Solving Satisfiability Problem by Computing Stable Sets of Points in
Clusters

Cadence Berkeley Labs
1995 University Ave., Suite 460, Berkeley, California, 94704
phone: (510)-647-2825, fax: (510)-486-0205

cadence

CDNL-TR-2005-1001
September 2005

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract. Earlier we introduced the notion of a stable set of
points (SSP) and showed that a CNF formula is unsatisfiable iff
there is a set of points (i.e. complete assignments) that is stable.
Experiments showed that SSPs of CNF formulas of practical
interest are very big. So computing an SSP of a CNF formula
point by point is, in general, infeasible. In this report, we show
how an SSP can be computed in “clusters’, each cluster being a
large set of points that are processed “ simultaneously”.

1. Introduction

In [2][3] we introduced the notion of a stable set of points
(SSP) of CNF formulas. We showed that a CNF formula is
unsatisfiable if and only if there is a set of points (i.e. complete
assignments) that is stable. This means that to prove
unsatisfiability of a CNF formula F it is sufficient to construct an
SSP. (If F is satisfiable, then a satisfying assignment is to be
found when building an SSP of F.)

The main appeal of SSPsis that they allow one to make full
use of formuld's structural properties. In particular, SSPs give a
“natural” way of traversing the search space. Usually, a procedure
for search space traversal is influenced by the requirement to
guarantee search completeness. For example, in the DPLL
procedure [1] , that is the basis of many agorithms used in
practice, search is organized as a binary tree. In reality, the search
tree is used only to impose a linear order on the points of the
Boolean space to avoid visiting the same point twice. However,
this order may be in conflict with “natural” relationships between
points of the Boolean space that are imposed by the CNF formula
to be checked for satisfiability (for example, if this formula has
some symmetries).

Even though for some classes of formulas there are SSPs of
polynomial size, in general, SSPs are exponential in formula size
(which is something to be expected unless NP=coNP). A simple
procedure for building an SSP of aformula F was given in [2][3].
Experiments showed that the number of points grew very large
even for small CNF formulas. This implies that building an SSP

“point by point” as it is done by the procedure of [2][3] is, in
general, impractical. Two ways of overcoming this problem were
suggested. One way is to compute SSP with excluded directions.
Asit was shown in [3] one can drastically reduce the size of SSPs
if some directions are excluded from searching. By building such
an SSP one proves that a clause (whose literals are specified by
the excluded directions) isimplied by the original formulaF. This
clause can be added to F to reduce the size of the SSPs with
excluded directions to be computed next. Eventually, a small SSP
with no excluded directions will be obtained (if the origina
formulais unsatisfiable). Summing up, the idea of this approach is
to replace the construction of one huge “monolithic’ SSP with
building a sequence of small SSPswith excluded directions.

The other (and even more promising) way to solve the
problem of computing SSPs of exponential size was mentioned in
[2][3]. The idea is to compute an SSP “in clusters’ processing
many points simultaneously In this report, we consider the
problem of computing SSPs in clusters in greater detail. The
contribution of this report is threefold. First, we introduce the
notion of a stable set of clusters. The importance of this notion is
that it facilitates taking into account formula's structura
properties. In particular, by giving a SAT-solver some information
on the type of clustersto use, one may get exponential speed-up.
Although we introduce only the notion of clusters consisting of
points, the stability of more complex objects (like clusters of
clusters of points and so on) can be studied.

Second, we show how one can build a stable set of clusters
where clusters are cubes. Interestingly, “local” proof systems
introduced in [4], can be viewed as a specia way of building
such a stable set of clusters. Third, we describe how the notion of
a stable set of clusters works in testing the satisfiability of
symmetric formulas (in particular, pigeon-hole formulas).

It should be noted that SAT-algorithms based on loca
search (that is SAT-agorithms operating on complete
assignments) have been studied for more than a decade [7][8].
Recently a new powerful randomized local search algorithm was
introduced in [9]. A derandomized version of this algorithm was

given in [5]. In Section 3 we briefly discuss the relation between
SSPs and SAT-a gorithms based on local search.

This report is structured as follows. In Section 2 we recall
the notion of SSPs and give other relevant definitions. Section 3
briefly discusses the relation of SSPs and local search SAT-
algorithms. In Section 4 we introduce the notion of a stable set of
clusters. Section 5 describes a procedure for computing a stable
set of clusters where clusters are cubes. In Section 6 we show
how a stable set of clusters is computed for symmetric formulas.
We make some conclusionsin Section 7.

2. Main definitions

In this section, we recall the notion of SSP introduced in
[2][3] and give other relevant definitions.

Let F be a CNF formula. Denote by vars(F) the set of

variables of F. Denote by B the set {0,1} of values taken by a
Boolean variable. Denote by BX! the set of complete assignments
to the set of Boolean variables X= vars(F). A complete
assignment to the variables of X isalso called apoint of BXI.
Definition 1. A disjunction of literals (also called a clause) C is
caled satisfied by a complete assignment (point) p if C(p) = 1.
Otherwise, clause C is called falsified by p. Denote by vars(C) the
set of variables of C.
Definition 2. Let F be a CNF formula The satisfiability
problem (SAT for short) is to find a complete assignment (point)
satisfying @l the clauses of F. This assignment is caled a
satisfying assignment.

Definition 3. Let p O BX!be a point falsifying aclause C. The 1-
neighborhood of point p with respect to clause C (written
Nbhd(p,C)) is the set of points that are at Hamming distance 1
from p and that satisfy C.

It is not hard to see that the number of points in Nbhd(p,C)
isequal to that of literalsin C.
Example 1. Let C=x;+~xs+xs be a clause specified in the
Boolean space of 6 variables Xy,..., Xe. Let
pP=(x=0, %=1, X3=1, X,=0, X6=1, X%=0) be a point falsifying C.
Then Nbhd(p,c) consists of the following three points:
Pi=(X1=1, %=1, X3=1, X4=0, X6=1, X%:=0), p=(X1=0, %=1, X3=0,
X4=0, X5=1, X=0), ps=(x;=0, %=1, %3=1, X,=0, x5=1, x,=1). Points
p1. P2, Ps are obtained from p by flipping the value of variables
X1, X3, Xg respectively i.e. the variables whose literals arein C.
Definition 4. Denote by Z(F) the set of falsifying points i.e.
points at which F takes value 0. Obvioudly, if F is unsatisfiable,
Z(F) = BX where X= vars(F).

Definition 5. Let F be a CNF formula and P be a subset of the
set of falsifying points Z(F). A function g mapping P to F is
caled atransport function if, for any p O P, clause g(p) O F is
fasfied by p. In other words, a transport function g:P-F is
meant to assign each point pP aclause of F that isfalsified by p.
We call mapping P —» F a transport function because it alows
one to introduce some kind of “movement” of points in the
Boolean space.

Definition 6. Let P be a nonempty subset of Z(F) and F be a
CNF formula. Set P is caled stable with respect to a CNF
formula F and transport function g: P-F, if O p O P,
Nbhd(p, g(p)) L P.

Henceforth, if we say that a set of points P is stable with
respect to a CNF formula F without mentioning a transport
function, we mean that thereisafunction g:P - F suchthat P is
stable with respect to F and g.

Example 2. Consider an unsatisfiable CNF formula F consisting
of 7 clauses. Ci=x;+Xy, Co=~XotXs, Cz=~XgtXs, Cs=~Xg+Xq,
Cs=~X3+Xs, Ca=~X5+Xg, C7=~Xg*+~X;. Clauses of F are composed of
literals of 6 variables: xy,..., Xs. The following 14 points form an
SSP P: p;=000000, p,=010000, p5;=011000, p,=011100,
ps=111100, pe=111110, p,=111111, pe=011111, p,=011011,
P1,=010011, p;;=000011, p;,=100011, p;3=100010, p;,=100000.
(Values of variables are specified in the order variables are
numbered. For example, p, consists of assignments x;=0, X>=1,
%=1, %=1, %=0, Xs=0.) Set P is stable with respect to the
transport function g specified as: g(p)=Ci, 9(p2)=C,, g(ps)=Cs,
9(P4)=Cs, 9(Ps)=Cs, 9(Pe)=Cs: 9(P7)=C7 9(Pe)=Cs, 9(Pa)=Cs,

9(P10)=C2, 9(P11)=C1, 9(P12)=C7 9(P12)=Ce, Y(P12)=Cs. It is not
hard to see that g indeed is a transport function i.e. for any point

p; of P it istrue that C(p;)=0 where C=g(p;). Besides, every point
p; of P satisfies the condition Nbhd(p, g(p)) O P of Definition 6.
Consider, for example, point p,c=010011. The value of g(pyo) is
C,, Co=~x*+x3 and the vaue of Nbhd(py,Cy) is {p1;=000011,
po=011011}, the latter being a subset of P.

Proposition 1. If there is a set of points that is stable with
respect to a CNF formulaF, then F is unsatisfiable.

Proof isgivenin[3].

3. SSPsand local search

In this section, we briefly discuss the relation of SSPs and
SAT-algorithms based on loca search (subsection 3.1) and, in
particular, the procedure of [5] (section 3.2).

3.1 SSPsand local search procedures
SAT-algorithms based on loca search have been a subject
of study for more than a decade. First, local search was applied
only to satisfiable formulas. Papadimitriou showed [7] that avery
simple stochastic local search procedure finds a satisfying
assignment of a 2-CNF formula in polynomial time. Then, a few
practica SAT-agorithms based on stochastic local search were
developed and successfully applied to more general classes of
satisfiable CNF formulas [8]. In [9] a new powerful stochastic
agorithm for solving satisfiable CNF formulas was introduced by
Shoéning. Later, a derandomized version of that algorithm was
developed [5] that achieved the best known upper bound on
complexity of solving k-SAT. Importantly, the procedure of [5]
can be applied to both satisfiable and unsatisfiable CNF formulas.
On the one hand, an SSP can be viewed as a representative
of the world of local search algorithms. In particular, the
procedure for building an SSP point by point ([2][3]) looks very
similar to a procedure of [5] (see the discussion in the next
subsection). On the other hand, the definition of SSP is algorithm
independent, which makes SSPs a very appealing object of study
and separates them from the local search algorithms. This
distinction becomes more conspicuous in this report where we
consider the notion of a stable set of clusters. For example, the
procedure for building such a set when clusters are cubes (see
Section 5) does not look like alocal search procedure at al.

3.2 SSPsand procedure of [5]

In this subsection we compare two procedures. The first
procedure introduced by usin [2],[3] (its description is given in
subsection 5.2) computes an SSP of a CNF formula F point by
point. The second procedure [5] searches for a satisfying
assignment of F in a Hamming ball with a center p and radiusr.
Needless to say that the objectives of these two procedures are
different. Our procedure is meant for building an SSP and testing
the satisfiability of F is just a “by-product”. The objective of the
procedure of [5] is to test the satisfiability of F. Nevertheless,
these procedures look very similar.

If one setsradiusr to n, where n is the number of variables
in F, the procedure of [5] works “amost” like our procedure when
the set Boundary is initidlized with the point p. The only
difference isthat the set of points visited by the procedure of [5]
is, in general, smaller than the set of points built by our procedure.
When a point p’ is reached by our procedure, al (new) points of
Nbhd(p’C) are added to Boundary where C is a clause of F
fasified by p” On the other hand, the procedure of [5] “ignores”
all the points of Nbhd(p’,C) that are closer to the center p than the
point p’.

So an SSPis “redundant” in comparison to the set of points
visited by the procedure of [5] when looking for a satisfying
assignment in the Hamming ball of radius n. However thisis a
very “fruitful” redundancy because it allows one to make testing
the stability of a set of points P local. Namely, for every point p of
P, one just needs to test if Nbhd(p, g(p)) isin P and no
knowledge of a center point is necessary. In itsturn, the locality of
stability testing is crucia in “speeding up” the computation of
SSPs by building them in clusters of points.

4. Computing SSP by building a stable set of

clusters

In this section, we introduce the notion of a stable set of
clusters. As we mentioned in the introduction, experiments show
that computing an SSP point by point is impractical. A natural
way to speed up the computation is to process many points at
once.
Definition 7. Let F be a CNF formula and D be a subset of Z(F)
where X = varg(F). Let g be a transport function Z(F) - F.
Denote by Nbhd(D, g) the union of sets Nbhd(p, g(p)), p C D for
all the points of D. In other words, Nbhd(D, g) is the union of 1-
neighborhoods of the points of D where 1-neighborhood
Nbhd(p, g(p)) of a point p is computed with respect to a clause C
of F assigned by the transport function g.

Definition 8. Let F be a CNF formula and Dy, ..., Dy be subsets
of Z(F) where X=vars(F). Let g;, i=1,..,k be a transport function
Z(F)-» F. Suppose that for every D, i=1,..,k it is true that
Nbhd(D;, g)) O D; O ...0ODy. Then the set { D,,..,D\} will be called
a stable set of clusters (SSC) with respect to F and transport
functions gy,.., 0. (Herewe refer to a subset D; as a cluster).

Proposition 2. Let F be a CNF formula and D;,..,Dy be a stable
set of clusters with respect to transport functions gj,.., gx. Then F
isunsatisfiable.

Proof. Denote by P the set D; 0 ... O Dy. Let g be a transport
function such that for every pO Z(F), it is true that g(p) = C,
C O F where C=g;(p). In other words, the function g assignsto p

the same clause that is assigned to p by some transport function g;
(that is picked arbitrarily from g,.., g). Then P is an SSP with
respect to F and the transport function g. Indeed, let p be a point
of P and g; be a transport function such that g(p)=g;(p)=C. Since
{Dy,..,.Dy} is an SSC, then Nbhd(D;,g;) O P. Hence Nbhd(p, g;) O
P and so Nbhd(p, g) O P.

Note that if P isan SSP of F, then any set of k setsD; O P
such that D; O ... 0Dy = P forms an SSC. However, we are
interested only in using “natural” clusters. Informally, set D; is a
natural cluster if the set of points of D; and the set of points
Nbhd(D;, g;) can be “easily” specified.

The importance of the notion of an SSC istwofold. First, an
obvious advantage of operating on clusters is that if for the
formulas of some class, there is an SSC of a polynomial number
of clusters (in formul@ s size), one can have an efficient procedure
for testing the satisfiability of these formulas.

Second, a less obvious advandage is that by providing
information about the structure of clusters one can “pump” a lot
of information into a SAT-solver. It is highly unlikely that thereis
an efficient universal algorithm for solving SAT. From a practical
point of view, thisimplies that to improve a SAT-solver’s chance
to efficiently solve formulas of a class, this SAT-solver needs
some information about structural properties of formulas of this
class. So a practical SAT-solver should have a “communication
channel” with the user. Since a cluster may consists of an
exponential number of points, by advising on the “shape’ of
clusters, the user may provide a SAT-solver with an enormous
amount of information. As we will see later, this is exactly the
case for symmetric formulas, where the shape of clusters is
derived from formulds structural properties namely its
symmetries.

In this report, we consider only a two-level “hierarchy”,
namely, clusters consisting of points. However, one can introduce
more complex hierarchies (like clusters of clusters of points and
so on). Arguably, using such hierarchies can help in capturing
CNF formula’s structure.

5. Computing SSCsusing cubes asclusters

In this section, we describe a specia class of SSCs where
clusters are cubes. In subsection 5.1 we give a few more
definitions we need in this section. Subsection 5.2 recalls the
procedure of [2][3] for building an SSP. In subsection 5.3 we
describe a procedure for building an SSC with cubes as clusters.
We show that this procedure is complete and sound in subsection
5.4. Subsection 5.5 discusses how different initialization choices
affect the procedure of subsection 5.3. In subsection 5.6 we
describe the relation between SSCs with cubes as clusters and
“local” proof systems of [4]. Finaly, in subsection 5.7, potential
improvements of the procedure of subsection 5.3 are discussed.

5.1 A few moredefinitions

Definition 9. Let X ={x,.., X} be a set of Boolean variables. A
cube D of BX'is a subset of BX! that can be represented as
A;x..xA,, where A is a non-empty subset of B and ‘x’ means the
Cartesian product. The components A of D that are equal to {0}
or {1} arecaled literal components of the cube D.

Definition 10. Let X ={x,.., X;} be a set of Boolean variables.
Let D =A;x..xA, be a cube of BX and A be equal to {0,1}. Let

Dy,D; be the cubes obtained from D by replacing the set A; with
sets {0} and {1} respectively. We will say that cubes Dy and D,
are obtained from D by splitting in variable x;.

Definition 11. Let X ={xy,...X,} be a set of Boolean variables.
Let C be aclause, vars(C) O X. Denote by Unsat(C) the set of all
points of BX! that falsify C. It is not hard to see that Unsat(C) isa
cube of BX!,

Example 3. Let C=xp+~x, and X={Xy, X,, X, X4} . Then Unsat(C)
equals {0,1} x{0} x{0,1} x{1} In other words, Unsat(C) consists
of all the points of B* for which x,=0 and x,=1.

Definition 12. Let X ={xy,.., X} be a set of Boolean variables.
Let p be a point of B!, Denote by Nbhd(p, x) the neighborhood
of pin direction x;, i.e. a one-element set {p’} where point p’ is
obtained from p by flipping the value of x; in p.

From Definition 3 and Definition 12, it follows that

Nbhd(p,C) is the union of Nbhd(p, %) for all the variables of the
clause C.
Definition 13. Let X ={Xq, .., X} be a set of Boolean variables.
Let D =A;x..xA, be a cube of BX and A be equal to {0} or {1}.
Denote by Nbhd(D, x;) the union of Nbhd(p, x) for al the points p
of D. It is not hard to see that Nbhd(D, x) is the cube obtained
from D by replacing the set A; with the set { 0,1} \ A,

Definition 14.We will say that cube D falsifies clause C if
D 0 Unsat(C). (Obvioudly, in this case, every point of D falsifies
C)

Definition 15. Let X ={xq, .., X} be a set of Boolean variables.
Let D be a cube of BX! and C be a clause falsified by D. Denote
by Nbhd(D,C) the union of cubes Nbhd(D, x) for all x.J vars(C).

Note that cubes are “natural” clusters according to the
informa definition of Section 3. On the one hand, the set of
points a cube D contains can be easily specified. On the other
hand, if a clause C isfalsified by D, the neighborhood Nbhd(D,C)
is the union of a small number of cubes. So it can be easily
specified as well.

5.2 Procedurefor building an SSP

A generic procedure for building an SSP of a CNF formula
was given in [2][3]. Its pseudocodeis shown in Figure 1. Theidea
of this procedure is very simple. It maintains two sets of points:
Boundary and Body. The set Boundary (respectively Body)
consists of the reached points whose neighborhood has not been
explored yet (respectively has been aready explored). The set
Boundary is initialized with a starting point p while the set Body
isempty originally (lines 1-2).

Then in the while loop (lines 3-12) the Generate SSP
procedure does the following. It picks a point p’of Boundary to
explore the neighborhood of p’, removes p’ from Boundary and
adds it to Body (lines 4-6). Then it computes the set F’ of clauses
of F that are falsified by p” If F’ is empty, then p’is a satisfying
assignment and the procedure stops (lines 8-9). Otherwise, a
clause C of F’is picked as the value of atransport functiong at p’
at line 10 (transport function g is built by Generate SSP on the
fly). The points of Nbhd(p’C), that are not in the set Body yet
(and so their neighborhood has not been explored yet) and not in
Boundary aready, are added to the set Boundary (line 11). If the
set Boundary is empty, it means that for any point p’ Body each

point of Nbhd(p”, g(p’)) isin the set Body and so the latter is an
SSP and hence F is unsatisfiable.

Generate SSP(F)
/* Total = Boundary [0 Body */

1 {p = Generate_starting_point(F);
Body =00, Boundary = {p},
while(Boundary # 1)
{p’= pick_next_point(Boundary);
Boundary = Boundary \{p’};
Body =Body O {p’}.
F’=find_falsified_clauses(F, p’);
if (F"=0)
return(‘ satisfiable');
C=pick_a clause(F’); /* C=g(p’) */
Boundary = Boundaryd(Nbhd(p’, C) \Total);
} I+ while*/
return(Body);/ *Body is an SSP now */

© o N o g b~ w N

=
A~ W N B O

Figure 1. Pseudocode of procedure for building SSP

5.3 Procedurefor building an SSC using

cubesasclusters

In this subsection, we describe the Generate SSC procedure
for building an SSC that uses cubes as clusters. The pseudocode
of this procedure is shown in Figure 2. This procedure aso
maintains two sets, Boundary and Body. The set Boundary
consists of cubes whose 1-neighborhood has not been generated
yet. The set Body consists either of cubes whose 1-neighborhood
has been already generated or cubes whose 1-neighborhood has
been “inherited” by other cubes during the splitting operation (see
below).

The Generate SSC procedure generates a cube (linel) to
initialize the set Boundary (line 2). Body is empty initialy. An
SSC is built in the while loop (lines 3-24). First, acube D’ is
picked from Boundary (line 4). It is removed from Boundary and
added to Body (lines 5-6). Then the set F’ of clauses falsified by
cube D’ is formed (i.e. clause C of F is included in F’ if
D’0OUnsat(C)) . If F’is not empty, then a clause C of F’is
selected (line 9) and the set of cubes Nbhd(D’,C) is formed. The
function Uncov (line 10) discards every cube C* of Nbhd(D’,C)
that is a subset of Total (the latter is the union of al the cubes
from Boundary [0 Body). The cubes of Nbhd(D’,C) that have not
been discarded are added to Boundary (line 10) and the current
iteration of the loop ends.

If F’ is empty, there are two possibilities. The first
possibility is that for every clause C of F it is true that
Unsat(C) n D’ = 0. This means that any point p of D’ is a
satisfying assignment. In this case, the Generate SSC procedure
returns ‘satisfiable’ (lines 12-13). The second possibility is that
there are clauses C of F such that Unsat(C) n D’# O, but none
of them isfalsified by the cube D'. In that case the Generate SSC
procedure has two different options. The first option is to split
cube D’ (lines 15-17) in avariable x; into cubes D', D';. Either
cube istested if it is a subset of Total \ D and if not, it is added to
Boundary.

/* Total = Union(Boundary (0 Body) */
Generate SSC(F)

1 { D = Generate_starting_cube(F);
Body =[0, Boundary = { D},
while(Boundary # 1)
{D’=pick_next_cube(Boundary);
Boundary = Boundary \{D '} ;
Body =Body 00 {D"}.
F’=find_falsified_clauses(F, D");
if (F’#0)
{C=pick_a_clause(F");
Boundary = Boundary [0 Uncov(Nbhd(D’,C),Total);
continue;}
if (all_clauses sat(D"))
return(‘ satisfiable');
if (split_cube_option)
{(D'o, D'1) = split_cube(D ", x);
Boundary =Boundary [0 Uncov(D o, D, Total \ D');
continue;}
if (generate_clause_option)
{(answer,C)=generate falsified clause(D',F);
if (answer == ‘satsfiable’)
return(‘ satisfiable');
Boundary = BoundarydUncov(Nbhd(D ,C), Total);
23 continue;}
24 }/* end of while*/
25 return(‘ unsatisfiable’ ,Body);
% }

© o N o g » w N

N NN B P BB R R s PR
N B O © g N OO OO0 W nn B O

Figure 2. Pseudocode of procedurefor building SSC

The other option isto generate a clause C implied by F and
fasified by D’ (lines 18-23) Such a clause can be generated in the
following way. The ideaisto add to the CNF formula F the set F"
of unit clauses specifying the points contained in D'. (For
example, if all the points of D have x=0, then the unit clause ~x;
should be added to F.) The satisfiability of the modified formula
(denote it by F*) can betested by any “regular” SAT-solver. If F*
is satisfiable, then F is satisfiable as well and the Generate SCC
procedure stops (lines 20-21). If F* is unsatisfiable, then the
clause C consisting of the literals used in the clauses of F" is
implied by F and falsified by D’ (Note, however, that one can
remove from C the literals corresponding to the unit clauses of D"
that have not contributed to proving the unsatisfiability of F*. By
reducing the number of literals in the generated clause C, one
reduces the number of cubes in Nbhd(D’,C).) After generating
clause C, the cubes of Nbhd(D’,C) that are not discarded by the
function Uncov are added to Boundary (line 22).

Of course, solving formula F* may be a hard problem. To
reduce the work to be done by the chosen SAT-solver one can
impose some limit on its use of interna resources (e.g. on the
number of leaves of the search tree). If this limit is exceeded, no
clause falsified by D’ is generated. Then the only choice left (in
case no clause of F isfalsified by D) isto split the cube D",

5.4 Generate SSC issound and complete
In this subsection, we show that Generate SSC is a sound
and complete procedure.

Proposition 3. The Generate SSC procedure is sound i.e. if it
terminatesit returns the right answer.

Proof. Let F be a CNF formula to be tested for satisfiability.
Generate_SSC returns the answer ‘satisfiable’ (lines 13,21) only
if an assignment satisfying F is found. So the answer ‘satisfiable’
is always correct.

Now we show that if Generate SSC says that F is
unsatisfiable (line 25) then the set Union(Body) (which is the
union of al the cubes of Body) is an SSP of F. So the answer
‘unsatisfiable’ is also always correct. Let p be a point of
Union(Body). Every point of Union(Body) first appearsin the set
Union(Boundary). Let D’ be a cube of Boundary containing the
point p. Since Generate SSC returns the answer ‘unsatisfiable
only if Boundary is empty, the point p eventualy leaves
Boundary.

Let us show that if p leaves the set Union(Boundary) and
the set Union(Body) does not contain p, each point of Nbhd(p,C)
is either added to Total or is adready there. Here C is either a
clause of F, or isimplied by F. In either case C(p)=0.

If D’ is not the only cube of Boundary containing p, then
removal of D’ from Boundary does not remove p from
Union(Boundary). Let us assume that D’ is the only cube of
Boundary containing p and it is picked by pick_next_cube (line
4). Suppose that D “is split into D'y, D'; and the cube D', contains
p. By assumption, p is not in Union(Body) and D" is the only
cube of Boundary containing p. Then D'y is not a subset of Total
\ D’and is added to Boundary (line 22). Hence p does not leave
Union(Boundary).

So p first time leaves Union(Boundary) and appears in
Union(Body) only if a clause C fasified by D’is found in F or
generated by a SAT-solver (line 19). In that case, every cube of
Nbhd(D ,C) that is not a subset of Total is added to Boundary. It
means, that every point of Nbhd(p,C) is either added to Total or is
aready there.

The set Total built by Generate_SSC can not reduce in size.
This means that if a point p appeared in Union(Body) for the first
time and Nbhd(p,C) O Total, the latter relation holds true until
Generate_SSC terminates. Since eventualy Total = Union(Body),
for every point p of Union(Body) it is true that Nbhd(p,C) O
Union(Body) (where C is a clause of F or is implied by F and
C(p)=0)). Hence Union(Body) is an SSP of a formula F* implied
by F (F* is obtained by adding to F al the generated clauses).
Then F* and so F are unsatisfiable.

Proposition 4. The Generate_SSC procedure is complete. That
isit terminates for any CNF formulaF.

Proof. Assume the contrary. Let F be a CNF formula such that
Generate_SSC does not terminate. The set Total can not reducein
size. This means that in every iteration of the loop of
Generate_SSC, the set Total either grows or stays the same. Since
the maximum size of Total is 2" (where n=ars(F)|)
Generate_SSC can have only a finite set of iterations of the main
loop in which Total grows. This means that Generate SSC should
have an infinite sequence S of iterations of the main loop in which
the set Total stays the same. Let us show that such an infinite
sequenceisimpossible.

The set Total does not change only when the cube D’ picked
from Boundary is split or when every cube of Nbhd(D’C) is a
subset of Total. In the first case, D’isreplaced in Boundary with

two cubes of a smaler size. In the second case, D’ is just
removed from Boundary. Now we build a function H with a
finite range that monotonically decreases in each iteration that
does not change Total. (The existence of H means that the infinite
sequence S above is not possible.) The only argument of H isthe
set Boundary. The output of H is a vector V with n components
Vi,...,V,, where V, is the number of cubes of Boundary that have
exactly i literal components. Let vectors V and V'’ be compared
lexicographicaly, thatisV’ <V iff V;<V/ andi isthe smallest
component number where V and V’are different. If Boundary’ is
obtained from Boundary by removing a cube, then
H(Boundary’) < H(Boundary). The same is true if Boundary’is
obtained from Boundary by replacing acube D' with two smaller
cubes obtained by the splitting of D' .

5.5 Initialization of the set Boundary

The performance of the Generate SSC procedure strongly
depends on how oneinitializes the set Boundary (line 1 of Figure
2.). Suppose, for example, that Boundary is initialized with a
cube D that contains only one point (i.e. D is a cube of the
smallest size). Let C be a clause of F falsified by the point of D.
Each cube of Nbhd(D,C) contains only one point as well. So the
Generate_SSC procedure reduces to the procedure of Section 5.2
that builds an SSP point by point.

Now, suppose that Boundary is initialized with the cube
equal to BX! where X=vars(F) i.e. with the largest possible cube of
BX.. In this case, the set Total is initialized to the entire Boolean
space. Let D’ bea cube of Boundary and C be a clause of F
falsified by D”. Since the set Total cannot decreasein size, it stays
equal to BX!. Then every cube of Nbhd(D’,C) is a subset of Total
and so is not added to the set Boundary. Suppose that
Generate_SSC does not use the option of new clause generation.
Then, if for the chosen cube D’ of Boundary there is no clause C
of F fasified by D’, the only choice is to split D’ into smaller
cubes DY and D4. If, say cube DY, falsifies a clause of F it is
removed from Boundary. Otherwise D7 is returned to the set
Boundary. So, Generate SSC keeps splitting cubes of Boundary
until each cube resulting from splitting is falsified by a clause of
F. In other words, if Boundary is initialized with the cube BX!
(and no new clauses are generated), the cubes of Boundary can
be viewed as “nodes’ of a binary tree. The only difference from a
regular binary search procedure is that branches are examined in
an arbitrary order.

If Boundary is initialized with the cube equal to B,
Generate_SSC does not build a non-trivial SSP. It just checks if
the entire space BX! is an SSP. So the most interesting case to
study is when Boundary is initialized with a cube that is neither
equal to BX! nor contains only one point of BX.. In that case, one
can hope to build a non-trivial SSP (i.e. different from BX)) at the
same time speeding up computation by processing many points at
once.

5.6 Relation to proof systems of [4]
In this subsection, we show that the procedure
Generate SSC, in asense, generalizes the proofs systems of [4].
In the pseudocode of Generate SSC shown in Figure 2, the
set Boundary is initiated with a single cube and the set Body is

initially empty. However, Boundary and Body can be initiated
with any set of cubes of BX!, X = vars(F) satisfying the following
two conditions: @) if D [Body, then D O Z(F) (recal that Z(F)
is the set of points fasifying F); b) if D O Body, then for every
point p O D, there is a clause C; of F such that Nbhd(p, C) O
Union(Boundary). In other words, one can add to Body any cube
consisting only of points falsifying F, if 1-neghborhood of the
points of D with respect to some transport function is in the set
Boundary.

Let C,,..,C¢ be the clauses of F. Then one can initialize
Body with cubes Unsat(C,),..,Unsat(C,) if Boundary is initalized
with cubes Nbhd(Unsat(C,),C,),.., Nbhd(Unsat(C,),Cy). If F is
unsatisfiable, then Unsat(Cy) O ... O Unsat(C,) is equal to BX!.
In other words, in this case, Generate SSC builds a trivial SSP
equal to BX!. However, constructing even such atrivia SSP may
be beneficial for the following reason. Current state-of-the-art
solvers are based on the resolution proof system. In this system,
one needs to generate an empty clause as a “global certificate” of
unsatisfiability of a CNF formula. In a sense, this certificate is the
result of merging “local branches’, which makes these branches
interdependent. The Generate SSC procedure does not have to
merge “branches’ to produce a global certificate. As soon as the
set Boundary is empty we know that F is unsatisfiable. So
Generate_SSCis “inherently local”.

Note that if Boundary and Body are initialized as described
above, there is no need to add new cubes to Boundary. Indeed, if
D’ fasifiesC and Cisimplied by F, then Nbhd(D",C) is a subset
of the union of neighborhoods Nbhd(Unsat(C),C).i=1,...k.
(Because this union contains al neighborhood points of Z(F)). So
only two things can happen to the set Boundary. Either acube D’
is moved from Boundary to Body (if thereisaclause C implied by
F and fasified by D) or D’is split and moved from Boundary to
Body and the two cubes produced in the split are added to
Boundary.

In [4] we introduced two “local” proofs systems, NE and
NER. These proof systems are based on the fact that if a CNF
formula F is satisfiable, there aways exists a satisfying
assignment that is in the 1-neighborhood of a clause C of F. (In
the notation of this report, 1-neighborhood of C is the union of
cubes of Nbhd(Unsat(C),C)). Theideaof either proof systemisto
explore the 1-neighborhood of al the clauses of F. Inisnot hard
to show that Generate SSC can “simulate” proofs generated in
NE and NER if the set Body is initialized with cubes
Unsat(C),i=1,...k and Boundary is initidized with cubes
Nbhd(Unsat(C),Cy),i=1,..,k

The system NE does not use resolution to generate new
clauses. It is equivalent to Generate SSC without the option to
generate new clauses. (In this case, if there is no clause of F
falsified by D, the only thing Generate SSC cando isto split D)
In contrast to NE, the system NER alows one to use the
resolution operation to generate new clauses. The proofs of NER
are simulated by Generate SSC if new clauses are allowed to be
generated by aresolution based SAT-solver.

5.7 Improvements of Generate SSC

The pseudocode shown in Figure 2 captures only main
features of the procedure Generate SSC. Below we list some
potential improvements.

1) Since Generate_SSC uses the operation of cube splitting,
the number of cubes in Boundary (and so Body) may grow

exponentially. An interesting way of mitigating this problem is
to merge cubes of Boundary. The idea is to replace a set of k
cubes Dyy,..,Dyc with the smallest cube D’ containing each cube of
the set. In a sense, each cube of the set Boundary corresponds to
a “search branch”. So merging cubes of Boundary is, in a way,
merging branches. The objective of this merging is to reduce the
number of branches to examine. Adding the merging operation
does not effect the soundness of Generate SSC but may
compromise its completeness. The latter is due to the fact that
combining cube merging and splitting may lead to looping. This
looping can be prevented in many ways. One way is to use
merging only if the cube D’ (where D" is the result of merging)
fasfiesaclause C of F or such aclause is generated. In this case,
Generate SSC adds to Boundary cubes of Nbhd(D,C) adds to
Body cube D' and no splitting of D’ occurs.

2) In Generate_SSC every cube D of the set Nbhd(D,C) is
checked if D O Total. (Similarly either cube obtained by splitting
D’is checked if it is a subset of Total \ D’). This check reducesto
solving an instance of SAT and so can be performed by a SAT-
solver. To reduce the run time of this SAT-solver, one can impose
alimit on the amount of computation e.g. number of branchings.
If the SAT-solver reaches this limit when checking if D O Total,
D is added to Boundary.

3) Any clause C generated by a SAT-solver (line 19 of
Figure 2) can be added to the formula F. This way one gets more
choices when picking aclause of F falsified by acube D",

6. Testing satisfiability of symmetric formulas

In this section we show the relation between formuld's
symmetry and SSCs. (In this report we consider only
permutational symmetry.) In subsection 6.1 we recall the results
of [3] on SSPs of symmetric formulas. In subsection 6.2 we show
that the procedure for solving symmetric formulas introduced in
[3] can be actually interpreted as building an SSC. Finaly, in
subsection 6.3, we apply the results of subsection 6.2 to solving
pigeon-hole formulas.

6.1 Testing satisfiability of symmetric
formulas by computing an SSP

Definition 16. Let X be a set of Boolean variables. A

permutation Tt defined on set X is a bijective mapping of X onto
itself.

Definition 17. Let X={xy,..., X} be a set of Boolean variables.
Let p=(Xs,.., X,) be a point of BXl. Let 1t be a permutation of X.

Denote by Ti(p) the point (T(Xxy),..., T{X,)).

Definition 18. Let F={C,,..,C} be a CNF formula. Let the
a permutation of vars(F). Denote by m(C;) the clause obtained
from C; by replacing each variable x,,0 C; with the variable T1(X,).
Denote by i(F) the set of clauses { T(C,),..,T{C)}

Definition 19. Let F be a CNF formula and Tt be a permutation
of vars(F). FormulaF is called symmetric with respect to mtif T(F)
consists of the same clauses as F (that is each clause T(C;) of T(F)
isidentical to aclause Cp, of F).

Definition 20. Let X be a set of Boolean variables and G be a
group of permutations of X. Denote by symm(p, p’; G) the
following binary relation between points of BXl. A pair of points

(p, p’) isin symm(p, p*, G) if and only if thereis T G such that
p’= 1(p).The relation symm(p, p; G) is an equivaence relation
and so it breaks B™! into equivalence classes.

Definition 21. Points p and p’of BX! are called symmetric with
respect to a group G of permutations of X if they are in the same
equivalence class of symm(p, p’, G).

Proposition 5. Let X be a set of Boolean variables and p be a
point of BX. Let C be a clause falsified by p. Let a point
g O Nbhd(p,C) be obtained from p by flipping the value of
¥ O vars(C). Let Ttbe a permutation of X and p’= 1(p), C’= 1(C).
Let g’ Nbhd(p4C”) be obtained from p” by flipping the value of
10%). Then q’=11(q). (In other words, if p’= 1(p), C’'=1(C), then
for each point g of Nbhd(p,C) there is a point q’=m(q) of
Nbhd(p*,C").)

Proof isgivenin [3].

Definition 22. Let F be a CNF formula that is symmetric with
respect to a group G of permutations of X=vars(F). Let P be aset
of points of BX! falsifying F. The set P is called stable modulo
symmetry G with respect to F and atransport function g: P — F if
for each point p O P, every point p’of Nbhd(p, g(p)) iseither in P
or thereisapoint p”of P that is symmetricto p”.

Proposition 6. Let F be a CNF formula, P be a set of points of
BXl X=vars(F), that falsify F. Let gt P-~F be a transport
function. If P is stable modulo symmetry G with respect to F and
g, then F isunsatisfiable.

Proof isgivenin[3].

6.2 Testing satisfiability of symmetric
formulas by computing an SSC

Proposition 6 is proven in [3] by “extending” the set of
points P by adding each point of BX! that is symmetric to a point
of P. The transportation function g is also “extended” as follows.
If p 0P and p’=1q(p), then g(p’) is equa to 1(g(p)) (In other
words, for symmetric points, the extended transport function g
assigns symmetric clauses.) It is shown in [3] that this extended
set of pointsis actually an SSP of F with respect to the extended
transport function g.

Interestingly, one can give a different interpretation of the
extenson of P above. Let P={p,,..,ps. Let D(p) be the
equivalence class of symm(p, p’ G) consisting of the points of
BX! that are symmetric to p;. Then the set of clusters D(py)...,D(ps)
form an SSC because D(py) O... O D(py) is exactly the extended
set described above and so this set is stable. (Note that if points
pi and p; of P are symmetric, then D(p)=D(p)).)

Sets D(p)) are “natura” clusters according to the informal
definition given in Section 3. On the one hand, each cluster is an
equivalence class of the symmetry relation symm(p, p, G) and so
the set of points of D(p;) can be easily specified. On the other
hand, set Nbhd(D(p), g) (where g is the transport function
extended from the original function P F as described before) is
easy to define. According to Proposition 5, if p’=m(p) and
C’=1(C), then sets Nhbd(p’,C") and Nbhd(p,C) consist of points
symmetric under Tt Let Nbhd(p;,C) = {pis,.., Pim} (here C is the
clause g(p)). Then Nbhd(D(p), 9) = D(pia) U .. U D(pim).-

The procedure for building an SSC for a CNF formula F
with symmetry G is essentially identical to the procedure of [3]
for building a set P that is stable with respect to F modulo

symmetry G. Initsturn, this procedure of [3] is different from the
one shown in Figure 1 only in one line of code (line 11). Namely,
when building a set of points stable modulo symmetry G this
procedure does not add to Boundary a point p” of Nbhd(p’,C) if
Total contains a point that is symmetric to p”. (In the procedure
of Figure 1 we do not add p” only if Total aready contains the
point p”itself.) Eventualy this procedure builds a set of points
P={p.,...pm} that is stable with respect to F modulo symmetry G.
On the other hand, one can interpret the procedure of [3] as
building an SSC D(p,)...,.D(pn). This procedure just uses points p;
of P as representatives of clusters D(p;). In particular, when point
p” of Nbhd(p’C) is not added to Boundary because it is
symmetric to a point p of Total, in terms of SSCs this just means
that D(p)=D(p") and so the cluster D(p") has been already
“visited”.

6.3 Testing satisfiability of pigeon hole
formulas by computing an SSC

In this section, we illustrate the power of SSCs by the
example of pigeon-hole formulas. These are unsatisfiable CNF
formulas that, by means of propositional logic, describe the
pigeon-hole principle. This principle is that if n>m, then n
objects (pigeons) cannot be placed in m holes so that no two
objects occupy the same hole. In [6] A. Haken showed that
pigeon-hole formulas have only exponential size proofs in the
resolution proof system, which makes these formulas hard for the
SAT-solvers based on resolution.

Since the pigeon-hole principle is symmetric with respect to
a permutation of holes or a permutation of pigeons, pigeon-hole
formulas are highly symmetric. In [3] we showed that pigeon-
hole formula PH(n,m) has a stable set of points S(n,m) that is the
union of 201 equivalence classes Dy,...,Domeq Of the relation
symm(p, p’G) where G is the permutationa symmetry of
PH(n,m). The set S(n,m) consists of an exponential size of points,
so (some) equivalence classes D; have exponential size. This
means that pigeon-hole formula HP(n,m) has an SSC that consists
of 2h1 clusters Dy,...,Domeq. That is the size of this SSC is
linear in the number of holes.

7. Conclusions

We introduced the notion of a stable set of clusters (SSC) .
The main purpose of using SSCsis to speed up building a stable
set of points. We gave two methods of computing SSCs. The
first methods uses Boolean cubes as clusters. In the second
method clusters are equivalence classes of a symmetry relation
describing formula s symmetry.

References

[1] M.Davis, G.Logemann, D.Loveland. A Machine program for
theorem proving. Communications of the ACM. -1962. -V.5.
-P.394-397.

[2] E.Goldberg. Testing satisfiability CNF formulas by compu-
ting a stable set of points. Technical Report CDNL-TR-
2001-1126, November 2001.

[3] E.Goldberg. Testing Satisfiability of CNF Formulas by
Computing a Stable Set of Points. SAT-2002, May 6-9,
Cincinnati, Ohio, USA. Published in Annals of Mathematics
and Artificial Intelligence, 43 (1-4): 65-89, January 2005.
Available at http://eigold.tripod.com/papers annals-
2005.zip.

[4] E.Goldberg. Proving Unsatisfiability of CNFslocally.
Journal of Automatic Reasoning, vol 28:417-434,2002.
Available at http://eigold.tripod.com/papergjar-nbhd.zip .

[5] E.Dantsin, A.Goerdt, E.Hirsch, R.Kannan, J. Kleinberg, C.
Papadimitrou, P.Raghavan, and U.Shéning. A deterministic
(2-2/(k+1))" algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1), pp.69-83.0ct.2002.

[6] A.Haken. Theintractability of resolution. Theor. Comput.
Sci. 39 (1985), 297-308.

[7] C.Papadimitriou. On selecting a satisfying truth assignment.
Proceedings of FOC-91.

[8] B.Selman, H.Kautz, B.Cohen. Noise strategies for improving
local search. Proceedings of AAAI-94.

[9] U.Shoning. A probabilistic algorithm for k-SAT and
constraint satisfaction problems. In Proceedings of
FOCS 99,pp. 410-414, 1999.

