Complete Test Sets And Their Approximations

Eugene Goldberg

FMCAD, Austin, TX, USA October 30 – November 2, 2018

Outline

- Introduction
- Complete Test Sets (CTSs)
- Experiments and conclusions

The Problem

The problem we consider: Check if $N \equiv 0$

 $N \equiv 0$ denotes the fact that N outputs 0 for every input

We want to prove $N \equiv 0$ by testing

The Context

Complete Test Set (CTS)

Test **x** is an assignment to X

Test set
$$T = \{x_1, ..., x_m\}$$
,

T is a CTS if
$$N(T) = 0 \implies N \equiv 0$$

T is a trivial CTS if
$$|T| = 2^{|X|}$$

Black/White Box Testing

$$|T_{CTS}| \leq 2^{|X|}$$

$$|T_{CTS}| = 2^{|X|}$$

Testing as Structural Derivation

 $N \equiv 0$ is a semantic property of N:

$$(N \equiv 0) \land (N^* \equiv N)$$
 implies $N^* \equiv 0$

A non-trivial CTS is a structural property of N:

T is a CTS for N and $N^* \equiv N \implies$ T is a CTS for N^*

Testing: Make a *semantic* derivation ($N \equiv 0$) by proving a *structural* property (non-trivial CTS)

Some Applications Exploiting Reusability of Tests

Let ξ be a property of M. Formal proof of ξ is hard to reuse.

Let $N \equiv 0 \Leftrightarrow \xi$ holds

Let T be generated to test N

Set T can be reused

- to check other properties of M
- to check input/output behavior of M
- to check ξ after M is modified

Outline

- Introduction
- Complete Test Sets (CTSs)
- Experimens and conclusions

Stable Set of Assignments (SSA)

Given CNF formula G(W), $P = \{q_1, ..., q_m\}$ is an SSA

- $\forall \mathbf{q}_i \in P$, $G(\mathbf{q}_i) = 0$
- P is closed w.r.t. to a neighborhood relation

G is unsatisfiable iff it has an SSA Trivial SSA: all $2^{|W|}$ assignments

Non-trivial SSA is a structural property:

P is an SSA for G and $G^* \equiv G \implies$ P is an SSA for G^*

Example of SSA

$$G = C_1 \wedge ... \wedge C_4$$
, $C_1 = W_1 \vee W_2 \vee W_3$, $C_2 = \sim W_1$, $C_3 = \sim W_2$, $C_4 = \sim W_3$

$$q_1 = (w_1 = 0, w_2 = 0, w_3 = 0)$$
 falsifies C_1

$$Nbhd(q_1, C_1) = \{q_2, q_3, q_4\}$$

$$q_2 = (w_1 = 1, w_2 = 0, w_3 = 0),$$

 $q_3 = (w_1 = 0, w_2 = 1, w_3 = 0),$
 $q_4 = (w_1 = 0, w_2 = 0, w_3 = 1),$

Example of SSA (continued)

$$C_1 = W_1 \lor W_2 \lor W_3, C_2 = \sim W_1, C_3 = \sim W_2, C_4 = \sim W_3$$

$$P = \{q_1, q_2, q_3, q_4\},$$

$$q_1 = (0\ 0\ 0), q_2 = (1\ 0\ 0), q_3 = (0\ 1\ 0), q_4 = (0\ 0\ 1)$$

$$Nbhd(q_1, C_1) = \{q_2, q_3, q_4\}$$
 $Nbhd(q_2, C_2) = \{q_1\}$

$$Nbhd(q_2, C_2) = \{q_1\}$$

$$Nbhd(q_3, C_3) = \{q_1\},\$$

$$Nbhd(\mathbf{q_4}, C_4) = \{\mathbf{q_1}\}\$$

P is closed:
$$\forall \mathbf{q_k} \in P, \exists C_j \in G$$

s.t. $C_i(\mathbf{q_k}) = 0$ and $Nbhd(\mathbf{q_k}, C_i) \subseteq P$

P is an SSA for
$$G = C_1 \wedge ... \wedge C_4$$

Building Complete Test Set

Let $F_N(X, Y, z)$ be CNF specifying N $N \equiv 0 \Leftrightarrow F_N \land z \equiv 0$

- 1. Build SSA $\{q_1,...,q_m\}$ for $F_N \wedge Z$
- 2. Form $T = \{x_1, ..., x_m\}, x_i = proj(q_i, X), i=1,...,m$
- 3. Remove duplicates from *T*

T is a CTS for N

Example of CTS

$$(x_1 \lor x_2) \land x_3 \equiv$$

$$(x_1 \land x_3) \lor (x_2 \land x_3)$$

 $F_N \wedge z$ has SSA P of 21 assignments to $X \cup Y \cup \{z\}$

where $X = \{x_1, x_2, x_3\}, Y = \{y_1, ..., y_5\}$

P has 5 different assignments to $X \Rightarrow$ **CTS of 5 tests**

CTSs Are Too Large

Even non-trivial CTSs are too large ⇒ Approximate CTS (denoted as CTS^{aprx})

Build *T* for a projection of *N* on $V \subset X \cup Y \cup \{z\}$

- 1. Generate G(V) implied by $F_N \wedge z$
- 2. Build SSA P for G
- 3. Extract test set T from P

Proving $F_N \wedge z \equiv 0$ in two steps.

- Semantic step: $F_N \land z \Rightarrow G$
- Structural step: SSA P for G

Outline

- Introduction
- Complete Test Sets (CTSs)
- Experiments and conclusions

Testing Misdefined Properties

- Property ξ of sequential circuit M is misdefined
- ξ holds while the correct property ξ^* does not
 - False positives are hard to deal with
 - Propping up formal verification by testing (assuming that ξ and ξ* are close)
- 1. Form N_k , where $N_k \equiv 0 \Leftrightarrow \xi$ holds for k transitions
- 2. Build CTS^{aprx} T for a projection of N_k .
- 3. Run T to test M for k transitions

Description of Experiment

- HWMCC-10 benchmarks are used
- The original (true) property ξ is misdefined
- The "correct" property ξ* fails in k transitions

Let N_k and N_k^* specify ξ and ξ^* for k transitions

- 1. Generate a CTS^{aprx} T to prove $N_k \equiv 0$
- 2. Run *T* to break $N_k^* \equiv 0$
- 3. Compare *T* with random and coverage tests

Some Results

name	#ti- me fra- mes	#inp vars	#ga- tes × 10 ³	cov. metric		random		CTS ^{aprx}	
				#tests	time (s)	#tests	time (s)	#tests	time (s)
bobco	19	38	1.6	740	0.4	1.0*10 ⁷	294	3,339	1.1
cmugig	4	88	4.3	2,150	6.3	1.4*10 ⁶	158	923	3.7
eijks256	39	117	18	8,976	70	4.5*10 ⁶	5,000	183	31
kenopp1	3	129	1.7	1,202	0.5	10 ⁸	695	1,344	0.4
nusmv- guidan	6	504	10	7,922	27	2.1*10 ⁷	5,000	378	2.3
nusmvt- casp2	7	1,029	19	11,510	82	4.5*10 ⁷	5,000	3,549	53
cmupe- riodic	34	1,220	51	30,999	760	9.5*10 ⁶	5,000	5,611	240
pj2002	4	4,054	137	61,113	3,868	0.6*10 ⁶	5,000	161	7.9

Conclusions

- White-box testing ⇒ non-trivial CTS
- Even a non-trivial CTS is usually impractical
- Build CTS^{aprx}, approximation of CTS
- CTS^{aprx} can be computed efficiently
- CTS^{aprx} preserves high quality of CTS
- Our approach has numerous applications