Partial Quantifier Elimination
And Property Generation

Eugene Goldberg

CAV-2023, Paris, France

Outline

Partial Quantifier Elimination (PQE)
Property generation by PQE
Two PQE algorithms

Experiments

Some Basic Information

We examine propositional formulas
We consider only existential quantifiers

All formulas are in Conjunctive Normal Form (CNF)

CNF: conjunction C, A ... A C. < set {C, .. ,C}

Aclause: —x \/ x,\/ v,

Partial Quantifier Elimination

Quantifier Elimination (QE):
Given 34X |F (XY)], find H(Y) such that
1X |[F|=H

Goldberg, Manolios, HVC-14

Partial Quantifier Elimination (PQE):
Given 3X [F (X,Y)] and G C F', find H(Y) such that
AX[F]=H N\ 3IX[F \ G]

H is called a solution to the PQE problem
PQE reducesto QEIf G=F

Motivation

QE is ubiquitous but inherently hard

One approach: Use SAT, a special case of QE: 3X |[F (X)]

Benefit. SAT is efficient
Downside: loss of semantic power of quantifiers

An alternative: Use PQE, a generalization of QE

Benefits:

* PQE can be drastically more efficient than QE

* Many problems (e.g. SAT, equivalence and model checking)
can be solved in terms of PQE, see the technical report

* One gains semantic power

Outline

Partial Quantifier Elimination (PQE)
Property generation by PQE
Two PQE algorithms

Experiments

Property Generation (motivation)

« Imp — design implementation, P,,..,P, — specification properties

Even if Imp satisfies P,,..,P,_it can be buggy (incomplete specification)

Let P,,...P., Q_,...,Q , beanimaginary complete specification

If Imp buggy, some Q. fails i.e. the unwanted property —(). holds

Two ways to detect bugs:
« A desired predefined property P, fails (formal verification)

* An unexpected and unwanted property holds (testing)

Problems:
* testing examines very simple properties
e an unwanted property can be overlooked (e.g. s, = s;)

Property Generation By PQE

W Consider QE: 14X |[F'| = H where F (X,V,W) specifies M.
H(V, W) is the “truth table” (the strongest property of M)

Generating weaker properties H (V,W) by PQE

Circuit M | X Take a clause C' out of 3X [F'|:
1X[F|=H N\ 3IX[F \{C}].
‘ ‘ F = H. So, H is a property of M.

== Every clause of H Is a property of M too.

v
PQE + clause splitting = [single-test properties,.., truth table]

The Appeal of Property Generation
By PQE

More complex properties = an overlooked unwanted property

PQE is simpler than QE = efficient property generation
(for single-test properties the complexity of PQE is linear)

Properties “cover”’ the entire implementation = taking out a
clause of the buggy part is likely to generate an unwanted property

Invariant Generation By PQE

(for sequential circuits)

Bug: a state s of sequential circuit ¥/ must be reachable but it is not.

Exposed by an unwanted invariant /7 where H(s) = 0.

Invariant generation in 3 steps (steps 2,3 repeated in a loop).
Stepl: Build dX,_[F',] where

F, — describes unfolding of V for k time frames

X, -allvariables of F, but S, (the state variables of time frame k)

Step 2: Produce H(S,) by taking C' outof 3X_|F, |
where X [F .]=H A 3X [F,. \{C}]

Step 3: Check every clause of H If it is a global invariant

Outline

Partial Quantifier Elimination (PQE)
Property generation by PQE
Two PQE algorithms

Experiments

PQE Solver Named EG-PQE

(EG stands for ‘Enumerate and Generalize’)

EG-PQE is a very simple SAT-based algorithm

Given 34X |F (XY)], EG-PQE takes out a single clause C' € F'.
C' Is called the target clause.

Redundancy based reasoning:

Build 4 (Y) implied by F' that makes C' redundantin # /\ 33X [F].
So, dX[F|=H A\ 3IX[F \{C}] and H is a solution to PQE.

PQE Solver Named EG-PQE (cont)

EG-PQE enumerates assignments y to Y.

It recognizes three sets of y : 4 A A

impl » “*unsat sat

Yy €A, if F\{C}= Cinsubspacey (C isredundant)
y € A, if Fis satisfiable in subspace y (C is redundant)
y € A,... Iif Fisunsatisfiable in subspace y (C is not redundant)

A Y-clause is added to # to make C redundantin # A 3X|[F]

EG-PQE is similar to QE algorithm introduced by K.McMillan (CAV-02).
Difference: a) using redundancy based reasoning; b) employing A.

impl*

From EG-PQE To EG-PQE+

Enumerating y € (4,5, U 4ip) IS relatively easy

Enumerating y € (A4, \ 4y, is hard

The reason: EG-PQE uses the satisfiability of F in subspace y to
prove € redundant there. This proof is too strong. It proves every
clause redundant in 3.X[F] in subspace y.

EG-PQE+ uses a weaker proof meant only for C'.
EG-PQE+ is much more complex than EG-PQE.

Outline

Partial Quantifier Elimination (PQE)
Property generation by PQE
Two PQE algorithms

Experiments

Finding Bug In A FIFO Buffer

Correct FIFO buffer: every state of the data buffer is reachable

Bug: an element Val is not pushed into the buffer

An unwanted invariant: states with Val in the buffer are unreachable
Invariant generation: the 3-step procedure described earlier

Time limit is 10 sec. per PQE problem.
DS-PQE is the algorithm presented at HVC-14

ber of | ches

8 300) no yes |yes |12,141 | 2,138 |52

8 300 |10 yes yes |yes |5551 |7,681 |380
16 560 5 no no |yes |22,612 |9,506 |50
16 560 |10 yes no |yes |6,541 |16,554 |153

Other Experiments With PQE

* We experimented with 98 multi-property benchmarks of HWMCC-13.
The number of latches ranged from 111 to 8,000

* We used PQE to generate invariants covering different parts of the
design

* We showed that PQE can be much faster than QE and conducted
many other experiments

A Few Takeaways

* PQE provides a way to achieve efficiency without losing
the power of quantifiers

* Property generation by PQE helps to plug the hole caused
by incompleteness of specification

	Slide 1
	Slide 2
	Slide 3
	Partial Quantifier Elimination
	Motivation
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

