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Some Basic Information

We examine propositional formulas
We consider only existential quantifiers

All formulas are in Conjunctive Normal Form (CNF)

CNF: conjunction C, A ... A C. < set {C, .. ,C}

Aclause: —x \/ x,\/ v,



Partial Quantifier Elimination

Quantifier Elimination (QE):
Given 34X |F (XY )], find H(Y ) such that
1X |[F|=H

Goldberg, Manolios, HVC-14

Partial Quantifier Elimination (PQE):
Given 3X [F (X,Y )] and G C F', find H(Y ) such that
AX[F]=H N\ 3IX[F \ G]

H is called a solution to the PQE problem
PQE reducesto QEIf G=F



Motivation

QE is ubiquitous but inherently hard

One approach: Use SAT, a special case of QE: 3X |[F (X )]

Benefit. SAT is efficient
Downside: loss of semantic power of quantifiers

An alternative: Use PQE, a generalization of QE

Benefits:

* PQE can be drastically more efficient than QE

* Many problems (e.g. SAT, equivalence and model checking)
can be solved in terms of PQE, see the technical report

* One gains semantic power
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Property Generation (motivation)

« Imp — design implementation, P,,..,P, — specification properties

Even if Imp satisfies P,,..,P,_it can be buggy (incomplete specification)

Let P,,...P., Q_,...,Q , beanimaginary complete specification

If Imp buggy, some Q. fails i.e. the unwanted property —(). holds

Two ways to detect bugs:
« A desired predefined property P, fails (formal verification)

* An unexpected and unwanted property holds (testing)

Problems:
* testing examines very simple properties
e an unwanted property can be overlooked (e.g. s, = s;)



Property Generation By PQE

W Consider QE: 14X |[F'| = H where F (X,V,W ) specifies M.
H(V, W) is the “truth table” (the strongest property of M)

Generating weaker properties H (V,W ) by PQE

Circuit M | X Take a clause C' out of 3X [F'|:
1X[F|=H N\ 3IX[F \{C}].
‘ ‘ F = H. So, H is a property of M.

== Every clause of H Is a property of M too.

v
PQE + clause splitting = [single-test properties,.., truth table]



The Appeal of Property Generation
By PQE

More complex properties = an overlooked unwanted property

PQE is simpler than QE = efficient property generation
(for single-test properties the complexity of PQE is linear)

Properties “cover”’ the entire implementation = taking out a
clause of the buggy part is likely to generate an unwanted property



Invariant Generation By PQE

(for sequential circuits)

Bug: a state s of sequential circuit ¥/ must be reachable but it is not.

Exposed by an unwanted invariant /7 where H(s) = 0.

Invariant generation in 3 steps (steps 2,3 repeated in a loop).
Stepl: Build dX,_[F',] where

F, — describes unfolding of V for k time frames

X, -allvariables of F, but S, (the state variables of time frame k)

Step 2: Produce H(S,) by taking C' outof 3X_|F, |
where X [F . ]=H A 3X [F,. \{C}]

Step 3: Check every clause of H If it is a global invariant
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PQE Solver Named EG-PQE

(EG stands for ‘Enumerate and Generalize’)

EG-PQE is a very simple SAT-based algorithm

Given 34X |F (XY )], EG-PQE takes out a single clause C' € F'.
C' Is called the target clause.

Redundancy based reasoning:

Build 4 (Y ) implied by F' that makes C' redundantin # /\ 33X [F].
So, dX[F|=H A\ 3IX[F \{C}] and H is a solution to PQE.



PQE Solver Named EG-PQE (cont)

EG-PQE enumerates assignments y to Y.

It recognizes three sets of y : 4 A A

impl » “*unsat sat

Yy €A, if F\{C}= Cinsubspacey (C isredundant)
y € A, if Fis satisfiable in subspace y (C is redundant)
y € A,... Iif Fisunsatisfiable in subspace y (C is not redundant)

A Y-clause is added to # to make C redundantin # A 3X|[F]

EG-PQE is similar to QE algorithm introduced by K.McMillan (CAV-02).
Difference: a) using redundancy based reasoning; b) employing A.

impl*



From EG-PQE To EG-PQE+

Enumerating y € (4,5, U 4ip) IS relatively easy

Enumerating y € (A4, \ 4y, is hard

The reason: EG-PQE uses the satisfiability of F in subspace y to
prove € redundant there. This proof is too strong. It proves every
clause redundant in 3.X[F] in subspace y.

EG-PQE+ uses a weaker proof meant only for C'.
EG-PQE+ is much more complex than EG-PQE.
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Finding Bug In A FIFO Buffer

Correct FIFO buffer: every state of the data buffer is reachable

Bug: an element Val is not pushed into the buffer

An unwanted invariant: states with Val in the buffer are unreachable
Invariant generation: the 3-step procedure described earlier

Time limit is 10 sec. per PQE problem.
DS-PQE is the algorithm presented at HVC-14

ber of | ches

8 300 ) no yes |yes |12,141 | 2,138 |52

8 300 |10 yes yes |yes |5551 |7,681 |380
16 560 5 no no |yes |22,612 |9,506 |50
16 560 |10 yes no |yes |6,541 |16,554 |153




Other Experiments With PQE

* We experimented with 98 multi-property benchmarks of HWMCC-13.
The number of latches ranged from 111 to 8,000

* We used PQE to generate invariants covering different parts of the
design

* We showed that PQE can be much faster than QE and conducted
many other experiments



A Few Takeaways

* PQE provides a way to achieve efficiency without losing
the power of quantifiers

* Property generation by PQE helps to plug the hole caused
by incompleteness of specification
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