### On Equivalence Checking and Logic Synthesis of Circuits with a Common Specification

Cadence Berkeley Labs 1995 University Ave.,Suite 460, Berkeley, California,94704 phone: (510)-647-2825, fax: (510)-486-0205

### cādence

CDNL-TR-2004-1220 December 2004

#### Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

**Abstract.** In this report we develop a theory of equivalence checking and logic synthesis of circuits with a common specification (CS). We show that two combinational circuits  $N_1, N_2$  have a CS iff they can be partitioned into subcircuits that are connected "in the same way" and are toggle equivalent. This fact allows one to represent a specification of a circuit implicitly as a partitioning into subcircuits. We give an efficient procedure for checking if circuit  $N_1$ ,  $N_2$  have the same predefined specification. As a "by-product", this procedure checks  $N_1$  and  $N_2$  for functional equivalence. We show how, given a circuit  $N_1$ with a predefined specification, one can efficiently build a circuit  $N_2$  satisfying the same specification. We give experimental evidence that equivalence checking of  $N_1$ ,  $N_2$  is hard if their CS is unknown. We also show experimentally that one can eliminate logic redundancy of circuit  $N_1$  by building a circuit  $N_2$  that is toggle equivalent to  $N_1$ .

#### 1. Introduction

In this report we continue developing the theory of equivalence checking and logic synthesis of circuits with a common specification (CS) started in [5][6][7]. A CS *S* of combinational circuits  $N_1$  and  $N_2$  is just a circuit of multi-valued gates (further referred to as **blocks**) such that  $N_1$  and  $N_2$  are different implementations of *S*. Figure 1 gives an example. Circuits  $N_1$  and  $N_2$  have a 3-block CS shown on the left. Subcircuits  $N_1^i$ ,  $N_2^i$  are different implementations of the multi-valued block  $G_i$  of *S*. Circuit  $N_m^i$  (m=1,2) implements a multi-output Boolean function whose truth table is obtained from that of  $G_i$  by replacing values of multi-valued variables with their binary codes. So the difference between  $N_1^{i}$  and  $N_2^{i}$  is in the choice of binary encodings for the variables of *S*. The size of the largest subcircuit  $N_m^{i}$  is called the **granularity** of specification *S* of  $N_m$ .



### Figure 1. Circuits $N_1$ and $N_2$ with a common specification of three blocks

There are at least four reasons why a theory of circuits with a CS is of practical importance: a) large circuits are usually composed of a set of meaningful subcircuits; b) the space of implementations the same specification is very "rich" and so this space most likely contains implementations that are much better than the original one; c) there is an efficient procedure for checking if  $N_1$  and  $N_2$  implement the same predefined specification and are functionally equivalent; d) there is an efficient procedure to build a circuit satisfying a predefined specification.

An example of a large combinational circuit having a highlevel structure is a multiplier that is usually specified as a network of smaller subcircuits, adders. A sequential circuit always has a natural partitioning into combinational subcircuits implementing next-state functions. (Although the theory we develop in this report targets synthesis and verification of large combinational circuits with a high-level structure, after some modification, it can be also applied to synthesis and verification of sequential circuits.).

Implementations of the same specification S are different only in the choice of encodings. A *k*-output subcircuit can be considered as an implementation of a  $2^k$ -valued function. The number of different k-bit encodings of a  $2^k$ -valued variable is  $(2^k)!$ . This number is very large even for very small values of k. So even for a specification S of very small granularity, the space of implementations is huge.

One of the problems one has to face when building a circuit  $N_2$  that is another implementation of a specification S of  $N_1$  is the increasing complexity of equivalence checking (EC). Since  $N_1$  and  $N_2$  may not have any functionally equivalent internal points, their equivalence cannot be, in general, efficiently checked by the existing algorithms. (The most efficient equivalence checkers heavily rely on existence of functionally equivalent internal points.) Fortunately, in [5][6] it was shown that if a CS S of  $N_1$ and  $N_2$  is known, there is an efficient procedure for EC of  $N_1$  and  $N_2$ . The most advanced version of this procedure was given in [7]. The advantage of the procedure of [7] is that one does not need to know either the functionality of multi-valued blocks or binary encodings. A CS S of  $N_1$  and  $N_2$  is represented as partitioning of  $N_1$  and  $N_2$  into subcircuits. This procedure has exponential complexity in the granularity of the CS S of  $N_1$  and  $N_2$  and linear complexity in the number of subcircuits (i.e. blocks of specifications). So if one considers only EC of circuits  $N_1$ ,  $N_2$  with a CS of granularity bounded by a constant, the complexity of the procedure of [7] is *linear* in circuit size.

The flaw of the procedure of [7] is in its relying on the assumption that the specifications  $S_1$  of  $N_1$  and  $S_2$  of  $N_2$  represented by the corresponding partitions are identical i.e.  $S_1=S_2=S$ . In this report, we show that circuits  $N_1$  and  $N_2$  have a CS of a specified topology *T* iff they can be partitioned into subcircuits  $N_1^{-1}$ ,...,  $N_1^{-k}$  and  $N_2^{-1}$ ,...,  $N_2^{-k}$  that are connected as described by *T* and if  $N_1^{-j}$  and  $N_2^{-j}$  are toggle equivalent j=1,...,k. We also modify the procedure of [7] so that now it not only checks if  $N_1$  and  $N_2$  are functionally equivalent but also tests if the specification of  $N_1$  and that of  $N_2$  are identical. The modified procedure has the same complexity as that of [7].

As it was mentioned above the space of implementations of a specification *S* is *huge* even if *S* has small granularity. So, given an implementation  $N_1$  of specification *S* that does not satisfy necessary requirements, there is a good chance to find an implementation  $N_2$  of *S* that will meet our requirements. The notion of toggle equivalence is key in building such a circuit  $N_2$ . In this report, we show that if *S* is specified as a partitioning of  $N_1$  into subcircuits  $N_1^1, ..., N_1^k$ , to build  $N_2$  it is sufficient to replace each subcircuit  $N_1^i$  with its toggle equivalent counterpart  $N_2^i$ .

The importance of the notion of toggle equivalence it that it allows one to reencode multi-valued variables *implicitly* without any knowledge of the functionality of multi-valued blocks and/or binary encodings of multi-valued variables. One reason why reencoding of multi-valued variables implicitly is a good idea is that the domain of a multi-valued variable may be too large to be handled explicitly. (For example, a 20-output subcircuit of  $N_1$  can be considered as an implementation of a multi-valued block whose output variable takes up to  $2^{20}$  values.) Another important reason for using implicit reencoding is that it is hard to "guess" a good encoding at the level of multi-valued blocks. Besides, when re-encoding a multi-valued variable it is reasonable to try to improve the current encoding rather than start building a new encoding from scratch. This can be done if one finds a way to modify a circuit implementing a multi-valued function in such a way that the modified circuit is still an implementation of this function.

In this report, we show that if two multi-output subcircuits N and N' are toggle equivalent, they are implementations of the same multi-valued function. This means that if N is an implementation of a multi-valued function g and we want to reencode the output variable of g it sufficient to synthesize a circuit N' that is toggle equivalent to N. If circuit N has k outputs it means that by building the circuit N' we reencode a variable taking up to  $2^k$  values. Besides, if, when building the circuit N' one optimizes N (rather than builds N' from scratch), the new encoding is obtained by "improvement" of the previous encoding rather than by building a completely new one.

The report is structured as follows. Section 2 introduces the notion of toggle equivalence of Boolean functions. In Section 3 we show that circuits  $N_1$  and  $N_2$  have a CS iff they can be partitioned into toggle equivalent subcircuits that are connected "in the same way" in  $N_1$  and  $N_2$ . In Section 4 we give a procedure for checking if a CS of  $N_1$ ,  $N_2$  is correct. In Section 5 we explain why EC of circuits with unknown CS is hard. In Section 6 we discuss logic synthesis of circuits preserving a predefined specification. In Section 7 we give experimental evidence that EC of circuits with unknown CS is hard. Besides, we show that one indeed can use toggle equivalence for logic optimization. In Section 8 we discuss what else needs to be done to make logic synthesis preserving high-level specification possible. Finally, we draw some conclusions in Section 9.

#### 2. Toggle equivalence of Boolean functions

In this section, we introduce the notion of toggle equivalence. We also show that toggle equivalent Boolean functions can be considered as different implementations of the same multi-valued function.

## **2.1** Toggle equivalence of functions with identical sets of variables

**Definition 1.** Let  $f_1:\{0,1\}^n \to \{0,1\}^m$  and  $f_2\{0,1\}^n \to \{0,1\}^k$  be *m*-output and *k*-output Boolean functions of the same set of variables. Functions  $f_1$  and  $f_2$  are called *toggle equivalent* if  $f_1(x) \neq f_1(x') \Leftrightarrow f_2(x) \neq f_2(x')$ . Circuits  $N_1$  and  $N_2$  implementing toggle equivalent functions  $f_1$  and  $f_2$  are called *toggle equivalent* if *circuits*.

Informally, toggle equivalence means that for any pair of input vectors x, x' for which at least one output of  $f_1$  "toggles", the same is true for  $f_2$  and vice versa.

**Definition 2.** Let f be a multi-output Boolean function of n variables. Denote by Part(f) the partition of the set  $\{0,1\}^n$  into disjoint subsets  $B_1, \ldots, B_k$  such that  $f(\mathbf{x}) = f(\mathbf{x'})$  iff  $\mathbf{x}, \mathbf{x'}$  are in the same subset  $B_i$ .

**Proposition 1.** Two Boolean functions  $f_1$  and  $f_2$  are toggle equivalent iff  $Part(f_1)=Part(f_2)$  i.e. iff for each element  $B_i$  of the partition  $Part(f_1)$  there is an element  $B'_j$  of the partition  $Part(f_2)$  such that  $B_i=B'_j$  and vice versa.

**Proof.** If  $f_1$  and  $f_2$  are toggle equivalent, there cannot be a pair of vectors x, x' such that x, x' are in the same subset of one partition and in different subsets of the other partition. (Because that would mean that one function produces two identical output assignments while the other function toggles.)

**Proposition 2.** Let  $f_1$  and  $f_2$  be toggle equivalent single output Boolean functions. Then  $f_1=f_2$  or  $f_1=-f_2$  where '~' means negation.

**Proof.** From Proposition 1 it follows that  $Part(f_1)=Part(f_2)$ . Since  $f_1, f_2$  are single output Boolean functions,  $Part(f_1)$  and  $Part(f_2)$  consist of two elements each. So  $f_1=f_2$  or  $f_1=-f_2$ .

**Definition 3.** A multi-output Boolean function f of multi-valued variables is called an *implementation* of a multi-valued function F, if the truth table of f can be obtained from that of F in the following two steps

1) Replace the values of multi-valued variables of F with their codes (we assume that different values of a variable are assigned different codes);

2) Fill in the empty rows (if any) of the truth table with arbitrary Boolean vectors.

**Proposition 3.** Let  $f_1$  and  $f_2$  be toggle equivalent. Then  $f_1$  and  $f_2$  are two different implementations of the same multi-valued function of Boolean variables.

**Proof.** According to Proposition 1,  $Part(f_1)=Part(f_2)$ . Let  $Part(f_1)$ ,  $Part(f_2)$  consist of k elements each. Then  $f_1$  and  $f_2$  are implementations of the function  $F: \{0,1\}^n \rightarrow \{1,..,k\}$  where  $F(\mathbf{x})=m$ , iff  $\mathbf{x} \in B_m$ , i.e. iff  $\mathbf{x}$  is in the *m*-th element  $Part(f_1)$ .

Proposition 3 is of great importance because it shows how one can reencode multi-valued variables **implicitly**. Suppose, a multi-output circuit  $N_1$  implements a multi-valued function F and we want to reencode F. Synthesizing a circuit  $N_2$  that is toggle equivalent to  $N_1$  we obtain a new implementation of F. That is we reencode the output multi-valued variable of F not even knowing the binary encodings used to obtain  $N_1$  and  $N_2$  from F.

### **2.2** Toggle equivalence of functions with different sets of variables

In this subsection, the notion of toggle equivalence is extended to the case of Boolean functions with different sets of variables that are related by constraint functions.

**Definition 4.** Let *X* and *Y* be two disjoint sets of Boolean variables (the number of variables in *X* and *Y* may be different). A function Cf(X,Y) is called a *correlation function* if there are subsets  $A^X \subseteq \{0,1\}^{|X|}$  and  $A^Y \subseteq \{0,1\}^{|Y|}$  such that

1) 
$$|A^{X}| = |A^{Y}|$$
 and

2) Cf(X,Y) specifies a bijective mapping  $M: A^X \to A^Y$ . Namely Cf(x, y)=1 iff  $x \in A^X$  and  $y \in A^Y$  and y = M(x).

**Remark 1.** Informally, Cf(X,Y) is a correlation function if it specifies a bijective mapping between a subset  $A^X$  of  $\{0,1\}^{|X|}$  and a subset  $A^Y$  of  $\{0,1\}^{|Y|}$ . So one can view Cf(X,Y) as relating two different encodings of a  $|A^X|$  – valued variable.

As Proposition 4 below shows, one can check if a Boolean function H(X,Y) is a correlation one without explicitly finding subsets  $A^X$  and  $A^Y$ .

**Proposition 4.** Let X and Y be two disjoint sets of Boolean variables. A Boolean function H(X,Y) is a correlation one iff the following two conditions hold:

1). There do not exist three vectors x, x', y (where x, x' are assignments to variables X and y is an assignment to variables Y) such that  $x \neq x'$  and H(x, y)=H(x', y)=1.

2) There do not exist three vectors x, y, y' such that  $y \neq y'$  and H(x, y)=H(x, y')=1.

**Proof.** Only if part. If H(X,Y) is a correlation function, the fact that conditions 1) and 2) hold, follows from Definition 4.

If part. If conditions 1) and 2) hold then, H(X,Y) specifies a bijective mapping between subsets  $A^X$  and  $A^Y$  defined in the following way. Subset  $A^X$  consists of all the assignments  $x \in \{0,1\}^{|X|}$  such that H(x, y)=1 for some  $y \in \{0,1\}^{|Y|}$ . Subset  $A^Y$  consists of all the assignments  $y \in \{0,1\}^{|Y|}$  such that H(x, y)=1 for some  $x \in \{0,1\}^{|X|}$ .

**Remark 2.** Checking if H(X,Y) is a correlation function reduces to two satisfiability checks. Checking condition 1) of Definition 4 reduces to testing the satisfiability of the expression  $H(X,Y) \wedge$  $H(X',Y') \wedge Neq(X,X') \wedge Eq(Y,Y')$ . Here H(X',Y') is a "copy" of H(X,Y) where variables of X',Y' are independent of those of X,Y. Neq(x, x') is equal to 1 iff  $x \neq x'$ . Function Eq(Y,Y') is the negation of Neq(Y,Y'). Checking condition 2) of Definition 4 reduces to testing the satisfiability of  $H(X,Y) \wedge H(X',Y') \wedge$  $Eq(X,X') \wedge Neq(Y,Y')$ . If both expressions are constant 0, then His a correlation function.

Our definition of correlation function is different from the one given in [6] but serves the same purpose of relating two encodings of a multi-valued variable.

**Definition 5.** Let  $f_1:\{0,1\}^n \to \{0,1\}^m$  and  $f_2:\{0,1\}^p \to \{0,1\}^k$  be *m*-output and *k*-output Boolean functions and *X* and *Y* specify their sets of Boolean variables where |X|=n and |Y|=p. Let  $D_{inp}(X,Y)$  be a Boolean function. Functions  $f_1$  and  $f_2$  are called toggle equivalent under constraint function  $D_{inp}(X,Y)$  if  $(f_1(x) \neq f_1(x') \land (D_{inp}(x,y)=D_{inp}(x',y')=1)) \Rightarrow (f_2(y) \neq f_2(y')$  and vice versa  $(f_2(y) \neq f_2(y') \land (D_{inp}(x,y)=D_{inp}(x',y')=1)) \Rightarrow f_1(x) \neq f_1(x')$ . **Proposition 5.** Let *X*,*Y* be sets of Boolean variables and  $\{X_1,..,X_s\}$  and  $\{Y_1,..,Y_s\}$  be partitions of *X* and *Y* respectively. Let  $Cf(X_1,Y_1),..,Cf(X_s,Y_s)$  be correlation functions. Let  $f_1(X)$  and  $f_2(Y)$  be toggle equivalent under the constraint function  $D_{inp}(X,Y)=Cf(X_1,Y_1) \land \ldots \land Cf(X_s,Y_s)$ . Then  $f_1$  and  $f_2$  are implementations of the same multi-valued function of *s* multi-valued variables.

**Proof** follows from Proposition 3 and Remark 1.

#### 2.3 Testing toggle equivalence

In this subsection, we show how one can check if multioutput Boolean circuits  $N_1$  and  $N_2$  are toggle equivalent. Namely we show that checking the toggle equivalence of  $N_1$  and  $N_2$ reduces to testing if function  $D_{out}(N_1, N_2)$  specified by Definition 8 (see below) is a correlation one. This test can be performed by two satisfiability checks as described in Remark 2.

**Definition 6.** Let *N* be a Boolean circuit. Denote by v(N) be the set of Boolean variables associated either with the output of a gate or a primary input of *N*. Denote by Sat(v(N)) the Boolean function such that Sat(z)=1 iff the assignment *z* to variables v(N) is "possible" i.e consistent. For example, if circuit *N* consists of just one AND gate  $y=x_1 \wedge x_2$ , then  $v(N)=\{y, x_1, x_2\}$  and  $Sat(v(N))=(\sim x_1 \vee \sim x_2 \vee y) \wedge (x_1 \vee \sim y) \wedge (x_2 \vee \sim y)$ .

**Definition 7.** Let *f* be a Boolean function. We will say that function  $f^*$  is obtained from *f* by *existentially quantifying away* variable *x* if  $f^* = f(...,x=0,...) \lor f(...,x=1,...)$ .

**Definition 8.** Let  $N_1$  and  $N_2$  be Boolean circuits whose inputs are specified by set of variables X and Y respectively. Let  $D_{inp}(X,Y)$  be a Boolean function. Denote by  $D_{out}(N_1, N_2)$  the Boolean function obtained from the Boolean function H, where  $H=Sat(v(N_1)) \land Sat(v(N_2)) \land D_{inp}(X,Y)$ , by existentially quantifying away all the variables of H but the output variables of  $N_1$  and  $N_2$ .

**Proposition 6.** Let  $N_1$  and  $N_2$  be Boolean circuits with input variables specified by sets *X*, *Y* respectively. Let  $D_{inp}(X,Y)$  be a Boolean function relating *X* and *Y*. Let  $D_{inp}(X,Y)$  be a correlation function. Then  $N_1$  and  $N_2$  are toggle equivalent under constraint function  $D_{inp}(X,Y)$  iff the function  $D_{out}(N_1,N_2)$  specified in Definition 8 is also a correlation function.

**Proof.** Only If part. Let  $N_1$  and  $N_2$  be toggle equivalent. Then  $D_{out}(N_1,N_2)$  satisfies either condition of Proposition 4 and hence it is a correlation function. For example, there cannot exist Boolean vectors z, z' and h (where  $z \neq z'$  and z, z' are output assignments of  $N_1$  and h is an output assignment of  $N_2$ ) such that  $D_{out}(z,h)=D_{out}(z',h)=1$ . Indeed, it would mean that there exist pairs of vectors x, y and x', y' such that a)  $z=N_1(x)$ ,  $z'=N_2(x')$  and  $h=N_2(y)=N_2(y')$ ; b)  $D_{inp}(x, y)=1$  and  $D_{inp}(x', y')=1$ ; c)  $x \neq x'$  and  $y \neq y'$ ; d)  $N_1(x)\neq N_1(x')$  while  $N_2(y) = N_2(y')$ . But this is impossible since  $N_1$  and  $N_2$  are toggle equivalent.

If part can be proven in a similar manner.

#### 3. Common specification and toggle

#### equivalence

In this section, we show that the existence of a CS of single output combinational circuits  $N_1$  and  $N_2$  means that  $N_1$ ,  $N_2$  can be partitioned into toggle equivalent subcircuits that are connected in  $N_1$  and  $N_2$  "in the same way". The main result of this section is formulated in Proposition 7.

**Definition 9.** Let N = (V,E) be a DAG representing a Boolean circuit (here *V*,*E* are sets of nodes and edges of *N* respectively.) A subgraph  $N^*=(V^*, E^*)$  of *N* is called a *subcircuit* if the following two conditions hold:

a) if  $g_1$ ,  $g_2$  are in  $V^*$  and there is a path from  $g_1$  to  $g_2$  in N, then all the nodes of N that on that path are in  $V^*$ ;

b) if  $g_1, g_2$  of  $V^*$  are connected by an edge in N, then they are also connected by an edge in  $N^*$ .



Figure 2. Illustration to Definition 12

**Definition 10.** Let  $N^*$  be a subcircuit of N. An input of a gate g of  $N^*$  is called *an input* of  $N^*$  if it is not connected to the output of some other gate of  $N^*$ . The output of a gate g is called *an output* of subcircuit  $N^*$  if a) it is the primary output of N; b) it is connected to an input of a gate of N that is not in  $N^*$ .

**Definition 11.** Let a Boolean circuit N be partitioned into k subcircuits  $N^1$ , ...,  $N^k$ . Let T be a directed graph of k nodes such that nodes  $G_i$  and  $G_j$  of T are connected by a directed edge (from  $n_i$  to  $n_j$ ) iff an output of  $N^i$  is connected to an input of  $N^k$  in N. T

is called *the communication specification* corresponding to the partition  $N^1$ , ...,  $N^k$ . The partition  $N^1$ , ...,  $N^k$  is called *topological* if *T* is a DAG (i.e. if *T* does not contain cycles)



Figure 3. Example of circuits N<sub>1</sub> and N<sub>2</sub> with a CS

**Definition 12.** Let *T* be the communication specification of circuit *N* with respect to a topological partition  $N^1$ , ...,  $N^k$ . Let  $G_i$  be the node of *T* corresponding to subcircuit  $N^i$ . The length of the longest path from an input of *T* to  $G_i$  is called the *level* of  $G_i$  and  $N^i$  (denoted by *level*( $G_i$ ) and *level*( $N^i$ ) respectively).

**Definition 13.** Let  $N_1^{1}$ , ...,  $N_1^{k}$  and  $N_2^{1}$ , ...,  $N_2^{k}$  be topological partitions of single output Boolean circuits  $N_1, N_2$ . Let communication specifications of  $N_1$  and  $N_2$  with respect to partitions  $N_1^{1}$ , ...,  $N_1^{k}$  and  $N_2^{1}$ , ...,  $N_2^{k}$  be identical. Denote by  $D_{out}(N_1^m, N_2^m)$ , m=1, ..., k functions computed by induction in topological levels. Namely, we first compute functions  $D_{out}$  for the subcircuits of level 1, then for those of level 2 and so on. Function  $D_{out}(N_1^{\text{m}}, N_2^{\text{m}})$  is obtained from function  $H=Sat(v(N_1^{\text{m}}))$  $\wedge Sat(v(N_2^{m})) \wedge D_{inp}(N_1^{m}, N_2^{m})$  by existentially quantifying away all the variables except the output variables of  $N_1^{m}$ ,  $N_2^{m}$ . The function  $D_{inp}(N_1^{\text{m}}, N_2^{\text{m}})$  is equal to  $D_{out}(N_1^{\text{m}1}, N_2^{\text{m}1}) \land \dots \land$  $D_{out}(N_1^{\text{ms}}, N_2^{\text{ms}}) \wedge Eq(x_{m1}, y_{m1}) \wedge ... \wedge Eq(x_{mr}, y_{mr}).$  Here  $N_1^{\text{ml}}$ , ...,  $N_1^{\text{ms}}, N_2^{\text{ml}}$ ,...,  $N_2^{\text{ms}}$  are the *s* subcircuits (if any) whose outputs are connected to inputs of  $N_1^{m}$ ,  $N_2^{m}$  respectively. (See illustration in Figure 2.) Variables  $x_{m1}, \dots, x_{mr}, y_{m1}, \dots, y_{mr}$  are the *r* primary input variables of  $N_1$  and  $N_2$  (if any) that feed  $N_1^{m}$  and  $N_2^{m}$ respectively. Function  $Eq(x_{mt}, y_{mt})$ ,  $1 \le t \le r$  is equal to 1 iff  $x_{mit}$  is equal to  $y_{mt}$ .

**Proposition 7.** Let  $N_1$ ,  $N_2$  be two functionally equivalent single output circuits. Let *T* be a DAG of *k* nodes. Circuits  $N_1$  and  $N_2$  are implementations of a specification *S* whose topology is given by *T* iff there is a partitioning  $Spec(N_1) = \{N_1^1, ..., N_1^k\}$  of  $N_1$  and a partitioning  $Spec(N_2) = \{N_2^1, ..., N_2^k\}$  of  $N_2$  into *k* subcircuits such that

a) Communication specifications  $T_1,T_2$  of  $N_1$  and  $N_2$  with respect to partitionings  $Spec(N_1)$ ,  $Spec(N_2)$  are equal to T;

b) Each pair of circuits  $N_1^m, N_2^m$  is toggle equivalent under constraint function  $D_{inp}(N_1^m, N_2^m)$  specified by Definition 12.

*Sketch of the proof. If part.* It is proven by induction (in levels) using Proposition 5 and Proposition 6. *Only if part* is proven by induction using the fact that two Boolean functions implementing the same multi-valued function are toggle equivalent.

**Example.** An example of circuits with a CS of three blocks is shown in Figure 3. Circuit  $N_1$  (at the top) and  $N_2$  (at the bottom) have the same communication specification (shown in Figure 1 on the left side). Subcircuits  $N_1^{-1}$ ,  $N_1^{-2}$  (outlined by the dotted line) are toggle equivalent to subcircuits  $N_2^{-1}$ ,  $N_2^{-2}$  respectively in terms of their inputs related by the constraint functions  $D_{inp}(N_1^{-1}, N_2^{-1}) = Eq(x_1, y_1) \wedge Eq(x_2, y_2) \wedge Eq(x_3, y_3)$  and  $D_{inp}(N_1^{-2}, N_2^{-2}) = Eq(x_3, y_3) \wedge Eq(x_4, y_4) \wedge Eq(x_5, y_5)$  respectively.

Consider, for example subcircuits  $N_1^{-1}$  and  $N_2^{-1}$ . For the pair of input assignments  $(x_1=0, x_2=1, x_3=0)$  and  $(x_1=0, x_2=1, x_3=1)$  the outputs of  $N_1^{-1}$  take values  $(w_1=1,w_2=1,w_3=1)$  and  $(w_1=0,w_2=1,w_3=1)$  respectively i.e.  $N_1^{-1}$  toggles. For the pair of the corresponding input assignments  $(y_1=0, y_2=1, y_3=0)$  and  $(y_1=0, y_2=1, y_3=1)$  the outputs of  $N_2^{-1}$  take values  $(v_1=0,v_2=1)$  and  $(v_1=1,v_2=0)$  respectively. So  $N_2^{-1}$  toggles as well. On the hand for the pair of input assignments  $(x_1=0, x_2=0, x_3=0)$  and  $(x_1=1, x_2=0, x_3=0)$  the outputs of  $N_1^{-1}$  take the same assignment  $w_1=1,w_2=1,w_3=0$  and hence  $N_1^{-1}$  does not toggle. For the corresponding pair of input assignments  $(y_1=0, y_2=0, y_3=0)$  and  $(y_1=1, y_2=0, y_3=0)$  the outputs of  $N_2^{-1}$  take the same value  $(v_1=0,v_2=0)$ . So  $N_2^{-1}$  does not toggle either.

It is not hard to check that subcircuits  $N_1^3$  and  $N_2^3$  are toggle equivalent in terms of their local inputs related by the constraint function  $D_{inp}(N_1^3, N_2^3) = D_{out}(N_1^1, N_2^1) \wedge D_{out}(N_1^2, N_2^2)$ . The functions  $D_{out}(N_1^1, N_2^1)$ ,  $D_{out}(N_1^2, N_2^2)$  are obtained as described in Definition 13.

### 4. A Procedure for checking if a common specification of two circuits is correct

In this section, we describe a procedure for checking if a predefined CS of circuits  $N_1,N_2$  is correct. We will refer to this procedure as *Common Specification Verification (CSV)*. As a "by-product", our CSV procedure checks if  $N_1,N_2$  are functionally equivalent.

The EC procedure for circuits  $N_1$ ,  $N_2$  with a CS introduced in [6] and modified in [7] essentially uses an implicit representation of this CS as partitions of  $N_1$  and  $N_2$ . Proposition 7 allows one to modify this procedure so that in addition to EC it also checks the correctness of the CS. The pseudocode of the CSV procedure is shown in Figure 4.

The procedure *topol\_partition* checks if  $Spec(N_1)$  and  $Spec(N_1)$  are topological partitions (see Definition 11). The

procedure *equiv\_commun\_specs* checks if communication specifications  $T_1$  of  $N_1$  with respect to  $Spec(N_1)$  and  $T_2$  of  $N_2$  with respect to  $Spec(N_2)$  are identical.

In the main loop, functions  $D_{out}(N_1^i, N_2^i)$  are computed in topological order as described in Definition 12. Before computing  $D_{out}(N_1^i, N_2^i)$  the procedure *constr\_func* forms the expression  $D_{inp}$  (see Definition 13).

 $\begin{array}{ll} /* & --- & Spec(N_1) = \{N_1^{1}, ..., N_1^{k}\}, Spec(N_2) = \{N_2^{1}, ..., N_2^{k}\} & ---*/\\ CSV(N_1, N_2, Spec(N_1), Spec(N_2)) \ \\ & \text{if } (topol_partition(N_1, N_2, Spec(N_1), Spec(N_2)) == `no`) \\ & \text{return}(`CS_check_failure`); \end{array}$ 

if (equiv\_commun\_specs( N<sub>1</sub>,N<sub>2</sub>,Spec(N<sub>1</sub>),Spec(N<sub>2</sub>)) == 'no')
return('CS\_check\_failure');

for (i=1;  $i \leq k$ ; i++) {  $D_{inp} = constr_func(N_1^i, N_2^i, N_1, N_2);$   $D_{out}(N_1^i, N_2^i) = exist\_quantify(N_1^i, N_2^i, D_{inp});$ if (correlation\_function( $D_{out}$ ) == 'no') return('CS\_check\_failure');}

if  $(D_{out}(N_1^k, N_2^k)$  implies equivalence\_function) return('equivalent');

else return('*CS\_check\_failure*');}

#### Figure 4. Pseudocode of the CSV procedure

The function *exist\_quantify* existentially quantifies away from the function  $H=Sat(v(N_1^{m})) \land Sat(v(N_2^{m})) \land D_{inp}$  all the variables except the output variables of  $N_1^i$  and  $N_2^i$ . Then the *correlation\_function* procedure checks if the result of quantification  $D_{out}$  is a correlation function. The check is performed as described in Remark 2.

Finally, the CSV procedure checks if the correlation function of subcircuits  $N_1^k$  and  $N_2^k$  (whose primary outputs are primary outputs of  $N_1$  and  $N_2$ ) implies the equivalence function Eq(y, z). (Here y, z are Boolean variables associated with the outputs of  $N_1$ and  $N_2$  respectively). If so, then  $N_1$  and  $N_2$  are declared equivalent. Otherwise, the CSV procedure returns the 'CS\_check\_failure' answer. This answer is also returned if any of the checks performed by topol\_partition, equiv\_commun\_specs and correlation\_function fails.

**Definition 14.** Let N be a circuit with a specification S represented by partition  $Spec(N) = \{N^1...,N^k\}$ . The **granularity** of specification S for N is the size (i.e. the number of gates) of the largest subcircuit  $N^j$ , j=1,..,k.

**Definition 15.** Let  $N_1$  and  $N_2$  be implementations of the same specification *S*. Let  $p_1$  and  $p_2$  be granularities of specification *S* for  $N_1$  and  $N_2$  respectively. We will call the maximum of  $p_1$  and  $p_2$  the *granularity of the CS S* of  $N_1$ ,  $N_2$ .

The CSV procedure is exponential in the granularity p of CS S of  $N_1, N_2$  and is linear in the number of blocks of S i.e. in the number of subcircuits in  $Spec(N_1)$ ,  $Spec(N_2)$ . The exponentiality in p is due to procedures *exist\_quantify* and *correlation\_function*. The reason why the CSV procedure is exponential only in p and not in the circuit size is that the two exponential procedures above are applied only to subcircuits  $N_1^i, N_2^i$  whose size is bounded by p. Suppose that the value of p is bounded by a constant (i.e. circuits  $N_1, N_2$  can be of arbitrary size but the granularity of their CS is bounded). Then the CSV procedure proves the equivalence of

specifications  $Spec(N_1)$  and  $Spec(N_2)$  (and hence functional equivalence of  $N_1$  and  $N_2$ ) in **linear time** in the circuit size.

## 5. Equivalence checking of circuits with unknown specification

Note that the efficiency of our CSV procedure is due to the fact that a CS specification of  $N_1$  and  $N_2$  (represented by  $Spec(N_1)$  and  $Spec(N_2)$ ) is known. A natural question to ask is as follows. Suppose circuits  $N_1, N_2$  have a CS specification S of small granularity p. Is there an efficient procedure for EC of  $N_1, N_2$  if S is unknown (i.e we do not know the partitions  $Spec(N_1)$  and  $Spec(N_2)$  representing S)? In [6][5] it was conjectured that in that case EC of  $N_1, N_2$  is hard for any deterministic algorithm. The new (and equivalent) definition of CS given in this report allows one to get a better perspective on the problems one has to solve when checking  $N_1, N_2$  for equivalence.

One way to do the job is to find  $Spec(N_1)$  and  $Spec(N_2)$  and apply the CSV procedure. This approach is very similar to what the existing EC procedures exploiting structural similarity of  $N_1, N_2$  do ([1][2][3][8][9][11]). Namely, they try to find pairs of functionally equivalent points of  $N_1, N_2$  and use them as cut points. Then new points of  $N_1, N_2$  that are functionally equivalent in terms of cut points are looked for. The idea is that checking functional equivalence of internal points of  $N_1, N_2$  in terms of cut points is much easier than in terms of primary inputs. This approach faces the following two problems. The first problem is to find new potential cut points (i.e. to find points of  $N_1, N_2$  that are functionally equivalent). The second problem is to decide whether two functionally equivalent internal points can be used as cut points. Making a wrong decision here leads to the appearance of so called "false negatives".

One can view the "cut advancement" approach above as search for a CS of  $N_1, N_2$  of a special type where every subcircuit of  $Spec(N_1)$  and  $Spec(N_2)$  has exactly one output. However, if one try to extend this approach to CSs of the general type (where subcircuits of  $Spec(N_1)$  and  $Spec(N_2)$  may have many outputs), the two problems mentioned above become virtually unsolvable. In the case of multi-output subcircuits, functional equivalence is replaced with toggle equivalence. Let the granularity p of a CS of  $N_1, N_2$  be equal to 10. (So the subcircuits of  $Spec(N_1)$  and  $Spec(N_2)$ 2) may have up to 10 outputs.) Then the number of candidate subcircuits in  $N_1$  and  $N_2$  is proportional to  $|N_1|^{10}$  and  $|N_2|^{10}$ respectively where  $|N_i|$  is the size of  $N_i$ . The number of potential pairs of subcircuits to examine is proportional to  $|N_1|^{10} * |N_2|^{10}$ . But even if one finds subcircuits  $N_1^i$ ,  $N_2^i$  of size less or equal to 10 that are toggle equivalent, one still needs to decide if the outputs of  $N_1^i, N_2^i$  can be used as cut points. That is one needs to decide whether  $N_1^{i}$ ,  $N_2^{i}$  are toggle equivalent "by chance" or they are a part of a CS. Since the number of candidates is huge, making a mistake becomes unavoidable.

One can also try to perform EC of  $N_1$  and  $N_2$  by a procedure like recursive learning [10] that does not need the knowledge of a CS. The problem is that to prove  $N_1 N_2$  to be equivalent, one needs to derive relations between 2\*p Boolean variables. If a CS of  $N_1, N_2$  is not known, the number of relations one needs to derive in the worst case is proportional to  $(|N_1|+|N_2|)^{2*p}$ , which makes such a procedure computationally infeasible.

# 6. On logic synthesis of circuits preserving predefined specification

In this section we describe a procedure that, given a circuit  $N_1$  with a known specification, builds another circuit  $N_2$  implementing the same specification as  $N_1$ .

Let  $N_1$  be a Boolean circuit that needs to be optimized. Let *S* be a specification of  $N_1$  represented as  $Spec(N_1) = \{N_1^{-1}, ..., N_1^{-k}\}$ . Figure 5 shows pseudocode of a procedure for generating a circuit  $N_2$  that implements the same specification as circuit  $N_1$ . We will refer to it as **Specification Preserving** (**SP**) procedure. We assume that subcircuits  $N_1^{-1}, ..., N_1^{-k}$  are numbered in topological order i.e. for every pair *i*,*j* such that  $i < j \implies level(N_1^{-i}) \le level(N_1^{-j})$ .

 $Synthesize(N_1, Spec(N_1), cost\_functions) \{ for (i=1; i <= k ; i++) \{ D_{inp} = constr\_func(N_1^i, N_2^i, N_1, N_2); \}$ 

 $D_{inp} = constr_junc(N_1, N_2, N_1, N_2),$   $N_2^{i} = synth\_toggle\_equivalent(N_1^{i}, D_{inp}, cost\_functions)$  $D_{out}(N_1^{i}, N_2^{i}) = exist\_quantify(N_1^{i}, N_2^{i}, D_{inp});$ 

#### return( $N_2$ , Spec( $N_2$ ))}

#### Figure 5. Pseudo code of the SP procedure

The idea of the SP procedure is to replace subcircuits  $\{N_1^1, ..., N_1^k\}$  with toggle equivalent subcircuits  $\{N_2^1, ..., N_2^k\}$  in topological order moving from inputs to outputs. The SP procedure returns circuit  $N_2$  implementing the same specification as  $N_1$ . Circuit  $N_2^i$  toggle equivalent to  $N_1^i$  is built by the synth\_toggle\_equivalent procedure. (Section 7 gives an example of such a procedure.) After  $N_2^i$  is synthesized we compute the correlation function  $D_{out}(N_1^i, N_2^i)$  using previously computed functions  $D_{out}$  exactly as it is done by the CSV procedure. (Note that since  $N_1^i$ ,  $N_2^i$  are toggle equivalent "by construction",  $D_{out}(N_1^i, N_2^i)$  is a correlation function.)

The importance of the SP procedure is twofold. First, the complexity of the SP procedure is the same as that of the CSV procedure. Namely, it is exponential in the granularity p of the CS of  $N_1, N_2$  represented by  $Spec(N_1), Spec(N_2)$  and linear in the number of subcircuits in  $Spec(N_1)$  and  $Spec(N_2)$ . (Here we make a realistic assumption that  $synth\_toggle\_equivalent$  is "only" exponential in p). This means that if p is fixed, the SP procedure is linear in circuit size and hence it is **scalable**.

Second, the SP procedure allows one to make a nice **trade-off** between optimization quality and efficiency. Note that the search space explored by the SP procedure is limited to the implementations of the specification of  $N_1$  represented by  $Spec(N_1)$ . The smaller the granularity of specification S of  $N_1$  is, the smaller the search space is, which implies greater efficiency of the SP procedure. So, if no good alternative implementation  $N_2$  of S is found for the current specification of  $N_1$ , one can merge some adjacent subcircuits of  $Spec(N_1)$  to get a specification with a larger value of granularity for  $N_1$ . This way the search space becomes larger at the expense of performance degradation of the SP procedure.

#### 7. Experimental Results

In this section, we give some experimental results. In Subsection 7.1 we show that equivalence checking even of very similar circuits  $N_1 N_2$  (i.e. circuits having a CS of small granularity) is hard if this CS is not known. In Subsection 7.2 we use MCNC benchmarks to show that one can optimize a medium

size circuit  $N_1$  by removing logical redundancy and obtaining another (smaller) circuit  $N_2$  that is toggle equivalent to  $N_1$ .

#### 7.1 Equivalence checking

In the experiments we compared the performance of two EC algorithms: our CSV procedure shown in Figure 4 and an Industrial Equivalence Checker (referred to as **IEC**) of very high quality. Both algorithms were run on a 3.06 GHz Xeon PC.

In the experiments we checked for equivalence circuits obtained from a specification given as a combinational circuit of multi-valued blocks. The number of values taken by the variables of a block was parameterized. Circuits  $N_1$ ,  $N_2$  to be checked for equivalence were obtained from a specification using two sets of random encodings of the minimum (logarithmic) length.

Table 1. EC of circuits obtained from 4-valued specifications

| Name | # blocks in<br>CS | CSV<br>(sec.) | IEC<br>(sec.) | Ratio<br>(IEC / CSV) |
|------|-------------------|---------------|---------------|----------------------|
| des1 | 705               | 0.4           | 3             | 7                    |
| des2 | 2,562             | 2             | 14            | 7                    |
| des3 | 3,519             | 3             | 281           | 94                   |
| des4 | 8,628             | 14            | 308           | 22                   |
| des5 | 9,027             | 16            | 543           | 34                   |
| des6 | 10,572            | 20            | 534           | 27                   |

The goal of experiments was twofold. First we wanted to show that EC of circuits with a CS S of even small granularity is hard if S is unknown. Second, we wanted to demonstrate that this weakness of current EC algorithms hinders the development of more powerful synthesis procedures. (Even though we obtained circuits  $N_1$ ,  $N_2$  by explicitly encoding multi-valued variables of specification, circuit  $N_2$  could have been obtained from  $N_1$  by the synthesis procedure described in Section 6.)

In Table 1 we consider specifications with blocks of 4-valued variables. Second column gives the number of blocks for each design. Third and fourth columns give runtimes for CSV and IEC. The last column gives the ratio of runtimes.

Table 2. EC of circuits obtained from 8-valued specifications

| Name | # blocks in<br>CS | CSV<br>(sec.) | IEC<br>(sec.) | Ratio<br>(IEC / CSV) |
|------|-------------------|---------------|---------------|----------------------|
| des1 | 705               | 5             | 16,948*       | > 3,390              |
| des2 | 2,562             | 19            | 24,638*       | > 1,297              |
| des3 | 3,519             | 29            | >36,000       | > 1,241              |
| des4 | 8,628             | 107           | 26,758        | 250                  |
| des5 | 9,027             | 111           | >36,000       | > 324                |
| des6 | 10,572            | 141           | 27,391        | 194                  |

In Table 2 we consider the same specifications (i.e. the topology of corresponding specifications was the same) of 8-valued blocks. Hence *the granularity of CSs* of binary circuits obtained by encoding multi-valued variables was slightly larger than for binary circuits of Table 1. Runtimes of IEC marked with

'\*' correspond to the cases where IEC aborted without completion (due to exhausting some internal resource).

For the circuits from both tables CSV was faster than IEC. However the gap between the performance of CSV and IEC increased dramatically as the granularity of CSs had grown. IEC was able to complete all the instances of Table 1 in a reasonable time. On the other hand, it completed only 2 equivalence checks for the circuits of Table 2 and took dramatically more time.

### 7.2 Toggle equivalence based redundancy removal

The goal of experiments described in this subsection was twofold. First, we wanted to show that one can efficiently check toggle equivalence of two practical circuits of medium size. Second, we wanted to demonstrate that one can use the notion of toggle equivalence for logic optimization.

In Section 6 we described a method of logic synthesis that preserves a predefined specification. The key procedure of the algorithm shown in Figure 5 is synth\_toggle\_equivalent. Given a subcircuit  $N_1^{i}$  and a cost function, this procedure builds another subcircuit  $N_2^{i}$  that is toggle equivalent to  $N_1^{i}$  and is optimized with respect to this cost function. In this subsection we give an example of such a procedure. This procedure is based on stuck-at fault redundancy removal. Suppose that  $N_1$  is a multi-output circuit to be optimized (for the sake of simplicity, in this section we drop superscripts from the symbols denoting subcircuits with the exception of the last few paragraphs). Suppose that  $N_2$  is the circuit obtained from  $N_1$  by setting to a constant  $a \in \{0,1\}$  the line connecting the output of a gate  $g_i$  of  $N_1$  to an input of gate  $g_k$  of  $N_1$ . Suppose  $N_2$  and  $N_1$  are functionally equivalent. This means that one can remove the connection between gates  $g_i$  and  $g_k$  and set the corresponding input of  $g_k$  to the constant *a* without changing the functionality of  $N_1$  (which means that  $N_1$  has some logic redundancy).

Suppose however that we relax the requirement of preserving the functional equivalence of  $N_1$  and  $N_2$ . In other words, suppose that after setting the output of the gate  $g_k$  to a constant (as described above) we get a circuit  $N_2$  that is toggle equivalent to  $N_1$ . Setting a line to a constant can be considered as an example of transformations that can be used by the procedure *synth\_toggle\_equivalent* above. On the one hand, by removing redundancies that preserve toggle equivalence (but may break functional equivalence) we optimize circuit  $N_1$ . On the other hand we build a circuit that is toggle equivalent to  $N_1$ . Since functional equivalence is a special case of toggle equivalence, logic redundancy removal that preserves toggle equivalence is a more powerful optimization technique than its counterpart preserving functional equivalence.

In this subsection, we test logic redundancy of some MCNC benchmarks with respect to toggle equivalence. But first we show how one can check toggle equivalence of the original and faulty circuits. To check if circuits  $N_1$  and  $N_2$  are toggle equivalent one can use the method described in Proposition 6. Let us assume for the sake of clarity that  $N_1$  and  $N_2$  have the same set of input variables  $X=\{x_1,...,x_n\}$ . Then to check if  $N_1$  and  $N_2$  are toggle equivalent one can a) existentially quantify away from the function  $H(N_1, N_2) = Sat(v(N_1) \land Sat(v(N_2))$  all the variables except the output variables of  $N_1$  and  $N_2$ ; b) check if the function obtained from H after existential quantification is a correlation function as described in Remark 2. However, it is not hard to see

that one can check  $N_1$  and  $N_2$  for toggle equivalence without existential quantification.

Let  $Y = \{y_1, ..., y_m\}$  and  $Z = \{z_1, ..., z_k\}$  be the sets of output variables of  $N_1$  and  $N_2$  respectively. Then checking if  $N_1$  and  $N_2$ are toggle equivalent reduces to two SAT checks similar to those of Remark 2. The first check is to test if the function  $H_1 = H(N_1, N_2) \land H(N^*_1, N^*_2) \land Neq(Y,Y^*) \land Eq(Z,Z^*)$  is satisfiable. Here  $N^*_1$  and  $N^*_2$  are copies of circuits  $N_1$  and  $N_2$ , with input variables represented by  $X^* = \{x^*_1, ..., x^*_n\}$  and their output variables represented by  $Y^* = \{y^*_1, ..., y^*_m\}$  and  $Z^* = \{z^*_1, ..., z^*_k\}$  respectively (see Figure 6). The value of  $Eq(z, z^*)$  where z and  $z^*$  are assignments to Z and  $Z^*$  respectively is equal to 1 iff  $z=z^*$ . The function  $Neq(Y, Y^*)$  is the negation of  $Eq(Y, Y^*)$ . The second SAT check is to test if the function  $H_2 =$  $H(N_1, N_2) \land H(N^*_1, N^*_2) \land Eq(Y, Y^*) \land Neq(Z, Z^*)$  is satisfiable.

Circuits  $N_1$  and  $N_2$  are toggle equivalent iff  $H_1$  and  $H_2$  are unsatisfiable. For example, if  $N_1$  is satisfiable, then there is a pair of assignments x,  $x^*$  to variables X and  $X^*$  respectively such that  $N_1$  and  $N^*_1$  produce different output assignments while  $N_2$  and  $N^*_2$  produce the same assignment (which means that  $N_1$  toggles and  $N_2$  does not).



Figure 6. Two copies of  $N_1$  and  $N_2$  one needs for checking their toggle equivalence

Table 3 gives results of redundancy removal for MCNC benchmarks. In the first column the names of the MCNC benchmarks we used in experiments are shown. First, initial MCNC benchmarks were technology mapped to obtain circuits consisting of two input NAND gates. The technology mapping was performed by the "tech\_decomp" command of the logic synthesis system SIS [10]. The size of obtained circuits (number of inputs, outputs and gates) is shown in columns 2-4. Then the circuits were optimized by removing stuck-at fault redundancy as described above. This optimization was performed by running the "red removal" command of SIS. The size of optimized circuits is shown in the column "final number of gates" of Table 3. Note that the resulting circuits do not contain untestable stuck-at faults any more. The last column of Table 3 shows the number of untestable stuck-at faults with respect to toggle equivalence circuits still have after removing all the single stuck-at faults with respect to functional equivalence. This column shows that more than one-third of circuits still have stuck-at faults that are untestable with respect to toggle equivalence and some circuits (like vda, x1,K2) can be significantly optimized by removing this redundancy.

To check toggle equivalence of original and faulty circuits we ran two SAT checks as described above. The SAT checks were performed by the SAT-solver BerkMin [4]. Table 4 gives some

| Table 3. Redundancy removal from MCNC |
|---------------------------------------|
| benchmarks                            |

| benchmarks |              |               |                                       |                                |                                                                     |
|------------|--------------|---------------|---------------------------------------|--------------------------------|---------------------------------------------------------------------|
| name       | #in-<br>puts | #out-<br>puts | ini-<br>tial<br>number<br>of<br>gates | final<br>number<br>of<br>gates | number<br>of red.<br>faults<br>w.r.t.<br>toggle<br>equi-<br>valence |
| pcler8     | 27           | 17            | 86                                    | 86                             | 8                                                                   |
| frg1       | 28           | 3             | 792                                   | 792                            | 0                                                                   |
| sct        | 19           | 15            | 207                                   | 202                            | 0                                                                   |
| unreg      | 36           | 16            | 128                                   | 128                            | 0                                                                   |
| lal        | 26           | 19            | 198                                   | 198                            | 28                                                                  |
| c8         | 28           | 18            | 332                                   | 235                            | 0                                                                   |
| cht        | 47           | 36            | 374                                   | 253                            | 0                                                                   |
| b9         | 41           | 21            | 147                                   | 141                            | 10                                                                  |
| my_adder   | 33           | 17            | 256                                   | 256                            | 0                                                                   |
| example2   | 85           | 66            | 382                                   | 328                            | 35                                                                  |
| C432       | 36           | 7             | 218                                   | 175                            | 0                                                                   |
| apex7      | 49           | 37            | 327                                   | 290                            | 0                                                                   |
| vda        | 17           | 39            | 1333                                  | 1333                           | 2125                                                                |
| ttt2       | 24           | 21            | 670                                   | 387                            | 0                                                                   |
| i5         | 133          | 66            | 423                                   | 423                            | 0                                                                   |
| i6         | 138          | 67            | 760                                   | 717                            | 0                                                                   |
| term1      | 34           | 10            | 854                                   | 494                            | 0                                                                   |
| i7         | 199          | 67            | 972                                   | 893                            | 0                                                                   |
| i9         | 88           | 63            | 1163                                  | 812                            | 0                                                                   |
| K2         | 45           | 43            | 2875                                  | 2643                           | 587                                                                 |
| apex6      | 135          | 99            | 747                                   | 747                            | 8                                                                   |
| x4         | 94           | 71            | 959                                   | 737                            | 6                                                                   |
| x3         | 135          | 99            | 1547                                  | 1326                           | 0                                                                   |
| x1         | 51           | 35            | 2140                                  | 1913                           | 318                                                                 |
| C499       | 41           | 32            | 446                                   | 438                            | 0                                                                   |
| rot        | 135          | 107           | 1359                                  | 1193                           | 85                                                                  |
| C880       | 60           | 26            | 360                                   | 360                            | 6                                                                   |
| frg2       | 143          | 139           | 2434                                  | 1729                           | 76                                                                  |
| C1355      | 41           | 32            | 550                                   | 542                            | 0                                                                   |
| pair       | 173          | 137           | 1916                                  | 1596                           | 38                                                                  |
| L          |              |               |                                       |                                |                                                                     |

data on the time taken by those SAT checks. The column "max time" gives the maximum time taken by a SAT check when testing stuck-at fault redundancy (with respect to toggle equivalence) of a particular circuit. The column "Median time" gives the median time among all the SAT checks and the column "Arithmetic mean" gives the average time taken by BerkMin when testing redundancy of a particular circuit. The results of Table 4 show that toggle equivalence can be efficiently checked by a state-of-the-art SAT-solver.

| name     | Max time | Median | Arithmetic |
|----------|----------|--------|------------|
|          |          | time   | mean       |
| pcler8   | 0.03     | 0.010  | 0.01       |
| frg1     | 0.89     | 0.100  | 0.14       |
| sct      | 0.16     | 0.040  | 0.04       |
| unreg    | 0.08     | 0.010  | 0.01       |
| lal      | 0.20     | 0.040  | 0.05       |
| c8       | 0.42     | 0.040  | 0.07       |
| cht      | 0.18     | 0.020  | 0.04       |
| b9       | 0.20     | 0.030  | 0.04       |
| my_adder | 0.36     | 0.050  | 0.07       |
| example2 | 0.56     | 0.100  | 0.13       |
| C432     | 0.27     | 0.040  | 0.05       |
| apex7    | 0.36     | 0.060  | 0.08       |
| vda      | 3.23     | 0.680  | 0.64       |
| ttt2     | 3.09     | 0.070  | 0.20       |
| i5       | 0.89     | 0.270  | 0.30       |
| i6       | 2.51     | 0.080  | 0.25       |
| term1    | 1.47     | 0.120  | 0.19       |
| i7       | 5.21     | 0.370  | 0.73       |
| i9       | 3.02     | 0.170  | 0.40       |
| K2       | 13.38    | 2.500  | 3.96       |
| apex6    | 3.83     | 0.300  | 0.51       |
| x4       | 2.38     | 0.270  | 0.49       |
| x3       | 6.24     | 1.040  | 1.37       |
| x1       | 11.84    | 1.850  | 2.56       |
| C499     | 13.06    | 0.110  | 1.11       |
| rot      | 7.94     | 1.110  | 1.71       |
| C880     | 10.86    | 0.070  | 0.53       |
| frg2     | 13.01    | 2.180  | 2.78       |
| C1355    | 16.24    | 0.150  | 1.32       |
| pair     | 17.10    | 1.810  | 2.91       |

Table 4. Performance of Sat-solver in toggle equivalence checks

Unfortunately, the method of obtaining toggle equivalent circuits by removing logic redundancy that preserves toggle equivalence is "incomplete". Suppose for example, that we want to optimize a circuit  $N_1$  whose specification  $Spec(N_1)=\{N_1^{11}, N_1^{22}, N_1^{31}\}$  is shown in Figure 1. Using the procedure of logic redundancy removal above, only circuits of the first topological level i.e.  $N_1^{11}, N_1^{22}$  can be optimized by replacing them with their toggle equivalent counterparts  $N_2^{11}, N_2^{22}$ . To finish synthesis of circuit  $N_2$  we have to compute correlation functions  $D_{out}(N_1^{11}, N_2^{12})$  and then synthesize a subcircuit  $N_2^{32}$  that is toggle equivalent to  $N_1^{32}$  under the constraint function  $D_{out}(N_1^{11}, N_2^{12}) \wedge D_{out}(N_1^{22}, N_2^{22})$ . This last circuit cannot be

obtained by simply removing redundant logic from the subcircuit  $N_1^3$ . However, results of this subsection imply that it is feasible to design an efficient procedure for building a subcircuit  $N_2^3$  that is toggle equivalent to  $N_1^3$ .

#### 8. Directions for future research

In this section we sketch three directions for future research. The first direction is to apply the results of the theory we introduced in this report to sequential circuits. It is of great practical importance because a sequential circuit has a "natural partitioning" which is a partitioning of this circuit into combinational subcircuits bounded by registers. The idea is that one can use the notion of toggle equivalence for encoding state variables implicitly. The procedure for equivalence checking of two sequential circuits is a straightforward generalization of the corresponding procedure for combinational circuits with a CS.

The second direction is to develop more powerful procedures for existential quantification which is a core operation for both equivalence checking of circuits with a known CS and logic synthesis preserving a predefined specification. Suppose that N is a k-output Boolean circuit and one needs to existentially quantify away all the variables of N except output variables. If the value of k is small one can perform  $2^k$  SAT-checks if a particular output assignment is observable under some input assignment. Note, that such a SAT-based quantification can be performed even if the size of N is large. If k is large, then one can use BDDs to perform quantification. The idea is to represent the function Sat(v(N)) as a BDD and quantify away all the variables except output ones. The drawback of this method that it may occur that even though the set of observable output combinations is "reasonably regular" there is no any good ordering of output variables and so the final BDD is too large to compute. So if N has a regular set of observable output combinations (but there is no small BDD representing it) and k is large, no current method of existential quantification can compute this set.

The third direction is to find efficient and high-quality procedures to solve the following problem. Let  $N_1$  be a multioutput Boolean circuit and X be its set of input variables. Let Ybe another set of Boolean variables such that  $X \cap Y \neq \emptyset$  and Cf(X,Y) be a correlation function. The problem is to find a circuit  $N_2$  with the set of input variables Y such that a)  $N_1$  and  $N_2$  are toggle equivalent under the constraint function Cf(X,Y); b)  $N_2$  is optimized with respect to a cost function. (For example,  $N_2$  has fewer gates than  $N_1$ .) This operation is key to logic synthesis preserving a predefined specification.

#### 9. Conclusions

In this report, we show that two combinational circuits  $N_1$ ,  $N_2$  have a CS *S* iff they can be partitioned into toggle equivalent subcircuits connected in  $N_1$ ,  $N_2$  in the same way. We give an efficient procedure for verifying a CS of  $N_1$ ,  $N_2$  that also performs EC of  $N_1$ ,  $N_2$ . We show how one can build a combinational circuit that preserves a predefined specification. We give experimental evidence that EC of circuits with unknown CS is hard. Besides we experimentally show that the notion of toggle equivalence can be used for logic optimization of practical circuits.

#### References

- [1] C.L. Berman, L.H.Trevillyan. Functional comparison of logic designs for VLSI circuits. ICCAD-89, pp.456-459.
- [2] D.Brand. Verification of large synthesized designs. ICCAD-93,pp.534-537.
- [3] J.R.Burch, V.Singhal. *Tight integration of combinational verification methods*. ICCAD-98, pp.570-576.
- [4] E.Goldberg, Y.Novikov. *BerkMin: A Fast and Robust SAT-solver*. DATE-2002, Paris,pp.142-149..
- [5] E.Goldberg, Y.Novikov. How good can a resolution based SAT-solver be? SAT-2003, LNCS 2919, pp. 37-52.
- [6] E.Goldberg, Y. Novikov. Equivalence Checking of Dissimilar Circuits. International Workshop on Logic and Synthesis, May 28-30, 2003, USA. Available at <u>http://eigold.tripod.com/papers/dissim-iwls.zip</u>
- [7] E.Goldberg. Equivalence Checking of Dissimilar Circuits II. Technical report. CDNL-TR-2004-08030, August 2004, available at http://eigold.tripod.com/papers/tr-2004-0830.pdf

- [8] C.van Eijk,G.Janssen. Exploiting structural similarities in a BDD-based verification method. Proceedings of 2<sup>nd</sup> International Conference on Theorem Provers in Circuit Design, pp.110-125,1995.
- [9] A.Kuehlmann, F.Krohm. *Equivalence checking using cuts and heaps*, DAC-98, pp.263-268.
- [10] W.Kunz, D.Pradhan. Recursive Learning: A New Implication Technique for Efficient Solutions to CAD-problems: Test, Verification and Optimization. IEEE transactions on CAD, Vol. 13, No. 9, pp. 1143-1158, 1994.
- [11] Y.Matsunaga. An efficient equivalence checker for combinatorial circuits. DAC-96,pp.629-634.
- [12] E. Sentovich et al. SIS: A system for sequential circuit analysis, tech. rep., Electronics Research Laboratory, University of California, Berkeley, May 1992.