
On Complexity of Equivalence Checking  
 

Cadence Berkeley Labs 

1995 University Ave.,Suite 460, Berkeley, California,94704 

phone: (510)-647-2825, fax: (510)-486-0205 

 

 

                                                                                                                                                                                 

 

 

 

CDNL-TR-2003-0826 

August  2003 

 

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com 

Yakov Novikov (National Academy of Science, Belarus), yakov_nov@tut.by 

 
 

  
Abstract 
 
We introduce the notion of  a  common specification (CS) that is 
the key to understanding the complexity of equivalence checking. 
A CS S of functionally equivalent Boolean circuits N1 and N2 is a 
circuit of multi-valued blocks where  N1 and N2 can be obtained 
from this CS by encoding the values of multi-valued variables of 
S.  We show that the performance of an equivalence checking 
algorithm heavily depends on whether a non-trivial CS S is 
known.  If it is, then there exists an algorithm we describe whose 
run time  is linear in the number of blocks in S. However, there 
are good reasons to believe that for any algorithm that does not 
have information about such a CS, equivalence checking is hard 
(if not infeasible). We experimentally show that even equivalence 
checking of circuits with a very fine CS is hard for a 
representative collection of methods while  CS driven equivalence 
checking takes only a few seconds. 

1. Introduction 
 

In electronic CAD one has to face computationally hard 
problems very often. One of the examples of such problems is 
equivalence checking of combinational circuits that is a coNP-
complete problem.  In complexity theory an algorithm solving a 
coNP-complete problem has to return an easily checkable proof 
that  is a “solution”  of this problem. In terms of equivalence 
checking, an algorithm testing the equivalence of Boolean circuits 
N1 and N2 has to return a   proof that N1 and N2 are equivalent. 
Currently, researchers in complexity theory study two types of 

complexity.  In terms of equivalence checking,  a class T of 
equivalence checking problems has complexity of the first type in 
a proof system D , if  in D  there is no polynomial size proof for 
the problems  of T. A class T of equivalence checking problems 
has complexity of the second type in a proof system D,  if  for the 
problems of T there is no polynomial time algorithm to find 
polynomial size proofs even such proofs exist in D. (In that case 
the proof system D is called non-automatizable [2].) Complexity 
of the second type is “weaker”  than that of the first type because it 
suggests that the problems of T can be efficiently solved if the 
proof system D is supplied with some extra information about the 
“structure”  of short proofs. 

In this paper we show that there are good reasons to believe 
that equivalence checking problems occurring in practice have 
complexity of the second type in proof systems like general 
resolution  or BDDs [4]. These  are proof systems that are 
commonly used in existing equivalence checkers.  (The general 
resolution system is the basis of existing SAT-solvers.). This 
means that  these problems have  short proofs of equivalence that 
cannot be found by existing (and probably any possible) 
equivalence checkers unless some extra information about the 
structure about short proofs is given. 

Let N1 and N2  be two Boolean circuits to be checked for 
equivalence. The extra information mentioned above is a common 
specification (CS) of circuits N1 and N2.  A CS S is just a circuit of 
multi-valued gates further referred to as blocks such that N1 (or 
N2) can be obtained from S by replacing each block G of S with its 
implementation I1(G) (or I2(G)).  The circuit I1(G) (or I2(G)) 
implements a multi-output Boolean function obtained from the 



truth table of G after encoding the values of multi-valued 
variables with binary codes.  

Any pair of functionally equivalent circuits N1,N2 has a CS S. 
If N1,N2 are identical copies of a circuit N*, then N* can be 
considered as their CS. Each “block”  of the specification N* is 
“ implemented”  with only one gate of N1 or N2. So N* is the 
“ finest”  possible CS. If N1 and N2  are completely structurally 
dissimilar, they have a trivial  CS consisting of only one  block 
where N1 and N2 are implementations of this block. If  circuits N1 
and N2  are structurally similar they have a set of non-trivial CSs 
(i.e. ones different  from a trivial single block CS mentioned 
above).  

 Let S  be a CS of circuits N1 and N2 consisting of n blocks. 
We  describe a procedure of equivalence checking of N1 and N2 
whose run time is n∗Compl(p). Here p is the maximal number of 
gates used in the implementation  of a block of S. The value of p  
characterizes the “granularity”  of S. (Henceforth, when we say 
that a CS if fine we mean that the value of p is small.) The 
function Compl(p)  describes the complexity of computing 
filtering and correlation functions for the block of S that has  the 
largest implementation (of p gates).  The procedure computes 
these functions for each block of S  proceeding in topological 
order  from inputs to outputs. In this paper we use general 
resolution as the “ instrumental”  proof system. In particular, for 
general resolution we give an upper bound (a very conservative 
one)  on the value of function Compl(p) which is 36p .  

The result above leads to the following two conclusions. First, 
if there is a non-trivial CS S of circuits N1 and N2 consisting of n 
blocks, then equivalence checking of N1 and N2 splits into n 
subproblems.  (Henceforth, when we say that N1 and N2  have a 
CS S we mean that S is non-trivial.)  If the truth table of each 
block G of  S is known  along with the codes of values of multi-
valued variables used when obtaining N1 and N2 from S, such 
problem  decomposition is obvious.  One just needs to check that 
each block G of S is correctly implemented by subcircuits I1(G) 
and I2(G) of N1 and N2 respectively. The key point however is that 
the procedure we introduce needs neither any knowledge of the 
functionality of blocks nor the codes of values of multi-valued 
variables.  It only  needs information about the topology of S (i.e. 
how blocks are connected to each other) and the correspondence 
between the  gates of N1 and N2 and  the blocks of S. 

The second conclusion is that finer CSs mean more efficient 
equivalence checking. In particular, if one needs to solve 
equivalence checking problems from a class where each pair of 
circuits N1,N2 has a CS with the granularity p bounded by a 
constant, equivalence checking is linear in the size of circuits N1 
and N2  no matter how large they are. 

  A natural question is whether equivalence checking of 
circuits  N1 and N2 having a fine CS S is easy if the latter is 
unknown.   (Henceforth, if we say that a CS of N1 and N2 is 
known or unknown, we mean the finest possible CS of N1 and N2, 
see Definition 9, or a “good” approximation of it.)  The theory 
that addresses these issues has only started [13] and so cannot 
answer our question yet. However, there is a very good reason to 
believe that no procedure can efficiently check equivalence of 
circuits having even a very fine CS, if the latter is not known. On 
the one hand, the problem of finding the finest CS S of circuits N1 
and N2 (or a good approximation of S) is most likely NP-
complete. On the other hand,  given a short proof of equivalence 
of N1 and N2  one could recover a “good” CS from this proof.  So 
the existence of  an efficient procedure for finding a short proof of 

equivalence would mean that there is an efficient algorithm for 
solving an NP-complete problem. 

Due to lack of theory, we substantiate our claim 
experimentally. Namely, we show that  if a CS S of circuits N1,N2 
is unknown then their verification is very difficult. However, if S 
is known, N1 and N2 can be checked for equivalence in a few 
seconds using the procedure we introduce in this paper. 

 
 

2. Some Background and Possible 
Applications of Our Theory 
 

The most successful equivalence checkers try to make full use 
of structural similarity of circuits N1,N2 to be compared.  In 
particular, they try to establish some strong relationships (like 
equivalence or implication) between internal points of N1,N2 [3], 
[7],[8]. These relationships are deduced in topological order 
proceeding from inputs to outputs until the equivalence of 
corresponding primary outputs of N1 and N2  is deduced. Circuits 
are considered to be structurally similar and so easy for 
equivalence checking if they have many internal points that are 
related by these strong relationships. Our theory generalizes the 
notion of structural similarity that has been used so far. Namely, 
we show that if N1 and N2 have a CS S of  small granularity, then 
the equivalence checking of N1 and N2 can be very easy even 
though no internal points are related by strong relationships. 

A new  approach  developed in [9],[11] is to implicitly 
compute the set R(C) of all the satisfiable combinations of values 
for the variables of a cut C.  (C  is a cut in the miter of N1,N2 [3]). 
This cut gradually moves from inputs to outputs until it reaches 
the output of the miter.  Every move of the cut is accompanied by 
recompilation of R(C).  The main flaw of this approach is that one 
has to compute the set R(C) exactly which may be infeasible even 
if this set is represented implicitly. The techniques of [9],[11] 
allows one to simplify the BDDs representing the functionality of 
cut points. This is done by grouping a set of cut points and 
introducing new variables in BDDs representing the functionality 
of these points so that the set of satisfiable combinations for this 
set of cut points does not change. The problem here is that it is 
hard (if not impossible) to find a good variable grouping not  
knowing a CS of N1 and N2. 

The procedure we introduce can also be considered as 
computation of a set R of satisfiable combinations for a  cut C  
which  gradually moves from  inputs to outputs. The difference is 
that the knowledge of a CS S allows to approximate  the set R(C) 
by a set of filtering and correlation functions. Besides, knowing S, 
one can   “optimally”  group variables by putting together ones 
that correspond to the implementation of a block of  S. 

Of course, the current state-of-the-art  tools due to the 
creativity and ingenuity of their developers are able to check  
equivalence of the majority of circuits produced by the existing 
synthesis tools.  This can be attributed to the fact that synthesis 
procedures tend to introduce only local changes because a non-
local change is hard to verify. So the structure of the synthesized 
circuit is very similar to the original one. However, the theory we 
develop suggests that one can efficiently verify even non-local 
changes.  

Suppose that N1 is a circuit and N2 is another circuit obtained 
from N1 by a synthesis step.  As long as N1 and N2 share a 
predefined CS S, they can be efficiently checked for equivalence. 



(A natural candidate for such a predefined specification is the 
initial high-level description of the circuit.) An example of 
specification preserving synthesis steps are transformations that 
correspond to re-encoding values of a variable C associated with 
the output of a block G of S. This transformation is non-local 
because all the circuit in the fan-out cone of the implementation of 
G is affected up to the primary outputs. A synthesis tool making 
such transformations would generate various implementations of 
the same specification. Then equivalence checking of the initial 
circuit N1 and the resulting circuit N2 would be impossible 
without any knowledge of S.  

Probably, the best way to describe the relation between N1,N2 
and S is as follows.  The initial circuit N1 can be viewed as the 
original “message” and the synthesis procedure as an encryption 
process. The circuit N2 is the result of encryption where S is a key. 
Then equivalence checking is just restoring the original message 
N1 from N2 i.e. a decryption process. If the key is known, then 
decryption can be performed very efficiently. Otherwise, 
equivalence checking is nothing else but code breaking. So no 
matter how powerful an equivalence checker is, without the key it 
can decrypt N2 only if the latter is very similar to N1. 

The notion of a CS can also be helpful in reducing the 
complexity of equivalence checking of  the circuits produced by 
existing synthesis tools. The idea is to keep a CS S of the initial 
circuit N1 and the current circuit N2 and recompute S 
incrementally after each change of N2. Initially N1,N2 and S are 
identical (since N1 and N2 are identical they have a CS that is a 
copy of N1 or N2). Each synthesis step changing N2 is 
accompanied by recomputation of S.  The synthesis procedure 
produces a synthesized circuit N2 and a CS  S of  N1 and N2. If the 
current specification S becomes too coarse during synthesis one 
can output S and the circuit synthesized  so far and start 
computing a CS anew considering  the current circuit as  “ initial” . 
Then equivalence checking of the  initial circuit  and the 
synthesized one is performed in a number of steps. At each step 
one verifies the equivalence of some intermediate circuits Ni and 
Ni+1 using their CS Si,i+1 output in the middle of synthesis.   

Of course, there is much to be done to realize  ideas sketched 
above. In this paper we just make a first step providing an 
efficient procedure for equivalence checking of circuits with a 
known CS. 
 

 

3. Common Specification of Boolean Circuits 
 

In this section, we introduce the notion of a  common 
specification of Boolean circuits. Let S be a combinational circuit 
of multi-valued blocks (further referred to as a specification) 
specified by a directed acyclic graph H.  The sources and sinks of 
H correspond to primary inputs and outputs of S. Each non-source  
node of H corresponds to a multi-valued block  computing a 
multi-valued function of multi-valued arguments.  Each node of n 
of H is associated with a multi-valued variable V. If n is a source  
of H , then the corresponding variable specifies values taken by 
the corresponding primary input  of S.  If n is a non-source node 
of S then the corresponding variable describes the values taken by 
the output of the block specified by n. If n is a source 
(respectively a sink), then the corresponding variable is called a 
primary input variable (respectively primary output variable). 
We will use the notation C=G(A,B) to indicate that a) the output 

of a block G is associated with a variable C; b) the function 
computed by the block G is G(A,B); c) only two nodes of H are 
connected to the node n in H and these nodes are associated with 
variables A and B. 

Denote by D(V) the domain of a variable V  associated with 
a node of H.  The value of |D(V)| is called the multiplicity of V.  If 
the multiplicity of  every variable V of S is equal to 2 then S is a 
Boolean circuit. 

Now we describe how a Boolean circuit N can be produced 
from a specification S  by encoding the multi-valued variables. Let  
D(V)={ v1,…,vt}  be the domain of a variable V of S. Denote by 
q(V) a Boolean encoding of the values of D(V)  that  is a mapping 
q:D(V)→{ 0,1} m . Denote by length(q(V)) the number of bits in q 
that is the value of m. The value of q(vi),  vi ∈ D(V)  is called the 
code of vi.  Given an encoding q of length m of a variable  V 
associated with a block  of S, denote by v(V) the set of m coding 
Boolean variables. 

In the following exposition we make the  assumptions 
below.  
Assumption 1.  Each gate of a Boolean circuit and each block 
of a specification has two inputs and one output. 
Assumption 2. The multiplicity of each primary input (or 
output) variable  of a specification is a power of 2. 
Assumption 3.  If V is a primary input (or output) variable of a 
specification, then  length(q(V))=log2(|D(V)|) 
Assumption 4.  If v1 and v2 are values  of a variable V  of a 
specification  and v1  ≠ v2 , then q(v1) ≠ q(v2). 
Assumption 5. If A and B are two different variables of a 
specification , then v(A) ∩ v(B)  = ∅. 
Remark 1.  From Assumption 2 , Assumption 3 and Assumption 
4 it follows that if  A is a primary input (or output) variable, a 
mapping q:D(A)→{ 0,1} m

  is bijective. In particular, any 
assignment to the variables of v(A) is a code of  some value a ∈ 
D(A). 
Definition 1. Given a Boolean circuit I, denote by Inp(I) 
(respectively Out(I)) the set of variables associated with primary 
inputs  (respectively primary outputs) of I. 
Definition 2.  Let X1 and X2 be sets of Boolean variables and     
X2 ⊆ X1. Let y be an assignment to the variables of X1. Denote by 
proj(y,X2) the projection of y on X2 i.e. the part of y that consists of 
the assignments to the variables of X2. 
Definition 3. Let C=G(A,B)  be a block of  specification S.  Let 
q(A),q(B),q(C) be encodings of variables A,B, and C respectively. 
A Boolean circuit I is said to implement the block G if the 
following three conditions hold: 
1) The set Inp(I) is a subset of v(A) ∪ v(B). 
2) The set Out(I) is equal to v(C). 
3) If the set of values assigned to v(A) and v(B) form codes q(a) 
and q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z’ )=q(c) 
where z’  is the projection of the assignment z=(q(a),q(b)) on 
Inp(I),    I(z’ ) is the value taken by I at z’ ,      and c=G(a,b). 
Remark 2.   The reason why Inp(I) may not include all the 
variables of v(A) and/or  v(B) is that the function G(A,B) may not 
distinguish some values of A or B. (G(A,B) does not distinguish, 
say, values a1,a2 ∈ D(A), if for any b ∈ D(B), G(a1,b)=G(a2,b).)   
So to implement G(A,B) the circuit I may need only a subset of 
variables of v(A) ∪ v(B). This said, for the sake of simplicity, we 



will write I(q(a),q(b)) meaning  I(q’ (a),q’ (b)), q’ (a)= 
proj(q(a),Inp(I)) and q’ (b)=proj(q(b),Inp(I)). 
Definition 4. Let S be a multi-valued circuit. A Boolean circuit 
N  is said to implement the specification S, if it is built according 
to the following  two rules. 
1) Each block G of S  is replaced with an implementation  I of 
G. 
2) Let the output of block G1 (specified by variable R) be 
connected to an input of block G2 (specified by the same variable 
R) in S. Then the outputs of the circuit I1 implementing G1 are 
properly connected to inputs of circuit I2 implementing G2. 
Namely, the primary output of I1 specified by a Boolean variable 
qi ∈ v(R) is connected to the input of I2 specified by the same 
variable of v(R) if qi ∈ Inp(I2). 
 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A specification and the functionality of two  
implementations of a block 

 

In Fig. 1a a specification of three blocks if shown. The 
functionality of two  different implementations of the block 
C=G1(A,B) (Fig. 1b) are shown in Fig. 1c and 1d. Here 
D(A)={ a0,a1} , D(B)={ b0,b1,b2,b3}  and D(C)={ c0,c1,c2} . Since A 
and B are primary input variables they are encoded with a 
minimum code length and q1(A)=q2(A) and q1(B)=q2(B) where  
q1(a0)=0, q1(a1)=1, q1(b0)=00, q1(b1)=01, q1(b2)=10, q1(b3)=11. 
Finally, the encodings q1(C) and q2(C) are q1(c0)=00, q1(c1)=10, 
q1(c2)=01 and  q2(c0)=100, q2(c1)=010, q2(c2)=001. 

Remark 3.   Let N  be an implementation of a specification S. Let 
p be the largest number of gates used in an implementation of  a 
multi-valued block  of S  in N. We will say that S is a specification 
of granularity p for N. 
Definition 5. The topological level of a block G in a 
specification S is the length of the longest path from a primary 
input of S to G. (The length of a path is measured in the number of 
blocks on it. The topological level of a primary input is assumed to 
be 0.) Denote by level(G) the topological level of G in S. 

Let N be an implementation of a specification S. From 
Remark 1 it follows that for any value assignment h to the input 
variables of N there is a unique set of values (x1,…,xk), where xi ∈ 
D(Xi) such that h=(q(x1),…,q(xk)). That is there is one-to-one 
correspondence between assignments to primary inputs of S and 
N.  The same applies to primary outputs of S and N. 
Definition 6. Let N  be an implementation of S. Given a Boolean 
vector y of assignments to the primary inputs of N, the 
corresponding vector Y=(x1,..,xk) such that y=(q(x1),…,q(xk )) is 
called the pre-image of y. 

Proposition 1. Let N  be a circuit implementing specification S. 
Let I(G)  be the implementation of a block C=G(A,B) of S in N .  
Let y be a value assignment to the primary input variables of N 
and Y be the pre-image of y. Then  the values of primary outputs 
of I(G) form the code q(c) where c is the value taken by the output 
of G when the inputs of S  take the values specified by Y. 
Proposition 2.  Let N1, N2 be circuits implementing a 
specification S.  Let each primary input (or output) variable X of S 
have the same encoding in N1 and N2. Then Boolean circuits N1 
and N2 are functionally equivalent. 
Proof.  The proofs of Proposition 1 and Proposition 2 are simple 
and so we omit them to save space. 
Definition 7.  Let N1, N2 be two functionally equivalent Boolean 
circuits. Let N1, N2  implement a specification S  so that for every 
primary input (output) variable X encodings q1(X) and q2(X) (used 
when producing N1 and N2 respectively) are identical. Then S is 
called a common specification (CS) of N1 and N2. 
Remark 4.  Let  S  be a CS of N1,N2  and  C be a variable of S. 
We will assume that v1(C) =v2(C)  if C is a primary input variable 
and v1(C) ∩ v2(C) = ∅ otherwise. 
Definition 8. Let S  be a CS of N1,N2.  Let p1 (respectively p2) be 
the granularity of S with respect to N1 (respectively  N2). Then we 
will say that S is a CS of  N1,N2 of granularity p  = max(p1,p2). 
Definition 9. Given two functionally equivalent Boolean circuits 
N1, N2,  S  is called the finest common specification if it has the 
smallest granularity p among all the CSs of N1 and N2. 

 

4. Equivalence Checking as SAT 
 

Since in this paper we formulate the complexity of 
equivalence checking in terms of  resolution proofs, we recall a 
common way of reducing equivalence checking  to the 
satisfiability problem. 
Definition 10. A disjunction of literals of Boolean variables not 
containing two literals of the same variable is called a clause. A 
conjunction of clauses is called a conjunctive normal form 
(CNF). 

A B C 
a0 b0 c0 

a0 b1 c1 

a0 b2 c1 

a0 b3 c0 

a1 b0 c1 

a1 b1 c2 

a1 b2 c2 

a1 b3 c0 

 
A B F 

C K 

E 

G1 G2 

G3 

q2(A) q2(B) q2(C) 

0 0 0 1 0 0 

0 0 1 0 1 0 

0 1 0 0 1 0 

0 1 1 1 0 0 

1 0 0 0 1 0 

1 0 1 0 0 1 

1 1 0 0 0 1 

1 1 1 1 0 0 

 

C=G1(A,B) 

(a) (b) 

(c) (d) 

      I1(q1(A),q1(B))       I2(q2(A),q2(B)) 

q1(A) q1(B) q1(C) 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 0 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 0 0 

 



Definition 11. Given a CNF F, the satisfiability problem (SAT) 
is to find a value assignment to the variables of F for which F 
evaluates to 1 (also called a satisfying assignment) or to prove 
that such an assignment  does not exist. A clause K of F is said to 
be satisfied by a value assignment y if K(y)=1. 

The standard conversion of an equivalence checking 
problem into an instance of SAT is performed in two steps. Let N1 
and N2 be Boolean circuits to be checked for equivalence. At the 
first step of this conversion, a circuit M called a miter [3] is 
formed from N1 and N2. The miter M is obtained by 1) identifying 
the corresponding primary inputs of N1 and N2; 2) XORing each 
pair of corresponding primary outputs of N1 and N2; 3) ORing  the 
outputs of the added XOR gates.  So the miter of N1 and N2 
evaluates to 1 if and only if for some input assignment a primary 
output of N1 and the    corresponding output of N2 evaluate to 
different values. Therefore, the problem of checking the 
equivalence of N1 and N2 is equivalent to testing the satisfiability 
of the miter of N1 and N2.  
At the second step of conversion, the satisfiability of the miter is 
reduced to that of a CNF formula F. This formula is a conjunction 
of CNF formulas F1,..,Fn specifying the functionality of the gates 
of M  and a  one-literal clause that is satisfied only if the output of 
M is set to 1. The CNF Fi specifies the i-th gate gi of M. Any 
assignment to the variables of Fi that is inconsistent with the 
functionality of gi falsifies a clause of Fi (and vice versa, a 
consistent assignment satisfies all the clauses of Fi.) For instance,  
the AND gate y=x1x2 is specified by the following three clauses  
~x1 ∨ ~x2 ∨ y,  x1 ∨ ~y,  x2 ∨ ~y. 

 

5. Equivalence Checking in General  
Resolution 
 
In this section, we prove some results about the complexity of 
equivalence checking of circuits with a CS of granularity p.  The 
main idea of the proof is that if S is a CS of  N1 and N2, then their 
equivalence checking reduces to computing filtering and 
correlation functions for each variable of S. The two main 
properties of these functions are that  
• They can be  built based only on the information about the 

topology of S and about “assignment”  of gates of N1 and N2  
to blocks of S. 

• Filtering and correlation functions for a variable C specifying 
the output of a block G(A,B) can be computed “ locally”  from 
filtering and correlation functions of variables A and B and 
CNFs specifying implementations I1(G) and I2(G). So these 
functions can be computed in topological order  starting with 
inputs and proceeding to outputs. 

In this paper we consider computation of filtering and 
correlation functions as CNFs  in the general resolution system. 
However, these functions can be computed in many other ways, 
for example, by using BDDs (see Remark 10). 
Definition 12. Given a constant p,  a CNF formula F is a 
member of the class M(p) if and only if it satisfies the following 
two conditions. 
• F is the CNF formula (obtained by the procedure described 

in Section 4) specifying the miter of a pair of functionally 
equivalent circuits N1,N2.  

• N1,N2 has a CS of granularity p. 

Definition 13. Let K and K’  be clauses having opposite literals 
of a variable (say variable x) and there is only one such variable. 
The resolvent of K , K’  in variable x is the clause that contains all 
the literals of K and K’  but the positive (i.e. literal x) and negative 
(i.e. literal ~x) literals of x. The operation of producing the 
resolvent of K and K’  is called resolution. 
Definition 14.  General resolution is a proof system of 
propositional logic that has only one inference rule. This rule is to 
resolve two existing clauses to produce a new one. Given a CNF 
formula F, a proof L(F) of unsatisfiability of F in the general 
resolution system consists of a sequence of resolutions resulting in 
the derivation of an empty clause (i.e. a clause without literals). 

    General resolution is complete, which means that given an 
unsatisfiable formula F there is always a proof L(F) that derives 
an empty clause.  
Definition 15. Let F(X1,X2) be a Boolean function where X1 and 
X2 are sets of Boolean variables. The function H(X2) is called 
existentially implied by F if  
• F(X1,X2) → H(X2) 
• if H(z)=1 where z is an assignment to the variables of 

X2, then there is an assignment y to the variables of X1 
such that F(y,z)=1. 

Remark 5.   Given a function F(X1,X2),  the function H(X2) 
existentially implied by F is unique. It can be obtained by from F 
by existentially quantifying away the variables of X1. The 
definition of existential implication is important for understanding 
how filtering and correlation functions are obtained. 
Proposition 3. Let  F(X1,X2)  and H(X2) be CNF formulas where 
H(X2) consists of all the clauses depending only  on variables from 
X2 that can be derived from F(X1,X2) by general resolution. Then 
H(X2) is existentially implied by F(X1,X2). 
Proof. The CNF F(X1,X2) implies H(X2) because each clause of H 
is implied by F  since it is derived by resolution.  Assume that H 
is not existentially implied by F. Then there is an assignment z to 
the variables of X2 such that H(z)=1 and for any assignment y to 
the variables of X1, F(y,z)=0.  However, this means that F implies 
a clause K depending only on variables of X2 such that K(z)=0. 
Since K should be in H, then H(z) should be equal to 0, which 
leads to a contradiction.                                                        
Definition 16. Let F be a set of clauses. Denote by supp(F) the 
set of variables whose literals occur in clauses of F. 
     To estimate the complexity of obtaining the function 
existentially implied by F in general resolution, we need the 
following proposition. 
Proposition 4. Let F be a set of clauses that implies a clause K. 
Then there is a  sequence of at most 3|supp(F)| resolution steps that 
results in the derivation of the clause K or a clause that implies K. 
Proof.  Denote by F’  the formula that is obtained from F by 
making the assignments that set the literals of K to 0 (and 
removing the satisfied clauses and the literals set to 0). It is not 
hard to see that F’  is unsatisfiable since it implies an empty 
clause.  So there is a resolution proof L(F’ ) that results in 
deducing an empty clause.  Then  by replacing each clause of F’  
involved in L(F’ ) with its “parent”  clause  from F we get  a 
sequence of resolutions resulting in deducing either the clause K 
or a clause that implies K. The number of resolvents in L(F’ )  
cannot be more than 3|supp(F’)| (i.e. the total number of clauses of 
|supp(F’ )|   variables)  and so it cannot be more than 3|supp(F)|.     



Remark 6.  From  Proposition 3 and Proposition 4 it follows that 
given a CNF F(X1,X2) one can obtain the function H(X2) 
existentially implied by F in no more than 3|supp(F’)| resolution 
steps. 
Definition 17. Let N  be an implementation of a specification S. 
Let C  be a variable of S. A function Ff  is called a filtering  
function if: 

• supp(Ff)  ⊆  v(C). 

• If an assignment z to the variables of  v(C) is a code q(c), c ∈ 
D(C),  then Ff(z)=1. Otherwise, Ff(z)=0. 

Remark 7.  If C is a primary input variable of S , then Ff(v(C))≡1. 
Indeed, as it follows from Remark 1 any assignment to C is the 
code of a value c ∈ D(C). 
Proposition 5. Let N  be an implementation of a specification S. 
Let  C=G(A,B) be a block of S. Let F be the CNF formula 
specifying N  built as described in Section 4 and F(I(G)) be the 
part of F specifying the implementation I(G) of G in N.  Then P  
existentially implies Ff(v(C)) where P=Ff(v(A)) ∧ Ff(v(B)) ∧ 
F(I(G)). 
Proof. To prove that P → Ff(v(C)) one needs to show that any 
assignment that sets P to 1 also sets Ff(v(C)) to 1. It is not hard to 
see that the support of all the functions of the expression P → 
Ff(v(C)) is a subset of supp(F(I(G))).  Let  h=(x,y,z)  be an 
assignment that sets  P to 1 where x,y,z are assignments to the 
variables from v(A),v(B) and v(C) respectively.  Then h has to set 
to 1 the  functions Ff(v(A)), Ff(v(B), F(I(G)). Since h sets Ff(v(A)) 
to 1, then x=q(a), a ∈ D(A). Since h sets Ff(v(B)) to 1, then 
y=q(b), b ∈ D(B). So h=(q(a),q(b),z). To set to 1 F(I(G))  
assignment z has to be equal to q(c), where c=G(a,b). Then h sets 
Ff(v(C)) to 1.  

Assume that Ff(v(C)) is not existentially implied by P. Then 
there exists an assignment z=q(c), c ∈ D(C) such that Ff(z)=1 and 
for any assignments x and y to the variables of  v(A) and v(B) 
respectively, P(x,y,z)=0. However, P(q(a), q(b), z) = 1 where a 
and b are values of A and B such that G(a,b)=c, which leads to a 
contradiction.                                                                              

Definition 18. Let S be a CS of circuits N1 and N2 and C be a 
variable of S. A function Cf  is called a correlation function  for 
encodings q1 and q2 of  the values of C  (used when producing N1 
and N2) if : 

• supp(Cf ) ⊆  v1(C) ∪ v2(C) . 

• Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C) 
such that  z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise 
Cf(z1, z2)=0.  

Remark 8.  If C is a primary input variable of S, then 
Cf(v1(C),v2(C)) ≡ 1. Indeed, as it follows from  Remark 1 any 
assignment to v1(C) or v2(C) is the code of a value c ∈ D(C).  
Besides,  from the definition of  CS it follows that q1(C)=q2(C).  
Finally, from Remark 4 it follows that v1(C)=v2(C). So any 
assignment (x,y) to the variables of v1(C),v2(C) can be represented 
as  (q1(c),q2(c)), c ∈ D(C). 
Proposition 6.  Let S be a CS of circuits N1,N2. Let  
C=G(A,B) be a block of S. Let F be the CNF formula specifying 
the miter of N1,N2 built as described in Section 4. Let F(I1(G)) and 
F(I2(G))  be the part of F specifying the implementation I1(G) and 

I2(G) of G in N1 and N2 respectively.  Then P existentially implies 
Cf(v1(C),v2(C)). Here P = Filtering ∧ Correlation ∧ 
Implementation and Filtering = Ff(v1(A)) ∧ Ff(v1(B)) ∧ Ff(v2(A)) ∧ 
Ff(v2(B)), Correlation = Cf(v1(A),v2(A)) ∧ Cf(v1(B),v2(B)), 
Implementation = F(I1(G)) ∧ F(I2(G)).  
Proof.  To prove that P implies Cf(v1(C),v2(C)) one needs to 
show that any assignment that sets P to 1 also sets 
Cf(v1(C),v2(C)) to 1. It is not hard to see that the support of all 
the functions of the expression P → Cf(v1(C),v2(C))  is a subset 
of supp(F(I1(G)) ∪   supp(F(I2(G)).   Let h=(x1, x2, y1, y2, z1, z2)  be 
an assignment that sets P to 1 where  x1, x2, y1, y2, z1, z2  are 
assignments to v1(A), v2(A), v1(B), v2(B), v1(C), v2(C) respectively. 
Then h has to set to 1 all the functions the conjunction of which 
forms P. Since h has to set the function Filtering to 1, then 
x1=q1(a1), x2=q2(a2) where a1,a2 ∈ D(A) and y1=q1(b1) , y2=q2(b2), 
where b1,b2 ∈ D(B). So h=(q1(a1),q2(a2), q1(b1),q2(b2), z1, z2). Since h 
sets the function Correlation to 1 then a1 has to be equal to a2 and 
b1 has to be equal to b2. So h can be represented as (q1(a),q2(a), 
q1(b),q2(b), z1, z2)  where a ∈ D(A) and b ∈ D(B). Since h sets the 
function Implementation to 1, then z1 has to be equal to q1(c), 
c=G(a,b) and z2 has to be equal to q2(c). So h is equal to 
(q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it sets the correlation 
function Cf(v1(C),v2(C)) to 1. 

Assume that Cf(v1(C),v2(C)) is not existentially implied by P. 
Then there exists an assignment z1=q1(c), z2=q2(c) to the variables 
of v1(C) and v2(C) respectively such that Cf(z1, z2)=1 and for any 
assignment x1, x2, y1, y2 to the variables of v1(A), v2(A), v1(B), 
v2(B) respectively, P(x1, x2, y1, y2, z1, z2)=0. However, P(q1(a), 
q2(a), q1(b), q2(b), z1, z2)=1 where a, b are the values of A and B 
respectively for which c=G(a,b). This leads to a contradiction.    

Proposition 7. Let F be a formula of M(p) specifying the miter 
of circuits N1,N2 obtained from a CS S of granularity p. The 
unsatisfiability of F can be proven by a resolution proof of no 
more than d∗n∗36p resolution steps where n is the number of 
blocks in S  and d  is a constant. 

Proof. From Proposition 5 and Proposition 6 it follows that one 
can deduce correlation and filtering functions for all the variables 
of S starting with blocks of topological level 1 and proceeding in 
topological order.  Indeed, let C=G(A,B) be a block of topological 
level 1. Then A and B are primary input variables and the filtering 
and correlation functions for them are known (they are 
tautologies). Then Ff(v1(C)) and Ff(v2(C)) are existentially 
implied by F(I1(G)) and F(I2(G)) respectively. According to 
Proposition 5 , Ff(v1(C)) (respectively  Ff(v2(C)))  can be derived 
by resolving clauses of  F(I1(G))  (respectively F(I2(G))). 
Similarly, the correlation function Cf(v1(C),v2(C)) is existentially 
implied by F(I1(G))  ∧ F(I2(G)).  So it can be derived from the 
latter by resolution. After filtering and correlation functions are 
computed for all the variables of level 1, the same procedure can 
be applied to variables of topological level 2 and so on. If S 
consists of n blocks, then in n steps one can deduce correlation 
functions for the primary output variables of S. At each step two 
filtering and one correlation function are computed for a variable 
C=G(A,B) of S. The complexity of this step is no more than 36p.  
Indeed, the support of all functions mentioned in Proposition 5 
and Proposition 6 needed for  computing Ff(v1(C)), Ff(v2(C)) and 
Cf(v1(C),v2(C)) is a subset of A=supp(F(I1(G))) ∪ supp(F(I2(G))). 



The total  number of gates in I1(G) and I2(G) is bounded by 2p, 
each gate having 2 inputs and 1 output. So the total number of 
variables in A cannot be more than 6p. Then according to Remark 
6, in no more than 36p steps one can deduce CNFs Ff(v1(C)), 
Ff(v2(C)) and Cf(v1(C),v2(C)). Then the total number of resolution 
steps one needs to deduce correlation functions for primary output 
variables of S  is bounded by n∗36p. 

Now we show that from the correlation functions for primary 
output variables of S one can deduce an empty clause in  the 
number of resolution steps linear in n∗p.  Let C be a primary 
output variable specifying the output of a block G of N. Let I1(G) 
and I2(G) be the implementations of G in N1 and N2 respectively. 
Let |D(C)|=2k (By Assumption 2 the multiplicity of C is a power 
of 2.) Then length(q1(C))= length(q2(C))=k. (By  Assumption 3, 
values of S are encoded by a minimal length encoding.)   

Now we show that there is always a correlation function 
Cf(v1(C),v2(C)) specified by the CNF  consisting of k pairs of two 
literal clauses specifying the equivalence of corresponding outputs 
of I1(G) and I2(G). Let f1 and f2 be two Boolean variables of v1(C) 
and v2(C) respectively that specify corresponding outputs of N1 
and N2. Since S is a CS of N1 and N2, then q1(C)=q2(C). So any 
assignment q1(c),q2(c) to v1(C) and v2(C) that satisfies 
Cf(v1(C),v2(C)) also satisfies clauses K’=f1 ∨ ~f2 and K” =~f1 ∨ f2. 
So K’  and K”  are implied by Cf(v1(C),v2(C)) and can be deduced 
by the procedure described in the proof of Proposition 6. (The 
resolution steps one needs to deduce equivalence clauses are 
already counted in  the expression n∗36p)  

Using each pair of equivalence clauses  K’  and K”  and the 
clauses specifying the gate g=XOR(f1,f2) of the miter, one can 
deduce  a single literal clause ~g. This clause requires  setting the 
output of this XOR gate to 0. Each such a clause can be deduced 
in the number of resolutions bounded by a constant and the total 
number of such clauses cannot be more than n∗p. Finally, from 
these unit clauses and the clauses specifying the final OR gate of 
the miter, the empty clause can be deduced in the number of 
resolutions bounded by n∗p. So the empty clause is deduced in no 

more than n∗36p + d’∗n∗p steps where d’  is a constant. 
Finally, one can pick a constant d such  n∗36p + d’∗n∗p ≤ 
d∗n∗36p                                                                                 
Remark 9.  In Proposition 7 we give  a very conservative estimate 
of the complexity of deducing filtering and correlation functions. 
In practice this complexity can be much lower. In a sense, the best 
way to interpret the theory developed in this section is that the 
problem of equivalence checking of circuits N1,N2 with a CS S of 
n blocks can be partitioned into n subproblems of computing 
filtering and correlation functions for each variable of S.   
 
 
 

6. A Procedure of Equivalence Checking for 
Circuits with a  Known CS 

 
In Section 5 we considered equivalence checking in general 

resolution that is a non-deterministic proof system. This means 
that the proof is guided by an oracle that  points to the next pair of 
clauses to be resolved.  In this section, we summarize the results 
of Section 5 as a deterministic procedure  of equivalence checking 
of circuits with a known CS. 

Let S be a CS of granularity p of Boolean circuits N1 and N2.  
Let F be the CNF formula specifying the miter  of N1 and N2. Our  
procedure of equivalence checking consists of two stages: 
1. For each variable C of S   compute filtering  functions 

Ff(v1(C)), Ff(v2(C)) and the correlation function        
Cf(v1(C), v2(C))  proceeding in topological order of variables. 
If C is a primary input variable, then Ff(v1(C)), Ff(v2(C))  and 
Cf(v1(C), v2(C)) are tautologies. Let C=G(A,B). Then 
Ff(v1(C)) is built by computing the function existentially 
implied (see  Definition 15)  by Ff(v1(A))  ∨  Ff(v1(B)) ∨ 
F(I1(G)). (F(I1(G)) is a subset of F specifying the 
implementation of G in N1. The function Ff(v2(C) is built 
similarly to Ff(v1(C)).)  The function Cf(v1(C),v2(C)) is built 
by computing the function existentially implied  by  Ff(v1(A)) 
∨  Ff(v1(B)) ∨ Ff(v2(A))  ∨  Ff(v2(B)) ∨ Cf(v1(A), v2(A)) ∨ 
Cf(v1(B), v2(B)) ∨ F(I1(G)) ∨ F(I2(G)). 

2. Once the correlation functions are computed for every 
primary output variable of S,  finish the proof of 
unsatisfiabiby of F by invoking a SAT-solver like [6],[12]. 
(This SAT-solver  is applied to the CNF consisting of the 
clauses describing the correlation functions for the primary 
output variables of S,  the clauses specifying the gates 
XORing primary outputs of N1 and N2 and the final OR gate 
of the miter.) 

The complexity of this procedure is the same as in general 
resolution i.e. d∗n∗36p where d is a constant. This procedure is 
flexible with respect to the method of computing existentially 
implied functions.  Below we describe  a few options.  

Let F  be a CNF and supp(F) = X1 ∪ X2. Suppose one needs 
to compute a CNF H(X2) that is existentially implied by F .  If the 
value of |X2| is small, one can compute H(X2) by running  2k SAT-
checks where k=|X2|. For every assignment z to the variables of X2 
one needs to check if there is an assignment y to the variables of 
X1 such that (y,z) satisfies F. If such an assignment exists then the   
next assignment is checked. Otherwise, a clause consisting of 
literals of variables from X2 that is falsified by the assignment z is 
added to the clauses of H(X2).  

If the size of X2 is large, one can compute filtering and 
correlation functions by existential quantification of the variables 
of X1. In terms of SAT, existential quantification of a CNF F in a 
variable w of X1 means adding to F all the resolvents that can be 
produced by resolving clauses of F in w.  Of course, existential 
quantification in all the variables of X1 is very expensive in SAT 
and so it works only for blocks of a small size. However, less 
expensive methods for computing G(X2) in terms of SAT can be 
and should be developed.   
Remark 10. For the sake of completeness, we should mention 
that nothing prevents one from computing filtering and correlation 
functions using BDDs. This especially makes sense when 
existential quantification by BDDs is more  efficient that in SAT. 
 

7. Experimental Results 
 

The objective of experiments was to show that equivalence 
checking of circuits with a fine CS S is easy if S is known and is 
hard otherwise. To produce circuits having a fine CS we used the 
following procedure. To get multi-valued specifications with 
realistic topologies we “borrowed” them from MCNC-91 
benchmark circuits as follows. First, all the benchmarks were 



technology mapped using SIS [14] to get circuits consisting only 
of  two-input AND gates. Then from each obtained circuit N  a 
multi-valued specification S was produced by replacing each two-
input binary gate  with a two-input  single output  block of four-
valued variables.  (In other words, S changes the functionality of 
N  while preserving its topology.) Then from S  two functionally 
equivalent Boolean circuits N1, N2 implementing S were produced 
using two different sets of two-bit encodings of four-valued 
values.  The encodings were picked in such a way that the two 
different implementations of the same four-valued block in N1 and 
N2 had no functionally equivalent outputs.  This way we 
guaranteed that internal functionally equivalent points in N1 and 
N2 may occur only by accident.  

Note that after encoding, the number of inputs and outputs in 
N1 and N2 is twice the number of inputs and outputs in the 
original Boolean circuit N. For instance, the two circuits produced 
from C6288 used as a “specification”  have the topology of a 16-
bit multiplier and the number of inputs and outputs of a 32-bit 
multiplier. 

In experiments we used the best tools that were available to 
us. Namely, we used the SAT-solver BerkMin downloaded from 
[1], the program Nanotrav built on top of the Colorado University 
Decision Diagram (CUDD) package [5]  and a SAT-based 
equivalence checker CSAT [10]  (courtesy of Prof. Li of UCSB).  
We also tried the SAT-solver Zchaff [12], but BerkMin was up to 
three orders of magnitude faster on our formulas. In the 
experiments we used the special mode of BerkMin designed for 
equivalence checking that is described at [1].  BerkMin was run 
on the formula specifying the miter M of N1 and N2  as described 
in Section 4.  Nanotrav was used to build a BDD for the miter M 
and CSAT checked the satisfiabilty of the miter’s output.  To 
check the suitability of the tools for equivalence checking, we first 
ran them on “ regular”  MCNC benchmarks to verify optimized 
versus non-optimized circuits. (We do not report these results). 
The tools showed quite decent performance. For example, 
BerkMin was able to quickly verify all the instances including the 
multiplier C6288.  The same kind of performance was shown by 
CSAT. Nanotrav was able to build  BDDs for all the miters except  
C6288 very quickly (in a few seconds).  In all the experiments we 
ran Nanotrav using settings suggested by Fabio Somenzi (private 
communication). In particular, the variable sifting option was on. 
In Table 1 we give runtimes of the three programs shown in our 
experiments. All the programs were run on a  SUNW Ultra-80 
system with clock frequency 450MHz. In all the experiments the 
time limit was set to 60,000 sec. (16.6 hours).   The results of the 
best out of the three programs is shown in black. In the last 
column  we report run times of a  trivial CS driven procedure. 
This procedure computes filtering and correlation function of 
blocks in terms of SAT by existentially quantifying variables  (as 
it was described in Section 6)  and eventually deduces an empty 
clause.  

It is not  hard to see that run times of the CS driven procedure 
are linear in the size of circuits to be checked for equivalence.  
This is due to the fact that the size of specification blocks is fixed 
(and very small).  On the other hand, the instances we generated 
turned out to be hard for the three chosen tools. Even if one 
compares the best run times with run times of the CS driven 
procedure, it is not hard to see that the former quickly increased as 
the size of the instances grew. 
 
 

Table 1. Equivalence checking of circuits with a fine CS 

 

Name of 
“specifi- 
cation”  

CSAT  

(sec.) 

Nanotrav  

(BDDs) 

(sec.) 

BerkMin 

(sec.) 

CS 
driven  
(sec.) 

C880 162.8 60,000 3.7 1.1 

ttt2  281.0 1.0 11.7 1.3 

x4  284.3 4.7 17.3 1.8 

i9  75.3 1.5 32.7  2.1 

term1  1,604.6 40.9 35.9 1.6 

c7552  282.0 60,000 52.8 3.6 

c3540  34,905.8 60,000 64.1  2.3 

rot  163.6 19,315.6 72.2  2.1 

9symml  31.07 1.9 113.2 0.5 

frg2  13,610.4 22.6 131.4 2.9 

frg1  265.8 60,000 330.3  1.7 

i10  60,000 60,000 445.0 4.8 

des  12,520.3 9.7 451.7 12.1 

dalu  17,496.9 60,000 518.6 3.1 

x1  13,580.3 13,009.6 950.2  2.8 

alu4  8,020.4 135.1 992.6 2.0 

i8  60,000 98.0 1,051.5 5.1 

c6288  60,000 60,000 1,955.1 5.2 

k2 60,000 59,392.9 5,121.5 4.3 

too_large  60,000 60,000 60,000  15.2 

t481  60,000 60,000 60,000  6.3 

 
It is unlikely that an industrial strength equivalence checker 

would do much better on the circuits we generated because they 
have no functionally equivalent points. Besides, one can always 
produce much harder equivalence checking problems by using a 
slightly more coarse specification (Recall that in the experiments 
we used a very fine CS S consisting of four-valued blocks. That is 
the circuits produced from S were “almost”  identical.) As we 
mentioned in the introduction, the problem of finding a short 
proof of equivalence of N1,N2 if a CS is not known, comes down 
to recovering this  CS from the description of N1,N2 which is 
computationally very hard (if not infeasible). 

 
 

 

8. Conclusions 
 

      We introduce the notion of a common specification (CS) S of 
Boolean circuits N1, N2 as a measure of complexity for 
equivalence checking of N1,N2. We show that if a CS S of n 
blocks is known, the problem of  equivalence checking of N1,N2 
reduces to  n much simpler subproblems. The complexity of each 
subproblem (that  is  to compute filtering and correlation 
functions  for a block  of S) heavily depends on the granularity p 



of S. If p is small then each subproblem is very simple and so 
equivalence checking of N1 and N2 is extremely fast. On the other 
hand,  equivalence checking  of N1 and N2 without any knowledge 
of a CS is most likely hard for any  equivalence checker. We 
experimentally show that circuits having a fine CS S can be 
checked for equivalence in a few seconds if S is known, while 
they cannot be verified  in many hours by a representative set of 
tools.   

These results suggest that the granularity of CSs can be 
considered as  the backbone of complexity of  equivalence 
checking. Hence the notion of a CS should be taken into account 
when designing  efficient synthesis and verification procedures. 

References 
[1] BerkMin web page. http://eigold.tripod.com/BerkMin.html 
[2] Bonet M. e.a. On interpolation and automatization for Frege 

systems. SIAM Journal on Computing, 29(6):1939-1967, 
2000. 

[3] Brand D. Verification of large synthesized designs. 
Proceedings of ICCAD-1993,pp 534-537. 

[4] Bryant R. Graph based algorithms for Boolean function 
manipulation. IEEE Trans. on Computers, C(35):677-691. 

[5] CUDD web page. http://vlsi.colorado.edu/~fabio/ 
[6] Goldberg E.,Novikov,Y. BerkMin: A fast and robust SAT-

solver. Design, Automation, and Test in Europe (DATE ’02), 
pages 142-149, March 2002.. 

[7] Kuehlmann A., Krohm, F. Equivalence checking using cuts 
and heaps. Proceedings of DAC-1997. 

[8] Kunz W., Pradhan, D., Recursive learning: a new implica-
tion technique for efficient solutions to cad problems - test, 
verification and optimization. IEEE Tran. on CAD 13(9) 
Sep. 1994 

[9] Kwak H.H e.a. Combinational equivalence checking through 
function transformation.  Proc. of ICCAD,1992, pp. 526-
534. 

[10] Lu F. e.a. A circuit SAT solver with signal correlation guided 
learning,.DATE-2003, pp. 892-898. 

[11] Moondanos J. e.a. Clever: Divide and conquer 
combinational logic equivalence verification with false 
negative elimination. CAV-2001, pp.131-143. 

[12] Moskewicz  M. e.a. Chaff: Engineering an efficient SAT-
solver. Proceedings of DAC-2001. 

[13] Razborov A., Alekhnovich M. Resolution is not automati-
zable unless W[p]  is tractable. Proc. of the 42nd IEEE FOCS-
2001, pages 210-219. 

[14] Sentovich E. e.a. Sequential circuit design using synthesis 
and optimization.  Proceedings of ICCAD, pp 328-333, 
October 1992. 

 

 

 

 


