This webpage describes Partial Quantifier Elimination (PQE).

PQE is a generalization of Quantifier Elimination (QE)

In PQE, one specifies what part of the formula is taken out of the scope of
quantifiers (i.e. “unquantified”)

QE can be viewed as a degenerate case of PQE where the entire formula gets
unquantified.

PQE provides a language for describing incremental computations. Many
known problems (e.g. SAT, equivalence checking, model checking) and new
problems (e.g. property generation) can be formulated in terms of PQE. Such
formulation is important because PQE can be dramatically faster than QE.

Contents. (Click on a blue line to expand it. Some browsers,
like Firefox, properly backtrack after following a link. Others
do not. Then you can simply download this file and use a PDF
reader.)

e Definition of PQE

e Relating complexity of PQE and QE
e Applications of PQE

e Contrasting PQE with SAT

e Interpolation as a special case of PQE
e PQE solvers

e Some experimental results

e Status quo

e Directions for future research

Definition Of PQE

We describe PQE in terms of propositional logic with existential quan-
tifiers. We assume that every formula is in Conjunctive Normal Form
(CNF), unless otherwise stated. So, every formula F is assumed to be a con-
junction of clauses C; A ... A Ck (a clause C; being a disjunction of literals).
We will also view F' as the set of clauses {C1, ..., Ck}.

Definition 1. Let F(X,Y) be a formula where X andY are sets of variables.
Let H be a non-empty subset of clauses of F. Partial Quantifier Elimi-
nation (PQE) is to find H*(Y) such that AX[F] = H* A3X[F \ H]. (So,
PQE takes H out of the scope of quantifiers in IX[F].) H* is called a solution
to PQE. The case of PQE where H = F is called Quantifier Elimination
(QE). In this case, the entire formula is taken out of the scope of quantifiers.

The definition of PQE was introduced in [11].

Example 1. Find H*(Y') such that 3X[F| = H*A 3X[F \ H| where
Y = {yl}, X = {1’2,1'3}, F:{C]7CQ,C3}, H = {Cl},
Ci =% Vs, Co=y1 Vs, C3 =y V3.

A solution to this problem is H* = {Cy} where Cy = y1. That is
AX[F)=Cy AIX[F\ {C1}].

Solving Example 1 is described in Section 6 of [8].

Relating Complexity Of PQE And QE

In this section, we use redundancy based reasoning to relate the complexity of
PQE and QE.

Definition 2. Given a formula 3X[F(X,Y)], a clause C' containing only vari-
ables of Y is called a free clause. If C' contains at least one variable of X it
1s called a quantified clause.

Let 3X[F(X,Y)] be a formula and H be a non-empty subset of quantified
clauses of F. Let H*(Y) be a solution to the PQE problem of taking H out
of 3X[F]. That is 3X[F| = H* A3IX[F \ H]. Tt is not hard to show, that F'
implies H*. Then 3X[F] = H* A3X[F] = H* A3X[F \ H]. That is, a set of
free clauses H* is a solution, if adding H* makes the clauses of H redundant
in 3X[F|. This observation is the foundation for redundancy based reasoning
used in our PQE algorithms described later.

Redundancy based reasoning provides a simple explanation of why PQE is
easier than QE. The smaller set H, the fewer free clauses need to be added to
make H redundant. QE is the hardest case of PQE where H = F' and so one
needs to take all clauses out of the scope of quantifiers in X [F]. Decreasing the
size of H is only one way to reduce the complexity of PQE. Suppose H already
consists of only one clause. Then one can reduce the complexity of PQE even
further by clause splitting.

Let C be replaced in F' with k + 1 clauses C1, ..., Ciy1 where Chy = C Vv, ..,
Cy=CVrg, Cky1 =CVuv1 V...V, and v;,1 = 1,...,k are variables of F.
(Obviously, C = C; V...V Ckt1.) The idea here is to take out clause Cyq
instead of the original clause C'. Since Cy41 contains many more literals than
C, making the former redundant can be dramatically simpler than the latter.
In [7], we show that clause splitting can reduce the complexity of PQE to linear.

Applications Of PQE

In this section, we justify our interest in PQE by giving a list of problems that
can be reduced to PQE. (This list is far from being complete.)

e SAT

e equivalence checking

model checking
e property generation (a general idea)

e generation of safety properties

SAT-solving by PQE

In this subsection, we describe reduction of SAT to PQE introduced in [11].
Consider the SAT problem of checking if formula IX[F(X)] is satisfied. Note
that SAT is a special case of QE where all the variables are quantified. In terms
of redundancy based reasoning, in SAT, one needs to prove all clauses of F
redundant in 3X[F]. This is done either via derivation and adding an empty
clause (F is unsatisfiable) or without such derivation (F is satisfiable). So, from
a purely formal point of view, reduction of SAT to PQE can be very beneficial
if only a small subset of clauses of F' needs to be proved redundant in IX[F].

Let & be a full assignment to X and H denote the clauses of F' falsified by
Z. Checking the satisfiability of F' reduces to taking H out of the scope of quanti-
fiers in 3X[F]. That is one needs to find H* such that 3X[F| = H* A 3IX[F \ H].
Since all variables of F' are quantified in IX[F], the formula H* is a Boolean
constant 0 or 1. If H* =0, then F is unsatisfiable. If H* = 1, then F is
satisfiable. (Because 3X[F] = 3X[F \ H| and F \ H is satisfied by &.)

Taking out the formula H above is a rather naive way to solve SAT. For-
tunately, it can be improved in many directions. Consider, for instance, the
case when F' is satisfiable. Then one needs to prove that IX[F|=3X[F\ H] i.e.
show that H can simply be dropped from IX[F]. In reality, it suffices to show
that H can be dropped in some subspace ¢ where the assigned variables of X
have the same value as in Z. (If H can be dropped in the subspace ¢, then F' is
satisfiable there.)

Equivalence checking by PQE

In this subsection, we recall a procedure for equivalence checking based on
PQE [4]. The appeal of this procedure is that it is complete and yet can fully
exploit the structural similarity of circuits to be checked for equivalence. The
existing equivalence checking algorithms exploiting such similarity(e.g. [13]) are
incomplete. The reason is that they use a very narrow definition of similarity
(e.g. the one requiring the existence of functionally equivalent cut points).

Let N'(X',Y’,2") and N"(X",Y",2") be single-output combinational cir-
cuits to check for equivalence. Here X', X" are sets of input variables, Y, Y"
are sets of internal variables and 2/, 2" are output variables of N’ and N” respec-
tively. Let eq(X’, X") specify a formula such that eq(Z',Z") =1 iff Z/ = "
where Z',Z” are full assignments to X’ and X”. Let formulas G'(X’,Y’,2’)
and G"(X",Y" 2") specify N' and N” respectively. (As usual, we assume that
a formula G specifying a circuit N is obtained by Tseitin transformations [16].)

Let h(2’,2") be a solution to the PQE problem of taking the formula eq out of
AW(eg NG AG"] where W = X' UY' U X" UY". That is IW[egAG'ANG"]| =
RAIW[G' ANG"] . If h = (2/ = 2”), then N' and N” are equivalent. Otherwise,
N’ and N” are inequivalent, unless they are identical constants (i.e. 2/ =2"=1
or z/’=2"=0). As we showed in [4], the complexity of taking out eq reduces
exponentially if N' and N” are structurally similar. We also showed experimen-
tally that a PQE based equivalence checker easily solved instances that were
hard for a well-known tool called ABC [15].

Model checking by PQE

This subsection discusses model checking by PQE. Namely, we sketch a tech-
nique where a safety property is proved without generation of an inductive
invariant [6]. This technique can be viewed as a generalization of IC3 [2].

Let formulas T'(S;,S;41) and I(Sp) specify the transition relation and ini-
tial states of a transition system £. Here S; denotes the set of state variables
of j-th time frame. For the sake of simplicity, we assume that ¢ is able to stut-
ter. Let Diam(I,T) denote the reachability diameter for initial states I and
transition relation 7. That is every state of the system & can be reached in
at most Diam(I,T) transitions. Given a number m, one can use PQE to
decide if Diam(I,T) < m. This is done by checking if I is redundant in
3S,;—1[Io A1 ATy,]. Here Iy and I; are initial states in terms of variables of
So and Sp respectively, S,,—1 = SoU...US;—1 and T,, = T(So,S1) A ... A
T(Sm-1,Sm). If I is redundant, then Diam(I,T) < m holds. Note that no
generation of all reachable states is required here.

One can use the idea above for a model checker. Let P be a safety property
to prove and H denote a constrained version of P where = H = P. In IC3,
one constrains P to H to make the latter an inductive invariant. In reality, it
suffices to find H such that I = H and no P-state, i.e. a state falsifying P, can
be reached from an H-state. The existence of such H means that P holds. So,
H does not have to be an invariant, let alone, an inductive one.

Proving that H meets the requirement at hand is done in two steps. First,
one uses PQE to find m such that Diam(H,T)<m. Then BMC [1] is used to
show that no P-state is reachable from an H-state in m transitions or less. Here
is some intuition behind this approach.

Stuttering means that T'(8,8) = 1, for every state §. Then the sets of states
reachable in m transitions and at most m transitions are identical. If 7" does
not have the stuttering feature it can be easily introduced.

Note, that one can simply set H to I. However, then m equals the reachability
diameter of £ and so can be very large. If H is an inductive invariant, then
m = 1, but finding H can be very hard. So, it makes sense to find the golden
middle between these two extremes (i.e. to construct a formula H that is not
an inductive invariant but for which the value of m is not too large).

Property generation by PQE (a general idea)

In this subsection, we use the example of combinational design to introduce
property generation by PQE [7]. Later we describe how this idea works for
generation of safety properties for sequential circuits.

Let Sp(X, Z) be a specification of a combinational circuit where X and Z
are sets of input and output variables. We assume that Sp gives some (partial)
description of the circuit to design. Let N(X,Y,Z) be an implementation of
Sp. (Here Y specifies the internal variables of N.) Suppose that one formally
proves that N meets Sp. This does not guarantee that NN is correct if Sp is
incomplete. So, the formal part of verification is followed by mandatory testing.
Usually, the latter is guided by some coverage metric.

A straightforward way to improve the formal component of verification is
to compute the truth table of N to check if it is correct. Let F(X,Y,Z) be a
formula specifying the circuit N obtained by Tseitin transformations [16]. That
is F(Z,9,%) = 1 iff §,Z specifies the execution trace of N under the input assign-
ment Z. The truth table F*(X, Z) of N is obtained by performing QE on 3Y[F].
Unfortunately, for large circuits, finding F* is very hard if not impossible.

One can address the problem above using the following idea. The truth
table F'* can be viewed as the strongest property of V. Instead, one can try to
generate weaker properties of N by PQE. (The objective here is to find a “bad”
property indicating the presence of a bug.) This can be done as follows. Let
formula Q(X, Z) be obtained by taking a clause C out of the scope of quantifiers
in IY[F]. Namely, Y [F] = Q A IY[F \ {C}]. Since @ is implied by F, the
former is a property of N. It is a bad property if Q(Z,2) = 0 and N is
supposed to produce Z for the input Z. (The existence of property @ implies
that N lacks some “good input/output behaviors”.) We assume here that the
specification Sp does not determine the output of N for the input Z. So, the
decision whether @ is a bad property is taken by the designer.

The appeal of PQE here is twofold. First, taking out only one clause of F’
can be dramatically simpler than QE that takes out all clauses. Second, by
taking out different clauses one can cover the entire design like it is done in
testing with a coverage metric. The intuition here is that by taking out a clause
belonging to a buggy part of N one can produce a bad property Q.

Note that the input/output behavior of N corresponding to a single test can
be cast as a property. The latter can be generated by splitting C € F' into
a set of clauses Cq,...,Cry1 and taking out Cyq instead of C. So, by using
PQE one can generate properties ranging from the weakest ones (describing the
input/output behavior of a single test) to the strongest property (specifying the
truth table).

Indeed, let & be a test (i.e. a full assignment to X). Let Z be the output
produced by N for Z. Let Q(X, Z) be the property such that
o Q) =1if o # 7.

- =
/

. Q(x’,z):lifgg’:

8
L
Y

and 2/ =
4 and

o« Q) =0if &' =

NS

'S
Ny

8

z

The property @ essentially states that N outputs Z for the input 7.

Generation of safety properties

In the previous subsection, we introduced the idea of property generation by
PQE. Here we apply this idea to generation of safety properties for a sequential
circuit [8]. So, in this subsection, by properties we mean safety properties.

Let Pi(S),..., Px(S) be a set of properties of a sequential circuit to design
where S is the set of state variables. One can view Sp = PyA...A P, as a
specification. We call Sp a complete specification (in terms of reachable states)
if Sp(8)=1 entails that state § must be reachable in an implementation of Sp.

Let N be a sequential circuit that meets Sp. This essentially means that N
does not reach a bad state (i.e. a state falsifying Sp). However, this does not
mean that N reaches all required good states. For instance, N meets Sp by
simply staying in an initial state satisfying Sp. So, in practice, checking that N
does what it is supposed to do is performed by testing.

Ideally, one can show that N reaches all required states by computing a
formula R defining all reachable states. If Sp = R, then N is correct (in terms
of reachable states). However, constructing R for a large circuit is hard if not
infeasible. Besides, Sp is typically incomplete. In this case, Sp = R may not
hold even if N is correct. One can mitigate the problem above by generating
properties of N (instead of computing R). The existence of a bad property Q(S)
means that NV is buggy. @ is a bad property if there is a state §that is supposed
to be reachable and Q(5) = 0. (So, § is actually unreachable in N.) Note that
the unreachability of a state cannot be detected by a counterexample. So,
finding the underlying bug by testing is hard if not impossible.

If Sp is complete, a property @ is bad iff Sp A Q. Otherwise, Sp % @ is only
the necessary condition for @ to be a bad property. (In this case, the designer
must make a decision if a property @ is bad.) One can build a diverse set of
properties relating to different parts of N as described earlier. First, one builds
a formula with existential quantifiers defining the functionality of N. Then one
generates properties of N by taking clauses out of the scope of quantifiers. Here
is this process in more detail.

Let I and T denote the initial states and transition relation of N. Let for-
mula F;, be obtained by unfolding N for m time frames. That is F,, =
I(So) NT(So,S1) A ... NT(Sm—1,Sm) where S; denotes the state variables of
j-th time frame, 0<j<m. Let G,,(S,) be a solution to the PQE problem
of taking a clause C out of 3S,,_1[F,,] where S,;,_1 = SoU...U S;,—1. That
is 3S;—1[Fim] = GmA 3Sm—1[Fm \ {C}]. Since F,, implies G,,, the latter is a
local property of N holding in m-th time frame. That is a state falsifying G,,
is unreachable in N in m transitions.

Note that every clause @ of G,, is itself a local property. Importantly, @
can be an invariant (i.e. hold in every time frame) even if G,, is not. Our
experiments [8] showed that even for small m, many clauses of G,, were an
invariant. To find out if a property @ holds for N (and so @ is an invariant)
one can run a model checker. If @ is an invariant not implied by Sp, the
designer should decide if @) is a bad property. By taking out different clauses of
F,,, to build local properties G, and extracting single-clause invariants @), one
generates a diverse set of properties of V.

Contrasting PQE with SAT

e PQE and SAT can be viewed as two different ways to cope with the
complexity of QE.

e SAT is a degenerate case of QE where all variables are quantified. This
makes SAT simpler to solve at the expense of losing the semantic power
of QE.

e On the contrary, PQE generalizes QE. The latter can be viewed as a
degenerate case of PQE where the entire formula gets unquantified. So,
PQE has more semantic power than QE.

e On the other hand, PQE can be dramatically simpler than QE if only a
small part of the formula is unquantified. So, the appeal of PQE is that

— it can potentially be as efficient as a SAT-solver and

— it has even more semantic power than QE.

Interpolation As A Special Case Of PQE

In this section, we recall the observation of [5] that interpolation is a special
case of PQE. Let A(X,Y) A B(Y, Z) be an unsatisfiable formula. Let I(Y) be a
formula such that AAB = IAB and A = I. Then I is called an interpolant [3].

Let us show that interpolation can be described in terms of PQE. Consider
the formula IW[A A B] where A and B are the formulas above and W = X U Z.
Let A*(Y) be obtained by taking A out of the scope of quantifiers i.e.
dW[AA B] = A*A 3W[B]. Since A A B is unsatisfiable, A* A B is unsatisfi-
able too. So, AANB = A*A\B. If A= A* then A* is an interpolant.

The general case of PQE that takes A out of 3W[A A B] is different from
the instance above in three aspects.

e One does not assume that A A B is unsatisfiable.

e One does not assume that AA B depends on more variables than B. That
is, in general, the objective of PQE is not to eliminate variables.

e A solution A* is implied by A A B rather than by A alone.

So, one can view interpolation as a special case of PQE.

PQE solvers

In this section, we briefly describe two PQE-solvers called DS-PQF and START .
A Linux binary of START can be downloaded from [18]. Consider the problem
of taking the set of clauses H out of IX[F(X,Y)]. That is one needs to find
a formula H*(Y) such that 3X[F] = H* A 3X[F \ H]. Either solver employs
redundancy based reasoning. Namely, it constructs H* as a set of clauses implied
by F that makes H redundant in IX[F].

DS-PQE was introduced in [11]. It is based on the machinery of D-sequents [9,
10, 12]. A D-sequent is a record (3X[F],q) — C stating that a clause C € F is
redundant in X [F] in subspace ¢. For every quantified clause C of H, DS-PQE
derives the D-sequent (3X[F], () — C. The latter states redundancy of C' in the
entire space. DS-PQF is a branching algorithm. It assigns variables of X UY
until a subspace ¢ is reached where every clause C' of H is proved redundant.
In some cases, proving H redundant requires adding a new clause. (By proving
H redundant in a subspace, we mean either showing that H is already redun-
dant in this subspace or making H redundant by adding a new clause to F.) A
resolution-like operation called join can be applied to merge D-sequents derived
in different subspaces. The free clauses one needed to add to F' to derive the
D-sequents proving redundancy of H in the entire space form a solution H*.

DS-PQE has two flaws. First, it backtracks only upon reaching a subspace
where all clauses of H are proved redundant. This often leads to constructing
very large search trees. Second, reusing a D-sequent in a new subspace requires
keeping a lot of contextual information. This makes such reusing quite expen-
sive. To address these flaws, we developed a PQE algorithm called START
(Single TARgeT) [8]. At any given moment, START proves redundancy of only
one clause (hence the name “single target”). Let C,, denote the current target
clause. To certify redundancy of Cyq in a subspace ¢, START derives a clause
K that implies Cy, in the subspace ¢. The clause K is called a certificate.
Importantly, reusing certificates is much simpler than D-sequents.

START is somewhat similar to a SAT-solver. It assigns variables of X UY
and runs Boolean Constraint Propagation (BCP). When a backtracking con-
dition is met, START does some learning and then backtracks. The main
difference here is that the goal of START is to prove redundancy of H rather
than find a satisfying assignment. Clauses of H are proved redundant one by
one (i.e. every quantified clause of H serves as C,, at some point). START
backtracks as soon as the current target clause Cyy is proved redundant. Be-
fore backtracking, START derives a certificate clause K that implies C,q in the
current subspace. (So, K certifies the redundancy of Cyy.)

START has the three backtracking conditions listed below.

e A conflict occurs. In this case, START derives a conflict certificate (that
is similar to a conflict clause derived by a SAT-solver). This certificate is
added to the formula F.

e An existing clause of F' implies Cy in the current subspace. START
uses this clause to derive a non-conflict certificate K. (That is K is not

falsified in the current subspace.)

o Cyy is blocked in the current subspace. This means that all clauses of
F that can be resolved with Cy, on some quantified variable are either
satisfied or proved redundant. In this case, START derives a non-conflict
certificate.

By resolving local certificates derived in different subspaces, START pro-
duces a “global” certificate implying Cig in the entire space. START termi-
nates after deriving a global certificate for every clause of formula H. The free
clauses one needed to add to F' to derive a global certificate for every quantified
clause of H form a solution H*.

Some Experimental Results

In this section, we present results of an experiment described in [8]. In this
experiment, we used a PQE solver to generate properties for 112 sequential
circuits of the HWMCC-13 multi-property benchmark set. For every circuit N,
we constructed a formula F},, obtained by unfolding N for m time frames. That
is By, = I(So) AT (S0, S1)A. . .AT(Spm—1,Sm) where I and T specify initial states
and transition relation and S; denotes the state variables of j-th time frame.
The value of m was in the range of 2 < m < 10. Namely, m was the largest
value in this range for which the size of F},, did not exceed 500,000 clauses.

Table 1: A sample of HWMCC-13 benchmarks. 50 PQE problems and 1 QE
problem per benchmark. The time limit is 5 sec. for PQE and 600 sec. for QE.

name | lat- time formula F,, PQE (start) | QE
ches fra- after prepross. solved (cadet)
mes variab. clauses | yes no solved?
6s380 | 5,606 2 7,366 9,907 50 0 yes
6s176 | 1,566 3 15,754 39,704 49 1 no
65428 3,790 4 92,274 231,506 | 16 34 no
65292 | 3,190 5 12,226 23,645 50 0 no
65156 | 513 [§ 80,944 237,235 | 0 50 no
65275 | 3,196 7 49,130 109,328 | 20 30 no
6s325 | 1,756 8 102,241 | 257,867 | 2 48 no
6s391 | 2,686 9 63,265 154,154 | 38 12 no
6s372 | 1,124 10 17,380 39,088 50 0 no

For every formula F,,, we performed trivial pre-processing. The latter ran
BCP to satisfy the unit clauses (introduced to F},, by the formula I') and removed
blocked clauses. For the resulting formula F,, we generated PQE problems
by taking out a clause from 3S,,_1[F,,] where S,;,_1 = SgU...USp_1. (The
formula 3S,,_1[F},] defines the states of N reachable in m transitions.) To make
the experiment less time consuming, we generated at most 50 PQE problems
per formula F,, (i.e. per benchmark). Besides, we limited the run time of PQE
solving to 5 sec per problem. In addition to testing the performance of START,
we also compared the complexity of PQE and QE. We used CADET [14, 17] to
perform QE on 112 formulas 3S,,,_1[F,,]. That is, instead of taking a clause out
of 3S,,,_1[F:] by PQE, we applied CADET to perform full QE on this formula.
The time limit for QE was set to 600 sec.

Table 1 shows the results of this experiment for a sample of benchmarks.
(The summary of results on all 112 benchmarks is described here.) The first
column gives the name of a benchmark. The second column shows the number
of latches in this benchmark. The third column provides the value of m in F,
(i.e. the number of time frames). The next two columns give the size of formula
F,, in terms of variables and clauses after pre-processing. The following two
columns show how many PQE problems (out of 50) were solved by START in
5 sec. The last column indicates whether CADET was able to finish QE on the
formula F;,, in 600 sec.

Table 1 shows that START was capable to solve PQE problems for large

formulas. Besides, as expected, PQE turned out to be dramatically simpler
than QE due to the fact that only one clause was taken out of the scope of
quantifiers. CADET finished 1 out of 9 QE problems in 600 secs. On the other
hand, START solved 266 out of 450 PQE problems in 5 secs.

Table 2: Total results. Time limits: 5sec. for PQE and 600 sec. for QE

solver solver bench- prob- solved unsol-
name type marks lems ved
start PQE 112 5,418 3,102 2,316
cadet QE 112 112 32 80

The results for all 112 benchmarks are shown in Table 2. The first two columns
give the name of a solver and its type. The next two columns show the total
number of benchmarks and problems. The last two columns provide the number
of problems solved and unsolved in the time limit. Table 2 shows that START
managed to solve 57% of the problems within 5 secs. For 92 benchmarks out of
112, at least one PQE problem generated off 3Sy_1[F| was solved by START
in the time limit. CADET solved only 32 out of 112 QE problems with the
time limit of 600 sec. For many formulas 3S,,,_1[F,] for which CADET failed
to finish QE in 600 sec, START solved all 50 PQE problems generated off
3S,,—1[Fm] in 5 sec.

Status Quo

In our work on PQE we are pursuing two directions. First, we search for
problems that can be reduced to PQE. Second, we work on improving the
quality of PQE solving.

We have found numerous problems that can be solved in terms of PQE
such as SAT, equivalence checking, model checking, test generation, prop-
erty generation and so on.

We developed a PQE algorithm called START based on redundancy based
reasoning implemented via the machinery of certificate clauses. Currently,
START is in its infancy. So, its performance can be dramatically im-
proved.

The strongest results we achieved in applying PQE so far are in equivalence
checking and property generation.

In equivalence checking, we have introduced a PQE based algorithm that
is complete and yet can fully exploit the similarity between the circuits to
compare. Importantly, this algorithm cannot even be formulated without
using the language of PQE.

We showed that PQE can be used to generate “unexpected” properties of
an implementation. These properties complement specification properties
that this implementation is supposed to have. (Generation of a bad prop-
erty means that the implementation is buggy.) We also showed that even
the current version of START is good enough to generate properties for
large designs.

Directions For Future Research

e We will continue doing research in two directions: finding new applications
of PQE and improving the quality of PQE solving.

e In particular, we will further study the application of PQE to property
generation. As we mentioned earlier, PQE can be used to generate prop-
erties ranging from the weakest ones (equivalent to a single test) to the
strongest property (specifying the “truth table”). So, property generation
by PQE can complement and even, arguably, replace functional testing.

e To improve the quality of PQE-solving, we will keep working on START [38].

e One way to improve START is to reuse the learned clauses (called certifi-
cates). Currently, START only reuses the certificates learned in unsatis-
fiable subspaces (i.e. those where the formula is unsatisfiable). Reusing
the certificates learned in satisfiable subspaces should dramatically boost
the performance of START.

e One more way to make START much faster is to relax the constraint on
the order in which variables are assigned. Currently, START may assign
a quantified variable only if all non-quantified ones are already assigned.

References

[1]

[2]

3]

A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In DAC, pages 317-320,
1999.

A. R. Bradley. Sat-based model checking without unrolling. In VMCAI
pages 70-87, 2011.

W. Craig. Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory. The Journal of Symbolic Logic, 22(3):269-285,
1957.

E. Goldberg. Equivalence checking by logic relaxation. In FMCAD-16,
pages 49-56, 2016.

E. Goldberg. Property checking by logic relaxation. Technical Report
arXiv:1601.02742 [cs.LO], 2016.

E. Goldberg. Property checking without inductive invariant generation.
Technical Report arXiv:1602.05829 [cs.LO], 2016.

E. Goldberg. Generation of a complete set of properties. Technical Report
arXiv:2004.05853 [cs.LO], 2020.

E. Goldberg. Partial quantifier elimination by certificate clauses. Technical
Report arXiv:2003.09667 [cs.LO], 2020.

E. Goldberg and P. Manolios. Quantifier elimination by dependency se-
quents. In FMCAD-12, pages 34—44, 2012.

E. Goldberg and P. Manolios. Quantifier elimination via clause redundancy.
In FMCAD-13, pages 85-92, 2013.

E. Goldberg and P. Manolios. Partial quantifier elimination. In Proc. of
HVC(C-14, pages 148-164. Springer-Verlag, 2014.

E. Goldberg and P. Manolios. Quantifier elimination by dependency se-
quents. Formal Methods in System Design, 45(2):111-143, 2014.

A. Kuehlmann and F. Krohm. Equivalence Checking Using Cuts And
Heaps. DAC, pages 263268, 1997.

M. Rabe. Incremental determinization for quantifier elimination and func-
tional synthesis. In CAV, 2019.

Berkeley Logic Synthesis and Verification Group. ABC:
A system for sequential synthesis and verification, 2017.
http://www.eecs.berkeley.edu/~alanmi/abc.

[16] G. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234-259, 1968. English translation
of this volume: Consultants Bureau, N.Y., 1970, pp. 115-125.

[17] CADET, https://github.com/MarkusRabe/cadet.

[18] A linux binary of start and some instances of pge problems.
http://eigold.tripod.com/software/start.tar.gz.

https://github.com/MarkusRabe/cadet

