
Solving Satisfiability Problem by Computing Stable Sets of Points in
Clusters

Cadence Berkeley Labs

1995 University Ave., Suite 460, Berkeley, California,94704
phone: (510)-647-2825, fax: (510)-486-0205

CDNL-TR-2005-1001
September 2005

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract. Earlier we introduced the notion of a stable set of
points (SSP) and showed that a CNF formula is unsatisfiable iff
there is a set of points (i.e. complete assignments) that is stable.
Experiments showed that SSPs of CNF formulas of practical
interest are very big. So computing an SSP of a CNF formula
point by point is, in general, infeasible. In this report, we show
how an SSP can be computed in “clusters” , each cluster being a
large set of points that are processed “simultaneously” .

1. Introduction
In [2][3] we introduced the notion of a stable set of points

(SSP) of CNF formulas. We showed that a CNF formula is
unsatisfiable if and only if there is a set of points (i.e. complete
assignments) that is stable. This means that to prove
unsatisfiability of a CNF formula F it is sufficient to construct an
SSP. (If F is satisfiable, then a satisfying assignment is to be
found when building an SSP of F.)

The main appeal of SSPs is that they allow one to make full
use of formula’s structural properties. In particular, SSPs give a
“natural” way of traversing the search space. Usually, a procedure
for search space traversal is influenced by the requirement to
guarantee search completeness. For example, in the DPLL
procedure [1] , that is the basis of many algorithms used in
practice, search is organized as a binary tree. In reality, the search
tree is used only to impose a linear order on the points of the
Boolean space to avoid visiting the same point twice. However,
this order may be in conflict with “natural” relationships between
points of the Boolean space that are imposed by the CNF formula
to be checked for satisfiability (for example, if this formula has
some symmetries).

Even though for some classes of formulas there are SSPs of
polynomial size, in general, SSPs are exponential in formula size
(which is something to be expected unless NP=coNP). A simple
procedure for building an SSP of a formula F was given in [2][3].
Experiments showed that the number of points grew very large
even for small CNF formulas. This implies that building an SSP

“point by point” as it is done by the procedure of [2][3] is, in
general, impractical. Two ways of overcoming this problem were
suggested. One way is to compute SSP with excluded directions.
As it was shown in [3] one can drastically reduce the size of SSPs
if some directions are excluded from searching. By building such
an SSP one proves that a clause (whose literals are specified by
the excluded directions) is implied by the original formula F. This
clause can be added to F to reduce the size of the SSPs with
excluded directions to be computed next. Eventually, a small SSP
with no excluded directions will be obtained (if the original
formula is unsatisfiable). Summing up, the idea of this approach is
to replace the construction of one huge “monolithic” SSP with
building a sequence of small SSPs with excluded directions.

The other (and even more promising) way to solve the
problem of computing SSPs of exponential size was mentioned in
[2][3]. The idea is to compute an SSP “ in clusters” processing
many points simultaneously In this report, we consider the
problem of computing SSPs in clusters in greater detail. The
contribution of this report is threefold. First, we introduce the
notion of a stable set of clusters. The importance of this notion is
that it facilitates taking into account formula’s structural
properties. In particular, by giving a SAT-solver some information
on the type of clusters to use, one may get exponential speed-up.
Although we introduce only the notion of clusters consisting of
points, the stability of more complex objects (like clusters of
clusters of points and so on) can be studied.

Second, we show how one can build a stable set of clusters
where clusters are cubes. Interestingly, “ local” proof systems
introduced in [4], can be viewed as a special way of building
such a stable set of clusters. Third, we describe how the notion of
a stable set of clusters works in testing the satisfiability of
symmetric formulas (in particular, pigeon-hole formulas).

It should be noted that SAT-algorithms based on local
search (that is SAT-algorithms operating on complete
assignments) have been studied for more than a decade [7][8].
Recently a new powerful randomized local search algorithm was
introduced in [9]. A derandomized version of this algorithm was

given in [5]. In Section 3 we briefly discuss the relation between
SSPs and SAT-algorithms based on local search.

This report is structured as follows. In Section 2 we recall
the notion of SSPs and give other relevant definitions. Section 3
briefly discusses the relation of SSPs and local search SAT-
algorithms. In Section 4 we introduce the notion of a stable set of
clusters. Section 5 describes a procedure for computing a stable
set of clusters where clusters are cubes. In Section 6 we show
how a stable set of clusters is computed for symmetric formulas.
We make some conclusions in Section 7.

2. Main definitions
In this section, we recall the notion of SSP introduced in

[2][3] and give other relevant definitions.
Let F be a CNF formula. Denote by vars(F) the set of

variables of F. Denote by B the set { 0,1} of values taken by a
Boolean variable. Denote by B|X| the set of complete assignments
to the set of Boolean variables X= vars(F). A complete
assignment to the variables of X is also called a point of B|X| .
Definition 1. A disjunction of literals (also called a clause) C is
called satisfied by a complete assignment (point) p if C(p) = 1.
Otherwise, clause C is called falsified by p. Denote by vars(C) the
set of variables of C.
Definition 2. Let F be a CNF formula. The satisfiability
problem (SAT for short) is to find a complete assignment (point)
satisfying all the clauses of F. This assignment is called a
satisfying assignment.

Definition 3. Let p ∈ B|X|
 be a point falsifying a clause C. The 1-

neighborhood of point p with respect to clause C (written
Nbhd(p,C)) is the set of points that are at Hamming distance 1
from p and that satisfy C.

 It is not hard to see that the number of points in Nbhd(p,C)
is equal to that of literals in C.
Example 1. Let C=x1+~x3+x6 be a clause specified in the
Boolean space of 6 variables x1,…, x6. Let
p=(x1=0, x2=1, x3=1, x4=0, x5=1, x6=0) be a point falsifying C.
Then Nbhd(p,c) consists of the following three points:
p1=(x1=1, x2=1, x3=1, x4=0, x5=1, x6=0), p2=(x1=0, x2=1, x3=0,
x4=0, x5=1, x6=0), p3=(x1=0, x2=1, x3=1, x4=0, x5=1, x6=1). Points
p1, p2, p3 are obtained from p by flipping the value of variables
x1, x3, x6 respectively i.e. the variables whose literals are in C.
Definition 4. Denote by Z(F) the set of falsifying points i.e.
points at which F takes value 0. Obviously, if F is unsatisfiable,
Z(F) = B|X| where X= vars(F).

Definition 5. Let F be a CNF formula and P be a subset of the
set of falsifying points Z(F). A function g mapping P to F is
called a transport function if, for any p ∈ P, clause g(p) ∈ F is
falsified by p. In other words, a transport function g:P→F is
meant to assign each point p∈P a clause of F that is falsified by p.
We call mapping P → F a transport function because it allows
one to introduce some kind of “movement” of points in the
Boolean space.

Definition 6. Let P be a nonempty subset of Z(F) and F be a
CNF formula. Set P is called stable with respect to a CNF
formula F and transport function g: P→F, if ∀ p ∈ P,
Nbhd(p, g(p)) ⊆ P.

Henceforth, if we say that a set of points P is stable with
respect to a CNF formula F without mentioning a transport
function, we mean that there is a function g:P → F such that P is
stable with respect to F and g.

Example 2. Consider an unsatisfiable CNF formula F consisting
of 7 clauses: C1=x1+x2, C2=~x2+x3, C3=~x3+x4, C4=~x4+x1,
C5=~x1+x5, C6=~x5+x6, C7=~x6+~x1. Clauses of F are composed of
literals of 6 variables: x1,…, x6. The following 14 points form an
SSP P: p1=000000, p2=010000, p3=011000, p4=011100,
p5=111100, p6=111110, p7=111111, p8=011111, p9=011011,
p10=010011, p11=000011, p12=100011, p13=100010, p14=100000.
(Values of variables are specified in the order variables are
numbered. For example, p4 consists of assignments x1=0, x2=1,
x3=1, x4=1, x5=0, x6=0.) Set P is stable with respect to the
transport function g specified as: g(p1)=C1, g(p2)=C2, g(p3)=C3,
g(p4)=C4, g(p5)=C5, g(p6)=C6, g(p7)=C7, g(p8)=C4, g(p9)=C3,
g(p10)=C2, g(p11)=C1, g(p12)=C7, g(p13)=C6, g(p14)=C5. It is not
hard to see that g indeed is a transport function i.e. for any point
pi of P it is true that C(pi)=0 where C=g(pi). Besides, every point
pi of P satisfies the condition Nbhd(p, g(p)) ⊆ P of Definition 6.
Consider, for example, point p10=010011. The value of g(p10) is
C2, C2=~x2+x3 and the value of Nbhd(p10,C2) is { p11=000011,
p9=011011} , the latter being a subset of P.
Proposition 1. If there is a set of points that is stable with
respect to a CNF formula F, then F is unsatisfiable.

Proof is given in [3].

3. SSPs and local search
In this section, we briefly discuss the relation of SSPs and

SAT-algorithms based on local search (subsection 3.1) and, in
particular, the procedure of [5] (section 3.2).

3.1 SSPs and local search procedures
SAT-algorithms based on local search have been a subject

of study for more than a decade. First, local search was applied
only to satisfiable formulas. Papadimitriou showed [7] that a very
simple stochastic local search procedure finds a satisfying
assignment of a 2-CNF formula in polynomial time. Then, a few
practical SAT-algorithms based on stochastic local search were
developed and successfully applied to more general classes of
satisfiable CNF formulas [8]. In [9] a new powerful stochastic
algorithm for solving satisfiable CNF formulas was introduced by
Shöning. Later, a derandomized version of that algorithm was
developed [5] that achieved the best known upper bound on
complexity of solving k-SAT. Importantly, the procedure of [5]
can be applied to both satisfiable and unsatisfiable CNF formulas.

On the one hand, an SSP can be viewed as a representative
of the world of local search algorithms. In particular, the
procedure for building an SSP point by point ([2][3]) looks very
similar to a procedure of [5] (see the discussion in the next
subsection). On the other hand, the definition of SSP is algorithm
independent, which makes SSPs a very appealing object of study
and separates them from the local search algorithms. This
distinction becomes more conspicuous in this report where we
consider the notion of a stable set of clusters. For example, the
procedure for building such a set when clusters are cubes (see
Section 5) does not look like a local search procedure at all.

3.2 SSPs and procedure of [5]
In this subsection we compare two procedures. The first

procedure introduced by us in [2],[3] (its description is given in
subsection 5.2) computes an SSP of a CNF formula F point by
point. The second procedure [5] searches for a satisfying
assignment of F in a Hamming ball with a center p and radius r.
Needless to say that the objectives of these two procedures are
different. Our procedure is meant for building an SSP and testing
the satisfiability of F is just a “by-product". The objective of the
procedure of [5] is to test the satisfiability of F. Nevertheless,
these procedures look very similar.

If one sets radius r to n, where n is the number of variables
in F, the procedure of [5] works “almost” like our procedure when
the set Boundary is initialized with the point p. The only
difference is that the set of points visited by the procedure of [5]
is, in general, smaller than the set of points built by our procedure.
When a point p′′′′ is reached by our procedure, all (new) points of
Nbhd(p′′′′,C) are added to Boundary where C is a clause of F
falsified by p′′′′. On the other hand, the procedure of [5] “ ignores”
all the points of Nbhd(p′′′′,C) that are closer to the center p than the
point p′′′′.

So an SSP is “ redundant” in comparison to the set of points
visited by the procedure of [5] when looking for a satisfying
assignment in the Hamming ball of radius n. However this is a
very “ fruitful” redundancy because it allows one to make testing
the stability of a set of points P local. Namely, for every point p of
P, one just needs to test if Nbhd(p, g(p)) is in P and no
knowledge of a center point is necessary. In its turn, the locality of
stability testing is crucial in “speeding up” the computation of
SSPs by building them in clusters of points.

4. Computing SSP by building a stable set of
clusters

In this section, we introduce the notion of a stable set of
clusters. As we mentioned in the introduction, experiments show
that computing an SSP point by point is impractical. A natural
way to speed up the computation is to process many points at
once.
Definition 7. Let F be a CNF formula and D be a subset of Z(F)
where X = vars(F). Let g be a transport function Z(F)→ F.
Denote by Nbhd(D, g) the union of sets Nbhd(p, g(p)), p ∈ D for
all the points of D. In other words, Nbhd(D, g) is the union of 1-
neighborhoods of the points of D where 1-neighborhood
Nbhd(p, g(p)) of a point p is computed with respect to a clause C
of F assigned by the transport function g.

Definition 8. Let F be a CNF formula and D1,…, Dk be subsets
of Z(F) where X=vars(F). Let gi, i=1,..,k be a transport function
Z(F)→ F. Suppose that for every Di, i=1,..,k it is true that
Nbhd(Di, gi) ⊆ D1 ∪ …∪Dk. Then the set { D1,..,Dk} will be called
a stable set of clusters (SSC) with respect to F and transport
functions g1,.., gk. (Here we refer to a subset Di as a cluster).

Proposition 2. Let F be a CNF formula and D1,..,Dk be a stable
set of clusters with respect to transport functions g1,.., gk. Then F
is unsatisfiable.

Proof. Denote by P the set D1 ∪ … ∪ Dk. Let g be a transport
function such that for every p∈ Z(F), it is true that g(p) = C,
C ∈ F where C=gi(p). In other words, the function g assigns to p

the same clause that is assigned to p by some transport function gi
(that is picked arbitrarily from g1,.., gk). Then P is an SSP with
respect to F and the transport function g. Indeed, let p be a point
of P and gi be a transport function such that g(p)=gi(p)=C. Since
{ D1,..,Dk} is an SSC, then Nbhd(Di,gi) ⊆ P. Hence Nbhd(p, gi) ⊆
P and so Nbhd(p, g) ⊆ P.

Note that if P is an SSP of F, then any set of k sets Di ⊆ P
such that D1 ∪ … ∪ Dk = P forms an SSC. However, we are
interested only in using “natural” clusters. Informally, set Di is a
natural cluster if the set of points of Di and the set of points
Nbhd(Di, gi) can be “easily” specified.

The importance of the notion of an SSC is twofold. First, an
obvious advantage of operating on clusters is that if for the
formulas of some class, there is an SSC of a polynomial number
of clusters (in formula’s size), one can have an efficient procedure
for testing the satisfiability of these formulas.

Second, a less obvious advandage is that by providing
information about the structure of clusters one can “pump” a lot
of information into a SAT-solver. It is highly unlikely that there is
an efficient universal algorithm for solving SAT. From a practical
point of view, this implies that to improve a SAT-solver’s chance
to efficiently solve formulas of a class, this SAT-solver needs
some information about structural properties of formulas of this
class. So a practical SAT-solver should have a “communication
channel” with the user. Since a cluster may consists of an
exponential number of points, by advising on the “shape” of
clusters, the user may provide a SAT-solver with an enormous
amount of information. As we will see later, this is exactly the
case for symmetric formulas, where the shape of clusters is
derived from formula’s structural properties namely its
symmetries.

In this report, we consider only a two-level “hierarchy” ,
namely, clusters consisting of points. However, one can introduce
more complex hierarchies (like clusters of clusters of points and
so on). Arguably, using such hierarchies can help in capturing
CNF formula’s structure.

5. Computing SSCs using cubes as clusters
In this section, we describe a special class of SSCs where

clusters are cubes. In subsection 5.1 we give a few more
definitions we need in this section. Subsection 5.2 recalls the
procedure of [2][3] for building an SSP. In subsection 5.3 we
describe a procedure for building an SSC with cubes as clusters.
We show that this procedure is complete and sound in subsection
5.4. Subsection 5.5 discusses how different initialization choices
affect the procedure of subsection 5.3. In subsection 5.6 we
describe the relation between SSCs with cubes as clusters and
“ local” proof systems of [4]. Finally, in subsection 5.7, potential
improvements of the procedure of subsection 5.3 are discussed.

5.1 A few more definitions
Definition 9. Let X ={ x1,.., xn} be a set of Boolean variables. A
cube D of B|X| is a subset of B|X| that can be represented as
A1×..×An, where Ai is a non-empty subset of B and ‘×’ means the
Cartesian product. The components Ai of D that are equal to { 0}
or { 1} are called literal components of the cube D.

Definition 10. Let X ={ x1,.., xn} be a set of Boolean variables.
Let D =A1×..×An be a cube of B|X| and Ai be equal to { 0,1} . Let

D0,D1 be the cubes obtained from D by replacing the set Ai with
sets { 0} and { 1} respectively. We will say that cubes D0 and D1
are obtained from D by splitting in variable xi.

Definition 11. Let X ={ x1,..,xn} be a set of Boolean variables.
Let C be a clause, vars(C) ⊆ X. Denote by Unsat(C) the set of all
points of B|X| that falsify C. It is not hard to see that Unsat(C) is a
cube of B|X|.

Example 3. Let C=x2+~x4 and X={ x1, x2, x3, x4} . Then Unsat(C)
equals { 0,1} ×{ 0} ×{ 0,1} ×{ 1} In other words, Unsat(C) consists
of all the points of B4 for which x2=0 and x4=1.

Definition 12. Let X ={ x1,.., xn} be a set of Boolean variables.
Let p be a point of B|X|. Denote by Nbhd(p, xi) the neighborhood
of p in direction xi, i.e. a one-element set { p′′′′ } where point p′′′′ is
obtained from p by flipping the value of xi in p.

From Definition 3 and Definition 12, it follows that
Nbhd(p,C) is the union of Nbhd(p, xi) for all the variables of the
clause C.
Definition 13. Let X ={ x1, .., xn} be a set of Boolean variables.
Let D =A1×..×An be a cube of B|X| and Ai be equal to { 0} or { 1} .
Denote by Nbhd(D, xi) the union of Nbhd(p, xi) for all the points p
of D. It is not hard to see that Nbhd(D, xi) is the cube obtained
from D by replacing the set Ai with the set { 0,1} \ Ai.

Definition 14.We will say that cube D falsifies clause C if
D ⊆ Unsat(C). (Obviously, in this case, every point of D falsifies
C.)

Definition 15. Let X ={ x1, .., xn} be a set of Boolean variables.
Let D be a cube of B|X| and C be a clause falsified by D. Denote
by Nbhd(D,C) the union of cubes Nbhd(D, xi) for all xi∈ vars(C).

Note that cubes are “natural” clusters according to the
informal definition of Section 3. On the one hand, the set of
points a cube D contains can be easily specified. On the other
hand, if a clause C is falsified by D, the neighborhood Nbhd(D,C)
is the union of a small number of cubes. So it can be easily
specified as well.

5.2 Procedure for building an SSP
A generic procedure for building an SSP of a CNF formula

was given in [2][3]. Its pseudocode is shown in Figure 1. The idea
of this procedure is very simple. It maintains two sets of points:
Boundary and Body. The set Boundary (respectively Body)
consists of the reached points whose neighborhood has not been
explored yet (respectively has been already explored). The set
Boundary is initialized with a starting point p while the set Body
is empty originally (lines 1-2).

Then in the while loop (lines 3-12) the Generate_SSP
procedure does the following. It picks a point p′′′′ of Boundary to
explore the neighborhood of p′′′′ , removes p′′′′ from Boundary and
adds it to Body (lines 4-6). Then it computes the set F′ of clauses
of F that are falsified by p′′′′. If F′ is empty, then p′′′′ is a satisfying
assignment and the procedure stops (lines 8-9). Otherwise, a
clause C of F′ is picked as the value of a transport function g at p′′′′
at line 10 (transport function g is built by Generate_SSP on the
fly). The points of Nbhd(p′′′′,C), that are not in the set Body yet
(and so their neighborhood has not been explored yet) and not in
Boundary already, are added to the set Boundary (line 11). If the
set Boundary is empty, it means that for any point p′′′′ ∈ Body each

point of Nbhd(p′′′′, g(p′′′′)) is in the set Body and so the latter is an
SSP and hence F is unsatisfiable.

 Generate_SSP(F)

/* Total = Boundary ∪ Body */

 1 { p = Generate_starting_point(F);
 2 Body =∅, Boundary = { p} ,
 3 while(Boundary ≠ ∅)
 4 { p′′′′ = pick_next_point(Boundary);
 5 Boundary = Boundary \ { p′′′′ } ;
 6 Body = Body ∪ { p′′′′ } .
 7 F′ = find_falsified_clauses(F, p′′′′);
 8 if (F′ = ∅)
 9 return(‘satisfiable’);
 10 C = pick_a_clause(F′); /* C = g(p′′′′) */
 11 Boundary = Boundary∪(Nbhd(p′′′′, C) \Total);
 12 } /* while */
 13 return(Body);/ *Body is an SSP now */
 14 }

Figure 1. Pseudocode of procedure for building SSP

5.3 Procedure for building an SSC using
cubes as clusters

In this subsection, we describe the Generate_SSC procedure
for building an SSC that uses cubes as clusters. The pseudocode
of this procedure is shown in Figure 2. This procedure also
maintains two sets, Boundary and Body. The set Boundary
consists of cubes whose 1-neighborhood has not been generated
yet. The set Body consists either of cubes whose 1-neighborhood
has been already generated or cubes whose 1-neighborhood has
been “ inherited” by other cubes during the splitting operation (see
below).

The Generate_SSC procedure generates a cube (line 1) to
initialize the set Boundary (line 2). Body is empty initially. An
SSC is built in the while loop (lines 3-24). First, a cube D′ is
picked from Boundary (line 4). It is removed from Boundary and
added to Body (lines 5-6). Then the set F′ of clauses falsified by
cube D′ is formed (i.e. clause C of F is included in F′ if
D′ ⊆Unsat(C)) . If F′ is not empty, then a clause C of F′ is
selected (line 9) and the set of cubes Nbhd(D′,C) is formed. The
function Uncov (line 10) discards every cube C* of Nbhd(D′,C)
that is a subset of Total (the latter is the union of all the cubes
from Boundary ∪ Body). The cubes of Nbhd(D′,C) that have not
been discarded are added to Boundary (line 10) and the current
iteration of the loop ends.

If F′ is empty, there are two possibilities. The first
possibility is that for every clause C of F it is true that
Unsat(C) ∩ D′ = ∅. This means that any point p of D′ is a
satisfying assignment. In this case, the Generate_SSC procedure
returns ‘satisfiable’ (lines 12-13). The second possibility is that
there are clauses C of F such that Unsat(C) ∩ D′ ≠ ∅, but none
of them is falsified by the cube D′. In that case the Generate_SSC
procedure has two different options. The first option is to split
cube D′ (lines 15-17) in a variable xi into cubes D′0, D′1. Either
cube is tested if it is a subset of Total \ D and if not, it is added to
Boundary.

/* Total = Union(Boundary ∪ Body) */

Generate_SSC(F)

 1 { D = Generate_starting_cube(F);
 2 Body =∅, Boundary = { D} ,
 3 while(Boundary ≠ ∅)
 4 { D′ = pick_next_cube(Boundary);
 5 Boundary = Boundary \ { D′ } ;
 6 Body = Body ∪ { D′ } .
 7 F′ = find_falsified_clauses(F, D′);
 8 if (F′ ≠ ∅)
 9 { C = pick_a_clause(F′);
 10 Boundary = Boundary ∪ Uncov(Nbhd(D′,C),Total);
 11 continue;}
 12 if (all_clauses_sat(D′))
 13 return(‘satisfiable’);
 14 if (split_cube_option)
 15 { (D′0, D′1) = split_cube(D′, xi);
 16 Boundary =Boundary ∪ Uncov(D′0, D′1,Total \ D′);
 17 continue;}
 18 if (generate_clause_option)
 19 { (answer,C)=generate_falsified_clause(D′,F);
 20 if (answer == ‘satsfiable’)
 21 return(‘satisfiable’);
 22 Boundary = Boundary∪Uncov(Nbhd(D′,C),Total);
 23 continue;}
 24 } /* end of while */
 25 return(‘unsatisfiable’ ,Body);
 26 }

Figure 2. Pseudocode of procedure for building SSC

The other option is to generate a clause C implied by F and

falsified by D′ (lines 18-23) Such a clause can be generated in the
following way. The idea is to add to the CNF formula F the set Fu
of unit clauses specifying the points contained in D′. (For
example, if all the points of D have xi=0, then the unit clause ~xi

should be added to F.) The satisfiability of the modified formula
(denote it by F*) can be tested by any “ regular” SAT-solver. If F*
is satisfiable, then F is satisfiable as well and the Generate_SCC
procedure stops (lines 20-21). If F* is unsatisfiable, then the
clause C consisting of the literals used in the clauses of Fu is
implied by F and falsified by D′. (Note, however, that one can
remove from C the literals corresponding to the unit clauses of Du
that have not contributed to proving the unsatisfiability of F*. By
reducing the number of literals in the generated clause C, one
reduces the number of cubes in Nbhd(D′,C).) After generating
clause C, the cubes of Nbhd(D′,C) that are not discarded by the
function Uncov are added to Boundary (line 22).

Of course, solving formula F* may be a hard problem. To
reduce the work to be done by the chosen SAT-solver one can
impose some limit on its use of internal resources (e.g. on the
number of leaves of the search tree). If this limit is exceeded, no
clause falsified by D′ is generated. Then the only choice left (in
case no clause of F is falsified by D′) is to split the cube D′.

5.4 Generate_SSC is sound and complete
In this subsection, we show that Generate_SSC is a sound

and complete procedure.

Proposition 3. The Generate_SSC procedure is sound i.e. if it
terminates it returns the right answer.

Proof. Let F be a CNF formula to be tested for satisfiability.
Generate_SSC returns the answer ‘satisfiable’ (lines 13,21) only
if an assignment satisfying F is found. So the answer ‘satisfiable’
is always correct.

Now we show that if Generate_SSC says that F is
unsatisfiable (line 25) then the set Union(Body) (which is the
union of all the cubes of Body) is an SSP of F. So the answer
‘unsatisfiable’ is also always correct. Let p be a point of
Union(Body). Every point of Union(Body) first appears in the set
Union(Boundary). Let D′ be a cube of Boundary containing the
point p. Since Generate_SSC returns the answer ‘unsatisfiable’
only if Boundary is empty, the point p eventually leaves
Boundary.

Let us show that if p leaves the set Union(Boundary) and
the set Union(Body) does not contain p, each point of Nbhd(p,C)
is either added to Total or is already there. Here C is either a
clause of F, or is implied by F. In either case C(p)=0.

If D′ is not the only cube of Boundary containing p, then
removal of D′ from Boundary does not remove p from
Union(Boundary). Let us assume that D′ is the only cube of
Boundary containing p and it is picked by pick_next_cube (line
4). Suppose that D′ is split into D′0, D′1 and the cube D′0 contains
p. By assumption, p is not in Union(Body) and D′ is the only
cube of Boundary containing p. Then D′0 is not a subset of Total
\ D′ and is added to Boundary (line 22). Hence p does not leave
Union(Boundary).

So p first time leaves Union(Boundary) and appears in
Union(Body) only if a clause C falsified by D′ is found in F or
generated by a SAT-solver (line 19). In that case, every cube of
Nbhd(D′,C) that is not a subset of Total is added to Boundary. It
means, that every point of Nbhd(p,C) is either added to Total or is
already there.

The set Total built by Generate_SSC can not reduce in size.
This means that if a point p appeared in Union(Body) for the first
time and Nbhd(p,C) ⊆ Total, the latter relation holds true until
Generate_SSC terminates. Since eventually Total = Union(Body),
for every point p of Union(Body) it is true that Nbhd(p,C) ⊆
Union(Body) (where C is a clause of F or is implied by F and
C(p)=0)). Hence Union(Body) is an SSP of a formula F* implied
by F (F* is obtained by adding to F all the generated clauses).
Then F* and so F are unsatisfiable.

Proposition 4. The Generate_SSC procedure is complete. That
is it terminates for any CNF formula F.

Proof. Assume the contrary. Let F be a CNF formula such that
Generate_SSC does not terminate. The set Total can not reduce in
size. This means that in every iteration of the loop of
Generate_SSC, the set Total either grows or stays the same. Since
the maximum size of Total is 2n (where n=|vars(F)|)
Generate_SSC can have only a finite set of iterations of the main
loop in which Total grows. This means that Generate_SSC should
have an infinite sequence S of iterations of the main loop in which
the set Total stays the same. Let us show that such an infinite
sequence is impossible.

The set Total does not change only when the cube D′ picked
from Boundary is split or when every cube of Nbhd(D′,C) is a
subset of Total. In the first case, D′ is replaced in Boundary with

two cubes of a smaller size. In the second case, D′ is just
removed from Boundary. Now we build a function H with a
finite range that monotonically decreases in each iteration that
does not change Total. (The existence of H means that the infinite
sequence S above is not possible.) The only argument of H is the
set Boundary. The output of H is a vector V with n components
V1,…,Vn where Vi is the number of cubes of Boundary that have
exactly i literal components. Let vectors V and V′′′′ be compared
lexicographically, that is V′′′′ < V iff Vi < Vi′ and i is the smallest
component number where V and V′′′′ are different. If Boundary′ is
obtained from Boundary by removing a cube, then
H(Boundary′) < H(Boundary). The same is true if Boundary′ is
obtained from Boundary by replacing a cube D′ with two smaller
cubes obtained by the splitting of D′ .

5.5 Initialization of the set Boundary

The performance of the Generate_SSC procedure strongly
depends on how one initializes the set Boundary (line 1 of Figure
2.). Suppose, for example, that Boundary is initialized with a
cube D that contains only one point (i.e. D is a cube of the
smallest size). Let C be a clause of F falsified by the point of D.
Each cube of Nbhd(D,C) contains only one point as well. So the
Generate_SSC procedure reduces to the procedure of Section 5.2
that builds an SSP point by point.

Now, suppose that Boundary is initialized with the cube
equal to B|X| where X=vars(F) i.e. with the largest possible cube of
B|X|. In this case, the set Total is initialized to the entire Boolean
space. Let D′ be a cube of Boundary and C be a clause of F
falsified by D′. Since the set Total cannot decrease in size, it stays
equal to B|X|. Then every cube of Nbhd(D′,C) is a subset of Total
and so is not added to the set Boundary. Suppose that
Generate_SSC does not use the option of new clause generation.
Then, if for the chosen cube D′ of Boundary there is no clause C
of F falsified by D′, the only choice is to split D′ into smaller
cubes D′0 and D′1. If, say cube D′0, falsifies a clause of F it is
removed from Boundary. Otherwise D′0 is returned to the set
Boundary. So, Generate_SSC keeps splitting cubes of Boundary
until each cube resulting from splitting is falsified by a clause of
F. In other words, if Boundary is initialized with the cube B|X|
(and no new clauses are generated), the cubes of Boundary can
be viewed as “nodes” of a binary tree. The only difference from a
regular binary search procedure is that branches are examined in
an arbitrary order.

If Boundary is initialized with the cube equal to B|X|,
Generate_SSC does not build a non-trivial SSP. It just checks if
the entire space B|X| is an SSP. So the most interesting case to
study is when Boundary is initialized with a cube that is neither
equal to B|X| nor contains only one point of B|X|. In that case, one
can hope to build a non-trivial SSP (i.e. different from B|X|) at the
same time speeding up computation by processing many points at
once.

5.6 Relation to proof systems of [4]
In this subsection, we show that the procedure

Generate_SSC, in a sense, generalizes the proofs systems of [4].
In the pseudocode of Generate_SSC shown in Figure 2, the

set Boundary is initiated with a single cube and the set Body is

initially empty. However, Boundary and Body can be initiated
with any set of cubes of B|X|, X = vars(F) satisfying the following
two conditions: a) if D ∈ Body, then D ⊆ Z(F) (recall that Z(F)
is the set of points falsifying F); b) if D ∈ Body, then for every
point p ∈ D, there is a clause Ci of F such that Nbhd(p, Ci) ∈
Union(Boundary). In other words, one can add to Body any cube
consisting only of points falsifying F, if 1-neghborhood of the
points of D with respect to some transport function is in the set
Boundary.

 Let C1,..,Ck be the clauses of F. Then one can initialize
Body with cubes Unsat(C1),..,Unsat(Ck) if Boundary is initalized
with cubes Nbhd(Unsat(C1),C1),.., Nbhd(Unsat(Ck),Ck). If F is
unsatisfiable, then Unsat(C1) ∪ … ∪ Unsat(Ck) is equal to B|X|.
In other words, in this case, Generate_SSC builds a trivial SSP
equal to B|X|. However, constructing even such a trivial SSP may
be beneficial for the following reason. Current state-of-the-art
solvers are based on the resolution proof system. In this system,
one needs to generate an empty clause as a “global certificate” of
unsatisfiability of a CNF formula. In a sense, this certificate is the
result of merging “ local branches” , which makes these branches
interdependent. The Generate_SSC procedure does not have to
merge “branches” to produce a global certificate. As soon as the
set Boundary is empty we know that F is unsatisfiable. So
Generate_SSC is “ inherently local” .

Note that if Boundary and Body are initialized as described
above, there is no need to add new cubes to Boundary. Indeed, if
D′ falsifies C and C is implied by F, then Nbhd(D′,C) is a subset
of the union of neighborhoods Nbhd(Unsat(Ci),Ci),i=1,..,k.
(Because this union contains all neighborhood points of Z(F)). So
only two things can happen to the set Boundary. Either a cube D′
is moved from Boundary to Body (if there is a clause C implied by
F and falsified by D′) or D′ is split and moved from Boundary to
Body and the two cubes produced in the split are added to
Boundary.

In [4] we introduced two “ local” proofs systems, NE and
NER. These proof systems are based on the fact that if a CNF
formula F is satisfiable, there always exists a satisfying
assignment that is in the 1-neighborhood of a clause C of F. (In
the notation of this report, 1-neighborhood of C is the union of
cubes of Nbhd(Unsat(C),C)). The idea of either proof system is to
explore the 1-neighborhood of all the clauses of F. In is not hard
to show that Generate_SSC can “simulate” proofs generated in
NE and NER if the set Body is initialized with cubes
Unsat(Ci),i=1,..,k and Boundary is initialized with cubes
Nbhd(Unsat(Ci),Ci),i=1,..,k

The system NE does not use resolution to generate new
clauses. It is equivalent to Generate_SSC without the option to
generate new clauses. (In this case, if there is no clause of F
falsified by D′, the only thing Generate_SSC can do is to split D′.)
In contrast to NE, the system NER allows one to use the
resolution operation to generate new clauses. The proofs of NER
are simulated by Generate_SSC if new clauses are allowed to be
generated by a resolution based SAT-solver.

5.7 Improvements of Generate_SSC
The pseudocode shown in Figure 2 captures only main

features of the procedure Generate_SSC. Below we list some
potential improvements.

1) Since Generate_SSC uses the operation of cube splitting,
the number of cubes in Boundary (and so Body) may grow

exponentially. An interesting way of mitigating this problem is
to merge cubes of Boundary. The idea is to replace a set of k
cubes Di1,..,Dik with the smallest cube D′ containing each cube of
the set. In a sense, each cube of the set Boundary corresponds to
a “search branch” . So merging cubes of Boundary is, in a way,
merging branches. The objective of this merging is to reduce the
number of branches to examine. Adding the merging operation
does not effect the soundness of Generate_SSC but may
compromise its completeness. The latter is due to the fact that
combining cube merging and splitting may lead to looping. This
looping can be prevented in many ways. One way is to use
merging only if the cube D′ (where D′ is the result of merging)
falsifies a clause C of F or such a clause is generated. In this case,
Generate_SSC adds to Boundary cubes of Nbhd(D′,C) adds to
Body cube D′ and no splitting of D′ occurs.

2) In Generate_SSC every cube D of the set Nbhd(D′,C) is
checked if D ⊆ Total. (Similarly either cube obtained by splitting
D′ is checked if it is a subset of Total \ D′). This check reduces to
solving an instance of SAT and so can be performed by a SAT-
solver. To reduce the run time of this SAT-solver, one can impose
a limit on the amount of computation e.g. number of branchings.
If the SAT-solver reaches this limit when checking if D ⊆ Total,
D is added to Boundary.

3) Any clause C generated by a SAT-solver (line 19 of
Figure 2) can be added to the formula F. This way one gets more
choices when picking a clause of F falsified by a cube D′.

6. Testing satisfiability of symmetric formulas
In this section we show the relation between formula’s

symmetry and SSCs. (In this report we consider only
permutational symmetry.) In subsection 6.1 we recall the results
of [3] on SSPs of symmetric formulas. In subsection 6.2 we show
that the procedure for solving symmetric formulas introduced in
[3] can be actually interpreted as building an SSC. Finally, in
subsection 6.3, we apply the results of subsection 6.2 to solving
pigeon-hole formulas.

6.1 Testing satisfiability of symmetric
formulas by computing an SSP
Definition 16. Let X be a set of Boolean variables. A
permutation π defined on set X is a bijective mapping of X onto
itself.

Definition 17. Let X={ x1,…, xn} be a set of Boolean variables.
Let p=(x1,.., xn) be a point of B|X|. Let π be a permutation of X.
Denote by ππππ(p) the point (π(x1),…, π(xn)).

Definition 18. Let F={ C1,..,Ck} be a CNF formula. Let π be
a permutation of vars(F). Denote by ππππ(Ci) the clause obtained
from Ci by replacing each variable xm∈ Ci with the variable π(xm).
Denote by ππππ(F) the set of clauses { π(C1),..,π(Ck)}

Definition 19. Let F be a CNF formula and π be a permutation
of vars(F). Formula F is called symmetric with respect to π if π(F)
consists of the same clauses as F (that is each clause π(Ci) of π(F)
is identical to a clause Cm of F).

Definition 20. Let X be a set of Boolean variables and G be a
group of permutations of X. Denote by symm(p, p′′′′, G) the
following binary relation between points of B|X|. A pair of points

(p, p′′′′) is in symm(p, p′′′′, G) if and only if there is π ∈ G such that
p′′′′ = π(p).The relation symm(p, p′′′′, G) is an equivalence relation
and so it breaks B|X| into equivalence classes.

Definition 21. Points p and p′′′′ of B|X| are called symmetric with
respect to a group G of permutations of X if they are in the same
equivalence class of symm(p, p′′′′, G).

Proposition 5. Let X be a set of Boolean variables and p be a
point of B|X|. Let C be a clause falsified by p. Let a point
q ∈ Nbhd(p,C) be obtained from p by flipping the value of
xi ∈ vars(C). Let π be a permutation of X and p′′′′ = π(p), C′ = π(C).
Let q′′′′ ∈ Nbhd(p′′′′,C′) be obtained from p′′′′ by flipping the value of
π(xi). Then q′′′′ =π(q). (In other words, if p′′′′ = π(p), C′ = π(C), then
for each point q of Nbhd(p,C) there is a point q′′′′ =π(q) of
Nbhd(p′′′′,C′).)
Proof is given in [3].

Definition 22. Let F be a CNF formula that is symmetric with
respect to a group G of permutations of X=vars(F). Let P be a set
of points of B|X| falsifying F. The set P is called stable modulo
symmetry G with respect to F and a transport function g: P → F if
for each point p ∈ P, every point p′′′′ of Nbhd(p, g(p)) is either in P
or there is a point p″″″″ of P that is symmetric to p′′′′.

Proposition 6. Let F be a CNF formula, P be a set of points of
B|X|, X=vars(F), that falsify F. Let g: P→F be a transport
function. If P is stable modulo symmetry G with respect to F and
g, then F is unsatisfiable.

Proof is given in [3].

6.2 Testing satisfiability of symmetric
formulas by computing an SSC

 Proposition 6 is proven in [3] by “extending” the set of
points P by adding each point of B|X| that is symmetric to a point
of P. The transportation function g is also “extended” as follows.
If p ∈ P and p′′′′ =π(p), then g(p′′′′) is equal to π(g(p)) (In other
words, for symmetric points, the extended transport function g
assigns symmetric clauses.) It is shown in [3] that this extended
set of points is actually an SSP of F with respect to the extended
transport function g.

Interestingly, one can give a different interpretation of the
extension of P above. Let P={ p1,.., ps} . Let D(pi) be the
equivalence class of symm(p, p′′′′, G) consisting of the points of
B|X| that are symmetric to pi. Then the set of clusters D(p1),..,D(ps)
form an SSC because D(p1) ∪… ∪ D(ps) is exactly the extended
set described above and so this set is stable. (Note that if points
pi and pj of P are symmetric, then D(pi)=D(pj).)

Sets D(pi) are “natural” clusters according to the informal
definition given in Section 3. On the one hand, each cluster is an
equivalence class of the symmetry relation symm(p, p′′′′, G) and so
the set of points of D(pi) can be easily specified. On the other
hand, set Nbhd(D(pi), g) (where g is the transport function
extended from the original function P→ F as described before) is
easy to define. According to Proposition 5, if p′′′′ = π(p) and
C′ = π(C), then sets Nhbd(p′′′′,C′) and Nbhd(p,C) consist of points
symmetric under π. Let Nbhd(pi,C) = { pi1,.., pim} (here C is the
clause g(pi)). Then Nbhd(D(pi), g) = D(pi1) ∪ .. ∪ D(pim).

The procedure for building an SSC for a CNF formula F
with symmetry G is essentially identical to the procedure of [3]
for building a set P that is stable with respect to F modulo

symmetry G. In its turn, this procedure of [3] is different from the
one shown in Figure 1 only in one line of code (line 11). Namely,
when building a set of points stable modulo symmetry G this
procedure does not add to Boundary a point p″″″″ of Nbhd(p′′′′,C) if
Total contains a point that is symmetric to p″″″″ . (In the procedure
of Figure 1 we do not add p″″″″ only if Total already contains the
point p″″″″ itself.) Eventually this procedure builds a set of points
P={ p1,..,pm} that is stable with respect to F modulo symmetry G.
On the other hand, one can interpret the procedure of [3] as
building an SSC D(p1),..,D(pm). This procedure just uses points pi
of P as representatives of clusters D(pi). In particular, when point
p″″″″ of Nbhd(p′′′′,C) is not added to Boundary because it is
symmetric to a point p of Total, in terms of SSCs this just means
that D(p)=D(p″) and so the cluster D(p″) has been already
“visited” .

6.3 Testing satisfiability of pigeon hole
formulas by computing an SSC

In this section, we illustrate the power of SSCs by the
example of pigeon-hole formulas. These are unsatisfiable CNF
formulas that, by means of propositional logic, describe the
pigeon-hole principle. This principle is that if n > m, then n
objects (pigeons) cannot be placed in m holes so that no two
objects occupy the same hole. In [6] A. Haken showed that
pigeon-hole formulas have only exponential size proofs in the
resolution proof system, which makes these formulas hard for the
SAT-solvers based on resolution.

Since the pigeon-hole principle is symmetric with respect to
a permutation of holes or a permutation of pigeons, pigeon-hole
formulas are highly symmetric. In [3] we showed that pigeon-
hole formula PH(n,m) has a stable set of points S(n,m) that is the
union of 2∗m+1 equivalence classes D1,…,D2m+1 of the relation
symm(p, p′′′′,G) where G is the permutational symmetry of
PH(n,m). The set S(n,m) consists of an exponential size of points,
so (some) equivalence classes Di have exponential size. This
means that pigeon-hole formula HP(n,m) has an SSC that consists
of 2∗m+1 clusters D1,…,D2m+1. That is the size of this SSC is
linear in the number of holes.

7. Conclusions
We introduced the notion of a stable set of clusters (SSC) .

The main purpose of using SSCs is to speed up building a stable
set of points. We gave two methods of computing SSCs. The
first methods uses Boolean cubes as clusters. In the second
method clusters are equivalence classes of a symmetry relation
describing formula’s symmetry.

References
[1] M.Davis, G.Logemann, D.Loveland. A Machine program for

theorem proving. Communications of the ACM. -1962. -V.5.
-P.394-397.

[2] E.Goldberg. Testing satisfiability CNF formulas by compu-
ting a stable set of points. Technical Report CDNL-TR-
2001-1126, November 2001.

[3] E.Goldberg. Testing Satisfiability of CNF Formulas by
Computing a Stable Set of Points. SAT-2002, May 6-9,
Cincinnati, Ohio, USA. Published in Annals of Mathematics
and Artificial Intelligence, 43 (1-4): 65-89, January 2005.
Available at http://eigold.tripod.com/papers/ annals-
2005.zip.

[4] E.Goldberg. Proving Unsatisfiability of CNFs locally.
Journal of Automatic Reasoning, vol 28:417-434,2002.
Available at http://eigold.tripod.com/papers/jar-nbhd.zip .

[5] E.Dantsin, A.Goerdt, E.Hirsch, R.Kannan, J. Kleinberg, C.
Papadimitrou, P.Raghavan, and U.Shöning. A deterministic
(2-2/(k+1))n algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1), pp.69-83.Oct.2002.

[6] A.Haken. The intractability of resolution. Theor. Comput.
Sci. 39 (1985), 297-308.

[7] C.Papadimitriou. On selecting a satisfying truth assignment.
Proceedings of FOC-91.

[8] B.Selman, H.Kautz, B.Cohen. Noise strategies for improving
local search. Proceedings of AAAI-94.

[9] U.Shöning. A probabilistic algorithm for k-SAT and
constraint satisfaction problems. In Proceedings of
FOCS’99,pp. 410-414, 1999.

