula such that  $eq(\vec{v}', \vec{v}'') = 1$  iff  $\vec{v}' = \vec{v}''$ where  $\vec{v}', \vec{v}''$  are full assignments to V' and V'' respectively. Let formulas G'(X', V', w') and G''(X'', V'', w'') specify N' and N'' respectively. (As usual, we assume that a formula G specifying a circuit N is obtained by Tseitin transformations [10], see Section 3.) Let h(w', w'') be a formula obtained by taking eqout of  $\exists Z[eq \wedge G' \wedge G'']$  where  $Z = X' \cup V' \cup X'' \cup V''$ . That is  $\exists Z[eq \wedge G' \wedge G''] \equiv$  $h \wedge \exists Z[G' \wedge G'']$ . If  $h \Rightarrow (w' \equiv w'')$ , then N' and N'' are equivalent. Otherwise, N' and N'' are inequivalent, unless they are identical constants i.e.  $w' \equiv w'' \equiv 1$ or  $w' \equiv w'' \equiv 0$ . It is formally proved in [6] that the more similar N', N'' are (where similarity is defined in the most general sense), the easier taking eq out of  $\exists Z[eq \wedge G' \wedge G'']$  becomes.

**Model checking by PQE** [7]. One can use PQE to find the reachability diameter of a sequential circuit without computing the set of all reachable states. So, one can prove an invariant by PQE without generating a stronger invariant that is inductive. Let T(S', V, S'') denote the transition relation of a sequential circuit N where S', S'' are the present and next state variables and V specifies the (combinational) input variables. Let I(S) specify the initial states of N. For the sake of simplicity, we assume that N can stutter i.e. for every state  $\vec{s}$  there exists a full assignment  $\vec{v}$  to V such that  $T(\vec{s}, \vec{v}, \vec{s}) = 1$ , (Then the sets of states reachable in m transitions and at most m transitions are identical. If T has no stuttering, it can be easily introduced by adding a variable to V.)

Let Diam(I,T) denote the reachability diameter for initial states I and transition relation T. That is every state of the circuit N can be reached in at most Diam(I,T) transitions. Given a number m, one can use PQE to decide if Diam(I,T) < m. This is done by checking if  $I_1$  is redundant in  $\exists X_m[I_0 \land I_1 \land T_m]$ . Here  $I_0$  and  $I_1$  specify the initial states of N in terms of variables of  $S_0$  and  $S_1$  respectively,  $X_m = S_0 \cup V_0 \cup \cdots \cup S_{m-1} \cup V_{m-1}$  and  $T_m = T(S_0, V_0, S_1) \land \cdots \land T(S_{m-1}, V_{m-1}, S_m)$ . If  $I_1$  is redundant, then Diam(I, T) < m.

The idea above can be used, for instance, to prove an invariant P true in an IC3-like manner (i.e. by constraining P) but without generating an inductive invariant. To prove P true, it suffices to constrain P to a formula H such that a)  $I \Rightarrow H \Rightarrow P$ , b) Diam(H,T) < m and c) no state falsifying P can be reached from a state satisfying H in m-1 transitions. The conditions b) and c) can be verified by PQE and bounded model checking [38] respectively. In the special case where H meets the three conditions above for m = 1, it is an *inductive invariant*.

# D Deciding If A Property Is Unwanted

In this appendix, we give the main idea of a procedure for deciding if a property is unwanted. We reuse the notation of Section 3. That is, we consider property generation for a combinational circuit M(X, V, W) specified by formula F(X, V, W). Here X, V, W denote the sets of the internal, input, and output variables of M respectively. For the sake of simplicity, we consider generation of a property H(W) depending only on output variables of M. Such a property can be obtained by taking a clause C out of formula  $\exists X \exists V[F]$  (where only variables of W are not quantified). So,  $\exists X \exists V[F] \equiv H \land \exists X \exists V[F \setminus \{C\}]$ .

Note that every clause of H is a property too. H is an unwanted property if and only if one of its clauses is an unwanted property. Let  $Q \in H$  be a singleclause unwanted property (and so M has a bug). This property says that M never outputs an assignment falsifying Q. To prove Q unwanted one needs to find a test  $\vec{v}_{be}$  for which a correct version of M would produce an output falsifying Q. Here 'be' stands for 'bug-exposing'. (If Q is a desired property, such  $\vec{v}_{be}$  cannot be produced. So, the failure to find  $\vec{v}_{be}$  is an argument in favor of Q being a desired property.)

A test  $\vec{v}_{be}$  can be found as follows. Since F implies Q, the formula  $F \wedge \overline{Q}$  is unsatisfiable (and so M cannot produce an output falsifying Q). Let F' be a formula obtained by removing some clauses from F for which the formula  $F' \wedge \overline{Q}$  is satisfiable. Then means that the circuit M' specified by F' can produce an output falsifying Q. The intuition here is that if Q is unwanted property, the clauses removed from F to obtain F' relate to the buggy part of M. (Note that the circuit M' specified by F' is non-deterministic. The reason is that F' can be satisfied by assignments  $(\vec{x}_1, \vec{v}, \vec{w}_1)$  and  $(\vec{x}_2, \vec{v}, \vec{w}_2)$  with the same input  $\vec{v}$  and different outputs  $\vec{w}_1$  and  $\vec{w}_2$ ).

Assume that all clauses making up the buggy part of M has been removed from F when obtaining F'. Then there is an assignment  $(\vec{x}, \vec{v}_{be}, \vec{w})$  satisfying  $F' \wedge \overline{Q}$ . That is a correct version of M would produce the assignment  $\vec{w}$  falsifying Q under the input  $\vec{v}_{be}$ . So, to obtain  $\vec{v}_{be}$  one needs to build the formula F' above and examine the input part  $\vec{v}$  of assignments satisfying  $F' \wedge \overline{Q}$ .

The formula F' can be obtained as follows. Recall that by our assumption  $F \setminus \{C\} \neq Q$  (see Subsection 3.2 and Remark 1). So the formula  $F' \wedge \overline{Q}$  where  $F' = F \setminus \{C\}$  is satisfiable. However, one may not extract a test  $\vec{v}_{be}$  from assignments satisfying  $F' \wedge \overline{Q}$  because C may not be the only clause making up the buggy part of M. A good heuristic for forming F' is to remove from F every clause B such that  $F \setminus \{B\} \neq Q$ . (The latter means that one could obtain the property Q by taking out the clause B from  $\exists X \exists V[F]$ ). However, the topic of obtaining formula F' and producing a test  $\vec{v}_{be}$  needs further research.

# E Combining PQE With Clause Splitting

In this appendix, we consider combining PQE with clause splitting mentioned in Subsection 3.3. We show that the corresponding PQE problem of taking out a clause produced by splitting is solved by EG-PQE in linear time. We also show that if this clause is not redundant, the solution produced by EG-PQE is a single-test property.

Here we reuse the notation of Section 3 but, for the sake of simplicity, consider a single-output combinational circuit. Let M(X, V, w) be such a circuit where X and V specify the internal and input variables respectively and w is the output variable of M. Let F(X, V, w) be a formula specifying the circuit Mand C be a clause of F. Consider the case of splitting C on all variables of V. That is  $C = C_1 \wedge \cdots \wedge C_{p+1}$  where  $C_1 = C \vee \overline{l(v_1)}, \ldots, C_p = C \vee \overline{l(v_p)}, C_{p+1} = C \vee l(v_1) \vee \cdots \vee l(v_p)$  and  $l(v_i)$  is a literal of  $v_i$  and  $V = \{v_1, \ldots, v_p\}$ . Let F' denote the formula obtained from F by replacing the clause C with  $C_1 \wedge \cdots \wedge C_{p+1}$ . Denote by  $\vec{v}_{spl}$  the input assignment falsifying the literals  $l(v_1), \ldots, l(v_p)$  where 'spl' stands for 'splitting'.

Consider applying EG-PQE to solve the PQE problem of taking the clause  $C_{p+1}$  out of  $\exists X[F']$ . EG-PQE starts with looking for an assignment satisfying  $(F' \setminus \{C_{p+1}\}) \land \overline{C_{p+1}}$  (to find a subspace where  $F' \setminus \{C_{p+1}\}$  does not imply  $C_{p+1}$ ). Consider the following three cases. The first case is that the formula above is unsatisfiable. Then  $C_{p+1}$  is trivially redundant in F' and hence in  $\exists X[F']$  and EG-PQE terminates.

The second case is that there is an assignment  $(\vec{x}, \vec{v}_{spl}, w^*)$  satisfying F'where  $\vec{x}$  is a full assignment to X and  $w^*$  is the output value taken by M under the input  $\vec{v}_{spl}$ . (Note that any full assignment to V that is different from  $\vec{v}_{spl}$ falsifies  $\overline{C_{p+1}}$ . So, any assignment satisfying  $(F' \setminus \{C_{p+1}\}) \wedge \overline{C_{p+1}}$  has to contain  $\vec{v}_{spl}$ .) Then formula F' is satisfiable in subspace  $(\vec{v}_{spl}, w^*)$  and EG-PQE adds the plugging clause D(V, w) that is the longest clause falsified by  $(\vec{v}_{spl}, w^*)$ . If  $(F' \setminus \{C_{p+1}\}) \wedge \overline{C_{p+1}} \wedge D$  is unsatisfiable, then  $C_{p+1}$  is redundant in  $\exists X[F']$  and EG-PQE terminates.

The third case occurs when there is an assignment  $(\vec{x}, \vec{v}_{spl}, w^*)$  satisfying  $(F' \setminus \{C_{p+1}\}) \wedge \overline{C_{p+1}}$  where  $w^*$  is the *negation* of the output value taken by M under input  $\vec{v}_{spl}$ . In this case, formula F' is unsatisfiable in subspace  $(\vec{v}_{spl}, w^*)$ . Since,  $F' \setminus \{C_{p+1}\}$  is satisfiable in this subspace,  $C_{p+1}$  is *not* redundant in  $\exists X[F']$ . To make  $C_{p+1}$  redundant in subspace  $(\vec{v}_{spl}, w^*)$ , EG-PQE has to add the clause B(V, w) that is the longest clause falsified by  $(\vec{v}_{spl}, w^*)$ . The clause B is a solution to the PQE problem at hand i.e.  $\exists X[F'] \equiv B \wedge \exists X[F' \setminus \{C_{p+1}\}]$ .

The clause *B* above is implied by F' (and hence *F*) and so, is a **property** of *M*. This property specifies the input/output behavior of *M* under the input  $\vec{v}_{spl}$ . Namely, to satisfy *B* when the variables of *V* are assigned as in  $\vec{v}_{spl}$ , one has to set the variable *w* to  $\vec{w}^*$ . The latter is the output produced by *M* under the input  $\vec{v}_{spl}$ . So, the property *B* specifies the behavior of *M* under a **single test**. In all three cases above, the SAT problem considered by *EG-PQE* is solved just by initial BCP. (The reason is that the formula at hand contains the unit

clauses produced by negating  $C_{p+1}$  or those specifying the subspace  $(\vec{v}_{spl}, w^*)$ .) So, *EG-PQE* solves the PQE problem above in **linear** time.

### F Tests Specified By A Property Generated By PQE

In this appendix, we show the relation between tests specified by a property obtained via PQE (see Subsection 3.5) and those detecting stuck-at faults. Here, we reuse the notation of Section 3. Let M(X, V, W) be a combinational circuit where X, V, W are the internal, input and output variables respectively. Let F(X, V, W) be a formula specifying M. Let G be an AND gate of M whose functionality is  $x_3 = x_1 \wedge x_2$ . That is  $x_1, x_2$  are the input variables of G and  $x_3$  is its output variable. The functionality of G is specified by the formula  $C_1 \wedge C_2 \wedge C_3$ where  $C_1 = \overline{x}_1 \vee \overline{x}_2 \vee x_3$ ,  $C_2 = x_1 \vee \overline{x}_3$ ,  $C_3 = x_2 \vee \overline{x}_3$  (see Example 2). The clauses  $C_1, C_2, C_3$  are present in formula F. Consider taking  $C_1$  out of  $\exists X[F]$ . This clause makes G produce the output value 1 when its input values are 1. (If  $x_1$  and  $x_2$  are set to 1, the clause  $C_1$  can be satisfied only by setting  $x_3$  to 1.)

Let H(V,W) be the property obtained by taking out  $C_1$ . That is  $\exists X[F] \equiv H \land \exists X[F \setminus \{C_1\}]$ . Let Q(V,W) be a clause of H. As we mentioned earlier, we assume that H does not have redundant clauses i.e. those implied by  $F \setminus \{C_1\}$ . Then the formula  $(F \setminus \{C_1\}) \land \overline{Q}$  is satisfiable. Let  $(\vec{x}, \vec{v}, \vec{w})$  be an assignment satisfying this formula. Note that this assignment falsifies  $C_1$ . (Indeed, assume the contrary. Then  $(\vec{x}, \vec{v}, \vec{w})$  satisfies F because it already satisfies  $F \setminus \{C_1\}$ . Since this assignment falsifies Q, we have to conclude that  $F \neq Q$  and hence  $F \neq H$ . So we have a contradiction.)

The fact that  $(\vec{x}, \vec{v}, \vec{w})$  falsifies  $C_1$  and satisfies  $F \setminus \{C_1\}$  means that one can view this assignment as an execution trace of a faulty version  $M_{flt}$  of M. Namely, the output  $x_3$  of gate G is stuck at 0 in  $M_{flt}$ . (The clause  $C_1$  is falsified when  $x_1 = 1, x_2 = 1, x_3 = 0$  i.e. if the gate G outputs 0 when its input variables are assigned 1.) Let  $(\vec{x}^*, \vec{v}, \vec{w}^*)$  be the execution trace of M under the input  $\vec{v}$ . As we showed in Subsection 3.5,  $\vec{w}^*$  is different from  $\vec{w}$ . So the input  $\vec{v}$  exposes a stuck-at fault by making  $M_{flt}$  and M produce different outputs.

# G Brief Description Of DS-PQE

In this appendix, we give a high-level view of DS-PQE and explain how it works in EG- $PQE^+$  in more detail. A full description of DS-PQE can be found in [1]. DS-PQE is based on the machinery of D-sequents [33] ('DS' in the name DS-PQE stands for 'D-sequent'). Given a formula  $\exists X[F(X,Y)]$  and an assignment  $\vec{p}$  to  $X \cup Y$ , a D-sequent is a record ( $\exists X[F], \vec{p} \rightarrow C$  stating that clause C is redundant in  $\exists X[F]$  in subspace  $\vec{p}$ . In EG- $PQE^+$ , DS-PQE is called in subspaces  $\vec{y}$  where F is satisfiable. (Here  $\vec{y}$  is a full assignment to Y.) DS-PQEterminates upon deriving a D-sequent ( $\exists X[F], \vec{y}^*$ )  $\rightarrow C$  where  $\vec{y}^* \subseteq \vec{y}$ . Such derivation means that C is proved redundant in  $\exists X[F]$  in subspace  $\vec{y}$ . Then the plugging clause D falsified by  $\vec{y}^*$  is generated where  $Vars(D) = Vars(\vec{y}^*)$ . DS-PQE derives the D-sequent  $(\exists X[F], \vec{y}^*) \to C$  above by branching on variables of X. A variable is assigned a value either by a decision or during Boolean Constraint Propagation (BCP). A branch of the search tree goes on until an atomic D-sequent is derived for C. This occurs when proving C in the current subspace becomes trivial. When backtracking, DS-PQE merges Dsequents derived in different branches using a resolution like operation called *join*. For instance, the join operation applied to D-sequents  $(\exists X[F], \vec{p}') \to C$ where  $\vec{p}' = (y_1 = 0, x_1 = 0)$  and  $(\exists X[F], \vec{p}'') \to C$  where  $\vec{p}'' = (y_2 = 1, x_1 = 1)$ produces the D-sequent  $(\exists X[F], \vec{p}) \to C$  where  $\vec{p} = (y_1 = 0, y_2 = 1)$ .

DS-PQE has three situations where an atomic D-sequent is generated. First, when C is blocked in the current subspace and hence is redundant there. Then an atomic D-sequent  $(\exists X[F], \vec{p}) \to C$  is generated where  $\vec{p}$  consists of assignments that made C blocked in the current subspace. For instance, in Example 3, DS-PQE would generate an atomic D-sequent  $(\exists X[F], (y_1 = 1)) \to C$ . Second, an atomic D-sequent is generated when C is satisfied by an assignment w = b where  $w \in X \cup Y$  and  $b \in \{0, 1\}$ . (This can be a decision assignment or an assignment derived from a clause during BCP.) Then an atomic D-sequent  $(\exists X[F], (w = b)) \to C$  is built. Third, an atomic D-sequent is generated when a conflict occurs and a conflict clause  $C_{cnfl}$  falsified in the current subspace is derived. Adding  $C_{cnfl}$  to F makes C redundant in the current subspace. So, an atomic D-sequent  $(\exists X[F], \vec{p}) \to C$  is generated where  $\vec{p}$  is the shortest assignment falsifying  $C_{cnfl}$ .

## H Experiments With HWMCC-13 Benchmarks

In Section 8, we described experiments with multi-property benchmarks of the HWMCC-13 set [19]. In this appendix, we provide some additional information. Each benchmark consists of a sequential circuit N and invariants  $P_0, \ldots, P_m$  that are supposed to hold for N. We will refer to the invariant  $P_{agg}$  equal to  $P_0 \wedge \cdots \wedge P_m$  as the aggregate invariant. We applied PQE to the generation of invariants of N that may be unwanted. Since every invariant P implied by  $P_{agg}$  must hold, the necessary condition for P to be unwanted is  $P_{agg} \neq P$ .

Similarly to the experiment of Section 7, we used the formula  $F_k = I(S_0) \wedge T(S_0, V_0, S_1) \wedge \cdots \wedge T(S_{k-1}, V_{k-1}, S_k)$  to generate invariants. The number k of time frames was in the range of  $2 \le k \le 10$ . Specifically, we set k to the largest value in this range where  $|F_k|$  did not exceed 500,000 clauses. We discarded the benchmarks with  $|F_2| > 500,000$ . We also dropped the smallest benchmarks. So, in the experiments, we used 98 out of the 178 benchmarks of the set.

We describe three experiments. In every experiment, we generated properties  $H(S_k)$  by taking out a clause of  $\exists X_k[F_k]$  where  $X_k = S_0 \cup V_0 \cup \cdots \cup S_{k-1} \cup V_{k-1}$ . Property H is a *local invariant* claiming that no state falsifying H can be reached in k transitions. As in the experiment of Section 7, we took out only clauses containing an unquantified variable (i.e a variable of  $S_k$ ). In all experiments, the **time limit** for solving a PQE problem was set to 10 sec.

#### H.1 Experiment 1

The objective of the *first experiment* was to demonstrate that  $EG-PQE^+$  could compute H for realistic designs. We also showed in this experiment that PQE could be much easier than QE (see Section 8) and that  $EG-PQE^+$  outperforms DS-PQE and EG-PQE. In this experiment, for each benchmark out of 98 mentioned above we generated PQE problems of taking a clause out of  $\exists X_k[F_k]$ . Some of them were trivially solved by preprocessing. The latter eliminated the blocked clauses of  $F_k$  that were easy to identify and ran BCP launched due to the unit clauses specifying the initial state. In all experiments, we *discarded* problems solved by preprocessing i.e. we considered only **non-trivial** PQE problems.

Table 4: PQE problems of the first group

| pqe            | total  | finished |       |  |
|----------------|--------|----------|-------|--|
| solver         | probl. | num.     | perc. |  |
| ds- $pqe$      | 3,736  | 1,132    | 30%   |  |
| eg- $pqe$      | 3,736  | 3,296    | 88%   |  |
| $eg$ - $pqe^+$ | 3,736  | 3,329    | 89%   |  |

Let C be a clause taken out of  $\exists X_k[F_k]$ . We used EG-PQE to partition the PQE problems we tried into two groups. The first group consisted of problems for which we ran EG-PQE with the time limit of 10 sec. and it never encountered a subspace  $\vec{s_k}$  where  $F_k$  was satisfiable. Here  $\vec{s_k}$  is a full assignment to  $S_k$ . (Recall that the variables of  $S_k$  are

the only unquantified variables of  $\exists X_k[F_k]$ .) So, in every subspace  $\vec{s_k}$  tried by EG-PQE, formula  $F_k$  was either unsatisfiable or  $(F_k \setminus \{C\}) \Rightarrow C$ . The second group consisted of problems where EG-PQE encountered subspaces where  $F_k$  was satisfiable. For either group we generated up to 40 problems per benchmark. For some benchmarks, the total number of non-trivial problems generated for the first or second group was under 40. Many PQE problems of either group had hundreds of thousands of variables.

| Table 5: PQE problems of |  |
|--------------------------|--|
| the second group         |  |

| DGO   | total  | finis     | hod   |
|-------|--------|-----------|-------|
| 1 1 · | probl. | num.      | perc. |
|       | 3,094  | 464       | 15%   |
| 11    | 3,094  | 404<br>74 | 2%    |
| 511   | /      | • •       | -/0   |
| 511   | 3,094  | 830       | 27%   |

The results for the first group are shown in Table 4. The first column gives the name of a PQE solver. The second column shows the number of PQE problems in the first group. The last two columns give the number and percentage of problems finished in the time limit of 10 sec. Table 4 shows that EG-PQE and EG- $PQE^+$  performed

quite well finishing a very high percentage of problems. The results of DS-PQE are much poorer because it does not check if  $(F_k \setminus \{C\}) \Rightarrow C$  in the current subspace i.e. if C is trivially redundant.

The results for the second group are shown in Table 5 that has the same structure as Table 4. In particular, the second column gives the number of PQE problems in the second group. Table 5 shows that EG-PQE and EG- $PQE^+$  finished 2% and 27% of the problems respectively. So, EG- $PQE^+$  significantly outperformed EG-PQE. The reason is that EG-PQE uses a satisfying assignment as a proof of redundancy of the clause C in subspace  $\vec{s}_k$ .

### H.2 Experiment 2

The second experiment was an extension of the first one. Its goal was to show that PQE can generate invariants for realistic designs. For each clause Q of a local invariant H generated by PQE we used IC3 to verify if Q was a global invariant. If so, we checked if  $P_{agg} \not\Rightarrow Q$  held. To make the experiment less time consuming, in addition to the time limit of 10 sec. per PQE problem, we imposed the following constraints. First, we stopped a PQE-solver even before the time limit if it generated more than 5 free clauses. Second, the time limit for IC3 was set to 30 sec. Third, instead of constraining the number of PQE problems per benchmark (i.e. the number of single clauses taken out of  $\exists X_k[F_k]$ ) like in the first experiment, we imposed the following two constraints. First, we stopped processing a benchmark as soon as the total of 100 free clauses was generated (for all the PQE problems generated for this benchmark). Second, we stopped processing a benchmark even earlier if the summary run time for all PQE problems generated for this benchmark exceeded 2,000 sec.

Table 6: A sample of HWMCC-13 benchmarks from the experiment with  $EG-PQE^+$ 

| name  | lat-  | in-       | time | clau- | single-clause propertie |      |       |     | rties        |
|-------|-------|-----------|------|-------|-------------------------|------|-------|-----|--------------|
|       | ches  | var.      | fra- | ses   | gen.                    | inv  | ariaı | nt? | not          |
|       |       | of        | mes  | taken | props                   | un-  | no    | yes | impl.        |
|       |       | $P_{agg}$ |      | out   |                         | dec. |       |     | by $P_{agg}$ |
| 6s306 | 7,986 | 25        | 2    | 182   | 100                     | 0    | 94    | 6   | 6            |
| 6s176 | 1,566 | 952       | 3    | 31    | 100                     | 23   | 11    | 66  | 11           |
| 6s428 | 3,790 | 340       | 4    | 28    | 100                     | 9    | 5     | 86  | 83           |
| 6s292 | 3,190 | 247       | 5    | 24    | 100                     | 41   | 0     | 59  | 59           |
| 6s156 | 513   | 32        | 6    | 113   | 100                     | 0    | 0     | 100 | 100          |
| 6s275 | 3,196 | 673       | 7    | 20    | 100                     | 0    | 50    | 50  | 50           |
| 6s325 | 1,756 | 301       | 8    | 22    | 100                     | 0    | 1     | 99  | 97           |
| 6s391 | 2,686 | 387       | 9    | 35    | 100                     | 1    | 29    | 70  | 70           |
| 6s282 | 1,933 | 20        | 10   | 111   | 100                     | 0    | 64    | 36  | 35           |

A sample of 9 benchmarks out of the 98 we used in the experiment with EG- $PQE^+$  is shown in Table 6. Let us explain the structure of this table by the benchmark 6s306 (the first line of the table). The name of this benchmark is shown in the first column. The second column gives the number of

latches (7,986). The number of invariants that should hold for 6s306 is provided in the third column (25). So, the aggregate invariant  $P_{agg}$  of 6s306 is the conjunction of those 25 invariants. The fourth column shows that the number k of time frames for 6s306 was set to 2 (since  $|F_3| > 500,000$ ). The value 182 shown in the fifth column is the total number of single clauses taken out of  $\exists X_k[F_k]$  i.e. the number of PQE problems (where k = 2 for 6s306).

Every free clause Q generated by  $EG-PQE^+$  when taking a clause out of  $\exists X_k[F_k]$  was stored as a local single-clause invariant. The sixth column shows that taking clauses out of the scope of quantifiers was terminated when 100 free clauses (specifying 100 local single-clause invariants) were generated. Each of these 100 local invariants held in k-th time frame. The following three columns show how many of those 100 local invariants were true globally. IC3 finished every problem out of 100 in the time limit of 30 sec. So, the number of undecided invariants was 0. The number of invariants IC3 proved false or true globally was 94 and 6 respectively. The last column gives the number of global invariants *not* implied by  $P_{agg}$  i.e. invariants that may be unwanted. For 6s306, this number is 6.

### H.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses  $Q_1, \ldots, Q_n$  to make  $P \wedge Q_1 \wedge \cdots \wedge Q_n$  inductive. If IC3 succeeds, every  $Q_i$  is an invariant. Moreover,

 $Q_i$  may be an *unwanted* invariant. Arguably, the cause of efficiency of *IC3* is that P is often close to an inductive invariant. So, *IC3* needs to generate a relatively small number of clauses  $Q_i$  to make the constrained version of P inductive. However, this nice feature of *IC3* drastically limits the set of invariant clauses it generates. In this subsection, we substantiate this claim by an experiment. In this experiment, we picked the HWMCC-13 benchmarks for which one could prove *all* predefined invariants  $P_1, \ldots, P_m$  within a time limit. Namely, for every benchmark we formed the aggregate invariant  $P_{agg} = P_1 \land \cdots \land P_m$  and ran *IC3* to prove  $P_{agg}$  true.

We selected the benchmarks that IC3 solved in less than 1,000 sec. (In addition to dropping the benchmarks not solved in 1,000 sec., we discarded those where  $P_{agg}$  failed because some invariants  $P_i$  were false). Let  $P^*_{agg}$  denote the inductive version of  $P_{agg}$  produced by IC3 when proving  $P_{agg}$  true. That is,  $P^*_{agg}$  is  $P_{agg}$  conjoined with the invariant clauses produced by IC3.

| Table 7: Invariants of EG-PQE | $^+$ and |
|-------------------------------|----------|
| IC3                           |          |

| name  | lat-  | inva-     | glob. s | single cl    | s. invars      |
|-------|-------|-----------|---------|--------------|----------------|
|       | ches  | riants    | glob.   | not          | not            |
|       |       | of        | inva-   | impl.        | impl.          |
|       |       | $P_{agg}$ | riants  | by $P_{agg}$ | by $P_{agg}^*$ |
| 6s135 | 2,307 | 340       | 53      | 53           | 27             |
| 6s325 | 1,756 | 301       | 99      | 99           | 96             |
| ex1   | 130   | 33        | 25      | 16           | 16             |
| ex2   | 212   | 32        | 64      | 64           | 47             |
| 6s106 | 135   | 17        | 100     | 96           | 96             |
| 6s256 | 3,141 | 5         | 6       | 6            | 6              |
| ex3   | 61    | 3         | 4       | 4            | 4              |
| ex4   | 63    | 3         | 1       | 1            | 1              |
| 6s209 | 5,759 | 2         | 95      | 95           | 89             |
| 6s113 | 994   | 1         | 19      | 16           | 16             |
| 6s143 | 260   | 1         | 97      | 86           | 77             |
| 6s170 | 3,141 | 1         | 13      | 13           | 13             |
| 6s252 | 170   | 1         | 55      | 41           | 34             |
| Total |       |           |         | 590          | 522            |

For each of the selected benchmarks we generated invariants by  $EG-PQE^+$  exactly as in Experiment 2. That is, we stopped generation of local single clause invariants when their number exceeded 100. Then we ran IC3 to identify local invariants that were global as well. After that we checked which of the global invariants generated by  $EG-PQE^+$  were not implied by  $P_{agg}$ . The difference from Experiment 2 was that we also checked which global invariants generated by  $EG-PQE^+$  were not implied by  $P^*_{agg}$ .

The results of the experiment are shown in Table 7. The first three columns of this table are the same

as in Table 6. They give the name of a benchmark, the number of latches and the number of invariants  $P_1, \ldots, P_m$  to prove. (The actual names of examples  $ex1, \ldots, ex4$  in the HWMCC-13 set are *pdtvsarmultip*, *bobtuintmulti*, *nusmvdme1d3multi*, *nusmvdme2d3multi* respectively.) The next column of Table 7 shows the number of local invariants generated by  $EG-PQE^+$  that turn out to be global. The last two columns give the number of global invariants that were not implied by  $P_{agg}$  and  $P^*_{agg}$  respectively. The last row of the table shows that in 522 cases out of 590 the invariants not implied by  $P_{agg}$  were not implied by  $P^*_{agg}$  either. So, in 88% of cases, the invariant clauses generated by  $EG-PQE^+$ were *different* from those generated by *IC3* to form  $P^*_{agg}$ .

# I Experiment With Combinational Circuits

In this appendix, we give more information about the experiment with property generation for combinational circuits described in Section 9. We formed PQE

problems as follows. For each benchmark N we picked the number k of time frames to unroll. The value of k ranged from 10 to 40. (For larger circuits we picked a smaller value of k.) Then we unrolled N for k time frames to form a combinational circuit  $M_k$  and randomly generated a clause  $B(S_k)$  of 15 literals. So, B depended on output variables of  $M_k$ . After that, we constructed the subcircuit  $M'_k$  of  $M_k$  as described in Section 9. That is,  $M'_k$  was obtained by removing the logic of  $M_k$  that did not feed any output variable present in B.

Let formula  $F'_k$  specify the subcircuit  $M'_k$ . (Here we reuse the notation of Section 9.) For every benchmark, we generated PQE problems of taking different clauses C out of  $\exists S_{1,k}[F'_k]$ . That is each PQE problem was to find H such that  $\exists S_{1,k}[F'_k] \equiv H \land \exists S_{1,k}[F'_k \setminus \{C\}]$ . Each clause C to take out was chosen among the clauses of  $F'_k$  that contained a variable of  $S_k$  (i.e. an output variable of  $M'_k$ ). In this way, we formed a set of 3,254 PQE problems. 1,668 of these problems were solved by simple formula preprocessing i.e. turned out to be trivial. So, in the experiment we used the remaining 1,586 non-trivial PQE problems.

Table 8: Property generation

| pqe            | num.   | properties were generated |    |                              |    |  |  |
|----------------|--------|---------------------------|----|------------------------------|----|--|--|
| solver         | of pqe | num-                      |    | stronger than<br>3-val. sim. |    |  |  |
|                | prob-  | ber                       | %  |                              |    |  |  |
|                | lems   |                           |    | num.                         | %  |  |  |
| ds- $pqe$      | 1,586  | 983                       | 62 | 728                          | 74 |  |  |
| eg- $pqe$      | 1,586  | 450                       | 28 | 361                          | 80 |  |  |
| $eg$ - $pqe^+$ | 1,586  | 1,046                     | 66 | 817                          | 78 |  |  |

The time limit for solving a PQE problem was set to 10 sec. Besides, solving a PQE problem terminated as soon as the size of H reached 5 clauses. The results of the experiment are summarized in Table 8. The second column gives the total number of PQE problems. The next two columns show the

number and percentage of problems where H was non-empty i.e. had at least one clause. (Recall, that each clause of H represents a property.) The last two columns give the number and percentage of cases where a clause of H represented a property that was stronger than ones produced by 3-valued simulation, a version of symbolic simulation [22]. Consider, for instance, the last line of the table corresponding to  $EG-PQE^+$ . For 817 out of 1,046 PQE problems where H was not empty, at least one clause of H constituted a property that could not be produced by 3-valued simulation. Table 8 shows that EG-PQE had the weakest results generating properties only for 28% of problems whereas DS-PQEand  $EG-PQE^+$  performed much better producing properties for 62% and 66% problems respectively.