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Abstract. Quantifier elimination (QE) is an important problem that
has numerous applications. Unfortunately, QE is computationally very
hard. Earlier we introduced a generalization of QE called partial QE (or
PQE for short). PQE allows to unquantify a part of the formula. The
appeal of PQE is twofold. First, many important problems can be solved
in terms of PQE. Second, PQE can be drastically faster than QE if only
a small part of the formula gets unquantified. To make PQE practical,
one needs an algorithm for verifying the solution produced by a PQE
solver. In this paper, we describe a very simple SAT-based verifier called
VerPQE and provide some experimental results.

1 Introduction

Earlier, we introduced a generalization of Quantifier Elimination (QE) called
partial QE (or PQE for short) [1]. PQE allows to unquantify a part of the
formula. So, QE is just a special case of PQE where the entire formula gets
unquantified. The appeal of PQE is twofold. First, it can be much more efficient
than QE if only a small part of the formula gets unquantified. Second, many
known verification problems like SAT, equivalence checking, model checking and
new problems like property generation can be solved in terms of PQE [1,2,3,4,5].
So, PQE can be used to design new efficient algorithms. To make PQE practical,
one needs to verify the correctness of the solution provided by a PQE solver.
Such verification is the focus of this paper.

We consider PQE on propositional formulas in conjunctive normal form
(CNF)1 with existential quantifiers. PQE is defined as follows. Let F (X,Y ) be
a propositional CNF formula where X,Y are sets of variables. Let G be a sub-
set of clauses of F . Given a formula ∃X [F ], find a quantifier-free formula H(Y )
such that ∃X [F ] ≡ H ∧ ∃X [F \G]. In contrast to QE, only the clauses of G are
taken out of the scope of quantifiers here (hence the name partial QE). We will
refer to H as a solution to PQE. As we mentioned above, PQE generalizes QE.
The latter is just a special case of PQE where G = F and the entire formula is
unquantified.

To verify the solution H above one needs to check if ∃X [F ] ≡ H ∧∃X [F \G]
indeed holds. If derivation of H is done in some proof system, one can check the

1 Every formula is a propositional CNF formula unless otherwise stated. Given a CNF
formula F represented as the conjunction of clauses C1∧· · ·∧Ck, we will also consider
F as the set of clauses {C1, . . . , Ck}.
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correctness of H by verifying the proof (like it is done for SAT-solvers). Since,
PQE is currently in its infancy and no well established proof system exists we
use a more straightforward approach. Namely, we present a very simple SAT-
based verification algorithm called VerPQE that does not require any knowledge
of how the solution H is produced. A flaw of VerPQE is that, in general, it
does not scale well. Nevertheless, VerPQE can be quite useful in two scenarios.
First, VerPQE is efficient enough to handle PQE problems formed from random
formulas of up to 70-80 variables. Such examples can can be employed when
debugging a PQE solver. Second, VerPQE can efficiently verify even large PQE
problems for a particular class of formulas described in Subsection 4.3.

The paper is structured as follows. Basic definitions are given in Section 2.
Section 3 formally describes how a solution to PQE can be verified. The ver-
ification algorithm called VerPQE is presented in Section 4. Section 5 gives
experimental results. Some background is provided in Section 6 and conclusions
are made in Section 7.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal

of a variable v is either v or its negation. A clause is a disjunction of literals.
A formula F is in conjunctive normal form (CNF) if F = C1 ∧ · · · ∧ Ck where
C1, . . . , Ck are clauses. We will also view F as a set of clauses {C1, . . . , Ck}.
We assume that every formula is in CNF unless otherwise stated.

Definition 2. Let F be a formula. Then Vars(F ) denotes the set of variables
of F and Vars(∃X[F ]) denotes Vars(F )\X.

Definition 3. Let V be a set of variables. An assignment #»q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in #»q as
Vars(~q). We will refer to #»q as a full assignment to V if Vars(~q) = V . We
will denote as #»q ⊆ #»r the fact that a) Vars(~q) ⊆ Vars(~r) and b) every variable
of Vars(~q) has the same value in #»q and #»r .

Definition 4. A literal and a clause are said to be satisfied (respectively fal-

sified) by an assignment #»q if they evaluate to 1 (respectively 0) under #»q .

Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and #»q be an assignment to Vars(H). If C is satisfied by #»q , then C~q ≡ 1. Oth-
erwise, C~q is the clause obtained from C by removing all literals falsified by #»q .
Denote by H~q the formula obtained from H by removing the clauses satisfied by
#»q and replacing every clause C unsatisfied by #»q with C~q.

Definition 6. Given a formula ∃X [F (X,Y )], a clause C of F is called quan-

tified if Vars(C) ∩ X 6= ∅.



Definition 7. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if G~q = H~q for all full assign-
ments #»q to Vars(G) ∪ Vars(H).

Definition 8. Let F (X,Y ) be a formula and G ⊆ F and G 6= ∅. The clauses of
G are said to be redundant in ∃X[F ] if ∃X [F ] ≡ ∃X [F \G].

Definition 9. Given a formula ∃X [F (X,Y ))] and G where G ⊆ F , the Partial

Quantifier Elimination (PQE) problem is to find H(Y ) such that
∃X[F ] ≡ H ∧ ∃X[F \ G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Remark 1. For the sake of simplicity, we will assume that every clause of formula
G in Definition 9 is quantified.

Example 1. Consider the formula F = C1∧C2∧C3∧C4 where C1 = x3∨x4, C2=
y1∨x3, C3 = y1 ∨ x4, C4=y2∨x4. Let Y denote {y1, y2} and X denote {x3, x4}.
Consider the PQE problem of taking C1 out of ∃X [F ] i.e. finding H(Y ) such
that ∃X [F ] ≡ H∧∃X [F \ {C1}]. One can show that ∃X [F ] ≡ y1∧∃X [F \ {C1}].
That is, H=y1 is a solution to the PQE problem above.

Proposition 1. Let H be a solution to the PQE problem of Definition 9. That
is ∃X [F ] ≡ H ∧ ∃X [F \G]. Then F ⇒ H (i.e. F implies H).

The proofs of propositions are given in Appendix A.

3 Verification Of A Solution to PQE

LetH(Y ) be a solution found by a PQE solver when takingG out of ∃X [F (X,Y )].
That is ∃X [F ] ≡ H ∧ ∃X [F \G] is supposed to hold. One can check if this is
true (i.e. whether H is correct) using the proposition below.

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking G

out of the scope of quantifiers in ∃X [F (X,Y )] if and only if

a) H is implied by F ;
b) G is redundant in H ∧ ∃X [F ] i.e. H ∧ ∃X [F ] ≡ H ∧ ∃X [F \G]

Checking the first condition of Proposition 2 can be done by a SAT-solver.
Namely, one just needs to check for every clause C of H if F ∧C is unsatisfiable.
(If so, then F ⇒ C.) Below, we describe how one can check the second condition
of Proposition 2 in terms of boundary points.

Definition 10. Let F be a formula and G be a non-empty subset of clauses of
F . A full assignment #»p to Vars(F ) is called a G-boundary point of F if it
falsifies G and satisfies F \G.



The name “boundary point” is due to the fact that if the subset G is small, #»p
can sometimes be close to the boundary between assignments satisfying and
falsifying F .

Definition 11. Let F (X,Y ) be a formula and G be a non-empty subset of F .
Let ( #»x , #»y ) be a G-boundary point of F where #»x and #»y are full assignments
to X and Y respectively. The G-boundary point ( #»x , #»y ) is called Y -removable

(respectively Y -unremovable) if formula F~y is unsatisfiable (respectively satis-
fiable).

Recall that F~y describes the formula F in subspace #»y . So the fact that F~y

is unsatisfiable (or satisfiable) just means that F is unsatisfiable (respectively
satisfiable) in subspace #»y . We use the name “Y -removable boundary point” since
such a boundary point can be eliminated by adding a clause implied by F that
depends only on variables of Y . Indeed, suppose that ( #»x , #»y ) is a Y -removable
G-boundary point. Then F~y is unsatisfiable and hence there is a clause C(Y )
falsified by #»y and implied by F . Note that ( #»x , #»y ) is not a G-boundary point
of F ∪ {C} because it falsifies the formula (F ∪ {C}) \ G. So, adding C to
F eliminates the G-boundary point ( #»x , #»y ). On the contrary, a Y -unremovable
boundary point ( #»x , #»y ) cannot be eliminated by adding a clause falsified by #»y

and implied by F .

Proposition 3. Let F (X,Y ) be a formula. Let G be a non-empty subset of
clauses of G. The formula G is redundant in ∃X [F ] if and only if every G-
boundary point of F (if any) is Y -unremovable.

So, to check the second condition of Proposition 2 one needs to show that
every G-boundary point of H ∧ F (if any) is Y -unremovable.

4 Description of VerPQE

VerPQE (∃X[F ], G,H) {
1 for every C ∈ H {
2

#»p := Sat(F∧C)
3 if ( #»p 6= nil)
4 return(false)}

————
5 for every C ∈ G {
6 ok :=ChkRed(∃X[F∧H ], C)
7 if (ok = false) return(false)
8 F := F \ {C} }
9 return(true)

Fig. 1: VerPQE

In this section, we describe the algorithm for
verification of PQE called VerPQE .

4.1 High-level view of VerPQE

A high-level view of VerPQE is given in
Fig. 1. VerPQE accepts formula ∃X [F ], a
subset G ∈ F of clauses to take out of the
scope of quantifiers and a solution H to this
PQE problem. That is ∃X [F ] is supposed
to be logically equivalent to H ∧ ∃X [F \G].
VerPQE returns true if this equivalence
holds and so, H is a correct solution. Other-
wise, VerPQE returns false.

VerPQE consists of two parts separated by a solid line. In the first part
(lines 1-4), VerPQE just checks if H is implied by F . This is done by checking



for every clause C ∈ H if F ∧ C is satisfiable. If so, C is not implied by F and
the solution H is incorrect. Hence, VerPQE returns false (line 4). In the second
part (lines 5-9), for every clause C ∈ G, the algorithm checks if C is redundant
in ∃X [F ∧H ] by calling the function ChkRed (line 6). Namely, ChkRed checks if
∃X [F ∧H ] ≡ ∃X [(F \ {C}) ∧H ]. If so, C is removed from F (line 8). Otherwise,
C is not redundant in ∃X [F ∧H ] and VerPQE returns false (line 7). If all clauses
of G can be removed from ∃X [F ∧H ], then H is a correct solution and VerPQE
returns true.

4.2 Description of ChkRed

ChkRed(∃X[F ∧H ], C) {
1 Y := Vars(F ) \X
2 Plg := ∅
3 while (true) {
4 F ′ := (F \ {C}) ∧H

5 ( #»x , #»y ) :=Sat(Plg∧ F ′ ∧C)
6 if (( #»x , #»y ) = nil)
7 return(true)
8

#»x∗ := Sat(F~y ∧H~y)
9 if ( #»x ∗ = nil)
10 return(false)
11 D :=P lugCls( #»y , #»x ∗,F,H)
12 Plg := Plg ∪ {D}} }}

Fig. 2: ChkRed

The pseudocode of ChkRed is shown
in Fig. 2. ChkRed accepts the formula
∃X [F (X,Y ) ∧H(Y )] and a quantified clause
C to be checked for redundancy. ChkRed re-
turns true if C is redundant in ∃X [F ∧H ].
Otherwise, it returns false. To verify redun-
dancy of C, ChkRed checks if F ∧ H has a
Y -removable C-boundary point. If not, C is
redundant. Otherwise, C is not redundant.

ChkRed starts with computing the set Y
of unquantified variables (line 1). Then it ini-
tializes the set of “plugging” clauses (see be-
low). The main work is done in the while
loop (lines 3-12). ChkRed starts with check-
ing if formula F ∧H has a C-boundary point
(lines 4-5) i.e. checking if there is an assign-

ment ( #»x , #»y ) satisfying Plg ∧ (F \ {C})∧H ∧C. The formula Plg is used here to
exclude the C-boundary points examined in the previous iterations of the loop.
If no ( #»x , #»y ) exists, the clause C is redundant and ChkRed returns true (line 7).

If the assignment ( #»x , #»y ) above exists, ChkRed checks if formula F~y ∧H~y is
satisfiable i.e. whether F ∧H is satisfiable in subspace #»y (lines 8-10). If not, the
C-boundary point ( #»x , #»y ) is Y -removable. This means that C is not redundant
in ∃X [F ∧H ] and ChkRed returns false (line 10). Otherwise, ( #»x , #»y ) is a Y -
unremovable boundary point and ChkRed calls the function PlugCls to build a
plugging clause D(Y ). The latter is falsified by #»y and so excludes re-examining
C-boundary points in the subspace #»y . After that, ChkRed addsD to the formula
Plg and starts a new iteration of the loop.

The simplest way to build D is to form the longest clause falsified by #»y . One
can try to make D shorter to exclude a greater subspace from future considera-
tions. Suppose there is #»y ∗ ⊂ #»y such that the assignment #»x ∗ satisfying F~y ∧H~y

(found in line 8) still satisfies F~y∗ ∧ H~y∗ . This means that every C-boundary
point of the larger subspace #»y ∗ is Y -unremovable too. So, one can add to Plg a
shorter plugging clause D falsified by #»y ∗ rather than #»y .



4.3 Scalability issues

As we mentioned earlier,VerPQE consists of two parts. The first part of VerPQE
checks if every clause of the solution H is implied by F . In the second part, for
every clause C ∈ G, the function ChkRed checks if C is redundant in ∃X [F ∧H ].
(Recall that G is the subset of clauses that one must take out of ∃X [F ].) The
first part reduces to |H | calls to a SAT-solver. So, it is as scalable as SAT-solving
(unless H blows up as the size of the PQE problem grows). The second part of
VerPQE scales much poorer. The reason is that this part requires enumeration
of Y -unremovable C-boundary points and the number of such points is typically
grows exponentially. Besides, the plugging clauses produced by ChkRed are long.
So, adding a plugging clause cannot exclude a big chunk of C-boundary points
at once. So, the size of formulas that can be efficiently handled by VerPQE is
limited by 70-80 variables.

There is however an important case where VerPQE can efficiently verify
large formulas. This is the case where F∧H does not have any Y -unremovableG-
boundary points. (Since F and F ∧H have the same Y -unremovable G-boundary
points, this means that F has no such boundary points either.) Then for every
clause C ∈ G, the function ChkRed immediately finds out that the formula

(F \ {C}) ∧H ∧C is unsatisfiable. So, the verification of solution H reduces to
|H |+ |G| SAT-checks.

5 Experimental Results

In this section, we experimentally evaluate our implementation of VerPQE . In
this implementation, we used Minisat [6] as an internal SAT-solver. The source
of VerPQE and some examples can be downloaded from [7]. We conducted
three experiments in which we verified solutions obtained by the PQE algorithm
called EG-PQE+ [5]. In the experiments we solved the PQE problem of taking
a clause C out of formula ∃X [F (X,Y )] i.e. finding a formula H(Y ) such that
∃X [F ] ≡ H∧∃X [F \ {C}]. In Subsections 5.1 and 5.2 we consider large formulas
appearing in the process of “property generation”. Namely, these formulas were
constructed when generating properties of circuits from the HWMCC-13 set as
described in [5]. In Subsection 5.3, we consider small random formulas. In the
experiments we used a computer with Intel® CoreTM i5-10500 CPU @ 3.10GHz.

5.1 Formulas where all boundary points are removable

In this subsection, we consider the PQE problems of taking C out of ∃X [F (X,Y )]
where all C-boundary points of F are Y -removable. In [5], we generated 3,736
of such formulas. In Table 1, we give a sample of 7 formulas. The first column of
the table gives the name of the circuit of the HWMCC-13 set used to generate
the PQE problem. (The real names of circuits exmp1, exmp2 and examp3 in the
HWMCC-13 set are mentorbm1, bob12m08m, and bob12m03m respectively.)



Table 1: VerPQE on formulas where all
boundary points are removable

name cla- vari- size size EG-PQE+ VerPQE

of uses ables of set of H run run
circ. of F of F Y time (s) time (s)
exmp1 64,365 26,998 4,376 1 0.2 0.03
6s207 73,457 30,540 3,012 6 0.2 0.04
exmp2 84,009 32,147 1,994 1 0.1 0.1
exmp3 94,523 41,354 5,174 825 11 0.4
6s249 226,666 78,289 1,111 1 0.4 0.1
6s428 231,506 92,274 3,790 118 2.8 0.2
6s311 259,086 87,974 519 80 2.0 0.1

The second and third co-
lumns give the number of
clauses and variables of for-
mula F . The fourth column
shows the size of the set Y

i.e. the number of unquantified
variables in ∃X [F (X,Y )]. The
next column gives the num-
ber of clauses in the solution
H found by EG-PQE+. The
last two columns show the time

taken by EG-PQE+ and VerPQE (in seconds) to finish the PQE problem and
verify the solution. As we mentioned in Subsection 4.3, if all C-boundary points
of F are Y -removable the same applies to formula F ∧ H . So, VerPQE should
be very efficient even for large formulas. Table 1 substantiates this intuition.

5.2 Formulas with unremovable boundary points

Table 2: VerPQE on formulas with unremovable
boundary points. The time limit is 600 sec.

name cla- vari- size size EG-PQE+ VerPQE

of uses ables of set of H run run
circ. of F of F Y time (s) time (s)
6s209 25,086 14,868 5,759 5 0.1 >600
6s413 29,321 14,063 4,343 18 0.2 >600
6s276 35,810 17,631 3,201 11 0.1 >600
6s176 39,704 15,754 1,566 0 0.9 >600
6s207 73,457 30,540 3,012 20 0.5 >600
6s110 83,396 34,165 807 6 0.2 0.1
6s275 109,328 49,130 3,196 2 0.1 >600

Here we consider the same
PQE problems as in the previ-
ous subsection. The only differ-
ence is that the formula F con-
tains C-boundary points that
are Y -unremovable. In [5], we
generated 3,094 of such formu-
las. In Table 2, we give a sam-
ple of 7 formulas. The name
and meaning of each column is
the same as in Table 1.

Table 2 shows that VerPQE failed to verify 6 out of 7 solutions in the
time limit of 600 sec. whereas the corresponding problems were easily solved
by EG-PQE+. (The reason is that EG-PQE+ uses a more powerful technique
of proving redundancy of C than plugging unremovable boundary points as
VerPQE does.) So, solutions H obtained for large formulas ∃X [F ] where F has
a lot of unremovable boundary points cannot be efficiently verified by VerPQE .

5.3 Random formulas

In this subsection, we continue consider formulas with Y -unremovableC-boundary
points. Only, in contrast to the previous subsection, here we consider small ran-
dom formulas. In this experiment we verified solutions obtained for formulas
whose number of variables ranged from 70 to 85. To get more reliable data,
for each size we generated 100 random PQE problems and computed the aver-
age result. For each example, the formula F had 20% of two-literal and 80% of
three-literal clauses.



Table 3: VerPQE on random formulas

num- cla- vari- size size EG-PQE+ VerPQE

ber of uses ables of set of H run run
prob. of F of F Y time (s) time (s)
100 140 70 35 28 0.01 1.0
100 150 75 37 41 0.01 4.7
100 160 80 40 69 0.03 11.5
100 170 85 42 63 0.03 98.3

The results of this experiment
are shown in Table 3. Let us explain
the meaning of each column of this
table using its first line. The first
column indicates that we generated
100 PQE problems of the same size
shown in the next three columns.
That is for all 100 problems corre-

sponding to the first line of Table 3 the number of clauses, variables and the size
of the set Y was 140, 70 and 35 respectively. The last three columns of the first
line show the average results over 100 examples. For instance, the first column
of the three says that the average size of the solution H found by EG-PQE+

was 28 clauses. Table 3 shows that the performance of VerPQE drastically drops
as the number of variables grows due to the exponential blow-up of the set of
Y -unremovable C-boundary points.

6 Some Background

In this section, we give some background on boundary points. The notion of a
boundary point with respect to a variable was introduced in [8]. (At the time it
was called an essential point). Given a formula F (X), a boundary point with
respect to a variable x ∈ X is a full assignment #»p to X such that each clause
falsified by #»p contains x. Later we showed a relation between a resolution proof
and boundary points [9]. Namely, it was shown that if F is unsatisfiable and
contains a boundary point with respect to a variable x, any resolution proof
that F is unsatisfiable has to contain a resolution on x. In [10], we presented an
algorithm that performs SAT-solving via boundary point elimination.

In [11,12], we introduced the notion of a boundary point with respect to a
subset of variables rather than a single variable. Using this notion we formulated
a QE algorithm that builds a solution by eliminating removable boundary points.
In [5], we formulated two PQE algorithms called EG-PQE and EG-PQE+. The
algorithmEG-PQE is quite similar toVerPQE and implicitly employs the notion
of a boundary point we introduced here i.e. the notion formulated with respect
to a subset of clauses rather than variables. In this report, when describing
VerPQE we use this notion of a boundary point explicitly.

7 Conclusions

We present an algorithm called VerPQE for verifying a solution to Partial Quan-
tifier Elimination (PQE). The advantage of VerPQE is that it does need to know
how this solution was obtained (e.g. if a particular proof system was employed).
So, VerPQE can be used to debug an any PQE algorithm. A flaw of VerPQE
is that its performance strongly depends on the presence of so-called unremov-
able boundary points of the formula at hand. If this formula has no such points,



VerPQE can efficiently verify solutions to very large PQE problems. Otherwise,
its performance is, in general, limited to small problems of 70-80 variables.
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Appendix

A Proofs Of Propositions

Proposition 1. Let H be a solution to the PQE problem of Definition 9. That
is ∃X [F ] ≡ H ∧ ∃X [F \G]. Then F ⇒ H (i.e. F implies H).

Proof. By conjoining both sides of the equality with H one concludes that
H ∧ ∃X [F ] ≡ H ∧ ∃X [F \G], which entails H ∧ ∃X [F ] ≡ ∃X [F ]. Then
∃X [F ] ⇒ H and thus F ⇒ H .

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking G

out of the scope of quantifiers in ∃X [F (X,Y )] if and only if

a) H is implied by F ;
b) G is redundant in H ∧ ∃X [F ] i.e. H ∧ ∃X [F ] ≡ H ∧ ∃X [F \G]

http://eigold.tripod.com/software/ver-pqe.1.0.tar.gz


Proof. The if part. Given the two conditions above, one needs to prove that
∃X [F ] ≡ H∧∃X [F \G]. Assume the contrary i.e. ∃X [F ] 6≡ H∧∃X [F \G]. Con-
sider the two possible cases. The first case is that there exists a full assignment #»y

to Y such that F is satisfiable in subspace #»y whereas H∧(F \G) is unsatisfiable
in this subspace. Since F \G is satisfiable in the subspace #»y , H is unsatisfiable
in this subspace. So, F does not imply H and we have a contradiction.

The second case is that F is unsatisfiable in the subspace #»y whereas
H ∧ (F \G) is satisfiable there. Then H ∧ F is unsatisfiable in subspace #»y too.
So, H ∧ ∃X [F ] 6= H ∧ ∃X [F \G] in subspace #»y and hence G is not redundant
in H ∧ ∃X [F ]. So, we have a contradiction again.

The only if part. Given ∃X [F ] ≡ H ∧ ∃X [F \G], one needs to prove the
two conditions above. The first condition (that H is implied by F ) follows from
Proposition 1. Now assume that the second condition (that G is redundant in
H ∧ ∃X [F ]) does not hold. That is H ∧ ∃X [F ] 6≡ H ∧ ∃X [F \G]. Note that if
H ∧ F is satisfiable in a subspace #»y , then H ∧ (F \ G) is satisfiable too. So,
the only case to consider here is that H ∧ F is unsatisfiable in a subspace #»y

whereas H ∧ (F \ G) is satisfiable there. This means that F is unsatisfiable in
the subspace #»y . Then ∃X [F ] 6= H ∧ ∃X [F \G] in this subspace and we have a
contradiction.

Proposition 3. Let F (X,Y ) be a formula. Let G be a non-empty subset of
clauses of G. The formula G is redundant in ∃X [F ] if and only if every G-
boundary point of F (if any) is Y -unremovable.

Proof. The if part. Given that every G-boundary point of F is Y -unremovable,
one needs to show that G is redundant in ∃X [F ] i.e. ∃X [F ] ≡ ∃X [F \G]. As-
sume that this is not true. Then there is a full assignment #»y to Y such that F is
unsatisfiable in subspace #»y whereas F \G is satisfiable there. This means that
there is an assignment ( #»x , #»y ) falsifying F and satisfying F \G. Since this assign-
ment falsifies G, it is a G-boundary point. This boundary point is Y -removable,
because F is unsatisfiable in subspace #»y . So, we have a contradiction.

The only if part. Given that G is redundant in ∃X [F ], one needs to show that
every G-boundary point of F is Y -unremovable. Assume the contrary i.e. there
is a Y -removable G-boundary point of F . This means that there is an assignment
( #»x , #»y ) falsifying G and satisfying F \G such that F is unsatisfiable in subspace
#»y . Then ∃X [F ] 6= ∃X [F \G] in subspace #»y and so, we have a contradiction.
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