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Abstract.  Earlier we introduced the notion of a stable set of 
points (SSP) and showed that a CNF formula is unsatisfiable iff 
there is a set of points (i.e. complete assignments) that is stable. 
Experiments showed that SSPs of  CNF formulas of practical 
interest are very big. So computing an SSP of a CNF formula 
point by point is, in general, infeasible. In this report, we show 
how an SSP can be computed in “clusters” , each cluster being a 
large set of points  that are processed “simultaneously” . 
 

1.  Introduction 
In  [2][3] we introduced the notion of a stable set of points 

(SSP) of CNF formulas.   We showed that a CNF formula is 
unsatisfiable  if and only if there is a set of points (i.e. complete 
assignments) that is stable.  This means that to prove 
unsatisfiability of a CNF formula F it is sufficient to construct an 
SSP. (If F is satisfiable, then a satisfying assignment is to be 
found when building an SSP of F.)  

The main appeal of SSPs is that they allow one to make full 
use of formula’s structural properties. In particular, SSPs give a 
“natural”  way of  traversing the search space. Usually, a procedure 
for search space traversal is influenced by the requirement to 
guarantee search completeness. For example, in the DPLL 
procedure [1] , that is the basis of many algorithms used in 
practice, search is organized as a binary tree. In reality, the search 
tree is used only to impose a linear order on the points of the 
Boolean space to avoid visiting the same point twice. However, 
this order may be in conflict with “natural”  relationships between 
points of the Boolean space that are imposed by the CNF  formula 
to be checked for satisfiability (for example, if this formula has 
some symmetries).  

Even though for some classes of formulas there are SSPs of 
polynomial size, in general, SSPs are exponential in formula size 
(which is something to be expected unless NP=coNP).  A simple 
procedure for building an SSP of a formula F was given in [2][3]. 
Experiments showed that the number of points grew very large 
even  for small CNF formulas. This implies that building an SSP 

“point by point”  as it is done by the procedure of  [2][3] is, in 
general, impractical. Two ways of overcoming this problem were 
suggested.  One way is to compute SSP with excluded directions. 
As it was shown in [3] one can drastically reduce the size of SSPs 
if some directions are excluded from searching. By building such 
an SSP one proves that a clause (whose literals are specified by 
the excluded directions) is implied by the original formula F. This 
clause can be added to F to reduce the size of the  SSPs with 
excluded directions to be computed next. Eventually, a small SSP 
with no excluded directions will be obtained (if the original 
formula is unsatisfiable). Summing up, the idea of this approach is 
to replace the construction of one huge “monolithic”  SSP with 
building  a sequence of small SSPs with excluded directions.   

The other (and even more promising) way to solve the 
problem of computing SSPs of exponential size was mentioned in 
[2][3]. The idea is to compute an SSP “ in clusters”  processing 
many points simultaneously  In this report, we consider the 
problem of computing SSPs in clusters in greater detail.  The 
contribution of this report is threefold.  First, we introduce the 
notion of a stable set of clusters.  The importance of this notion is 
that it facilitates taking into account formula’s structural 
properties. In particular, by giving a SAT-solver some information 
on the type of clusters to use,  one may get exponential speed-up. 
Although we introduce only the notion of clusters consisting of 
points, the stability of more complex objects (like clusters of 
clusters of points and so on) can be studied.  

Second, we show how one can build a stable set of clusters 
where clusters are cubes. Interestingly, “ local”  proof systems 
introduced in [4], can be viewed  as a special way of building  
such a stable set of clusters. Third, we describe how the notion of 
a stable set of clusters works in testing the satisfiability of 
symmetric formulas (in particular, pigeon-hole formulas).  

It should be noted that SAT-algorithms based on local 
search (that is SAT-algorithms operating on complete 
assignments) have been studied for more than a decade [7][8].  
Recently a new powerful randomized local search algorithm was 
introduced in [9]. A derandomized version of this algorithm was 



given in [5]. In Section 3 we briefly discuss the relation between 
SSPs and SAT-algorithms based on local search. 

This report is structured as follows. In Section 2 we recall 
the notion of SSPs and give other relevant definitions. Section 3  
briefly discusses the relation of SSPs and local search SAT-
algorithms. In Section 4 we introduce the notion of a stable set of 
clusters. Section 5 describes a procedure for computing a stable 
set of clusters where clusters are cubes.   In Section 6 we show 
how a stable set of clusters is computed for symmetric formulas.  
We make some conclusions in Section 7. 

 

2. Main definitions 
In this section, we recall the notion of SSP introduced in  

[2][3] and give other relevant definitions.  
Let  F  be a CNF formula. Denote by vars(F) the set of 

variables of F. Denote by B the set { 0,1}  of values taken by a 
Boolean variable. Denote by B|X| the set of complete assignments 
to the set of Boolean variables X= vars(F).  A complete 
assignment to the variables of X is also called a point of B|X| . 
Definition 1. A disjunction of literals (also called a clause) C is 
called satisfied by a complete assignment (point) p if C(p) = 1. 
Otherwise, clause C is called falsified by p. Denote by vars(C) the 
set of variables of C. 
Definition 2. Let  F be a CNF formula. The satisfiability 
problem (SAT for short) is to find a complete assignment (point) 
satisfying  all the clauses of F. This assignment is called a 
satisfying assignment. 

Definition 3. Let p ∈ B|X|
 be a point falsifying a clause C. The 1-

neighborhood of point p with respect to clause C (written 
Nbhd(p,C)) is the set of points that are at Hamming distance 1 
from p and that satisfy C. 

 It is not hard to see that the number of points in Nbhd(p,C) 
is equal to that of literals in C. 
Example 1. Let C=x1+~x3+x6 be a clause specified in the 
Boolean space of 6  variables x1,…, x6.  Let 
p=(x1=0, x2=1, x3=1, x4=0, x5=1, x6=0) be a point falsifying C. 
Then Nbhd(p,c)  consists of the following three points: 
p1=(x1=1, x2=1, x3=1, x4=0, x5=1, x6=0), p2=(x1=0, x2=1, x3=0,  
x4=0, x5=1, x6=0), p3=(x1=0, x2=1, x3=1, x4=0, x5=1, x6=1). Points 
p1, p2, p3 are obtained from p by flipping the value of variables 
x1, x3, x6 respectively i.e. the variables whose literals are in C. 
Definition 4. Denote by Z(F) the set of falsifying points i.e. 
points at which  F takes value 0. Obviously, if F  is unsatisfiable,  
Z(F) = B|X| where X= vars(F). 

Definition 5. Let F  be a CNF formula and P be a subset of the 
set of falsifying points Z(F). A function g mapping P to F is 
called a transport function if, for any p ∈ P,  clause g(p) ∈ F is 
falsified by p. In other words, a transport function g:P→F is 
meant to assign each point p∈P a clause of F that is falsified by p. 
We call mapping P → F a transport function because it allows 
one to introduce some kind of  “movement”  of points in the 
Boolean space. 

Definition 6. Let P be a nonempty subset of Z(F) and F  be a 
CNF formula. Set  P is called stable with respect to a CNF 
formula F and transport function g: P→F, if  ∀ p ∈ P,  
Nbhd(p, g(p))  ⊆ P. 

Henceforth, if we say that a set of points P is stable with 
respect to a CNF formula F without mentioning a transport 
function, we mean that there is a function g:P → F  such that P is 
stable with respect to F and g.  
 
Example 2. Consider an unsatisfiable CNF formula F consisting 
of 7 clauses: C1=x1+x2, C2=~x2+x3, C3=~x3+x4, C4=~x4+x1, 
C5=~x1+x5, C6=~x5+x6, C7=~x6+~x1. Clauses of F are composed of 
literals of  6 variables: x1,…, x6. The following 14 points form an 
SSP P: p1=000000, p2=010000, p3=011000, p4=011100, 
p5=111100, p6=111110, p7=111111, p8=011111, p9=011011, 
p10=010011, p11=000011, p12=100011, p13=100010, p14=100000. 
(Values of variables are specified in the order variables are 
numbered. For example, p4 consists of assignments x1=0, x2=1, 
x3=1, x4=1, x5=0, x6=0.) Set P is stable with respect to the 
transport function g specified as: g(p1)=C1, g(p2)=C2, g(p3)=C3, 
g(p4)=C4, g(p5)=C5, g(p6)=C6, g(p7)=C7, g(p8)=C4, g(p9)=C3, 
g(p10)=C2, g(p11)=C1, g(p12)=C7, g(p13)=C6, g(p14)=C5.  It is not 
hard to see that  g indeed is a transport function i.e. for any point 
pi of P it is true that C(pi)=0 where C=g(pi). Besides, every point 
pi of P satisfies the condition Nbhd(p, g(p)) ⊆ P of Definition 6.  
Consider, for example, point  p10=010011. The value of g(p10) is 
C2, C2=~x2+x3 and  the value of Nbhd(p10,C2) is { p11=000011, 
p9=011011} , the latter being a subset of  P. 
Proposition 1.  If there is a set of points that is stable with 
respect to a CNF formula F, then F is unsatisfiable.  

Proof  is given in [3]. 

 

3. SSPs and local search 
In this section, we briefly discuss the relation of SSPs and 

SAT-algorithms based on local search (subsection 3.1) and, in 
particular, the procedure of [5] (section 3.2 ). 

3.1 SSPs and local search procedures 
SAT-algorithms based on local search have been a subject 

of study for more than a decade. First, local search was applied 
only to satisfiable formulas.  Papadimitriou showed [7] that a very 
simple stochastic local search procedure finds a satisfying 
assignment of a 2-CNF formula in polynomial time. Then, a few 
practical SAT-algorithms based on stochastic local search were 
developed and successfully applied to more general classes of 
satisfiable  CNF formulas [8].  In [9] a new powerful stochastic 
algorithm for solving satisfiable CNF formulas was introduced by 
Shöning.  Later, a derandomized version of that algorithm was 
developed [5] that achieved the best known upper bound on 
complexity of solving k-SAT. Importantly, the procedure of [5] 
can be applied to both satisfiable and unsatisfiable CNF formulas. 

On the one hand, an SSP can be viewed as a representative 
of the world of local search algorithms. In particular, the 
procedure for building an SSP point by point  ([2][3]) looks very 
similar to a procedure of [5] (see the discussion in the next 
subsection).  On the other hand, the definition of SSP is algorithm 
independent, which makes SSPs a very appealing object of study 
and separates them from the local search algorithms.  This 
distinction becomes more conspicuous in this report where we 
consider the notion of a stable set of clusters.  For example, the 
procedure for building such a set when clusters are cubes (see 
Section 5) does not look like a local search procedure at all. 

 



3.2 SSPs and procedure of [5] 
In this subsection we compare two procedures. The first 

procedure introduced by us in [2],[3] (its description is given in 
subsection 5.2) computes an SSP of a CNF formula F point by 
point.  The second procedure  [5] searches for a satisfying 
assignment of F in a Hamming ball with a center p and  radius r. 
Needless to say that the objectives of these two procedures  are 
different.  Our procedure is meant for building an SSP and testing 
the satisfiability of F is just a “by-product". The objective of the 
procedure of [5] is to test the satisfiability of F. Nevertheless, 
these procedures look very similar.   

If one sets radius r to n, where n  is the number of variables 
in F, the procedure of [5] works “almost”  like our procedure when 
the set Boundary is initialized with the point p. The only 
difference is that  the set of points visited by  the procedure of [5] 
is, in general, smaller than the set of points built by our procedure. 
When a point p′′′′  is reached by our procedure, all (new) points of 
Nbhd(p′′′′,C) are added to Boundary where C is a clause of F 
falsified by p′′′′.  On the other hand, the procedure of [5] “ ignores”  
all the  points of Nbhd(p′′′′,C) that are closer to the center p than the 
point p′′′′.   

So an SSP is “ redundant”  in comparison to the set of points 
visited by the procedure of [5] when looking for a satisfying 
assignment in the Hamming ball of radius n.   However this is a 
very “ fruitful”  redundancy because it allows one to make testing 
the stability of a set of points P local. Namely, for every point p of 
P, one just  needs to  test if Nbhd(p, g(p)) is in P and  no 
knowledge of a center point is necessary. In its turn, the locality of 
stability testing is crucial in “speeding up”   the computation of  
SSPs  by building them  in clusters of points. 

 

4. Computing SSP by building a stable set of 
clusters 

In this section, we introduce the notion of a stable set of 
clusters. As we mentioned in the introduction,  experiments show 
that computing an SSP point by point is impractical. A natural 
way to speed up the computation is to process many points at 
once.  
Definition 7. Let F be a CNF formula and D be a subset of Z(F) 
where X = vars(F).  Let  g be a transport function Z(F)→ F. 
Denote by Nbhd(D, g)  the union of sets Nbhd(p, g(p)), p ∈ D for 
all the points of D. In other words, Nbhd(D, g) is the union of 1-
neighborhoods of the points of D where 1-neighborhood 
Nbhd(p, g(p)) of a point p is computed with respect to a clause C 
of F assigned by the transport function g. 

Definition 8. Let F be a CNF formula and D1,…, Dk be subsets 
of Z(F)  where X=vars(F). Let  gi, i=1,..,k be a transport function 
Z(F)→ F.  Suppose that for every Di, i=1,..,k it is true that 
Nbhd(Di, gi) ⊆ D1 ∪ …∪Dk. Then the set { D1,..,Dk}  will be called 
a stable set of clusters (SSC) with respect to F and transport 
functions g1,.., gk. (Here we refer to a  subset Di as a cluster). 

Proposition 2. Let F be a CNF formula and D1,..,Dk be a stable 
set of clusters with respect to transport functions g1,.., gk. Then F 
is unsatisfiable. 

Proof.  Denote by P the set D1 ∪ …  ∪ Dk. Let g be a transport 
function such that for every p∈ Z(F), it is true that g(p) = C, 
C ∈ F where C=gi(p).  In other words, the function g assigns to p 

the same clause that is assigned to p by some  transport function gi 
(that is picked arbitrarily from g1,.., gk).  Then P is an SSP with 
respect to F and the transport function g. Indeed, let p be a point 
of P and gi be a transport function such that g(p)=gi(p)=C.  Since 
{ D1,..,Dk}  is an SSC, then Nbhd(Di,gi) ⊆ P. Hence Nbhd(p, gi) ⊆ 
P and so Nbhd(p, g) ⊆ P. 

Note that if P is an SSP of F, then any set of k sets Di ⊆ P 
such that D1 ∪ …  ∪ Dk = P forms an SSC. However, we are 
interested only in using “natural”  clusters. Informally, set Di is a 
natural cluster if the set of points of Di and the set of points 
Nbhd(Di, gi)  can be “easily”  specified.  

The importance of the notion of an SSC is twofold. First, an 
obvious advantage of operating on clusters is that  if for the 
formulas of some class, there is an SSC of a polynomial  number 
of clusters (in formula’s size), one can have an efficient procedure 
for testing the satisfiability of these formulas.   

Second, a less obvious advandage is that by providing 
information about the structure of clusters one can “pump” a lot 
of information into a SAT-solver. It is highly unlikely that there is 
an efficient universal algorithm for solving SAT. From a practical 
point of view, this implies  that to improve a SAT-solver’s chance 
to efficiently solve formulas of a  class, this SAT-solver needs 
some information about structural properties of formulas of this 
class. So a practical SAT-solver should have a “communication 
channel”  with the user. Since a cluster may consists of an 
exponential number of points,  by advising on the “shape” of 
clusters, the user may provide  a SAT-solver with an enormous 
amount of information. As we will see later, this is exactly the 
case for symmetric formulas, where the shape of clusters is 
derived from formula’s structural properties namely its 
symmetries. 

In this report, we consider only a two-level “hierarchy” , 
namely, clusters consisting of points.  However, one can introduce 
more complex hierarchies  (like clusters of clusters of points and 
so on).  Arguably, using such hierarchies can help in  capturing 
CNF formula’s structure. 

  

5. Computing SSCs using cubes as clusters  
In this section, we describe a special class of SSCs where 

clusters are cubes.  In subsection 5.1 we give a few more 
definitions we need in this section. Subsection 5.2 recalls the 
procedure of [2][3] for building an SSP. In subsection 5.3  we 
describe a procedure for building an SSC with cubes as clusters. 
We show that this procedure is complete and sound in subsection 
5.4. Subsection 5.5 discusses how different initialization choices 
affect the  procedure of subsection 5.3.  In subsection 5.6 we 
describe the relation between SSCs with cubes as clusters and 
“ local”  proof systems of [4]. Finally, in subsection 5.7, potential 
improvements of the procedure of subsection 5.3 are discussed. 

 

5.1 A few more definitions 
Definition 9.  Let X ={ x1,.., xn}  be a set of Boolean variables. A 
cube D of B|X| is a subset of  B|X| that can be represented as 
A1×..×An, where Ai is a non-empty subset of B and ‘×’  means the 
Cartesian product. The components Ai of  D that are equal to { 0}  
or { 1}  are called literal components of the cube D. 

Definition 10.  Let X ={ x1,.., xn}  be a set of Boolean variables. 
Let D =A1×..×An be a  cube of B|X| and Ai be equal to { 0,1} . Let 



D0,D1 be the cubes obtained from D by replacing the set Ai with 
sets { 0}  and { 1}  respectively. We will say that cubes D0 and D1 
are obtained from D by splitting in variable xi.  

Definition 11. Let X ={ x1,..,xn}  be a set of Boolean variables. 
Let C be a clause, vars(C) ⊆ X. Denote by Unsat(C) the set of all 
points of B|X| that falsify C. It is not hard to see that Unsat(C) is a 
cube of B|X|. 

Example 3. Let C=x2+~x4 and X={ x1, x2, x3, x4} . Then Unsat(C) 
equals { 0,1} ×{ 0} ×{ 0,1} ×{ 1}  In other words, Unsat(C) consists 
of all the points of B4 for which x2=0 and x4=1.  

Definition 12. Let X ={ x1,.., xn}  be a set of Boolean variables. 
Let p be a point of B|X|. Denote by Nbhd(p, xi) the neighborhood 
of p in direction xi, i.e. a one-element set { p′′′′ }  where point p′′′′  is 
obtained from p by flipping the value of xi in p.  

From Definition 3 and Definition 12, it follows that 
Nbhd(p,C)  is the union of Nbhd(p, xi) for all the variables  of the 
clause  C. 
Definition 13. Let X ={ x1, .., xn}  be a set of Boolean variables. 
Let D =A1×..×An be a cube of B|X| and Ai be equal to { 0}  or { 1} . 
Denote by Nbhd(D, xi) the union of Nbhd(p, xi) for all the points p 
of D. It is not hard to see that  Nbhd(D, xi) is the cube obtained 
from D by replacing the set Ai with the set { 0,1}  \ Ai. 

Definition 14.We will say that  cube D falsifies  clause C if 
D ⊆ Unsat(C).  (Obviously, in this case, every point of D falsifies 
C.)  

Definition 15. Let X ={ x1, .., xn}  be a set of Boolean variables. 
Let D be a cube of B|X|  and C be a clause falsified by D. Denote 
by Nbhd(D,C) the union of  cubes Nbhd(D, xi) for all xi∈ vars(C). 

Note that cubes are “natural”  clusters according to the 
informal definition of Section 3. On the one hand, the set of 
points a cube D contains can be easily specified. On the other 
hand, if a clause C is falsified by D, the neighborhood Nbhd(D,C) 
is the union of a small number of cubes. So it can be easily 
specified as well. 

 

5.2 Procedure for building an SSP 
A generic procedure for building an SSP of a CNF formula 

was given in [2][3]. Its pseudocode is shown in Figure 1. The idea 
of this procedure is very simple. It maintains two sets of points: 
Boundary and Body. The set Boundary (respectively Body) 
consists of the reached points whose neighborhood has  not been 
explored yet (respectively has been already explored). The set 
Boundary is initialized with a starting point p  while the set Body 
is empty originally (lines 1-2).  

Then in the while loop (lines 3-12) the Generate_SSP 
procedure does the following.  It picks a point p′′′′ of Boundary to 
explore the neighborhood of p′′′′ , removes p′′′′  from Boundary and 
adds it to Body (lines 4-6). Then it computes the set F′ of clauses 
of F that are falsified by p′′′′. If F′  is empty, then p′′′′ is a satisfying  
assignment and the procedure stops (lines 8-9). Otherwise, a 
clause C of F′ is picked as the value of a transport function g at p′′′′ 
at line 10 (transport function g is built by  Generate_SSP on the 
fly). The points of Nbhd(p′′′′,C), that are not in the set Body yet 
(and so their neighborhood has not been explored yet) and not in 
Boundary already, are added to the set Boundary (line 11). If the 
set Boundary is empty, it means that for any point p′′′′ ∈ Body each 

point of Nbhd(p′′′′, g(p′′′′ ))  is in  the set Body and so the latter is an 
SSP and hence F is unsatisfiable. 
 
   Generate_SSP(F) 

/* Total = Boundary ∪ Body */ 

        1   { p = Generate_starting_point(F);            
        2    Body =∅, Boundary = { p} ,                   
        3     while(Boundary ≠ ∅)                           
        4      { p′′′′ = pick_next_point(Boundary);      
        5        Boundary = Boundary \ { p′′′′ } ;   
        6        Body = Body ∪ { p′′′′ } .             
        7        F′ = find_falsified_clauses(F, p′′′′ );      
        8         if (F′  = ∅)                                           
        9             return(‘satisfiable’ );                      
        10        C = pick_a_clause(F′ ); /* C = g(p′′′′ ) */     
        11       Boundary = Boundary∪(Nbhd(p′′′′, C) \Total);   
        12      }  /* while */ 
        13       return(Body);/ *Body is an SSP now */     
        14     }                                                                

Figure 1. Pseudocode of  procedure for building SSP 

 

5.3 Procedure for building an SSC using 
cubes as clusters 

In this subsection, we describe the Generate_SSC procedure 
for building an SSC that uses cubes as clusters. The pseudocode 
of this procedure is shown in Figure 2. This procedure also 
maintains two sets, Boundary and Body.  The set Boundary 
consists of cubes whose 1-neighborhood has not been generated 
yet. The set Body consists either of cubes whose 1-neighborhood 
has been already generated or cubes whose 1-neighborhood has 
been “ inherited”  by other cubes during the splitting operation (see 
below).  

The Generate_SSC procedure generates a cube (line 1) to 
initialize the set Boundary (line 2). Body is empty initially.  An 
SSC is built in the while loop (lines 3-24).  First, a cube D′  is 
picked from Boundary (line 4). It is removed from Boundary and 
added to Body (lines 5-6). Then the set F′ of clauses falsified by  
cube D′ is formed (i.e. clause C of F is included in  F′ if  
D′ ⊆Unsat(C)) .  If F′ is not empty, then a clause C of F′ is 
selected (line 9) and the  set of cubes  Nbhd(D′,C) is formed. The 
function Uncov  (line 10) discards every cube C*  of  Nbhd(D′,C) 
that is a subset of Total (the latter is the union of all the cubes 
from Boundary ∪ Body). The cubes of Nbhd(D′,C) that have not 
been discarded are added to Boundary (line 10) and the current 
iteration of the loop ends.  

If F′ is empty, there are two possibilities. The first 
possibility is that for every clause C of F it is true that 
Unsat(C) ∩ D′ = ∅. This means that  any point p of D′ is a 
satisfying assignment. In this case, the Generate_SSC procedure 
returns ‘satisfiable’  (lines 12-13). The second possibility is that 
there are clauses C of  F such that Unsat(C) ∩ D′ ≠ ∅, but none 
of them is falsified by the cube D′.  In that case the Generate_SSC 
procedure has two different options. The first option is to split 
cube D′  (lines 15-17) in a variable  xi into cubes D′0, D′1. Either 
cube is tested if it is a subset of Total \ D and if not, it is added to 
Boundary.  

 



/* Total = Union(Boundary ∪ Body) */ 

Generate_SSC(F) 

    1    {  D = Generate_starting_cube(F);            
     2    Body =∅, Boundary = { D} ,                   
     3     while(Boundary ≠ ∅)                           
     4      { D′ = pick_next_cube(Boundary);      
     5        Boundary = Boundary \ { D′ } ;    
     6        Body = Body ∪ { D′ } .  
     7        F′ = find_falsified_clauses(F, D′ );                        
     8        if (F′ ≠ ∅)                        
     9           { C = pick_a_clause(F′ );  
     10           Boundary = Boundary ∪ Uncov(Nbhd(D′,C),Total); 
     11            continue;}  
        12       if (all_clauses_sat(D′ )) 
     13             return(‘satisfiable’ ); 
     14        if (split_cube_option) 
     15               { (D′0, D′1) = split_cube(D′, xi); 
     16               Boundary =Boundary ∪ Uncov(D′0, D′1,Total \ D′); 
     17                continue;}  
        18         if (generate_clause_option) 
     19               { (answer,C)=generate_falsified_clause(D′,F); 
     20                   if (answer == ‘satsfiable’ ) 
     21                       return(‘satisfiable’ ); 
     22                      Boundary = Boundary∪Uncov(Nbhd(D′,C),Total); 
     23                continue;}  
     24         } /* end of while */ 
     25      return(‘unsatisfiable’ ,Body); 
     26     }   

Figure 2. Pseudocode of  procedure for  building SSC 

 
The other option is to generate a clause C implied by F and 

falsified by D′ (lines 18-23) Such a clause can be generated in the 
following way. The idea is to add to the CNF formula F the set  Fu 
of unit clauses specifying the points contained in D′. (For 
example, if all the points of D have xi=0, then the unit clause ~xi 

should be added to F.) The satisfiability of the modified formula 
(denote it by F*)  can be tested by any “ regular”  SAT-solver. If F* 
is satisfiable, then F is satisfiable as well and the Generate_SCC 
procedure stops (lines 20-21).  If F* is unsatisfiable, then the 
clause  C consisting of the literals used in the clauses of Fu is 
implied by F and falsified by D′. (Note, however,  that one can 
remove from C the literals corresponding to the unit clauses of Du 
that have not contributed to proving the unsatisfiability of F*. By 
reducing the number of literals in the generated clause C, one 
reduces the number of cubes in Nbhd(D′,C).) After generating 
clause C, the cubes of Nbhd(D′,C) that are not discarded by the 
function Uncov  are added to Boundary (line 22).  

Of course, solving formula F* may be a hard problem. To 
reduce the work to be done by the chosen SAT-solver one can 
impose some limit on its use of internal resources (e.g. on the 
number of leaves of the search tree). If this limit is exceeded, no 
clause falsified by D′  is generated. Then the only choice left (in 
case no clause of F is falsified by D′ ) is to split the cube D′. 

 

5.4 Generate_SSC is sound and complete 
In this subsection, we show that Generate_SSC is a sound 

and complete procedure. 

Proposition 3. The Generate_SSC procedure is sound i.e. if it 
terminates it returns the right answer. 

Proof. Let F be a CNF formula to be tested for  satisfiability. 
Generate_SSC returns the answer ‘satisfiable’  (lines 13,21) only 
if an assignment satisfying F is found. So the answer ‘satisfiable’  
is always correct.   

Now we show that if  Generate_SSC says that F is 
unsatisfiable (line 25) then the set  Union(Body) (which is the 
union of all the cubes of Body) is an SSP of F. So the answer 
‘unsatisfiable’  is also always correct. Let  p be a point of 
Union(Body).  Every point of Union(Body)  first appears in the set 
Union(Boundary). Let D′  be a cube of Boundary containing the 
point p. Since Generate_SSC returns the answer ‘unsatisfiable’  
only if Boundary is empty, the point p eventually leaves 
Boundary.  

Let us show that if p leaves the set Union(Boundary) and 
the set Union(Body) does not contain p, each point of  Nbhd(p,C)  
is either added to Total or  is already there. Here C is either a 
clause of F, or is implied by F. In either case C(p)=0.    

If D′ is not the only cube of Boundary containing p, then 
removal of D′ from Boundary does not remove p from 
Union(Boundary). Let us assume that D′ is the only cube of 
Boundary containing p and it is picked by pick_next_cube (line 
4). Suppose that D′ is split into D′0, D′1  and the cube D′0 contains 
p. By assumption, p is not in Union(Body) and D′  is the only 
cube of Boundary containing p. Then  D′0  is not a subset of Total 
\ D′ and is added to Boundary (line 22). Hence p does not leave 
Union(Boundary).   

So p first time leaves Union(Boundary) and appears in 
Union(Body) only if a clause C falsified by D′ is found in F or 
generated by a SAT-solver (line 19).  In that case, every cube of 
Nbhd(D′,C) that is not a subset of Total is added to Boundary. It 
means, that every point of Nbhd(p,C) is either added to Total or is 
already there.  

The set Total built by Generate_SSC  can not reduce in size.  
This means that if a point p appeared in Union(Body) for the first 
time and Nbhd(p,C) ⊆ Total, the latter relation holds true until 
Generate_SSC terminates. Since eventually Total = Union(Body), 
for every point p of Union(Body) it is true that Nbhd(p,C) ⊆ 
Union(Body)  (where C is a clause of F or is implied by F and 
C(p)=0)). Hence Union(Body) is an SSP of a formula F* implied 
by F (F* is obtained by adding to F all the generated clauses). 
Then F* and so F are unsatisfiable. 

 
Proposition 4. The Generate_SSC procedure is complete. That 
is it terminates for any CNF formula F. 

Proof.  Assume the contrary. Let F be a CNF formula such that 
Generate_SSC does not terminate. The set Total can not reduce in 
size. This means that in every iteration of the loop of 
Generate_SSC, the set Total either grows or stays the same.  Since 
the maximum size of Total is 2n (where n=|vars(F)|) 
Generate_SSC can have only a  finite set of iterations of the main 
loop in which Total grows. This means that Generate_SSC should 
have an infinite sequence S of iterations of the main loop in which 
the set Total stays the same. Let us show that such an infinite 
sequence is impossible. 

The set Total does not change only when the cube D′ picked 
from Boundary is split or when every cube of Nbhd(D′,C) is a 
subset of Total. In the first case,  D′ is replaced in Boundary with 



two cubes of  a smaller size. In the second case, D′ is just 
removed from Boundary.  Now we build a function H with a 
finite range that monotonically decreases in each iteration that 
does not change Total. (The existence of H means that the infinite 
sequence S above is not possible.)  The only argument of H is the 
set Boundary. The output of H is a vector V with n components 
V1,…,Vn where Vi is the number of cubes of Boundary that have 
exactly i literal components. Let vectors V and V′′′′ be compared 
lexicographically, that is V′′′′  < V  iff Vi < Vi′  and i is the smallest 
component number where V and V′′′′ are different. If Boundary′  is 
obtained from Boundary by removing a cube, then 
H(Boundary′ )  < H(Boundary). The same is true if Boundary′ is 
obtained from Boundary  by replacing a cube D′ with  two smaller 
cubes obtained by the splitting of D′ . 

 
 

5.5 Initialization of the set Boundary 
 

The performance of the Generate_SSC procedure  strongly 
depends on how one initializes  the set Boundary (line 1 of Figure 
2.).  Suppose, for example, that Boundary is initialized with a 
cube D that contains only one point (i.e. D is a cube of the 
smallest size). Let C be a clause of F falsified by the point of D.  
Each  cube of Nbhd(D,C)  contains only one point as well. So the 
Generate_SSC procedure reduces to the procedure of Section 5.2 
that builds an SSP point by point. 

Now, suppose that Boundary is initialized with the cube 
equal to B|X| where X=vars(F) i.e. with the largest possible cube of 
B|X|. In this case, the set Total is initialized to the entire Boolean 
space.  Let  D′  be a  cube of Boundary and C be a clause of F 
falsified by D′. Since the set Total cannot decrease in size, it stays  
equal to  B|X|. Then every  cube of Nbhd(D′,C) is a subset of Total 
and so is not added to the set Boundary. Suppose that   
Generate_SSC  does not  use the option of new clause generation. 
Then, if for the chosen cube  D′ of Boundary there is no clause C 
of F falsified by D′, the only choice is to split D′ into smaller 
cubes D′0 and D′1. If, say cube D′0, falsifies a clause of F it is 
removed from Boundary. Otherwise  D′0  is returned to the set 
Boundary. So, Generate_SSC keeps splitting cubes of Boundary 
until each cube resulting from splitting is falsified by  a clause of 
F.  In other words, if Boundary is initialized with the cube B|X| 
(and no new clauses are generated),  the cubes of Boundary can 
be viewed as “nodes”  of a binary tree. The only difference from a 
regular binary search procedure is that branches are examined in 
an arbitrary order.  

If Boundary is initialized with the cube equal to B|X|, 
Generate_SSC  does not build a non-trivial SSP. It just checks if  
the entire space B|X| is an SSP. So the most interesting case to 
study is when Boundary is initialized with a cube that is neither 
equal to B|X| nor contains only one point of B|X|. In that case, one 
can hope to build a non-trivial SSP (i.e. different from B|X|) at the 
same time speeding up computation by processing many points at 
once.  

 

5.6 Relation to proof systems of [4] 
In this subsection, we show that the procedure 

Generate_SSC,  in a sense, generalizes the proofs systems of [4].  
In the pseudocode of Generate_SSC shown in Figure 2, the 

set Boundary is initiated with a single cube and the set Body is 

initially empty. However, Boundary and Body can be initiated 
with any set of cubes of B|X|, X = vars(F) satisfying the following 
two conditions: a) if  D ∈ Body, then D ⊆ Z(F)  (recall that Z(F) 
is the set of points falsifying F); b) if D ∈ Body, then for every 
point p ∈ D, there is a clause Ci of F such that Nbhd(p, Ci) ∈ 
Union(Boundary).  In other words, one can add to Body any cube 
consisting only of points falsifying F, if 1-neghborhood of the 
points of D with respect to some transport function is in the set 
Boundary. 

 Let C1,..,Ck be the clauses of F. Then one can initialize 
Body with cubes Unsat(C1),..,Unsat(Ck) if  Boundary is initalized 
with cubes Nbhd(Unsat(C1),C1),.., Nbhd(Unsat(Ck),Ck). If F is 
unsatisfiable, then  Unsat(C1) ∪ … ∪ Unsat(Ck) is equal to B|X|. 
In other words, in this case, Generate_SSC builds a trivial SSP 
equal to  B|X|. However, constructing even such a trivial SSP may 
be beneficial for the following reason. Current state-of-the-art 
solvers are based on the resolution proof system. In this system, 
one needs to generate an empty clause as a “global certificate”  of 
unsatisfiability of a CNF formula. In a sense, this certificate is the 
result of merging “ local branches” , which makes these branches 
interdependent. The Generate_SSC procedure does not have to 
merge “branches”  to produce a global certificate. As soon as the 
set Boundary is empty we know that F is unsatisfiable. So 
Generate_SSC is “ inherently local” . 

Note that if Boundary and Body are initialized as described 
above, there is no need to add new cubes to Boundary. Indeed,  if 
D′  falsifies C and C is implied by F, then Nbhd(D′,C) is a subset 
of the union of neighborhoods Nbhd(Unsat(Ci),Ci),i=1,..,k.  
(Because this union contains all neighborhood points of Z(F)). So 
only two things can happen to the set Boundary. Either a cube D′ 
is moved from Boundary to Body (if there is a clause C implied by 
F and falsified by D′) or D′ is split and moved from Boundary to 
Body and the two cubes produced in the split are added to 
Boundary. 

In [4] we introduced two “ local”  proofs systems, NE and 
NER. These proof systems are based on the fact that if a CNF 
formula F is satisfiable, there  always exists a satisfying 
assignment that is in the 1-neighborhood of a clause C of F. (In 
the notation of this report, 1-neighborhood of C is the union of 
cubes of Nbhd(Unsat(C),C)).  The idea of either proof system is to 
explore the 1-neighborhood of all the clauses of F.   In is not hard 
to show that Generate_SSC can “simulate”  proofs generated in 
NE and NER if the set Body is initialized with cubes 
Unsat(Ci),i=1,..,k and Boundary is initialized with cubes 
Nbhd(Unsat(Ci),Ci),i=1,..,k 

The system NE does not use resolution to generate new 
clauses. It is equivalent to Generate_SSC without the option to 
generate new clauses. (In this case, if there is no clause of F 
falsified by D′, the only thing Generate_SSC can do is to split D′.)  
In contrast to NE, the system NER allows one to use the 
resolution operation to generate new clauses. The proofs of NER 
are simulated by Generate_SSC if new clauses are allowed to be 
generated by a resolution based SAT-solver. 

 

5.7 Improvements of  Generate_SSC 
The pseudocode shown in Figure 2  captures only main 

features of the procedure Generate_SSC. Below we list some 
potential improvements. 

1) Since Generate_SSC uses the operation of cube splitting, 
the number of cubes in Boundary (and so Body) may grow 



exponentially.  An interesting way of mitigating this  problem is 
to merge cubes of Boundary. The idea is to replace a set of k 
cubes Di1,..,Dik  with the smallest cube D′ containing each cube of 
the set.  In a sense, each cube of the set Boundary corresponds to 
a “search branch” . So merging cubes of Boundary is, in a way, 
merging branches.  The objective of this merging is to reduce the 
number of branches to examine. Adding the merging operation 
does not effect the soundness of Generate_SSC  but may 
compromise its completeness. The latter is due to the fact that 
combining cube merging and splitting may lead to looping. This 
looping can be prevented in many ways. One way is to use 
merging only if the  cube D′ (where D′ is the result of merging) 
falsifies a clause C of  F or such a clause is generated. In this case, 
Generate_SSC   adds to Boundary cubes of Nbhd(D′,C) adds to 
Body cube D′ and  no splitting of D′ occurs. 

2) In Generate_SSC  every cube D of the set Nbhd(D′,C) is 
checked if D ⊆ Total. (Similarly either cube obtained by splitting 
D′ is checked if it is a subset of Total \ D′ ). This check reduces to 
solving an instance of SAT and so can be performed by a SAT-
solver. To reduce the run time of this SAT-solver, one can impose 
a limit on the amount of computation e.g. number of branchings. 
If the SAT-solver reaches this limit when checking if D ⊆ Total, 
D is added to Boundary. 

3)  Any clause C  generated by a SAT-solver (line 19 of 
Figure 2) can be added to the formula F. This way one gets more 
choices when picking a clause of F falsified by a cube D′. 
 

6. Testing satisfiability of symmetric formulas  
In this section we  show the relation between formula’s 

symmetry and SSCs.  (In this report we consider only 
permutational symmetry.) In subsection 6.1 we recall the results 
of [3] on SSPs of symmetric formulas.  In subsection 6.2 we show 
that the procedure for solving symmetric formulas introduced in 
[3]  can be actually interpreted as building an SSC. Finally, in 
subsection 6.3, we apply the results of  subsection 6.2 to solving 
pigeon-hole formulas. 

 

6.1 Testing satisfiability of symmetric 
formulas by computing an SSP 
Definition 16. Let X be a set of Boolean variables. A 
permutation π defined on set X is a bijective mapping of X onto 
itself. 

Definition 17. Let X={ x1,…, xn}  be a set of Boolean variables. 
Let p=(x1,.., xn) be a point of B|X|. Let π be a permutation of X. 
Denote by ππππ(p) the point (π(x1),…, π(xn)). 

Definition 18.  Let F={ C1,..,Ck}  be a CNF formula. Let π be 
a permutation of vars(F). Denote by ππππ(Ci) the clause obtained 
from Ci by replacing each variable xm∈ Ci with the variable π(xm). 
Denote by ππππ(F) the set of clauses { π(C1),..,π(Ck)}  

Definition 19. Let F be a CNF formula and π be a permutation 
of vars(F). Formula F is called symmetric with respect to π if π(F) 
consists of the same clauses as F (that is each clause π(Ci) of π(F) 
is identical to a clause Cm of F). 

Definition 20. Let X be a set of Boolean variables and G be a 
group of permutations of X. Denote by symm(p, p′′′′, G) the 
following binary relation between points of B|X|. A pair of points 

(p, p′′′′ ) is in symm(p, p′′′′, G) if and only if there is π ∈ G such that 
p′′′′ = π(p).The relation symm(p, p′′′′, G) is an equivalence relation 
and so it breaks B|X| into equivalence classes. 

Definition 21. Points p and p′′′′ of B|X| are called symmetric with 
respect to a group G of permutations of X if they are in the same 
equivalence class of symm(p, p′′′′, G). 

Proposition 5.  Let X be a set of Boolean variables and p be a 
point of B|X|. Let C be a clause falsified by p. Let a point 
q ∈ Nbhd(p,C) be obtained from p by flipping the value of 
xi ∈ vars(C). Let π be a permutation of X and p′′′′ = π(p), C′ = π(C). 
Let q′′′′ ∈ Nbhd(p′′′′,C′ ) be obtained from p′′′′  by flipping the value of 
π(xi). Then q′′′′ =π(q). (In other words, if p′′′′ = π(p), C′ = π(C), then 
for each point q of Nbhd(p,C) there is a point q′′′′ =π(q) of 
Nbhd(p′′′′,C′ ).) 
Proof is given in [3]. 

Definition 22. Let F be a CNF formula that is symmetric with 
respect to a group G of permutations of X=vars(F).  Let P be a set 
of points of B|X| falsifying F. The set P is called stable modulo 
symmetry G with respect to F and a transport function g: P → F if 
for each point p ∈ P, every point p′′′′ of Nbhd(p, g(p)) is either in P 
or there is a point p″″″″ of P that is symmetric to p′′′′. 

Proposition 6. Let F be a CNF formula, P be a set of points of 
B|X|, X=vars(F), that falsify F. Let g: P→F  be a transport 
function. If P is stable modulo symmetry G with respect to F and 
g, then F is unsatisfiable. 

Proof  is given in [3]. 

6.2 Testing satisfiability of symmetric 
formulas by computing an SSC 

 Proposition 6 is proven in [3] by “extending”  the set of 
points P by adding each point of B|X| that is symmetric to a point 
of P. The transportation function g is also “extended” as follows. 
If p ∈ P and p′′′′ =π(p), then g(p′′′′ ) is equal to π(g(p)) (In other 
words, for symmetric points, the extended transport function g 
assigns symmetric clauses.) It is shown in [3] that this extended 
set of points is actually an SSP of F with respect to the extended 
transport function g.  

Interestingly, one can give a different interpretation of the 
extension of P above. Let P={ p1,.., ps} .  Let D(pi) be the 
equivalence  class of symm(p, p′′′′, G) consisting of the points of 
B|X| that are symmetric to pi. Then the set of clusters D(p1),..,D(ps) 
form an SSC because D(p1) ∪… ∪ D(ps) is  exactly the extended 
set  described above and so this set is stable.  (Note that if points 
pi and pj of P are symmetric, then D(pi)=D(pj).) 

Sets D(pi) are “natural”  clusters according to the informal 
definition given in Section 3. On the one hand, each cluster is an 
equivalence class of the symmetry relation symm(p, p′′′′, G) and so 
the set of points of  D(pi) can be easily specified. On the other 
hand, set Nbhd(D(pi), g) (where g is the transport function 
extended from the original function P→ F  as described before) is 
easy to define. According to Proposition 5, if  p′′′′ = π(p) and 
C′ = π(C), then sets Nhbd(p′′′′,C′ ) and Nbhd(p,C) consist of points 
symmetric under π.  Let Nbhd(pi,C) = { pi1,.., pim}  (here C is the 
clause g(pi)). Then Nbhd(D(pi), g) =  D(pi1) ∪ .. ∪ D(pim). 

The procedure for building an SSC for a CNF formula F 
with symmetry G is essentially identical to the procedure of [3] 
for building a set P that is stable with respect to F modulo 



symmetry G. In its turn, this procedure of [3] is different from the 
one shown in Figure 1 only in one line of code (line 11). Namely, 
when building a set of points stable modulo symmetry G this 
procedure does not add to Boundary a point p″″″″ of Nbhd(p′′′′,C) if 
Total contains  a point that is symmetric to p″″″″ . (In the procedure 
of Figure 1 we do not add   p″″″″  only if Total already contains the 
point p″″″″ itself.) Eventually this procedure builds a set of points 
P={ p1,..,pm}  that is stable with respect to F modulo symmetry G. 
On the other hand, one can interpret the procedure of [3] as 
building an SSC D(p1),..,D(pm).  This procedure just uses points pi 
of P as representatives of clusters D(pi). In particular, when point 
p″″″″ of Nbhd(p′′′′,C) is not added to Boundary because it is 
symmetric to a point p of Total, in terms of SSCs this just means 
that D(p)=D(p″) and so the  cluster D(p″) has been already 
“visited” . 
 

6.3 Testing satisfiability of pigeon hole 
formulas by computing an SSC 

In this section, we illustrate the power of SSCs by the 
example of pigeon-hole formulas.  These are unsatisfiable CNF 
formulas that, by means of propositional logic, describe the 
pigeon-hole principle. This principle is that if n > m, then n 
objects (pigeons) cannot be placed in m holes so that no two 
objects occupy the same hole. In [6] A. Haken showed that 
pigeon-hole formulas have only exponential size proofs in the 
resolution proof system, which makes these formulas hard for the 
SAT-solvers based on resolution. 

Since the pigeon-hole principle is symmetric with respect to 
a permutation of holes or a permutation of pigeons, pigeon-hole 
formulas are highly symmetric.  In [3] we showed that  pigeon-
hole formula PH(n,m) has a stable set of points S(n,m) that is the 
union of 2∗m+1 equivalence classes D1,…,D2m+1 of the relation 
symm(p, p′′′′,G) where G is the permutational symmetry of 
PH(n,m).  The set S(n,m) consists of an exponential size of points, 
so (some) equivalence classes Di  have exponential size. This 
means that pigeon-hole formula HP(n,m) has an SSC that consists 
of 2∗m+1 clusters D1,…,D2m+1. That is the size of this SSC is 
linear in the number of holes. 

7. Conclusions 
We introduced the notion of a stable set of clusters (SSC) . 

The main purpose of using SSCs is to speed up building a stable 
set of points.  We gave two methods of computing  SSCs. The 
first methods uses Boolean cubes as clusters. In the second 
method clusters are equivalence classes of a symmetry relation 
describing formula’s symmetry. 
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