
Partial Quantifier Elimination
And Property Generation

Eugene Goldberg

CAV-2023, Paris, France

Outline

• Partial Quantifier Elimination (PQE)

• Property generation by PQE

• Two PQE algorithms

• Experiments

Some Basic Information

• We examine propositional formulas

• We consider only existential quantifiers

• All formulas are in Conjunctive Normal Form (CNF)

• CNF: conjunction C1 ⋀ … ⋀ Ck ⇔ set {C1, … ,Ck }
• A clause: ¬x1 ⋁ x5 ⋁ y10

Partial Quantifier Elimination

Partial Quantifier Elimination (PQE):
 Given ∃X [F (X,Y)] and G ⊆ F , find H(Y) such that ∃X [F] ≡ H ⋀ ∃X [F ⧵ G]

Quantifier Elimination (QE):
 Given ∃X [F (X,Y)], find H(Y) such that ∃X [F] ≡ H

PQE reduces to QE if G = F

Goldberg, Manolios, HVC-14

H is called a solution to the PQE problem

Motivation

QE is ubiquitous but inherently hard

One approach: Use SAT, a special case of QE: ∃X [F (X)]
Benefit: SAT is efficient
Downside: loss of semantic power of quantifiers

An alternative: Use PQE, a generalization of QE
Benefits:
• PQE can be drastically more efficient than QE
• Many problems (e.g. SAT, equivalence and model checking)

can be solved in terms of PQE, see the technical report
• One gains semantic power

Outline

• Partial Quantifier Elimination (PQE)

• Property generation by PQE

• Two PQE algorithms

• Experiments

Property Generation (motivation)

• Imp – design implementation, P1,..,Pk – specification properties

• Even if Imp satisfies P1,..,Pk it can be buggy (incomplete specification)

• Let P1,..,Pk , Qk+1,..,Q m be an imaginary complete specification

• If Imp buggy, some Qi fails i.e. the unwanted property ¬Qi holds

Two ways to detect bugs:
• A desired predefined property Pi fails (formal verification)
• An unexpected and unwanted property holds (testing)

Problems:
• testing examines very simple properties
• an unwanted property can be overlooked (e.g. si ⇒ sj)

Property Generation By PQE

Circuit M
..

..X
W

V

Consider QE: ∃X [F] ≡ H where F (X,V,W) specifies M.H(V,W) is the “truth table” (the strongest property of M)
Take a clause C out of ∃X [F] : ∃X [F] ≡ H ⋀ ∃X [F ⧵ {C }] .F ⇒ H. So, H is a property of M.
Every clause of H is a property of M too.

Generating weaker properties H (V,W) by PQE

PQE + clause splitting ⇒ [single-test properties,.., truth table]

The Appeal of Property Generation
By PQE

• Properties “cover” the entire implementation taking out a ⇒ taking out a
clause of the buggy part is likely to generate an unwanted property

• More complex properties ⇒ an overlooked unwanted property

• PQE is simpler than QE ⇒ efficient property generation
 (for single-test properties the complexity of PQE is linear)

Invariant Generation By PQE
(for sequential circuits)

Step1: Build ∃Xk [F k] whereFk – describes unfolding of N for k time framesXk - all variables of Fk but Sk (the state variables of time frame k)

Step 2: Produce H(Sk) by taking C out of ∃Xk [F k]
 where ∃Xk [F k] ≡ H ⋀ ∃Xk [Fk ⧵ {C }]
Step 3: Check every clause of H if it is a global invariant

Invariant generation in 3 steps (steps 2,3 repeated in a loop).

Outline

• Partial Quantifier Elimination (PQE)

• Property generation by PQE

• Two PQE algorithms

• Experiments

PQE Solver Named EG-PQE
 (EG stands for ‘Enumerate and Generalize’)

Given ∃X [F (X,Y)], EG-PQE takes out a single clause C ∈ F .C is called the target clause.

Build H (Y) implied by F that makes C redundant in H ⋀ ∃X [F].
So, ∃X [F] ≡ H ⋀ ∃X [F ⧵ {C }] and H is a solution to PQE.

EG-PQE is a very simple SAT-based algorithm

Redundancy based reasoning:

PQE Solver Named EG-PQE (cont.)

EG-PQE is similar to QE algorithm introduced by K.McMillan (CAV-02).
Difference: a) using redundancy based reasoning; b) employing Aimpl.

From EG-PQE To EG-PQE+

 EG-PQE+ uses a weaker proof meant only for C .
 EG-PQE+ is much more complex than EG-PQE.

Outline

• Partial Quantifier Elimination (PQE)

• Property generation by PQE

• Two PQE algorithms

• Experiments

Finding Bug In A FIFO Buffer
• Correct FIFO buffer: every state of the data buffer is reachable
• Bug: an element Val is not pushed into the buffer
• An unwanted invariant: states with Val in the buffer are unreachable
• Invariant generation: the 3-step procedure described earlier

Time limit is 10 sec. per PQE problem.
DS-PQE is the algorithm presented at HVC-14

num-
ber of
ele-
ments

lat-
ches

time
fra-
mes

8 300 5

8 300 10

16 560 5

16 560 10

unwanted invar.

ds-
pqe

eg-
pqe

eg-
pqe+

no yes yes

yes yes yes

no no yes

yes no yes

run time (s.)

ds-
pqe

eg-
pqe

eg-
pqe+

12,141 2,138 52

5,551 7,681 380

22,612 9,506 50

6,541 16,554 153

Other Experiments With PQE

• We experimented with 98 multi-property benchmarks of HWMCC-13.
The number of latches ranged from 111 to 8,000

• We showed that PQE can be much faster than QE and conducted
many other experiments

• We used PQE to generate invariants covering different parts of the
design

A Few Takeaways

• PQE provides a way to achieve efficiency without losing
the power of quantifiers

• Property generation by PQE helps to plug the hole caused
by incompleteness of specification

	Slide 1
	Slide 2
	Slide 3
	Partial Quantifier Elimination
	Motivation
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

