arXiv:1308.0583v2 [cs.LO] 25 Sep 2013

Verification of Sequential Circuits by
Tests-As-Proofs Paradigm

Eugene Goldberg, Mitesh Jain, Panagiotis Manolios
Northeastern University, USAeigold,jmitesh,pefe@ccs.neu.edu

Abstract—We introduce an algorithm for detection of bugs in counterexample breaking a propeRya TAP based algorithm
sequential circuits. This algorithm is incomplete i.e. itsfailure |goks for a hole in a proof thaP holds. A straightforward way
to find a bug breaking a property P does not imply that P ot ging the TAP paradigm is to generate a set of tests until a

holds. The appeal of incomplete algorithms is that they scal Lo .
better than their complete counterparts. However, to make a counterexample breaking is found or a test set encoding a

incomplete algorithm effective one needs to guarantee thahe ProofthatP holds is generated. In general, this method is very
probability of finding a bug is reasonably high. We try to inefficient because checking if a test set encodes a probf tha

achieve such effectiveness by employing the Test-As-PredffTAP) P holds is computationally hard. There are, however, more
paradigm. In our TAP based approach, a counterexample is bl 55ctical ways to use TAP. For example, to generate tests for
as a sequence of states extracted from proofs that some local L) .
variations of property P hold. This increases the probability checking if p-ropertyP holds, one can first prove thatas'mpl_er
that a) a representative set of states is examined and that b) Property derived fron®” holds and then use the tests encoding
the considered states are relevant to propertyP. We describe the obtained proof to verifyP itself.
an algorithm of test generation based on the TAP paradigm and | this paper, we describe a TAP based algorithm called
give preliminary experimental results. TapSeqneant for generation of tests for sequential circuits. Let
P°(s) denote the property that every state reachable from state
s in one transition satisfies properfy of a sequential circuit

Formal methods have lately made impressive progressdn(The superscript ‘o’ stands for ‘one TapSecexplores only
verification of sequential circuits. However, these methodracess,, ..., s, where states; is extracted from an encoding
still do not scale well enough to handle large designs. %% a proof that property?®(s;_;) holds. That isTapSequses
the development of more scalable approaches to sequentiahl propertiesP?(s) for building a counterexample breaking
verification is an important research direction. One of sughe global property”. The idea here is that, on the one hand,
approaches is verification by simulation i.e. by applying ghese properties are related to propeRyand on the other
set of tests. Simulation is incomplete, which makes it mofgand, they are much easier to prove thanlmportantly, a
scalable than formal verification. An obvious downside afet of states encoding a proof that the propéttys) holds is
simulation though is that it is limited to bug hunting. typically a very small subset of all states reachable feoin

To make simulation effective it is crucial to increase thene transition. So, in a sense, instead of achieving effetiss
probability that, given a buggy circuit, the part of the s#ar of testing by finding “promising” states reachable framin
space explored by simulation contains a bug. In the case-of s@e transition, TapSeqlooks for a representativesubset of
guential verification, making simulation effective is esipdly states reachable from in one transition.
challenging for the following reason. Lét be a property ofa This paper is structured as follows. The TAP paradigm
sequential circuit to be tested. Suppose thatis buggy. So is recalled in Sectiofilll. In Section1ll, our algorithm for

|. INTRODUCTION

there is a sequencs, . . ., si of states ofd such thats; 11 is generation of tests for sequential circuits is describéually,
reachable frons; in one transition; = 1,...,k—1, states1 is Section IV gives some preliminary experimental results.
an initial state andy, falsifies P. Suppose that is the length

of the shortest counterexample breaking propedrty This Il. TESTAS-PROOFSPARADIGM

means that no matter how one picks statgsi = 1,...,k — 1 . .
they all satisfy propertyP. To make simulation efficient one This section is structured as follows. In Subsecfionlil-A,

has to reduce the set of explored states. But to achieve ti§ "écall the notions of a resolution proof and a boundary

goal one must answer the following tough questioow does POINt (€], [4]. The notion of encoding a resolution proof
one identify the “promising” states if every state reachablPy @ set of points[[3],[[S] is explained in Subsection 1I-B.
from an initial state in less than k steps satisfies P Subsectiof I[-C recalls the Tests-As-Proofs paradigm [&l],

In this paper, we address the challenge above using fhg the example of testing combinational circuits.
Tests-As-Proofs (TAP) paradigiml [3]./[5]. The essence of TA
is to treat a set of tests not as a sample of the search spac
as an encoding of a proof that the property in question holds.Definition 1: A literal of a Boolean variable is v itself
So, in a sense, the TAP paradigm reformulates the objectipmsitive literal) or the negation af (negative literal). Aclause
of simulation. Instead of sampling the search space to findCais a disjunction of literals. We will assume that a cladse

uIt?esolution and Boundary Points

http://arxiv.org/abs/1308.0583v2

cannot have two literals of the same variableCénjunctive- ¢ the resolvent produced hyis falsified byp.

Normal Fc_>rm (CNE) F' is a conjunction of cIausgs. We will B. Set of Points Encoding a Resolution Proof

also considett” as just a set of clauses. So, for instance, the =")

CNF formulaF A G can also be represented BsJ G. Definition 8: Let X be a set of Boolean variables arft
Definition 2: Let X be a set of Boolean variables. AnPe @ set of points i.e. complete assignment&(td_et C” and

B . . . 1"
assignmentq to variables ofX is a mappingZ — {0,1} C"” be two clauses such that
where Z C X. We will also considerg as a set of value o (Vars(C')U Vars(C")) C X,

assignments to the individual variables &f If Z = X, e ¢’ andC" are resolvable on variable
the assignmeny is called complete We will also refer to ResolvingC’ andC” onw is said to bdegal with respect to
a complete assignment againt. P if there are point®’, p’’ € P such that

Definition 3: Let F' be a CNF formula and’ be a clause. o p’ falsifiesC’ andp’’ falsifies C",
Denote by Vars(F) (respectively Vars(C)) the set of o p’ andp” are different only in the value af.
variables of ' (respectivelyC'). Let g be an assignment. We Proposition 3: Let clause C be obtained by resolving
denote the set of variables assignedjias Vars(q). clausesC’ and C” on variablev. Then pointsp’ and p”
Definition 4: Let v be a Boolean variable. A literal of make this resolution legal iff botlp’ and p” falsify C' and
is said to be satisfied (falsified) by an assignmentwtd gre different only in variable.
it evaluates to 1 (respectively to 0) by this assignment. A pefinition 9: Let F be an unsatisfiable CNF formula a#t
clauseC is said to besatisfied (respectivelyfalsified) by an pe 3 set of complete assignmentsiers(F). Suppose, there is
assignmeny if a literal of C' is satisfied byg (respectively all 5 yesolution proof? = r4, ...,), that F' is unsatisfiable such
literals of C' are falsified byg). A CNF formulaF is satisfied that every resolution,,i = 1,...,k is legal with respect to
(respectivelyfalsified) by an assignmeny if every clause of p_\we will say then that the set of poin8 encodes proof
F is satisfied byg (respectively at least one clause Bfis R More generally, we will say that a set of poinf&sencodes
falsified by q). an unspecified resolution proof thatis unsatisfiable if there
Definition 5: Let C” v v andC” v v be two clauses such s g resolution proof of unsatisfiability &f encoded byP.
that no variable oflars(C’) N Vars(C”') has opposite literals There is a simple but very inefficient procedufe [5] for
in C" andC”. The clauseC” v C" is called theresolventof checking if a set of point§ encodes a resolution proof that
the parent clausesC’ v v andC” Vv v. This resolventis 3 CNF formulaF is unsatisfiable. This procedure starts by
said to be obtained bgesolution of the parent clauses an making sure that every point oP falsifies F. If not, then

ClausesC” v v andC” Vv v are calledresolvableon v. F is satisfiable. Otherwise, all resolution operations that a
Definition 6: Let ' be a CNF formula. A claus€' is said |ega| with respect to set of po|ng are performed' If an empty
to bederived from F' by a set of resolutions,, ..., r if clause is derived theR encodes a proof thdf is unsatisfiable.
e the resolvent of resolution, is clauseC, Otherwise,P is too small and needs to be expanded to either
e the parent clauses of resolution i = 1,. .., k are either include an assignment satisfyirfg or to encode a proof that
clauses off’ or resolvents of resolutions wherej < i. F' is unsatisfiable.
We will call the sequence;, ..., r, aresolution derivation ~ Obviously, the procedure above is impractical. Unfortu-
of clauseC from F. nately, no efficient procedure for checking if a set of points

Proposition 1: The resolution proof system based on th@ncodes a resolution proof is known. On the contrary,réie
operation of resolution is complete in the following sens&erseprocedure of finding a sét encoding a given resolution
Given a CNF formulaF and a clause& such thatf — ¢, Proof ri,... 7 is trivial. The idea of this procedure is to
there is a resolution derivation of claué from I such that start with an empty set of point® and then add points that
C’' — C. In particular, if F is unsatisfiable, one can alwaysnakes resolutions of the proof legal. Letbe a resolution in
derive anempty clausefrom F i.e. a clause that has no literalswhich clause<” andC” are resolved on variableproducing
and so cannot be satisfied. Derivation of an empty clause fré@$olvenC. From Proposition]3 it follows that to makelegal
F is called aresolution proof that F' is unsatisfiable. one just needs to add 1 pointsp’ andp” that falsify C' and

Definition 7: Let F be a CNF formula ang be a complete are different only in value of. So the upper bound on the size

assignment td/ars(F). Pointp is called av-boundary point of P is 2 x k because one needs two points per resolution. In
of I if reality, the size ofP may be much smaller because two-point

sets legalizing different resolutions andr; may overlap.

e p falsifies F,

e every clause of falsified byp has variablev. C. Test-as-Proofs Paradigm
Propositior_ 2 below shows that boundary points charaeteriz |n this subsection, we introduce the Tests-As-Proofs (TAP)
“mandatory” fragments of resolution proofs. paradigm by showing how one can use tests to encode a proof

Proposition 2: Let F' be an unsatisfiable formula amdbe of a property of a combinational circuit. LeY(X,Y,z) be
av-boundary point oft". Then any resolution proof thdf is 3 single-output combinational circuit. Heré and Y denote
unsatisfiable contains a resolutiorsuch that input and internal variables aF respectively and: denotes

e 1 is a resolution on variable, the output of V. We will assume that the fact th€ evaluates

only to 0 means that a combinational property holds. (Fdf. This is because any resolution involvidgis illegal with
instance,N can be the miter of two combinational circuitsrespect toE.) One way to build a tight proof encoding is to
M', M" checked for equivalence. Then the fact thst require thatp’,p”” arev-boundary points o wherew is the
always evaluates to 0 means thdt and A" are functionally variable on whichC’ andC” are resolved. The high quality
equivalent.) If N evaluates to 1 for some input assignmerdf tests extracted from boundary points has been confirmed
x, then property specified byv does not hold andc is a in [5].
counterexample.

Let FN(X7Y72) be a CNF formula specifying circuilV, I11. TAP BASED GENERATION OF TESTSFOR
i.e. a satisfying assignment éfy corresponds to a consistent SEQUENTIAL CIRCUITS
assignment to gates df and vice versa. Lef’ denote the
formula Fiy A z. The satisfiability ofF” means that, for some
input assignmentN evaluates to 1 and so there is a bug.

In this section, we describe an algorithm based on the TAP
paradigm meant for testing sequential circuits. We wilerdb
] = this algorithm asTapSeqThis section is structured as follows.
_ Suppose that" is unsatisfiable andl = {ri,...,7} |n subsection TIA, some basic definitions of sequential
is a resolution proof of that. Lep be a complete assign-yerification are listed. A high-level view dfapSeds given in

ment to Vars(F'). Denote byinp(p) be the projection op Subsectiof TI-B. SubsectidiIIIC describ@pSegn more
onto the set of input variableX'. Let £ = {p1,...,Pm} {etail.

be a set of points encoding. Let inp(E) denote E =

{inp(p1), . -, inp(pm)}. Notice thatinp(p;) may be equalto A, Some Definitions
inp(p;) for two different pointsp;,p; of E. We will assume _] L o .
that inp(F) does not contain duplicates. We will say that the Def|n_|t|on 10: A sequential cwcuncI_) is specified by ? pair
set of testsT — {1, ..., xq} encodes proofl if there is a of predicateg,T) over Boolean variables. HefE(S, S’, Z)

i T H /
set of pointsE encoding® such thatl” — inp(E). Similarly, is the transition relation of ® where S, S’ are the sets of

setT encodes an unspecified resolution proof if there is a Jyesent and next state variables respectively, &rid the set

; ; ; , f combinational variables. PredicaféS) specifies the set of
of points £ encoding a resolution proof such that= E). o€ . . .
b g b inp(F) [Pltla| states of®. We will denote theinput variables of ®

As we mentioned in Subsectidn 1I-B, the size of a set (%y X where X C 7

points £ encoding & prooft is bounded b2 « || where| ¥ Definition 11: Let pair (I1(5),T(S,S’, Z)) specify a circuit

is the number of resolutions . Since|inp(F)| < |E|, the | : bl o vel
same applies to the size of a set of tests encodinign reality, q),' A complete aSS|gnmenst.to variables ofS' (respectively
S”) is calleda state (respectivelynext state) of &.

as we mentioned abovenp(E)| may be drastically smaller b e ”)
Definition 12: Let ® be a circuit specified by paifZ,T).

than |E| because different points oF may have identical . X
projections onto the set of input variables. A sequence of states, ..., s is called atrace if I(s1) =1

The relation between tests and proofs implies that testiigd =27 (si; sit1, Z)]=1 for everyi wherel <i <k —1.
can be viewed as finding an encoding of a proof that the Definition 13: Let & be a circuit specified by paif7, T).
property in question holds rather than sampling the searEHe states is calledreachableby (D. if there is a trace ending
space. We will refer to such a point of view at thests-As- N States. Denote byR(S) a predicate specifying the set of
Proofs (TAP) paradigm. There are numerous ways to use th@ll reachable statesof @. That is k(s) = 1 if and only if
TAP paradigm in practice. One of them is to build a test s§fates is reachable. - _
encoding a proof that a property of a circuit holds and apply Definition 14:In this paper, we consider the problem of
it in a different situation. (For instance, this set of tesas be Property checking. Le® be a circuit specified by paid, T).
used to check if this circuit still has the same propertyradte A Property of & is specified by a predicat®(s5) describing
modification.) the set of states where this property holds (i.e. the sgoofi

In Subsection T=B, we outlined a trivial procedure oftates. So the_ pre_d_lcate? spgcn‘les the set dfad states For_
building a set of pointsZ encoding a known proof that the sake of simplicity, we wlll refer to the property spedifie
F is unsatisfiable. However, this procedure cannot guarant®e?” asproperty P. We will say that property” holds for
that the set of test&p(E) extracted fromE has high quality. @ if R/\P =0. o -)

To produce a test set of high-quality one needs to extraot the Definition 15: Let ¢ be a circuit specified by paif/, T').
from a set of pointsE forming atight encoding of ¥'. The Let P be a property oft and s be a state ofb. Denote by
intuition here is that the closer a set of poidfsencodingt 12°(s) the set of all states ob that are reachable from in
to U, the higher the quality of testap(E). By proximity of On€ ftransition. Denote byP°(s) the property that holds iff
E to ¥ we mean thatZ makes legal the smallest possible s¢he propertyP holds for every state oR“(s).

of resolutions that are not it. : i

Informally, building a tight proof encoding means that wheff- High-level View of TapSeq
looking for pointsp’,p” legalizing resolution of clauses’ Let ® be a sequential circuit specified by pélt, T'). Let P
and C” one needs to makg’,p”’ satisfy as many clauses ofbe a property ofd to be verified. The pseudocodeTHpSeqs
F as possible. (In particular, if a clauséof F is satisfied by given in Figure[l.TapSegis incomplete i.e. it can build a
every point of £/, thenC' is redundant in a proof encoded bycounterexample breaking but cannot prove thaP holds.

/I TapSeqeturnsbug if a reachable bad state is found
/I OtherwiseTapSegeturnsno_bug found enc_resol (All_states, Act_states, ¥, F, Curr_state, T'){
I 1 while (¥ # 0) {
TapSeq!, T, P){ (C,v) = extract_resolution (V)
1 if (I AP % () returnpug); U =¥\ {(C,v)}
All_states := {init_state(I)}; p = enc_clause(F, C,v, Curr_state);
Act_states 1= All_states; if (p = nil) continue;
while (Act_states # 0){ update_states(All_states, p,T); }}
Curr_state := pick_state(Act_states);
Act_states := Act_states \ { Curr_state}; Fig. 3. Pseudocode ofncode_resol
sat := enc_proof (All_states, Act_states,
Curr_state, T, P);
if (sat) returnpug); }
9 return@uo_bug_found);}

o g WN

N o g wN

[ee)

enc_clause(F, C,v, Curr_state){

1 p:= find_sat_assgn((FUC) \ F{*});
. 2 if (p = nil) return(usl);

Fig. 1. Pseudocode of TapSeq 3 p:= assign_var(p, v, Curr_state);

returnfp); }

N

For the sake of simplicity we will assume that there is only
one states; satisfying/ i.e. ® has only one initial state. Fig. 4. Pseudocode of enclause

First, TapSecqchecks if propertyP°(s1) holds. If not, then
there is a bad state; € R°(s1) andsy,s2 form a counterex- by TapSeqNotice that every state assigned @rr_state is
ample. Otherwise, a resolution proof is generated statiay treachable from the initial state. Th@apSeahecks if property
P?(s1) holds and a set of statds’(s1) is extracted from an pe(Curr_state) holds (line 7). If not, theMapSeqeports the
encoding of this proof. Herd’?(s1) is a subset ofR?(s1). presence of a bug. Otherwise, a proof tt(Curr_state)
Then the same procedure repeats for the staté&S of;). That holds is generated. This proof is encoded and new states (if
is for every states € R°(s1), TapSeqchecks the property any) are added todli_states and Act_states by procedure
Pe(s). If it does not hold, then a state® € R°(s) breaks eng proof. Then a new iteration begins. Iterations go on as
P andsy,s,s* form a counterexample. Otherwise, new stateéng asAct_states is not empty. Once a convergence point is
E°(s) are extracted from an encoding of a proof tff(s) reached (i.eAct_states becomes empty)TapSecterminates
holds. reporting that no bug was found.

TapSeqnaintains the seAll_statesof all visited states. This The pseudocode of thenc proof procedure is shown in
allows one to avoid visiting the same state more than oNngggure[2. First, a CNF formuld is formed (line 1) that is
TapSeqerminates in two cases. satisfiable iff propertyP?(Curr_state) does not hold. The

e A bad state is reached (prope does not hold). satisfiability of F is checked in line 2. IfF is satisfiable,

¢ No new states are extracted from encodings of proofs tfen enc proof terminates (line 3). Otherwise, a prodf

propertiesP°(s), s € All_states. In this case, we will of unsatisfiability of I is generated. Resolutions af are
say thatTapSegeached aconvergence point encoded byenc resol procedure shown in Figuid 3.
C. More Detailed Description of TapSeq Procedurenc resolloops over resolutions of prodf. First,

L - it extracts a new resolutiorC{ v) of ¥ and removes it from
TapSegstarts by checking if the initial state breaks P'OPhe latter. HereC' is the resolvent and is the variable on
erty P (line 1 of Figure[1). If it does, theMapSeqtermi-

nates reporting a bug. Otherwise, variablég_ states and which the parent clauses af' were resolved. Then, a-
. states . ep .
o . T - boundary poinp of F' falsifying C is generated by procedure
Act_states are initialized with the initial state. As we men- y poinp fying 9 yp

tioned ab Il stat ifios th of all visited stat enc clause From Propositiori]3 it follows, thap and the
ioned aboveAll_states specifies the set of all visited states, . shiained fromp by flipping the value ofv legalize
Act_states is a subset ofdll_states. A states remains in

. -~ .) the resolution specified bg' and v. We wantp to be av-
Act_states until the validity of propertyP°(s) is established. boundary point to make our proof encoditight. If p does

not exist, enc_resolutionsstarts a new iteration. Otherwise,

enc_proof (All_states, Act_states, Curr_state, T, P){ procedureipdate stateds called to update set$li_states and
1 F = cnf(Curr_state) NT A P/, Act_states.
; '(f\%s%)r; rgrfg_PSOOf(F)i The pseudocode of procedueac clauseis shown in Fig-
I sa u TUE), H H
4 enc_resol(All_states, Act_states, U, F); ure[4. Th|s_procedure compute@dnoun_da_ry point of fo_rm_ula
5 return(false); } F that falsifies a resolvent clauge. This is done by finding
an assignment satisfying formuld U C' \ FV where F? is
Fig. 2. Pseudocode of enproof the set of clauses of’ containing variablev. Notice that if

p satisfiesF U C'\ F¥ then it satisfies all the clauses &f
The main work is done bifapSeqgn a 'while’ loop (lines but some clauses containing variakleln other wordsp is
4-8). First,TapSeicks a state fromiAct_states and removes a v-boundary point ofF. After computingp, the value of
the former from the latter. This state is assigned to vagiablariablev is set inp (line 3). If v ¢ S, then the value ob
Curr_state that is used to specify the state currently processedset arbitrarily. Otherwisey is assigned the same value as

update_states(All_states, p, T){

1

a b~ wN

(s,@) = extract_state_input(p);

s* :=find_next statd s, z, T');

if (s™ € All_states) return;
All_states := All_states U {s™};
Act_states := Act_states U {s™},; }

Fig. 5. Pseudocode of updatstates

RandAlg(I, T, P, maz_tries, maz_length){

© 0O ~NO U~ WNRE

14

if (I A'P % 0) returnpug);
Curr_state := set_init_state(I);
length := 0; tries := 0;
while (tries < maz_tries) {
if (length > maz_length) {
length := 0; tries++;
Curr_state := set_init_state(I);
continue}
F := cnf (Curr_state) NT A P;
if (satisf(F)) returnpug);
x := gen_rand_input(X);
Curr_state := nextstatgT, x, Curr_state);
length++; }
returnfio_bug found); }

Fig. 6. Algorithm for generation of counterexamples randomly

andmax length The value ofmax tries limits the number of
generated counterexamples whitex lengthsets the limit to

the number of states in a counterexample. The length of the
current counterexample and the number of counterexamples
generated so far are specified by variadkrsgth and tries
respectively.

RandAlg maintains variableCurr_state specifying a state
reachable from the initial state that is currently procddsg
RandAlg. At the beginning,Curr_state is set to the initial
state (line 2). The main work is done in the 'while’ loop
(lines 4-13). If the value ofengthexceedsnax length a new
counterexample is started and the valuériess is incremented
(lines 5-8). Otherwise RandAlg checks if Curr_state sat-
isfies propertyP. If not, then RandAlg returns valuebug
Otherwise,RandAlg randomly generates an assignmento
input variablesX (line 11). Thenz is used to generate a new
state that is the state to which the circuit switches frontesta
Curr_state under input assignment (line 12). After that,
the length of the current counterexample is incremented and
a new iteration begins.

B. Implementation of TapSeq

In the pseudocode dfapSecgiven in Figure 1L, we did not
clarify in what order states were extracted froht_states in

in Curr_state. This is done to guarantee that the new .statqaﬁe 'while’ loop. The two extremes are depth-first and breadt

generated byipdate statesare reachable fronG'urr_state in

one transition.

first orders. The depth-first order is to first process thes st
Act_states the is the farthest from the initial state (in terms

‘The fact that one uses only-boundary points that agreeqt yransitions). On the contrary, the breadth-first ordertd
with the values ofCurr_state means that proot is encoded firs; process the state that is the closest to the initiabstat

only partially. Namely, this encoding does not legalizeofes o preadth-first variant ofapSeq states are processed one
tions on variables of. This is done to simplifyTapSeqWe (ime frame after another. We assume here tHattime frame

are going to fix this problem in future versions ®WpSeq ngists of the states ofll_states that can be reached from
_Figure[5 shows the pseudocode of procedipéatestates q intial state ini transitions. That is, in the breadth-first

First, the assignmentss) to variables ofS and X (i.e. yariant, a state ofict_states of i-th time frame is processed

present state and input variables) are extracted from: only after every state of everjth time frame wherg < i

boundary point found by procedurenc clause Then the |55 peen processed and removed fbm_states. Obviously,
transition relatiorl" is used to compute the stag& to which by imposing a particular order of extracting states from

circuit @ switches from state under the input assignmest 4., <.tes one can also have modifications BipSeq that
If s* is a new state, it is added tll_states and Act_states. g0 different from the two extremes above.this paper, we
report results of a breadth-first implementation of TapSeq

In the experiments, we ran two versions TdpSeq ran-
Bmized and non-randomized. The difference between these

versions is in finding boundary points used to encode proofs.

gfs r]:rl:ggv;' tlgstsugr?gf;tq(% wee g:;cr;tr): dan al%cg'thmn the randomized version, the internal SAT-solver called t
9 ! W P WitpSeq find boundary points had some randomization in its decision

Some details of the implementation dapSeqwe used in : . .

. A . in SubsectigiIV-B. The first and se making. Namely, the phase of every 10-th decision assighmen
exper!ments are glgen m‘b ud s_ecS b § t.' c ||\r/sCa ::\(/)n as chosen randomly. The reason for such randomization is
reé(sppeéggsglys are described in Subsections IV-C and IV, xplained in Subsectidn TVAC.

IV. EXPERIMENTAL RESULTS

In this section, we describe two experiments Conductedé
evaluate the performance ®&pSeqThis section is structured

A. Random Algorithm We Used in Experiments C. First Experiment: Comparison of TapSeq witindAlg

In this subsection, we describe an algorithm of random The objective of the first experiment was to compare
test generation we used in the first experiment. We willapSeqgnith RandAlg. In this comparison we used 314 buggy
refer to this algorithm asRandAlg. The pseudocode of benchmarks of the HWMCC-10 competition. 78 benchmarks
RandAlg is shown in Figurd16. The set of counterexamplesf this set were trivial: the initial state did not satisfyeth
generated byRandAlg is controlled by parametersax tries property to be verified. We excluded them from consideration

. . TABLE II
The results of the experiment on non-trivial benchmarks are some benchmarks that are hard for BMC and easy for TapSeq

summarized in Tablg I. TABLE | BeRCATaTkS EVC Tapseq
. - . time (s. cex length | time (s. cex length

Solving non-trivial buggy HWMCC-10 benchmark&ximum number of patSvvoz10x6p0 1'18 C) 58X g 1'_2) 88X g

visited states is limited to 1,000,000 fRandAlg and 40,000 for TapSeq pdtswvsaméx8p0| 116 28 77 78

number of [RandAlg] TapSeq TapSeq TapSeq pditswvtmabx6p0 [95 57 0.8 57

benchmarks solved unrandomized randomized total pdtswvtma6x4p0| 70 57 0.9 57
solved. [converg.| solved [converg.| solved pdtswvroz8x8p0 | 65 48 11 72

236 43 35 | 94 59 | 8 69 visbakery 925 59 28 61

The first column of Tablgl | shows the number of non-trivial)
benchmarks used in the first experiment. The second colufifounterexample and the length of this counterexample. The
gives the number of benchmarks solved ByndAlg. The last two columns provide the same information flapSeq
parametersnax_tries andmaz_length of RandAlg were set The examples of Tablg]ll have the largest counterexample
to 10,000 and 100 respectively. ThatRandAlg generated up !€ngth among the benchmarks solved TapSeq These are
to 10,000 counterexamples of length 100. (So the total numE#so the examples (among those solved TapSey where
of visited states was limited by 1,000,000. The countergitam the BMC tool had the longest run tim&apSedcsignificantly
length of 100 was large enough to solve any benchma@létp?rforms the BMC tool on these examples. Interestingly,
solved byTapSeq For every benchmark, the time limit forthe first five benchmarks were also easy fndAlg (but
RandAlg was set to 900 seconds. RandAlg failed to solve the 'visbakery’ benchmark).

The next four columns show results of unrandomized and V. CONCLUSIONS
randomized versions dfapSeqFor both versions, the number

gf visited statdesh(i.e_. thel_ size adil_states) was Iimi(tjed eneration of tests for sequential circuits based on thesTes
y 40,000 and the time limit was set to 180 seconds. FRE pyoots (TAP) paradigmTapSeqforms a counterexample
either version, we report the number of solved benchmarﬁam encodings of proofs of local properties that are versio

and the number of benchmarks where a convergence PQUPlihe property to be verified. The preliminary experimental
was reached. (Recall that a convergence point is reachedrgg

ults allows one to conclude that

TapSethen the SeTACt—States. becomes empty before a bug e TapSeqconvincingly outperforms a random algorithm;
is found.) The last column gives the number of benchmarks. TapSegsignificantly outperforms a BMC tool on some
solved by at least one version BapSeq benchmarks with non-shallow bugs.

The resm_JIts of TgbIE] | show that for many benchmarks_ thlenese results suggest that algorithms based on the TAP
unrandomized version dapSeqreached a convergence pomgbaradigm can be used for finding deep bugs
This means thalapSeqin its currgnt form., needs some yvgyt Our future research will be focused in the following direc-
escape early convergence. In this experiment, we achiéied }ions
goal by randpmizing’a_pSecas described in Subsectibn T¥-B. 1) .In this paper, we consider an algorithm mimicking
The randomized version dlfapSeq_soIved more benChmarks&orward model checking. That is one generates a set of states
and reached a convergence point only for 8 benchmarrgachablefrom an initial state trying to find a state violgtihe
Overall, the experiment showed thaapSeqoutperformed ying 9

RandAlg solving more benchmarks (69 versus 43) with mucylglroperty n qL_Jestlon. I_nstead,-orje can try to mimic a backiwar
: g . model checking algorithm building a set of states from which
stricter limit on the number of visited states.

a bad state is reachable. The objective here is to reach an

D. Second Experiment: Bounded Model Checking and TapS@tjal state. Moreover, one can try to design an algorithat t
combines forward and backward model checking. Intuitively

Thebobjeﬁtive I?f th? sgcg_ndsexperimehnt \(/jvafls tg shoc\j/v ér@ﬁch an algorithm can be much more effective in finding a
some benchmarks solve : wpsequwere hard for bounde bug because a counterexample is built from both initial and
Model Checking (BMC)[[2]. In this experiment, we used Dad states

BMC tool built on top of the Aiger packagel[7] and Picosat [1], 2) The other important direction for research is to find a bet-
a well-known SAT-algorithm. In general,

) i BMC is good ater way to avoid reaching a convergence pointi.e. the sitnat
_detectlng shallow bugs but struggles FO f'”‘?' d‘?ePer bugs S\fiflere no new states are generated. In this paper, we achieved
if these bugs are easy to dgtect. This po!nt is |Ilustrated_lﬂ;(iS goal by randomizing the part dpSegthat performed
results of the second experiment shown in Tdble II. Noticg, o ancoding. This solution is not quite satisfactorydiese

that we do not claim that the current implementation Gf |oads to generating too many states per time frame and
TapSeqoutperforms BMC. The latter performed (_extreme_lghence makes it much harder féapSeqto find a deep bug.
well on shallow benchmarks of the set we used in the flra;1 particular, the benchmarks with non-shallow bugs shiawn

experiment whileTapSeqcould not solve many of them. WeTabIe[]] were solved by the unrandomized versiomapSed
just want to emphasize the promiseT@pSedn finding deep

bugs. VI. ACKNOWLEDGMENTS

The first column of Tabl&ll gives benchmark names. The This work was supported in part by C-FAR, one of six
next two columns show the time taken by the BMC tool to findenters of STARnet, an SRC program sponsored by MARCO

In this paper, we introducdapSeg a new algorithm for

and DARPA. It was also partially funded by NSF grant CCF-
1117184.

REFERENCES

[1] A. Biere. Picosat essentialdSAT 4(2-4):75-97, 2008.

[2] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symolic model
checking using sat procedures instead of bddDAC, pages 317-320,
1999.

[3] E. Goldberg. On bridging simulation and formal verificat In VMCAI-
08, pages 127-141, 2008.

[4] E. Goldberg. Boundary points and resolution. Rmoc. of SAT pages
147-160. Springer-Verlag, 2009.

[5] E. Goldberg and P. Manolios. Generating high-qualitytdefor boolean
circuits by treating tests as proof encoding. TAP-1Q pages 101-116.
Springer-Verlag, 2010.

[6] E. Goldberg, M. Prasad, and R. Brayton. Using problem ragtny in
search based satisfiability algorithms.DATE '02, pages 134-141, Paris,
France, 2002.

[7] AIGER package,http:/fmv.jku.at/aiger/.

	I Introduction
	II Test-As-Proofs Paradigm
	II-A Resolution and Boundary Points
	II-B Set of Points Encoding a Resolution Proof
	II-C Test-as-Proofs Paradigm

	III TAP Based Generation Of Tests For Sequential Circuits
	III-A Some Definitions
	III-B High-level View of TapSeq
	III-C More Detailed Description of TapSeq

	IV Experimental Results
	IV-A Random Algorithm We Used in Experiments
	IV-B Implementation of TapSeq
	IV-C First Experiment: Comparison of TapSeq with RandAlg
	IV-D Second Experiment: Bounded Model Checking and TapSeq

	V Conclusions
	VI Acknowledgments
	References

