
ar
X

iv
:1

30
8.

05
83

v2
 [

cs
.L

O
]

25
 S

ep
 2

01
3

Verification of Sequential Circuits by
Tests-As-Proofs Paradigm

Eugene Goldberg, Mitesh Jain, Panagiotis Manolios
Northeastern University, USA,{eigold,jmitesh,pete}@ccs.neu.edu

Abstract—We introduce an algorithm for detection of bugs in
sequential circuits. This algorithm is incomplete i.e. itsfailure
to find a bug breaking a property P does not imply that P
holds. The appeal of incomplete algorithms is that they scale
better than their complete counterparts. However, to make an
incomplete algorithm effective one needs to guarantee thatthe
probability of finding a bug is reasonably high. We try to
achieve such effectiveness by employing the Test-As-Proofs (TAP)
paradigm. In our TAP based approach, a counterexample is built
as a sequence of states extracted from proofs that some local
variations of property P hold. This increases the probability
that a) a representative set of states is examined and that b)
the considered states are relevant to propertyP . We describe
an algorithm of test generation based on the TAP paradigm and
give preliminary experimental results.

I. I NTRODUCTION

Formal methods have lately made impressive progress in
verification of sequential circuits. However, these methods
still do not scale well enough to handle large designs. So
the development of more scalable approaches to sequential
verification is an important research direction. One of such
approaches is verification by simulation i.e. by applying a
set of tests. Simulation is incomplete, which makes it more
scalable than formal verification. An obvious downside of
simulation though is that it is limited to bug hunting.

To make simulation effective it is crucial to increase the
probability that, given a buggy circuit, the part of the search
space explored by simulation contains a bug. In the case of se-
quential verification, making simulation effective is especially
challenging for the following reason. LetP be a property of a
sequential circuitΦ to be tested. Suppose thatΦ is buggy. So
there is a sequences1, . . . , sk of states ofΦ such thatsi+1 is
reachable fromsi in one transition,i = 1, . . . , k−1, states1 is
an initial state andsk falsifiesP . Suppose thatk is the length
of the shortest counterexample breaking propertyP . This
means that no matter how one picks statessi, i = 1, .., k − 1
they all satisfy propertyP . To make simulation efficient one
has to reduce the set of explored states. But to achieve this
goal one must answer the following tough question:how does
one identify the “promising” states if every state reachable
from an initial state in less than k steps satisfies P?

In this paper, we address the challenge above using the
Tests-As-Proofs (TAP) paradigm [3], [5]. The essence of TAP
is to treat a set of tests not as a sample of the search space but
as an encoding of a proof that the property in question holds.
So, in a sense, the TAP paradigm reformulates the objective
of simulation. Instead of sampling the search space to find a

counterexample breaking a propertyP , a TAP based algorithm
looks for a hole in a proof thatP holds. A straightforward way
of using the TAP paradigm is to generate a set of tests until a
counterexample breakingP is found or a test set encoding a
proof thatP holds is generated. In general, this method is very
inefficient because checking if a test set encodes a proof that
P holds is computationally hard. There are, however, more
practical ways to use TAP. For example, to generate tests for
checking if propertyP holds, one can first prove that a simpler
property derived fromP holds and then use the tests encoding
the obtained proof to verifyP itself.

In this paper, we describe a TAP based algorithm called
TapSeqmeant for generation of tests for sequential circuits. Let
P o(s) denote the property that every state reachable from state
s in one transition satisfies propertyP of a sequential circuit
Φ. (The superscript ’o’ stands for ’one’.)TapSeqexplores only
tracess1, . . . , sk where statesi is extracted from an encoding
of a proof that propertyP o(si−1) holds. That isTapSequses
local propertiesP o(s) for building a counterexample breaking
the global propertyP . The idea here is that, on the one hand,
these properties are related to propertyP and on the other
hand, they are much easier to prove thanP . Importantly, a
set of states encoding a proof that the propertyP o(s) holds is
typically a very small subset of all states reachable froms in
one transition. So, in a sense, instead of achieving effectiveness
of testing by finding “promising” states reachable froms in
one transition,TapSeqlooks for a representativesubset of
states reachable froms in one transition.

This paper is structured as follows. The TAP paradigm
is recalled in Section II. In Section III, our algorithm for
generation of tests for sequential circuits is described. Finally,
Section IV gives some preliminary experimental results.

II. T EST-AS-PROOFSPARADIGM

This section is structured as follows. In Subsection II-A,
we recall the notions of a resolution proof and a boundary
point [6], [4]. The notion of encoding a resolution proof
by a set of points [3], [5] is explained in Subsection II-B.
Subsection II-C recalls the Tests-As-Proofs paradigm [3],[5]
by the example of testing combinational circuits.

A. Resolution and Boundary Points

Definition 1: A literal of a Boolean variablev is v itself
(positive literal) or the negation ofv (negative literal). Aclause
C is a disjunction of literals. We will assume that a clauseC

http://arxiv.org/abs/1308.0583v2

cannot have two literals of the same variable. AConjunctive-
Normal Form (CNF) F is a conjunction of clauses. We will
also considerF as just a set of clauses. So, for instance, the
CNF formulaF ∧G can also be represented asF ∪G.

Definition 2: Let X be a set of Boolean variables. An
assignmentq to variables ofX is a mappingZ → {0, 1}
whereZ ⊆ X . We will also considerq as a set of value
assignments to the individual variables ofZ. If Z = X ,
the assignmentq is called complete. We will also refer to
a complete assignment as apoint.

Definition 3: Let F be a CNF formula andC be a clause.
Denote by Vars(F) (respectivelyVars(C)) the set of
variables ofF (respectivelyC). Let q be an assignment. We
denote the set of variables assigned inq asVars(q).

Definition 4: Let v be a Boolean variable. A literal ofv
is said to be satisfied (falsified) by an assignment tov if
it evaluates to 1 (respectively to 0) by this assignment. A
clauseC is said to besatisfied (respectivelyfalsified) by an
assignmentq if a literal of C is satisfied byq (respectively all
literals ofC are falsified byq). A CNF formulaF is satisfied
(respectivelyfalsified) by an assignmentq if every clause of
F is satisfied byq (respectively at least one clause ofF is
falsified byq).

Definition 5: Let C′ ∨ v andC′′ ∨ v be two clauses such
that no variable ofVars(C′)∩Vars(C′′) has opposite literals
in C′ andC′′. The clauseC′ ∨ C′′ is called theresolvent of
the parent clausesC′ ∨ v andC′′ ∨ v. This resolvent is
said to be obtained byresolution of the parent clauses onv.
ClausesC′ ∨ v andC′′ ∨ v are calledresolvableon v.

Definition 6: Let F be a CNF formula. A clauseC is said
to bederived from F by a set of resolutionsr1, . . . , rk if

• the resolvent of resolutionrk is clauseC,
• the parent clauses of resolutionri, i = 1, . . . , k are either

clauses ofF or resolvents of resolutionsrj wherej < i.

We will call the sequencer1, . . . , rk a resolution derivation
of clauseC from F .

Proposition 1: The resolution proof system based on the
operation of resolution is complete in the following sense.
Given a CNF formulaF and a clauseC such thatF → C,
there is a resolution derivation of clauseC′ from F such that
C′ → C. In particular, ifF is unsatisfiable, one can always
derive anempty clausefromF i.e. a clause that has no literals
and so cannot be satisfied. Derivation of an empty clause from
F is called aresolution proof thatF is unsatisfiable.

Definition 7: Let F be a CNF formula andp be a complete
assignment toVars(F). Pointp is called av-boundary point
of F if

• p falsifiesF ,
• every clause ofF falsified byp has variablev.

Proposition 2 below shows that boundary points characterize
“mandatory” fragments of resolution proofs.

Proposition 2: Let F be an unsatisfiable formula andp be
a v-boundary point ofF . Then any resolution proof thatF is
unsatisfiable contains a resolutionr such that

• r is a resolution on variablev,

• the resolvent produced byr is falsified byp.

B. Set of Points Encoding a Resolution Proof

Definition 8: Let X be a set of Boolean variables andP
be a set of points i.e. complete assignments toX . Let C′ and
C′′ be two clauses such that
• (Vars(C′) ∪Vars(C′′)) ⊆ X ,
• C′ andC′′ are resolvable on variablev.

ResolvingC′ andC′′ on v is said to belegal with respect to
P if there are pointsp′,p′′ ∈ P such that
• p′ falsifiesC′ andp′′ falsifiesC′′,
• p′ andp′′ are different only in the value ofv.
Proposition 3: Let clause C be obtained by resolving

clausesC′ and C′′ on variablev. Then pointsp′ and p′′

make this resolution legal iff bothp′ and p′′ falsify C and
are different only in variablev.

Definition 9: Let F be an unsatisfiable CNF formula andP
be a set of complete assignments toVars(F). Suppose, there is
a resolution proofR = r1, . . . , rk thatF is unsatisfiable such
that every resolutionri, i = 1, . . . , k is legal with respect to
P . We will say then that the set of pointsP encodes proof
R. More generally, we will say that a set of pointsP encodes
an unspecified resolution proof thatF is unsatisfiable if there
is a resolution proof of unsatisfiability ofF encoded byP .

There is a simple but very inefficient procedure [5] for
checking if a set of pointsP encodes a resolution proof that
a CNF formulaF is unsatisfiable. This procedure starts by
making sure that every point ofP falsifies F . If not, then
F is satisfiable. Otherwise, all resolution operations that are
legal with respect to set of pointsP are performed. If an empty
clause is derived thenP encodes a proof thatF is unsatisfiable.
Otherwise,P is too small and needs to be expanded to either
include an assignment satisfyingF or to encode a proof that
F is unsatisfiable.

Obviously, the procedure above is impractical. Unfortu-
nately, no efficient procedure for checking if a set of points
encodes a resolution proof is known. On the contrary, there-
verseprocedure of finding a setP encoding a given resolution
proof r1, . . . , rk is trivial. The idea of this procedure is to
start with an empty set of pointsP and then add points that
makes resolutions of the proof legal. Letri be a resolution in
which clausesC′ andC′′ are resolved on variablev producing
resolventC. From Proposition 3 it follows that to makeri legal
one just needs to add toP pointsp′ andp′′ that falsifyC and
are different only in value ofv. So the upper bound on the size
of P is 2 ∗ k because one needs two points per resolution. In
reality, the size ofP may be much smaller because two-point
sets legalizing different resolutionsri andrj may overlap.

C. Test-as-Proofs Paradigm

In this subsection, we introduce the Tests-As-Proofs (TAP)
paradigm by showing how one can use tests to encode a proof
of a property of a combinational circuit. LetN(X,Y, z) be
a single-output combinational circuit. HereX andY denote
input and internal variables ofN respectively andz denotes
the output ofN . We will assume that the fact theN evaluates

only to 0 means that a combinational property holds. (For
instance,N can be the miter of two combinational circuits
M ′, M ′′ checked for equivalence. Then the fact thatN

always evaluates to 0 means thatM ′ andM ′′ are functionally
equivalent.) IfN evaluates to 1 for some input assignment
x, then property specified byN does not hold andx is a
counterexample.

Let FN (X,Y, z) be a CNF formula specifying circuitN ,
i.e. a satisfying assignment ofFN corresponds to a consistent
assignment to gates ofN and vice versa. LetF denote the
formulaFN ∧ z. The satisfiability ofF means that, for some
input assignment,N evaluates to 1 and so there is a bug.

Suppose thatF is unsatisfiable andΨ = {r1, . . . , rk}
is a resolution proof of that. Letp be a complete assign-
ment toVars(F). Denote byinp(p) be the projection ofp
onto the set of input variablesX . Let E = {p1, . . . ,pm}
be a set of points encodingΨ. Let inp(E) denoteE =
{inp(p1), . . . , inp(pm)}. Notice thatinp(pi) may be equal to
inp(pj) for two different pointspi,pj of E. We will assume
that inp(E) does not contain duplicates. We will say that the
set of testsT = {x1, . . . ,xd} encodes proofΨ if there is a
set of pointsE encodingΨ such thatT = inp(E). Similarly,
setT encodes an unspecified resolution proof if there is a set
of pointsE encoding a resolution proof such thatT = inp(E).

As we mentioned in Subsection II-B, the size of a set of
pointsE encoding a proofΨ is bounded by2 ∗ |Ψ| where|Ψ|
is the number of resolutions inΨ. Since|inp(E)| ≤ |E|, the
same applies to the size of a set of tests encodingΨ. In reality,
as we mentioned above,|inp(E)| may be drastically smaller
than |E| because different points ofE may have identical
projections onto the set of input variables.

The relation between tests and proofs implies that testing
can be viewed as finding an encoding of a proof that the
property in question holds rather than sampling the search
space. We will refer to such a point of view at theTests-As-
Proofs (TAP) paradigm. There are numerous ways to use the
TAP paradigm in practice. One of them is to build a test set
encoding a proof that a property of a circuit holds and apply
it in a different situation. (For instance, this set of testscan be
used to check if this circuit still has the same property after a
modification.)

In Subsection II-B, we outlined a trivial procedure of
building a set of pointsE encoding a known proofΨ that
F is unsatisfiable. However, this procedure cannot guarantee
that the set of testsinp(E) extracted fromE has high quality.
To produce a test set of high-quality one needs to extract them
from a set of pointsE forming a tight encoding of Ψ. The
intuition here is that the closer a set of pointsE encodingΨ
to Ψ, the higher the quality of testsinp(E). By proximity of
E to Ψ we mean thatE makes legal the smallest possible set
of resolutions that are not inΨ.

Informally, building a tight proof encoding means that when
looking for pointsp′,p′′ legalizing resolution of clausesC′

andC′′ one needs to makep′,p′′ satisfy as many clauses of
F as possible. (In particular, if a clauseC of F is satisfied by
every point ofE, thenC is redundant in a proof encoded by

E. This is because any resolution involvingC is illegal with
respect toE.) One way to build a tight proof encoding is to
require thatp′,p′′ arev-boundary points ofF wherev is the
variable on whichC′ andC′′ are resolved. The high quality
of tests extracted from boundary points has been confirmed
in [5].

III. TAP BASED GENERATION OF TESTSFOR

SEQUENTIAL CIRCUITS

In this section, we describe an algorithm based on the TAP
paradigm meant for testing sequential circuits. We will refer to
this algorithm asTapSeq. This section is structured as follows.
In Subsection III-A, some basic definitions of sequential
verification are listed. A high-level view ofTapSeqis given in
Subsection III-B. Subsection III-C describesTapSeqin more
detail.

A. Some Definitions

Definition 10: A sequential circuitΦ is specified by a pair
of predicates(I, T) over Boolean variables. HereT (S, S′, Z)
is the transition relation of Φ whereS, S′ are the sets of
present and next state variables respectively, andZ is the set
of combinational variables. PredicateI(S) specifies the set of
initial states ofΦ. We will denote theinput variables of Φ
by X whereX ⊆ Z.

Definition 11: Let pair (I(S),T (S, S′, Z)) specify a circuit
Φ. A complete assignments to variables ofS (respectively
S′) is calleda state (respectivelynext state) of Φ.

Definition 12: Let Φ be a circuit specified by pair(I, T).
A sequence of statess1, . . . , sk is called atrace if I(s1) = 1
and∃Z[T (si, si+1, Z)]=1 for everyi where1 ≤ i ≤ k − 1.

Definition 13: Let Φ be a circuit specified by pair(I, T).
The states is calledreachableby Φ if there is a trace ending
in states. Denote byR(S) a predicate specifying the set of
all reachable statesof Φ. That isR(s) = 1 if and only if
states is reachable.

Definition 14: In this paper, we consider the problem of
property checking. LetΦ be a circuit specified by pair(I, T).
A property ofΦ is specified by a predicateP (S) describing
the set of states where this property holds (i.e. the set ofgood
states). So the predicateP specifies the set ofbad states. For
the sake of simplicity, we will refer to the property specified
by P as property P . We will say that propertyP holds for
Φ if R ∧ P ≡ 0.

Definition 15: Let Φ be a circuit specified by pair(I, T).
Let P be a property ofΦ and s be a state ofΦ. Denote by
Ro(s) the set of all states ofΦ that are reachable froms in
one transition. Denote byP o(s) the property that holds iff
the propertyP holds for every state ofRo(s).

B. High-level View of TapSeq

Let Φ be a sequential circuit specified by pair(I, T). Let P
be a property ofΦ to be verified. The pseudocode ofTapSeqis
given in Figure 1.TapSeqis incomplete i.e. it can build a
counterexample breakingP but cannot prove thatP holds.

// TapSeqreturnsbug if a reachable bad state is found
// OtherwiseTapSeqreturnsno bug found
//
TapSeq(I, T, P){
1 if (I ∧ P 6≡ ∅) return(bug);
2 All states := {init state(I)};
3 Act states := All states ;
4 while (Act states 6= ∅){
5 Curr state := pick state(Act states);
6 Act states := Act states \ {Curr state};
7 sat := enc proof (All states ,Act states ,

Curr state , T, P);
8 if (sat) return(bug); }
9 return(no bug found);}

Fig. 1. Pseudocode of TapSeq

For the sake of simplicity we will assume that there is only
one states1 satisfyingI i.e. Φ has only one initial state.

First, TapSeqchecks if propertyP o(s1) holds. If not, then
there is a bad states2 ∈ Ro(s1) ands1,s2 form a counterex-
ample. Otherwise, a resolution proof is generated stating that
P o(s1) holds and a set of statesEo(s1) is extracted from an
encoding of this proof. HereEo(s1) is a subset ofRo(s1).
Then the same procedure repeats for the states ofRo(s1). That
is for every states ∈ Ro(s1), TapSeqchecks the property
P o(s). If it does not hold, then a states∗ ∈ Ro(s) breaks
P ands1,s,s∗ form a counterexample. Otherwise, new states
Eo(s) are extracted from an encoding of a proof thatRo(s)
holds.

TapSeqmaintains the setAll statesof all visited states. This
allows one to avoid visiting the same state more than once.
TapSeqterminates in two cases.
• A bad state is reached (propertyP does not hold).
• No new states are extracted from encodings of proofs of

propertiesP o(s), s ∈ All states. In this case, we will
say thatTapSeqreached aconvergence point.

C. More Detailed Description of TapSeq

TapSeqstarts by checking if the initial state breaks prop-
erty P (line 1 of Figure 1). If it does, thenTapSeqtermi-
nates reporting a bug. Otherwise, variablesAll states and
Act states are initialized with the initial state. As we men-
tioned above,All states specifies the set of all visited states.
Act states is a subset ofAll states. A states remains in
Act states until the validity of propertyP o(s) is established.

enc proof (All states ,Act states ,Curr state , T, P){
1 F = cnf (Curr state) ∧ T ∧ P ′;
2 (Ψ, sat) := gen proof (F);
3 if (sat) return(true);
4 enc resol(All states ,Act states ,Ψ, F);
5 return(false); }

Fig. 2. Pseudocode of encproof

The main work is done byTapSeqin a ’while’ loop (lines
4-8). First,TapSeqpicks a state fromAct states and removes
the former from the latter. This state is assigned to variable
Curr state that is used to specify the state currently processed

enc resol (All states ,Act states ,Ψ, F,Curr state , T){
1 while (Ψ 6= ∅) {
2 (C, v) := extract resolution(Ψ)
3 Ψ := Ψ \ {(C, v)};
4 p := enc clause(F,C, v,Curr state);
5 if (p = nil) continue;
6 update states(All states ,p, T); }}

Fig. 3. Pseudocode ofencode resol

enc clause(F,C, v,Curr state){
1 p := find sat assgn((F ∪ C) \ F {v});
2 if (p = nil) return(nil);
3 p := assign var(p, v, Curr state);
4 return(p); }

Fig. 4. Pseudocode of encclause

by TapSeq. Notice that every state assigned toCurr state is
reachable from the initial state. ThenTapSeqchecks if property
P o(Curr state) holds (line 7). If not, thenTapSeqreports the
presence of a bug. Otherwise, a proof thatP o(Curr state)
holds is generated. This proof is encoded and new states (if
any) are added toAll states and Act states by procedure
enc proof. Then a new iteration begins. Iterations go on as
long asAct states is not empty. Once a convergence point is
reached (i.e.Act states becomes empty),TapSeqterminates
reporting that no bug was found.

The pseudocode of theenc proof procedure is shown in
Figure 2. First, a CNF formulaF is formed (line 1) that is
satisfiable iff propertyP o(Curr state) does not hold. The
satisfiability of F is checked in line 2. IfF is satisfiable,
then enc proof terminates (line 3). Otherwise, a proofΨ
of unsatisfiability ofF is generated. Resolutions ofΨ are
encoded byenc resol procedure shown in Figure 3.

Procedureenc resolloops over resolutions of proofΨ. First,
it extracts a new resolution (C, v) of Ψ and removes it from
the latter. HereC is the resolvent andv is the variable on
which the parent clauses ofC were resolved. Then, av-
boundary pointp of F falsifying C is generated by procedure
enc clause. From Proposition 3 it follows, thatp and the
point obtained fromp by flipping the value ofv legalize
the resolution specified byC and v. We wantp to be av-
boundary point to make our proof encodingtight. If p does
not exist, enc resolutionsstarts a new iteration. Otherwise,
procedureupdatestatesis called to update setsAll states and
Act states .

The pseudocode of procedureenc clauseis shown in Fig-
ure 4. This procedure computes av-boundary point of formula
F that falsifies a resolvent clauseC. This is done by finding
an assignment satisfying formulaF ∪ C \ F v whereF v is
the set of clauses ofF containing variablev. Notice that if
p satisfiesF ∪ C \ F v then it satisfies all the clauses ofF
but some clauses containing variablev. In other words,p is
a v-boundary point ofF . After computingp, the value of
variablev is set inp (line 3). If v 6∈ S, then the value ofv
is set arbitrarily. Otherwise,v is assigned the same value as

update states(All states ,p, T){
1 (s,x) := extract state input(p);
2 s

∗ := find next state(s,x, T);
3 if (s∗ ∈ All states) return;
4 All states := All states ∪ {s∗};
5 Act states := Act states ∪ {s∗}; }

Fig. 5. Pseudocode of updatestates

RandAlg(I, T, P,max tries ,max length){
1 if (I ∧ P 6≡ ∅) return(bug);
2 Curr state := set init state(I);
3 length := 0; tries := 0;
4 while (tries ≤ max tries) {
5 if (length > max length) {
6 length := 0; tries++;
7 Curr state := set init state(I);
8 continue;}
9 F := cnf (Curr state) ∧ T ∧ P ;
10 if (satisf (F)) return(bug);
11 x := gen rand input(X);
12 Curr state := next state(T,x,Curr state);
13 length++; }
14 return(no bug found); }

Fig. 6. Algorithm for generation of counterexamples randomly

in Curr state. This is done to guarantee that the new states
generated byupdate statesare reachable fromCurr state in
one transition.

The fact that one uses onlyv-boundary points that agree
with the values ofCurr state means that proofΨ is encoded
only partially. Namely, this encoding does not legalize resolu-
tions on variables ofS. This is done to simplifyTapSeq. We
are going to fix this problem in future versions ofTapSeq.

Figure 5 shows the pseudocode of procedureupdatestates.
First, the assignments (s,x) to variables ofS and X (i.e.
present state and input variables) are extracted from av-
boundary point found by procedureenc clause. Then the
transition relationT is used to compute the states∗ to which
circuit Φ switches from states under the input assignmentx.
If s∗ is a new state, it is added toAll states andAct states .

IV. EXPERIMENTAL RESULTS

In this section, we describe two experiments conducted to
evaluate the performance ofTapSeq. This section is structured
as follows. In Subsection IV-A, we describe an algorithm
of random test generation that we compared withTapSeq.
Some details of the implementation ofTapSeqwe used in
experiments are given in Subsection IV-B. The first and second
experiments are described in Subsections IV-C and IV-D
respectively.

A. Random Algorithm We Used in Experiments

In this subsection, we describe an algorithm of random
test generation we used in the first experiment. We will
refer to this algorithm asRandAlg . The pseudocode of
RandAlg is shown in Figure 6. The set of counterexamples
generated byRandAlg is controlled by parametersmax tries

andmax length. The value ofmax tries limits the number of
generated counterexamples whilemax lengthsets the limit to
the number of states in a counterexample. The length of the
current counterexample and the number of counterexamples
generated so far are specified by variableslength and tries
respectively.
RandAlg maintains variableCurr state specifying a state

reachable from the initial state that is currently processed by
RandAlg. At the beginning,Curr state is set to the initial
state (line 2). The main work is done in the ’while’ loop
(lines 4-13). If the value oflengthexceedsmax length, a new
counterexample is started and the value oftries is incremented
(lines 5-8). Otherwise,RandAlg checks ifCurr state sat-
isfies propertyP . If not, then RandAlg returns valuebug.
Otherwise,RandAlg randomly generates an assignmentx to
input variablesX (line 11). Thenx is used to generate a new
state that is the state to which the circuit switches from state
Curr state under input assignmentx (line 12). After that,
the length of the current counterexample is incremented and
a new iteration begins.

B. Implementation of TapSeq

In the pseudocode ofTapSeqgiven in Figure 1, we did not
clarify in what order states were extracted fromAct states in
the ’while’ loop. The two extremes are depth-first and breadth-
first orders. The depth-first order is to first process the state of
Act states the is the farthest from the initial state (in terms
of transitions). On the contrary, the breadth-first order, is to
first process the state that is the closest to the initial state. In
the breadth-first variant ofTapSeq, states are processed one
time frame after another. We assume here thati-th time frame
consists of the states ofAll states that can be reached from
the initial state ini transitions. That is, in the breadth-first
variant, a state ofAct states of i-th time frame is processed
only after every state of everyj-th time frame wherej < i

has been processed and removed fromAct states . Obviously,
by imposing a particular order of extracting states from
Act states one can also have modifications ofTapSeq that
are different from the two extremes above.In this paper, we
report results of a breadth-first implementation of TapSeq.

In the experiments, we ran two versions ofTapSeq: ran-
domized and non-randomized. The difference between these
versions is in finding boundary points used to encode proofs.
In the randomized version, the internal SAT-solver called to
find boundary points had some randomization in its decision
making. Namely, the phase of every 10-th decision assignment
was chosen randomly. The reason for such randomization is
explained in Subsection IV-C.

C. First Experiment: Comparison of TapSeq withRandAlg

The objective of the first experiment was to compare
TapSeqwith RandAlg. In this comparison we used 314 buggy
benchmarks of the HWMCC-10 competition. 78 benchmarks
of this set were trivial: the initial state did not satisfy the
property to be verified. We excluded them from consideration.

The results of the experiment on non-trivial benchmarks are
summarized in Table I.

TABLE I
Solving non-trivial buggy HWMCC-10 benchmarks. Maximum number of
visited states is limited to 1,000,000 forRandAlg and 40,000 for TapSeq

number of RandAlg TapSeq TapSeq TapSeq
benchmarks solved unrandomized randomized total

solved. converg. solved converg. solved
236 43 35 94 59 8 69

The first column of Table I shows the number of non-trivial
benchmarks used in the first experiment. The second column
gives the number of benchmarks solved byRandAlg. The
parametersmax tries andmax length of RandAlg were set
to 10,000 and 100 respectively. That isRandAlg generated up
to 10,000 counterexamples of length 100. (So the total number
of visited states was limited by 1,000,000. The counterexample
length of 100 was large enough to solve any benchmark
solved byTapSeq.) For every benchmark, the time limit for
RandAlg was set to 900 seconds.

The next four columns show results of unrandomized and
randomized versions ofTapSeq. For both versions, the number
of visited states (i.e. the size ofAll states) was limited
by 40,000 and the time limit was set to 180 seconds. For
either version, we report the number of solved benchmarks
and the number of benchmarks where a convergence point
was reached. (Recall that a convergence point is reached by
TapSeqwhen the setAct states becomes empty before a bug
is found.) The last column gives the number of benchmarks
solved by at least one version ofTapSeq.

The results of Table I show that for many benchmarks the
unrandomized version ofTapSeqreached a convergence point.
This means thatTapSeq, in its current form, needs some way to
escape early convergence. In this experiment, we achieved this
goal by randomizingTapSeqas described in Subsection IV-B.
The randomized version ofTapSeqsolved more benchmarks
and reached a convergence point only for 8 benchmarks.
Overall, the experiment showed thatTapSeqoutperformed
RandAlg solving more benchmarks (69 versus 43) with much
stricter limit on the number of visited states.

D. Second Experiment: Bounded Model Checking and TapSeq

The objective of the second experiment was to show that
some benchmarks solved byTapSeqwere hard for Bounded
Model Checking (BMC) [2]. In this experiment, we used a
BMC tool built on top of the Aiger package [7] and Picosat [1],
a well-known SAT-algorithm. In general, BMC is good at
detecting shallow bugs but struggles to find deeper bugs even
if these bugs are easy to detect. This point is illustrated by
results of the second experiment shown in Table II. Notice
that we do not claim that the current implementation of
TapSeqoutperforms BMC. The latter performed extremely
well on shallow benchmarks of the set we used in the first
experiment whileTapSeqcould not solve many of them. We
just want to emphasize the promise ofTapSeqin finding deep
bugs.

The first column of Table II gives benchmark names. The
next two columns show the time taken by the BMC tool to find

TABLE II
Some benchmarks that are hard for BMC and easy for TapSeq

benchmarks BMC TapSeq
time (s.) cex length time (s.) cex length

pdtswvroz10x6p0 118 58 1.2 88
pdtswvsam6x8p0 116 48 7.7 48
pdtswvtma6x6p0 95 57 0.8 57
pdtswvtma6x4p0 70 57 0.9 57
pdtswvroz8x8p0 65 48 1.1 72
visbakery 925 59 28 61

a counterexample and the length of this counterexample. The
last two columns provide the same information forTapSeq.
The examples of Table II have the largest counterexample
length among the benchmarks solved byTapSeq. These are
also the examples (among those solved byTapSeq) where
the BMC tool had the longest run time.TapSeqsignificantly
outperforms the BMC tool on these examples. Interestingly,
the first five benchmarks were also easy forRandAlg (but
RandAlg failed to solve the ’visbakery’ benchmark).

V. CONCLUSIONS

In this paper, we introduceTapSeq, a new algorithm for
generation of tests for sequential circuits based on the Tests-
As-Proofs (TAP) paradigm.TapSeqforms a counterexample
from encodings of proofs of local properties that are versions
of the property to be verified. The preliminary experimental
results allows one to conclude that
• TapSeqconvincingly outperforms a random algorithm;
• TapSeqsignificantly outperforms a BMC tool on some

benchmarks with non-shallow bugs.
These results suggest that algorithms based on the TAP
paradigm can be used for finding deep bugs.

Our future research will be focused in the following direc-
tions.

1) In this paper, we consider an algorithm mimicking
forward model checking. That is one generates a set of states
reachable from an initial state trying to find a state violating the
property in question. Instead, one can try to mimic a backward
model checking algorithm building a set of states from which
a bad state is reachable. The objective here is to reach an
initial state. Moreover, one can try to design an algorithm that
combines forward and backward model checking. Intuitively,
such an algorithm can be much more effective in finding a
bug because a counterexample is built from both initial and
bad states.

2) The other important direction for research is to find a bet-
ter way to avoid reaching a convergence point i.e. the situation
where no new states are generated. In this paper, we achieved
this goal by randomizing the part ofTapSeqthat performed
proof encoding. This solution is not quite satisfactory because
it leads to generating too many states per time frame and
hence makes it much harder forTapSeqto find a deep bug.
(In particular, the benchmarks with non-shallow bugs shownin
Table II were solved by the unrandomized version ofTapSeq.)

VI. A CKNOWLEDGMENTS

This work was supported in part by C-FAR, one of six
centers of STARnet, an SRC program sponsored by MARCO

and DARPA. It was also partially funded by NSF grant CCF-
1117184.

REFERENCES

[1] A. Biere. Picosat essentials.JSAT, 4(2-4):75–97, 2008.
[2] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model

checking using sat procedures instead of bdds. InDAC, pages 317–320,
1999.

[3] E. Goldberg. On bridging simulation and formal verification. In VMCAI-
08, pages 127–141, 2008.

[4] E. Goldberg. Boundary points and resolution. InProc. of SAT, pages
147–160. Springer-Verlag, 2009.

[5] E. Goldberg and P. Manolios. Generating high-quality tests for boolean
circuits by treating tests as proof encoding. InTAP-10, pages 101–116.
Springer-Verlag, 2010.

[6] E. Goldberg, M. Prasad, and R. Brayton. Using problem symmetry in
search based satisfiability algorithms. InDATE ’02, pages 134–141, Paris,
France, 2002.

[7] AIGER package,http://fmv.jku.at/aiger/.

	I Introduction
	II Test-As-Proofs Paradigm
	II-A Resolution and Boundary Points
	II-B Set of Points Encoding a Resolution Proof
	II-C Test-as-Proofs Paradigm

	III TAP Based Generation Of Tests For Sequential Circuits
	III-A Some Definitions
	III-B High-level View of TapSeq
	III-C More Detailed Description of TapSeq

	IV Experimental Results
	IV-A Random Algorithm We Used in Experiments
	IV-B Implementation of TapSeq
	IV-C First Experiment: Comparison of TapSeq with RandAlg
	IV-D Second Experiment: Bounded Model Checking and TapSeq

	V Conclusions
	VI Acknowledgments
	References

