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Abstract. We study partial quantifier elimination (PQE) for proposi-
tional CNF formulas with existential quantifiers. PQE is a generalization
of quantifier elimination where one can limit the set of clauses taken out
of the scope of quantifiers to a small subset of clauses. The appeal of PQE
is that many verification problems (e.g. equivalence checking and model
checking) can be solved in terms of PQE and the latter can be dramati-
cally simpler than full quantifier elimination. We show that PQE can be
used for property generation that can be viewed as a generalization of
testing. The objective here is to produce an unwanted property of a de-
sign implementation thus exposing a bug. We introduce two PQE solvers
called EG-PQE and EG-PQE™. EG-PQE is a very simple SAT-based
algorithm. EG-PQE™ is more sophisticated and robust than EG-PQE.
We use these PQE solvers to find an unwanted property (namely, an
unwanted invariant) of a buggy FIFO buffer. We also apply them to
invariant generation for sequential circuits from a HWMCC benchmark
set. Finally, we use these solvers to generate properties of a combinational
circuit that mimic symbolic simulation.

1 Introduction

In this paper, we consider the following problem. Let F'(X,Y") be a propositional
formula in conjunctive normal form (CNF)! where X,Y are sets of variables.
Let G be a subset of clauses of F. Given a formula 3X[F], find a quantifier-free
formula H(Y') such that 3X[F] = H A 3X[F \ G]. In contrast to full quantifier
elimination (QE), only the clauses of G are taken out of the scope of quantifiers
here. So, this problem is called partial QE (PQE) [1]. (In this paper, we consider
PQE only for formulas with ezxistential quantifiers.) We will refer to H as a
solution to PQE. Like SAT, PQE is a way to cope with the complexity of QE.
But in contrast to SAT that is a special case of QE (where all variables are
quantified), PQE generalizes QE. The latter is just a special case of PQE where
G = F and the entire formula is unquantified. Interpolation [2,3] is a special
case of PQE as well [4] (see also Appendix A).

The appeal of PQE is threefold. First, it can be much more efficient than
QE if G is a small subset of F. Second, many verification problems like SAT,

! Every formula is a propositional CNF formula unless otherwise stated. Given a CNF

formula F’ represented as the conjunction of clauses Ci A- - - AC, we will also consider
F as the set of clauses {C1,...,Ck}.
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equivalence checking, model checking can be solved in terms of PQE [1,5,6,7]. So,
PQE can be used to design new efficient methods for solving known problems.
Third, one can apply PQE to solving new problems like property generation
considered in this paper. In practice, to perform PQE, it suffices to have an
algorithm that takes a single clause out of the scope of quantifiers. Namely,
given a formula IX[F(X,Y)] and a clause C € F, this algorithm finds a formula
H(Y) such that 3X[F] = H A3IX[F \ {C}]. To take out k clauses, one needs to
apply this algorithm & times. Since H A 3X[F| = H A 3X[F \ {C}], solving the
PQE above reduces to finding H(Y) that makes C' redundant in H A3X[F]. So,
the PQE algorithms we present here are based on redundancy based reasoning.

We describe two PQE algorithms called EG-PQE and EG-PQE" where
“EG” stands for “Enumerate and Generalize”. EG-PQFE is a very simple SAT-
based algorithm that can sometimes solve very large problems. EG-PQE™ is a
modification of EG-PQF that makes the algorithm more powerful and robust?.
To show the practicality of PQE we apply it to property generation. Our moti-
vation here is as follows. In practice, the set of properties a design must meet is
incomplete. (That is, this design can be buggy even if all properties of this set
hold.) This problem is usually addressed by massive testing. The input/output
behavior of the design under a single test can be cast as a (simple) design prop-
erty. So, a test exposing a bug can be viewed as identifying an unwanted design
property. In terms of property generation, the flaw of testing is that it considers
only very simple properties.

In this paper, we show that one can use PQE to generate more complex
design properties. The goal of property generation is to produce an unwanted
property thus exposing a bug that may have been overlooked or simply cannot be
detected by testing. The benefits of property generation by PQE are as follows.
First, by using PQE one can make property generation efficient. Second, PQE
facilitates generation of properties covering different parts of the design, which
increases the probability of discovering a bug. Third, every property generated
by PQE specifies a large set of high-quality tests. We show how PQE can be
used to generate properties for a combinational circuit. We also continue the
work on invariant generation for a sequential circuit we started in [8]. One can
use invariant generation to identify a bug that makes a state of a sequential
circuit unreachable (whereas in a correct design this state should be reachable).
Such bugs can be easily missed.

The main body of this paper is structured as follows. (A full version with
all appendices will be published as a technical report.) In Section 2, we give
basic definitions. Section 3 presents property generation for a combinational
circuit. In Section 4, we describe invariant generation for a sequential circuit.
Sections 5 and 6 present EG-PQFE and EG-PQE™ respectively. Section 7 makes
some remarks about experiments and relates our previous PQE-solver called
START [8] to EG-PQE™. In Section 8, invariant generation is used to find a

2 Earlier we introduced a PQE-solver called START [8]. In this paper, we reproduce
some experiments of [8] conducted with START using EG-PQE and EG-PQE™.
The relation between START, EG-PQE and EG-PQE™ is explained in Section 7.



hard bug in a FIFO buffer. Experiments with invariant generation for HWMCC
benchmarks are described in Section 9. Section 10 presents an experiment with
property generation for combinational circuits. In Sections 11 and 12, we give
some background and make conclusions.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal
of a variable v is either v or its negation. A clause is a disjunction of literals.
A formula F is in conjunctive normal form (CNF) if F = Cy A --- A Cy where
Cy,...,Cy are clauses. We will also view F as a set of clauses {Cy,...,Cj}.
We assume that every formula is in CNF unless otherwise stated.

Definition 2. Let F be a formula. Then Vars(F) denotes the set of variables
of F and Vars(3X[F]) denotes Vars(F)\ X.

Definition 3. Let V be a set of variables. An assignment ¢ to 'V is a mapping
V' — {0,1} where V! C V. We will denote the set of variables assigned in ¢ as
Vars(q). We will refer to q as a full assignment to V if Vars(q) =V. We
will denote as ¢ C 7 the fact that a) Vars(q) C Vars(r) and b) every variable
of Vars(q) has the same value in ¢ and 7.

Definition 4. A literal and a clause are said to be satisfied (respectively fal-
sified) by an assignment ¢ if they evaluate to 1 (respectively 0) under G .

Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and ¢ be an assignment to Vars(H). If C is satisfied by ¢, then Cqg = 1. Oth-
erwise, Cg is the clause obtained from C' by removing all literals falsified by ¢ .
Denote by Hg the formula obtained from H by removing the clauses satisfied by
q and replacing every clause C unsatisfied by ¢ with Cy.

Definition 6. Given a formula 3X[F(X,Y)], a clause C of F' is called a quan-
tified clause if Vars(C) N X # 0. If Vars(C)NX =0, the clause C depends

only on free i.e. unquantified variables of F' and is called a free clause.

Definition 7. Let G, H be formulas that may have existential quantifiers. We
say that G, H are equivalent, written G = H, if Gy = Hg for all full assign-
ments ¢ to Vars(G) U Vars(H).

Definition 8. Let F(X,Y) be a formula and G C F and G # (. The clauses
of G are said to be redundant in IX[F| if IX[F] = IX[F \ G]. Note that if
F\G implies G, the clauses of G are redundant in AX[F], however, the converse
15 not true.



Definition 9. Given a formula 3X[F(X,Y))] and G where G C F, the Partial
Quantifier Elimination (PQE) problem is to find H(Y) such that
IX[F] = HAN3X[F\ G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Remark 1. Let D be a clause of a solution H to the PQE problem of Definition 9.
If F\ G implies D, then H \ {D} is a solution to this PQE problem too.

Ezxample 1. Consider the formula F' = C; ACo AC3ACy where Cp = T3zVxy, Co=
y1Vas, C3 = y1 VT4, Ca=yaVay. Let Y denote {y1,y2} and X denote {z3,x4}.
Consider the PQE problem of taking C; out of 3X[F] i.e. finding H(Y") such
that 3X[F] = HAIX[F \ {C1}]. As we show later, IX[F] = yy AIX[F \ {C1}].
That is, H =1y, is a solution to the PQE problem above.

Proposition 1. Let H be a solution to the PQE problem of Definition 9. That
is IX[F] = H A3X[F\G]. Then F = H (i.e. F implies H).

The proofs of propositions are given in Appendix B.

Definition 10. Let clauses C',C" have opposite literals of exactly one variable
w € Vars(C")N Vars(C"). Then C',C" are called resolvable on w. The clause
C' having all literals of C',C" but those of w is called the resolvent of C',C".
The clause C' is said to be obtained by resolution on w.

Definition 11. Let C be a clause of a formula G and w € Vars(C). The clause
C' is said to be blocked [9] in G with respect to the variable w if no clause of G
is resolvable with C' on w.

Proposition 2. Let a clause C be blocked in a formula F(X,Y) with respect to
a variable x € X. Then C is redundant in 3X[F] i.e. 3X[F] = IX[F\ {C}].

3 Property Generation By PQE

Many known problems can be formulated in terms of PQE thus facilitating the
design of new efficient algorithms. In Appendix C, we recall some results on
solving SAT, equivalence checking and model checking by PQE presented in
[1,5,6,7]. In this section, we describe application of PQE to property generation
for a combinational circuit. The objective of property generation is to expose a
bug via producing an unwanted property.

Let M(X,V,W) be a combinational circuit where X, V, W specify the sets
of the internal, input, and output variables of M respectively. Let F(X,V, W)
denote a formula specifying M. As usual, this formula is obtained by Tseitin’s
transformations [10]. Namely, F equals Fg, A---AFg, where Gy, ..., G}, are the
gates of M and Fg, specifies the functionality of gate G;.



Example 2. Let G be a 2-input AND gate defined as z3 = x1 A x5 where x3
denotes the output value and z1,x2 denote the input values of G. Then G is
specified by the formula Fg=(T1VZT2Vas)A(z1 VEs) A(x2 VT3). Every clause of
I is falsified by an inconsistent assignment (where the output value of G is not
implied by its input values). For instance, x1V T3 is falsified by the inconsistent
assignment x; =0, 23 =1. So, every assignment satisfying Fg corresponds to a
consistent assignment to G and vice versa. Similarly, every assignment satisfying
the formula F' above is a consistent assignment to the gates of M and vice versa.

3.1 Property generation as generalization of testing

Let w; € W be an output variable of M and ¥ be a test i.e. a full assignment to
the input variables V' of M. Let B” denote the longest clause falsified by ¥ i.e.
Vars(BY) = V. Let l(w;) be the literal satisfied by the value of w; produced by
M under input ¥. Then the clause B V [(w;) is satisfied by every assignment
satisfying I i.e. BYVI(w;) is a property of M. We will refer to it as a single-test
property (since it describes the behavior of M for a single test). If the input
v is supposed to produce the opposite value of w; (i.e. the one falsifying 1(w;)),
then ¥ exposes a bug in M. In this case, the single-test property above is an
unwanted property of M exposing the same bug as the test .

A single-test property can be viewed as a weakest property of M as opposed
to the strongest property specified by 3X[F|. The latter is the truth table of M
that can be explicitly computed by performing QE on 3X[F]. One can use PQE
to generate properties of M that, in terms of strength, range from the weakest
ones to the strongest property inclusively. (By combining clause splitting with
PQE one can generate single-test properties, see the next subsection.) Consider
the PQE problem of taking a clause C out of 3X[F|. Let H(V, W) be a solution
to this problem i.e. IX[F| = H A3X[F \ {C}]. Since H is implied by F, it can
be viewed as a property of M. If H is an unwanted property, M has a bug.
(Here we consider the case where a property of M is obtained by taking a clause
out of formula IX[F]| where only the internal variables of M are quantified.
Later we consider cases where some external variables of M are quantified too.)

The benefit of property generation by PQE is fourfold. First, by property
generation one can identify bugs that are hard or simply impossible to find
by testing. Second, using PQE makes property generation efficient. Third, by
taking out different clauses one can generate properties covering different parts
of design. This increases the probability of discovering a bug. Fourth, every
property generated by PQE specifies a large set of high-quality tests.

We will assume that the property H generated by PQE has no redundant
clauses (see Remark 1). That is if D € H, then F'\ {C} % D. Then one can
view H as a property that holds due to the presence of the clause C in F.

3.2 Computing properties efficiently

If a property H is obtained by taking only one clause out of IX[F], its com-
putation is much easier than performing QE on IX[F]. If computing H still



remains too time-consuming, one can use the two methods below that achieve
better performance at the expense of generating weaker properties. The first
method applies when a PQE solver forms a solution incrementally, clause by
clause (like the algorithms described in Sections 5 and 6). Then one can simply
stop computing H as soon as the number of clauses in H exceeds a threshold.
Since an “incomplete” formula H is implied by F', it specifies a property of M.
The second method employs clause splitting. Here we consider clause splitting
on input variables v1,...,v, i.e. those of V' (but one can split a clause on any
subset of variables from Vars(F')). Let F’ denote the formula F' where a clause
C' is replaced with p + 1 clauses: C; = C V I(v1),..., Cp = C VI(vp), Cpr1 =
C V l(vg) V -+ VI(vp), where I(v;) is a literal of v;. The idea is to obtain a
property H by taking the clause Cp41 out of IX[F’] rather than C out of X [F].
The former PQE problem is simpler than the latter since it produces a weaker
property H. One can show that if {v1,...,v,} =V, then a) the complexity of
PQE reduces to linear; b) taking out Cpiq actually produces a single-test
property. The latter specifies the input/output behavior of M for the test ¥
falsifying the literals {(v1),...,l(vp). (See Appendix D for more details.)

3.3 Using design coverage for generation of unwanted properties

Arguably, testing is so effective in practice because one verifies a particular de-
sign. Namely, one probes different parts of this design using some coverage metric
rather than samples the truth table (which would mean verifying every possible
design). The same idea works for property generation by PQE for the following
two reasons. First, by taking out a clause, PQE generates a property inherent
to the specific circuit M. (If one replaces M with an equivalent but structurally
different circuit, PQE will generate different properties.) Second, by taking out
different clauses of F' one generates properties corresponding to different parts
of M thus “covering” the design. This increases the chance to take out a clause
corresponding to the buggy part of M and generate an unwanted property.

3.4 High-quality tests specified by a property generated by PQE

In this subsection, we show that a property H generated by PQE, in general,
specifies a large set of high-quality tests. Let H(V, W) be obtained by taking
C out of AX[F(X,V,W)]. Let Q(V,W) be a clause of H. As mentioned above,
we assume that F'\ {C} % Q. Then there is an assignment (Z,7,W) satisfying

formula (F \ {C}) A Q where Z,7, 0 are assignments to X, V, W respectively.
(Note that by definition, (¥,w) falsifies Q.) Let (Z*, ¥, W") be the execution
trace of M under the input 7. So, (Z*, ¥, w") satisfies F'. Note that the output
assignments @ and W* must be different because (¥, @W*) has to satisfy Q. (Oth-
erwise, (7%, U, W*) satisfies F A Q and so F' % @ and hence F' # H.) So, one
can view U as a test “detecting” disappearance of the clause C' from F. Note
that different assignments satisfying (F\ {C}) A Q correspond to different tests
. So, the clause @) of H, in general, specifies a very large number of tests. One
can show that these tests are similar to those detecting stuck-at faults and so

have very high quality (see Appendix E for more details).



3.5 Identifying unwanted properties

In some cases, e.g. those mentioned in Sections 8 and 10, it is easy to decide if a
property H obtained by PQE is unwanted. Otherwise, this can be done by ana-
lyzing tests detecting the disappearance of a clause from F' (see Subsection 3.4).
A more detailed discussion of this topic is beyond the scope of this paper.

4 Invariant Generation By PQE

In [8], we showed that PQE can be used for generating invariants of a sequential
circuit. In this paper, we continue this topic in a more general context of prop-
erty generation. We use generation of invariants (over that of weaker properties
just claiming that a state cannot be reached in k transitions or less) because
identification of an unwanted invariant is, arguably, easier. This simplifies bug
detection by property generation.

4.1 Bugs making states unreachable

Let N be a sequential circuit and S denote the state variables of N. Let I(S)
specify the initial state i (i.e. I(Simi)=1). Let T(S’,V,S”) denote the tran-
sition relation of N where S’,S” are the present and next state variables and
V specifies the (combinational) input variables. We will say that a state § of

N is reachable if there is an execution trace leading to ¥. That is, there is
—> —> —> — — — . —
a sequence of states sg,...,S; where s; = Sini, Sk = S and there exist v;

i =0,...,k — 1 for which T(;, ¥, Si+1) = 1. Let N have to satisfy a set of
invariants Py(9),..., Py (S). That is P; holds iff P;(3) = 1 for every reachable
state § of N. We will denote the aggregate invariant Py A -+ A P, as Pggg.
We will call § a bad state of N if Pyg,(s) = 0. If Pygq holds, no bad state is
reachable. We will call 5 a good state of N if P,g,(s) = 1.

Typically, the set of invariants Py, ..., P, is incomplete in the sense that it
does not specify all states that must be unreachable. So, a good state can well be
unreachable. We will call a good state operative (or op-state for short) if it is
supposed to be used by N and so should be reachable. We introduce the term an
operative state just to factor out “useless” good states. We will say that N has
an op-state reachability bug if an op-state is unreachable in N. In Section 8,
we consider such a bug in a FIFO buffer. The fact that P,4, holds says nothing
about reachability of op-states. Consider, for instance, a trivial circuit N, that
simply stays in the initial state ,; and Pagg(Sini) = 1. Then P,g4, holds for
Niriy but the latter has op-state reachability bugs (assuming that the correct
circuit must reach states other than E’W)

Let Rz be the predicate satisfied only by a state 5. In terms of CTL, iden-
tifying an op-state reachability bug means finding & for which the property
EF.R+ must hold but it does not. The reason for assuming s to be unknown
is that the set of op-states is typically too large to explicitly specify every prop-
erty ET.Rz to hold. This makes finding op-state reachability bugs very hard.



The problem is exacerbated by the fact that reachability of different states is
established by different traces. So, in general, one cannot efficiently prove many
properties EF.Rw (for different states) at once.

4.2 Proving op-state unreachability by invariant generation

In practice, there are two methods to check reachability of operative states for
large circuits. The first method is testing. Of course, testing cannot prove a
state unreachable, however, the examination of execution traces may point to a
potential problem. (For instance, after examining execution traces of the circuit
Ny above one realizes that many operative states look unreachable.) The other
method is to check unwanted invariants i.e. those that are supposed to fail.
If an unwanted invariant holds for a circuit, then this circuit has an op-state
reachability bug. For instance, one may check if a state variable s; € S of a
circuit never changes its initial value. To break this unwanted invariant, one
needs to find an operative state where the initial value of s; is flipped. (For the
circuit Ny, above this unwanted invariant holds for every state variable.) The
potential unwanted invariants are formed manually i.e. simply guessed.

The two methods above can easily overlook an op-state reachability bug.
Testing cannot prove that an op-state is unreachable. To correctly guess an
unwanted invariant that holds, one essentially has to know the underlying bug.
Below, we describe a method for invariant generation by PQE that is based on
property generation for combinational circuits. The appeal of this method is
twofold. First, PQE generates invariants “inherent” to the implementation at
hand, which drastically reduces the set of invariants to explore. Second, PQE is
able to generate invariants related to different parts of the circuit (including the
buggy one). This increases the probability of generating an unwanted invariant.
We substantiate this claim in Section 8.

Let formula Fj specify the combinational circuit obtained by unfolding a
sequential circuit N for k time frames and adding the initial state constraint
I(So) That is F} = I(So) A T(So, Vo, Sl) VARERIVAN T(Skfl, Vi—1, Sk) where Sj, VJ
denote the state and input variables of j-th time frame respectively, 0<j< k.
Let H(Sk) be a solution to the PQE problem of taking a clause C' out of 3X}[Fj]
where X}, = SoUVpU---USk_1 UV;_1. That is AXy[Fi] = HA 3Xi[Fr \ {C}].
Note that in contrast to Section 3, here some external variables of the combi-
national circuit (namely, the input variables Vp,...,Vx_1) are quantified too.
So, H depends only on state variables of the last time frame. H can be viewed
as a local invariant asserting that no state falsifying H can be reached in k
transitions.

One can use H to find global invariants (holding for every time frame) as
follows. Even if H is only a local invariant, a clause @ of H can be a global
invariant. The experiments of Section 9 show that, in general, this is true for
many clauses of H. (To find out if Q is a global invariant, one can simply run a
model checker to see if the property @ holds.) Note that by taking out different
clauses of Fj one can produce global single-clause invariants @) relating to dif-



ferent parts of N. From now on, when we say “an invariant” without a qualifier
we mean a global invariant that holds in every time frame.

5 Introducing EG-PQE

In this section, we describe a simple SAT-based algorithm for performing PQE
called EG-PQE. Here ’EG’ stands for 'Enumerate and Generalize’. EG-PQFE
accepts a formula 3X[F(X,Y)] and a clause C € F. It outputs a formula H(Y")
such that AX[Fy,;] = H A X [Fii \ {C}] where F;,; is the initial formula F.
(This point needs clarification because FG-PQFE changes F' by adding clauses.)

5.1 An example

Before describing the pseudocode of EG-PQEFE, we explain how it solves the PQE
problem of Example 1. That is we consider taking clause C; out of IX[F(X,Y)]
where F=Cy A+~ NCy, C1 =T33V g, Co=1y1Vrs, C3 =y1 VT4, C1=ysVay
and Y = {y1,y2} and X = {x3,24}.

EG-PQF iteratively generates a full assignment y to Y and checks if (C)z
is redundant in 3X[Fj] (i.e. if Cy is redundant in 3X[F)| in subspace ¥). Note
that if (F'\ {C1})g implies (C1)g, then (C1)g is trivially redundant in 3X[Fy|.
To avoid such subspaces, EG-PQE generates i by searching for an assignment
(7, 7) satisfying the formula (F\{C1})AC;. (Here ¥ and 7 are full assignments
to Y and X respectively.) If such (¥, 7) exists, it satisfies F'\ {C}} and falsifies
C thus proving that (F'\ {C1})y does not imply (C1)g.

Assume that FG-PQFE found an assignment (y; =0,y2 = 1,23 =1,24 =0)
satisfying (F\ {C1})AC1. So ¥ = (y1=0,y2=1). Then EG-PQE checks if Fj is
satisfiable. Fiy = (T3Va4) Az3AT4 and so it is unsatisfiable. This means that (C1)y
is not redundant in 3X[Fy|. (Indeed, (F'\ {C1})y is satisfiable. So, removing
C1 makes F' satisfiable in subspace §.) EG-PQE makes (C1)y redundant in
JX[Fy] by adding to F a clause B falsified by 3. The clause B equals y;
and is obtained by identifying the assignments to individual variables of Y that
made Fj unsatisfiable. (In our case, this is the assignment y; = 0.) Note that
derivation of clause y; generalizes the proof of unsatisfiability of F' in subspace
(y1=0,y2=1) so that this proof holds for subspace (y1 =0, y2=0) too.

Now EG-PQE looks for a new assignment satisfying (F'\ {C1}) ACy. Let the
assignment (y; = 1,y2 = 1,23 = 1,24 = 0) be found. So, ¥ = (y1=1,y2=1).
Since (y1=1,y2=1,x3 = 0) satisfies F', the formula Fj is satisfiable. So, (C1)y
is already redundant in 3X[Fy|. To avoid re-visiting the subspace ¥, EG-PQF
generates the plugging clause D = 7, V 7, falsified by 7.

EG-PQE fails to generate a mnew assignment 3 because the formula
D A (F\ {C1}) A Cy is unsatisfiable. Indeed, every full assignment ¥ we have
examined so far falsifies either the clause y; added to F' or the plugging clause
D. The only assignment EG-PQFE has not explored yet is ¥ = (y1 = 1,y2 =0).

Since (F\{Cl})g: T4 and (01)17 = T3 vV T4, the formula (F \ {Cl}) A 61 is



unsatisfiable in subspace ¥. In other words,(C1)z is implied by (F'\ {C1})7 and

hence is redundant. Thus, C; is redundant in 3X [F;,; A y1] for every assignment
to Y where F,; is the initial formula F'. That is, X [Fin;]| = 1A X [Fins \ {C1}]
and so the clause y; is a solution H to our PQE problem.

5.2 Description of EG-PQFE

The pseudo-code of FG-PQF is shown in Fig. 1. EG-PQE starts with storing
the initial formula F' and initializing formula Plg that accumulates the plugging
clauses generated by EG-PQE (line 1). As we mentioned in the previous sub-
section, plugging clauses are used to avoid re-visiting the subspaces where the
formula F' is proved satisfiable.

All the work is carried out in a while loop. First, FG-PQF checks if there
is a new subspace § where 3X[(F \ {C})y] does not imply Fj. This is done by
searching for an assignment (7,7 satisfying Plg A (F'\ {C}) A C (lines 3-4). If
such an assignment does not exist, the clause C' is redundant in 3X [F]. (Indeed,
let 7 be a full assignment to Y. The formula Plg A (F\ {C}) AC is unsatisfiable
in subspace ¥ for one of the two reasons. First, y falsifies Plg. Then Cj is
redundant because Fj is satisfiable. Second, (F'\ {C})7 A Cy is unsatisfiable.
In this case, (F'\ {C})y implies Cjy.) Then EG-PQFE returns the set of clauses
added to the initial formula F' as a solution H to the PQE problem (lines 5-6).

If the satisfying assignment (%,7)

EG-PQE(F, X,Y,C) { above exists, EG-PQFE checks if the for-

1 Plg:=0; Fini := F mula Fy is satisfiable (line 7). If not,

2 while (true) { then the clause Cjy is not redundant in

B Gi= FALCY — 3X|[Fy] (because (F \ {C})y is satisfiable).

; Zé :(isiltl(;;lgA GAC) So, EG-PQE makes Cy redundant by gen-

o By = erating a clause B(Y) falsified by ¥ and
7
8
9

(gfflg;l (f g;;;n&);’ 7 adding it to F' (line 9). Note that adding

if (B # nil) { B also prevents EG-PQFE from re-visiting
F:= FU{B} the subspace 7 again. The clause B is built

10 continue } by finding an unsatisfiable subset of Fj; and
11 D:=PlugCls(y,2*,F) collecting the literals of Y removed from
12 Plg:= Plgu{D}}} clauses of this subset when obtaining Fjy

from F'. The unsatisfiable subset above can
Fig. 1: Pseudocode of EG-PQE be easily extracted from a resolution proof
that Fj is unsatisfiable.

If Fy is satisfiable, EG-PQE generates
an assignment ¥* to X such that (¥, 7™) satisfies F' (line 7). The satisfiability
of Fy means that every clause of Fy including Cj is redundant in 3X[Fy]. At
this point, EG-PQE uses the longest clause D(Y) falsified by ¥ as a plugging
clause (line 11). The clause D is added to Plg to avoid re-visiting subspace
7. Sometimes it is possible to remove variables from % to produce a shorter
assignment y* such that (", Z") still satisfies F. Then one can use a shorter
plugging clause D involving only the variables assigned in ™.



5.3 Discussion

EG-PQE is similar to the QE algorithm presented in [11]. We will refer to
it as CAV02-QFE. Given a formula 3X[F(X,Y)], CAV02-QFE enumerates full
assignments to Y. In subspace 3, CAV02-QF ecither adds to F' a clause falsified
by ¥ (if Fjy is unsatisfiable) or generates a plugging clause. To apply the idea of
CAV02-QF to PQE, we reformulated it in terms of redundancy based reasoning.

The main flaw of EG-PQEFE inherited from CAV02-QF is the necessity to
use plugging clauses produced from a satisfying assignment. Consider the PQE
problem of taking a clause C' out of IX[F(X,Y)]. If F is proved unsatisfiable in
subspace ¥, typically, only a small subset of clauses of Fy is involved in the proof.
Then the clause generated by FG-PQF is short and thus proves C redundant
in many subspaces different from 7/. On the contrary, to prove F satisfiable
in subspace ¥, every clause of Fy must be satisfied. So, the plugging clause
built off a satisfying assignment includes almost every variable of Y. Despite
this flaw of FG-PQFE we present it for two reasons. First, it is a very simple
SAT-based algorithm that can be easily implemented. Second, FG-PQF has
a powerful advantage over CAV02-QF since it solves PQE rather than QE.
Namely, EG-PQE does not need to examine the subspaces 3 where C is implied
by F\ {C}. Surprisingly, for many formulas this allows EG-PQFE to completely
avoid examining subspaces where F' is satisfiable. In this case, FG-PQF is very
efficient and can solve very large problems. Note that when CAV02-QF performs
complete QE on 3X [FY, it cannot avoid subspaces y where Fj is satisfiable unless
F itself is unsatisfiable (which is very rare in practical applications).

6 Introducing EG-PQE™
In this section, we describe EG-PQE™, an improved version of EG-PQE.

6.1 Main idea
The pseudocode of EG-PQE™ is shown in

EG-PQE*(F,X,Y,C) { Fig 2. It is different from that of EG-PQE
1P lQ i=0; Fini = F only in line 11 marked with an asterisk. The
2 while (true) { motivation for this change is as follows. Line

"""" o 11 describes proving redundancy of C' for the

11* D:=PrvClsRed(y,F,C) . . .

\s Plg = PlgU {D}}} case wh'en O?? is not implied by (F'\ {C})g
and Fy is satisfiable. Then EG-PQE simply
uses a satisfying assignment as a proof of re-

Fig. 2: Pseudocode of EG-PQE™ dundancy of C in subspace 7. This proof is

unnecessarily strong because it proves that

every clause of F (including C) is redundant in 3X[F] in subspace 7. Such a
strong proof is hard to generalize to other subspaces.

The idea of EG-PQE™ is to generate a proof for a much weaker proposition

namely a proof of redundancy of C' (and only C'). Intuitively, such a proof should

be easier to generalize. So, EG-PQE™ calls a procedure PruClsRed generating



such a proof. EG-PQE™ is a generic algorithm in the sense that any suitable
procedure can be employed as PrvClsRed. In our current implementation, the
procedure DS-PQF [1] is used as PruClsRed. DS-PQFE generates a proof stating
that C' is redundant in 3X[F] in subspace ¥* C 3. Then the plugging clause
D falsified by ¥* is generated. Importantly, 37* can be much shorter than 7.
Appendix F gives a brief description of DS-PQE.

Ezxample 3. Consider the example solved in Subsection 5.1. That is, we consider
taking clause C; out of IX[F(X,Y)] where F = C1 A--- A Cy, C1 = T3 V g4,
Co=y1Vas, C3 = y1 VT4, C1=1y2Vxy and Y = {yl,yg} and X = {$3,$4}.
Consider the step where EG-PQE proves redundancy of C; in subspace §J =
(y1 =1,y2 =1). EG-PQE shows that (y;1 =1,y = 1,23 = 0) satisfies F’, thus
proving every clause of F' (including C}) redundant in AX[F] in subspace % .
Then EG-PQE generates the plugging clause D =7, V 7, falsified by ¥.

In contrast to EG-PQE, EG-PQE™" calls PruClsRed to produce a proof of
redundancy for the clause C; alone. Note that F' has no clauses resolvable with
C1 on x3 in subspace ¥ = (y; = 1). (The clause Cy containing z3 is satisfied by
¥*.) This means that C; is blocked in subspace §* and hence redundant there
(see Proposition 2). Since ¥* C ¥, EG-PQE™ produces a more general proof
of redundancy than EG-PQE. To avoid re-examining subspace 3, EG-PQE™
generates a shorter plugging clause D = 7.

6.2 Discussion

Consider the PQE problem of taking a clause C' out of 3X[F(X,Y")]. There are
two features of PQE that make it easier than QE. The first feature is that one
can ignore the subspaces ¥ where F'\ {C} implies C. The second feature is
that when Fj is satisfiable, one only needs to prove redundancy of the clause
C alone. Among the three algorithms we run in experiments, namely, DS-PQF,
EG-PQE, and EG-PQE™ only EG-PQE™ exploits both features. (In addition
to using DS-PQE inside EG-PQE™ we also ran it as a stand-alone PQE solver.)
DS-PQFE does not use the first feature [1] and EG-PQE does not exploit the
second one. As we show in Sections 8 and 9, this affects the performance of
DS-PQFE and EG-PQE.

7 Some Remarks About START And Experiments

In [8], we introduced a PQE solver called START. One can view START as a
version of EG-PQE™ where the internal procedure PruClsRed is implemented
using the machinery of certificate clauses. (Such PrvClsRed procedure is more
powerful than the one implemented by DS-PQFE that we use in this paper.) As
we mentioned above, we present FG-PQF because it is a very simple algorithm
that still can efficiently solve some large problems. The reason for introducing
EG-PQE™ is twofold. First, it helps to emphasize the two advantages of PQE
over QFE listed in Subsection 6.2. Second, EG-PQE™ is a generic algorithm
allowing to get new PQE solvers by varying the implementation of PrvClsRed.



In the following three sections, we describe experiments with DS-PQE (used
as a stand-alone PQE algorithm), EG-PQE and EG-PQE™. The first two sec-
tions reproduce the experiments with FIFO buffers and HWMCC-13 benchmarks
that we conducted in [8] with START. Comparing the results of DS-PQE,
EG-PQFE and EG-PQE" allows to better understand which of the features
mentioned in Subsection 6.2 makes PQE solving more efficient. We implemented
local calls to DS-PQE in EG-PQE™ using the source of DS-PQE provided
at [12]. The same source was used to build a binary of DS-PQEF. The sources of
EG-PQE and EG-PQE™ are available at [13,14]. We used Minisat2.0 [15] as an
internal SAT-solver.

8 Experiment With FIFO Buffers®

In this section, we give an example of bug

it (write == 1 && currSize < n) detection by invariant generation for a FIFO

* if (dataln |= Val) buffer. Our objective here is twofold. First, we
begin want to substantiate the intuition of Subsec-
Data[wrPnt] = dataln; tion 3.3 that property generation by PQE (in
wrPnt = wrPnt + 1; our case, invariant generation by PQE) has
end the same reasons to be effective as testing. In

particular, by taking out different clauses one
generates invariants relating to different parts
of the design. So, taking out a clause of the
buggy part is likely to produce an unwanted
invariant. Second, we want to give an example
of an invariant that can be easily identified as unwanted.

Fig. 3: A buggy fragment of Ver-
ilog code describing F'ifo

8.1 Buffer description

Consider a FIFO buffer that we will refer to as Fifo. Let n be the number of
elements of Fifo and Data denote the data buffer of Fifo. Let each Datali],i =
1,...,n have p bits and be an integer where 0 < Data[i] < 2P. A fragment of
the Verilog code describing Fifo is shown in Fig 3. This fragment has a buggy
line marked with an asterisk. In the correct version without the marked line, a
new element dataln is added to Data if the write flag is on and Fifo has less
than n elements. Since Data can have any combination of numbers, all Data
states are supposed to be reachable. However, due to the bug, the number Val
cannot appear in Data. (Here Val is some constant 0 < Val < 2P. We assume that
the buffer elements are initialized to 0.) So, Fifo has an op-state reachability bug
since it cannot reach operative states where an element of Data equals Val. This
bug is hard to detect by random testing because it is exposed only if one tries
to add Val to Fifo. Similarly, it is virtually impossible to guess an unwanted
invariant of Fifo exposing this bug unless one knows exactly what this bug is.

3 All experiments were run on a computer with Intel Core i5-8265U CPU of 1.6 GHz.



8.2 Bug detection by invariant generation

Let N be a circuit implementing Fifo. Let S be the set of state variables of NV
and Sgate C S be the subset corresponding to the data buffer Data. We used
DS-PQE, EG-PQE and EG-PQE™ to generate invariants of N as described in
Section 4. Note that an invariant @ depending only on Sy, is an unwanted
one. If @ holds for N, some states of Data are unreachable. Then Fifo has an
op-state reachability bug since every state of Data is supposed to be reachable.
To generate invariants, we used the formula Fj, = I(So) A T'(So, Vo, S1) A -+ A
T(Sk—1, Vk—1, Sk) introduced in Subsection 4.2. Here I and T describe the initial
state and the transition relation of IV respectively and S; and V; denote state
variables and combinational input variables of j-th time frame respectively. First,
we used a PQE solver to generate a local invariant H (Sy) obtained by taking a
clause C out of X [Fy] where X = SoUVp U -+ U Sk_1 U Vi_1. So, IX[Fk]
= HA 3Xi[Fy \ {C}]. (Since Fy, = H, no state falsifying H is reachable in k
transitions.) In the experiment, we took out only clauses of F}, containing an
unquantified variable i.e. a variable of Si. Such a choice was limited but still
guaranteed that we cover the entire design in terms of state variables. The
time limit for solving the PQE problem of taking out a clause was set to 10 sec.

For each clause @ of every local invariant H generated by PQE, we checked if
@ was a global invariant. Namely, we used a public version of IC8 [16,17] to verify
if the property @ held (by showing that no reachable state of N falsified @). If
so, and @) depended only on variables of Sg4t, N had an unwanted invariant.
Then we stopped invariant generation. The results of the experiment are given
in Table 1. In the experiment, we considered buffers with 32-bit elements. When
picking a clause to take out, i.e. a clause with a variable of Sk, one could make
a good choice by pure luck. To address this issue, we picked clauses to take
out randomly and performed 10 different runs of invariant generation and then
computed the average value. So, the columns four to twelve of Table 1 actually
give the average value of 10 runs.

Table 1: FIFO buffer with n elements of 32 bits. Time limit is 10 sec. per PQE problem

buff. [lat- [time total pge probs finished pge probs unwant. invar runtime (s.)
size |ches |fra- ds- eg- eg- |ds- eg- eg- ds- |eg- |eg- ds- eg- eg-
n mes |pge |pge |pget|pge  |pge  |pget |pge |pge |pge™ |pge  |pge |pge’

8 300 | 5 1,236 [311 8 2% |37% [33% |no |yes |yes [12,141[2,138 [52

8 300 | 10 560 [737 39 [2% [1% 4% |yes |yes |yes [5,551 [7,681 [380

16 560 | 5 2,288 12,288 17 [ 1% [66% [69% [no [no [yes [22,612]9,506 [57

16 560 | 10 |[653 2,288 | 24 1% [36% [39% [yes [no |yes [6,541 [16,554[152

Let us use the first line of Table 1 to explain its structure. The first two
columns show the number of elements in Fifo implemented by N and the number
of latches in N (8 and 300). The third column gives the number k of time frames
(i.e. 5). The next three columns show the total number of PQE problems solved
by a PQE solver before an unwanted invariant was generated e.g. 8 problems for
EG-PQE™. On the other hand, DS-PQE failed to find an unwanted invariant
and had to solve all 1,236 PQE problems of taking out a clause of Fj with
an unquantified variable. The following three columns show the share of PQE



problems finished in the time limit of 10 sec. For instance, EG-PQFE finished
37% of 311 problems. The next three columns show if an unwanted invariant
was generated by a PQE solver. DS-PQF did not find one for the first instance
of Fifo whereas EG-PQFE and EG-PQE™ found it. The last three columns give
the total run time. Table 1 shows that only EG-PQE™ managed to generate an
unwanted invariant for all four instances of Fifo. This invariant asserted that
Fifo cannot reach a state where an element of Data equals Val.

9 Experiments With HWMCC Benchmarks

In this section, we describe three experiments with 98 multi-property bench-
marks of the HWMCC-13 set [18]. (We use the HWMCC-13 set because it has
a multi-property track, see the explanation below.) The number of latches in
those benchmarks range from 111 to 8,000. More details about the choice of
benchmarks and the experiments can be found in Appendix G. Each benchmark
consists of a sequential circuit N and invariants P, ..., P, to prove true. Like
in Section 4, we call Pogqg = Py A--- A Py, the aggregate invariant. In experiments
2 and 3 we used PQE to generate new invariants of N. Since every invariant P
implied by P44 is a desired one, the necessary condition for P to be unwanted is
Pagq 7 P. The conjunction of many invariants P; produces a stronger invariant
Pogg, which makes it harder to generate P not implied by P,gq. (This is the
reason for using multi-property benchmarks in our experiments.) The circuits of
the HWMCC-13 set are anonymous. So, we just generated invariants not implied
by P4y without deciding if some of them were unwanted.

Similarly to the experiment of Section 8, we used the formula Fj, = I(Sp) A
T(So, Vo, S1) A-+- AT (Sk-1,Vk—1,Sk) to generate invariants. The number k of
time frames was in the range of 2<k<10. As in the experiment of Section 8, we
took out only clauses containing a state variable of the k-th time frame. In all
experiments, the time limit for solving a PQE problem was set to 10 sec.

9.1 Experiment 1

In the first experiment, we generated a formula H(Sy) by taking out a clause C'
of 3X[Fy] where X, = So UVp U -+ U Sk UVi_1. (So, only the variables of
Sk are unquantified in Xy [Fi].) H is a local invariant asserting that no state
falsifying H can be reached in k transitions. Our goal was to show that PQE
can find H for large formulas F}, that have hundreds of thousands of clauses.
We used EG-PQF to partition the PQE problems we tried into two groups.
The first group consisted of 3,736 problems for which we ran FG-PQF for 10
sec. and it never encountered a subspace 57 where F}, was satisfiable. Here s
is a full assignment to Sk. So, in every subspace 55, formula Fj was either
unsatisfiable or (Fy \ {C}) = C. (The fact that so many problems meet the
condition of the first group came as a big surprise.) The second group consisted
of 3,094 problems where FEG-PQFE encountered subspaces where Fj was satis-
fiable. For the first group, DS-PQEF finished only 30% of the problems within



10 sec. whereas EG-PQE and EG-PQE™ finished 88% and 89% respectively.
The poor performance of DS-PQF is due to not checking if (F} \ {C}) = C in
the current subspace. For the second group, DS-PQE, EG-PQE and EG-PQE™
finished 15%, 2% and 27% of the problems respectively within 10 sec. EG-PQE
finished far fewer problems because it used a satisfying assignment as a proof of
redundancy of C' (see Subsection 6.2).

To contrast PQE and QE, we used a high-quality tool CADET [19,20] to
perform QE on the 98 formulas 3X;[F] (one formula per benchmark). That
is, instead of taking a clause out of X [F}] by PQE, we applied CADET to
perform full QE on this formula. (Performing QE on 3X}[F] produces a formula
H(Sk) specifying all states unreachable in k transitions.) CADET finished only
25% of the 98 QE problems with the time limit of 600 sec. On the other hand,
EG-PQE™ finished 61% of the 6,830 problems of both groups (generated off
3X[Fx]) within 10 sec. So, PQE can be much easier than QE if only a small
part of the formula gets unquantified.

9.2 Experiment 2

The second experiment was an extension of

the first one. Its goal was to show that PQE
can generate invariants for realistic designs.

pae #benchy results For each clause Q of a local invariant H gener-

solver [marks [local [glob. [not imp. . .

invar. |invar. |by Pag, | ated by PQE we used IC3 to verify if Q) was a

Table 2: Results of invariant
generation

Z;'i;’: gg 3735968 ‘217687389 i’%%gg global invariant. If so, we checked if P,gy % Q
- k) 9 ) . .
cg-pgeT] 93 9,303 |4,770 |3,037 held. To make the experiment less time con-

suming, in addition to the time limit of 10 sec.
per PQE problem we imposed a few more constraints. The PQE problem of tak-
ing a clause out of 3X[F)] terminated as soon as H accumulated 5 clauses or
more. Besides, processing a benchmark terminated when the summary number
of clauses of formulas H reached 100 or the total run time of all PQE problems
generated off X [F] exceeded 2,000 sec.

Table 2 shows the results of the experiment. The third column gives the
number of local single-clause invariants (i.e. the total number of clauses in all
H over all benchmarks). The fourth column shows how many local single-clause
invariants turned out to be global. (Since global invariants were extracted from
H and the summary size of all H could not exceed 100, the number of global
invariants per benchmark could not exceed 100.) The last column gives the num-
ber of global invariants not implied by F,44. So, these invariants are candidates
for checking if they are unwanted. Table 2 shows that EG-PQE and EG-PQE™
performed much better than DS-PQFE.

9.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses @1, ...,Q, to make
PAQiN - NQ, inductive. If IC3 succeeds, every @; is an invariant. Moreover,



@; may be an unwanted invariant. The goal of the third experiment was to
demonstrate that PQE and IC3, in general, produce different invariant clauses.
The intuition here is that IC8 generates clauses @Q); to prove a predefined invariant
rather than find an unwanted one. In our experiment, we used IC3 to generate

Py,,; an inductive version of Puyq. The experiment showed that in 89% cases,

an invariant clause generated by EG-PQE™ and not implied by P,y was not

implied by Py, either. (See Appendix G.3 for more detail.)

10 Properties Mimicking Symbolic Simulation

Let M(X,V,W) be a combinational circuit where X, V,W are internal, input
and output variables. In this section, we describe generation of properties of M
that mimic symbolic simulation [21]. Every such a property Q(V) specifies a
cube of tests that produce the same values for a given subset of variables of .
We chose generation of such properties because deciding if @) is an unwanted
property is, in general, simple. The procedure for generation of these properties
is slightly different from the one presented in Section 3.

Let F(X,V,W) be a formula specifying M. Let B(W) be a clause. Let H(V)
be a solution to the PQE problem of taking a clause C' € F out of IX3IW[F A B].
That is IXIW[F A B] = HA IX3IW[(F \ {C}) A B]. Let Q(V) be a clause of H.
Then M has the property that for every full assignment ¥ to V falsifying Q, it
produces an output W falsifying B (see Proposition 3 of Appendix B). Suppose,
for instance, @ = v1 V T1g V v3g and B = wy VWy4g. Then for every ¥ where
v1 =0, v19=1,v39 =0, the circuit M produces an output where we = 0, w49 = 1.
Note that @ is implied by F' A B rather than F. So, it is a property of M under
constraint B rather than M alone.

To generate combinational circuits, we unfolded sequential circuits of the set
of 98 benchmarks used in Section 9 for invariant generation. Let N be a sequential
circuit. (We reuse the notation of Section 4). Let My (So, Vo, ..., Sk—1, Vk—1, Sk)
denote the combinational circuit obtained by unfolding N for k time frames. Here
S;, V; are state and input variables of i-th time frame respectively. Let Fj denote
the formula I(So) AT (So, Vo, S1) A+ AT (Sk—1, Vk—1,Sk) describing the unfold-
ing of N for k time frames. Note that Fj specifies the circuit M} above under the
input constraint 1(Sp). Let B(Sk) be a clause. Let H(Sp, Vb, ..., Vk—1) be a solu-
tion to the PQE problem of taking a clause C' € Fj, out of formula 351 ,[Fx A B].
Here Sl,k =S U---US. That is E!Sl,k[Fk AN B] = HA Hsl,k[(Fk \ {C}) A B].
Let @ be a clause of H. Then for every assignment ($n;,00,. - -, Uk_1) falsifying
Q, the circuit M}, outputs §j falsifying B. (Here $y,; is the initial state of N
and Sy is a state of the last time frame.)

In the experiment, we used DS-PQE,EG-PQFE and EG-PQE™ to solve 1,586
PQE problems described above. In Table 3, we give a sample of results by
EG-PQE™. (More details about this experiment can be found in Appendix H.)
Below, we use the first line of Table 3 to explain its structure. The first column
gives the benchmark name (6s326). The next column shows that 6326 has 3,342
latches. The third column gives the number of time frames used to produce a



combinational circuit My, (here k = 20). The next column shows that the clause
B introduced above consisted of 15 literals of variables from Sj. (Below we still
use the index k assuming that & = 20.) The literals of B were generated ran-
domly. When picking the length of B we just tried to simulate the situation
where one wants to set a particular subset of output variables of M}, to specified
values. The next two columns give the size of the subcircuit M of Mj that
feeds the output variables present in B. When computing a property H we took
a clause out of formula 35, x[F], A B] where FJ, specifies Mj, instead of formula
351 k[Fx A B] where Fj, specifies Mj,. (The logic of My, not feeding a variable of
B is irrelevant for computing H.) The first column of the pair gives the number
of gates in M], (i.e. 348,479). The second column provides the number of input
variables feeding M, (i.e. 1,774). Here we count only variables of Vo U---U V4
and ignore those of Sy since the latter are already assigned values specifying the
initial state Sj,; of N.

The next four columns

Table 3: Property generation for combinational circuits show the results of tak-

name |[lat- [time [size subc. IL{,’c results mng a Clause out of

ches |fra- |of [gates [inp. [min [max[time[3-val. 35, k[F]g/\B] For each

mes |B vars (s.) |sim. ! bl h .

65326 [3,342| 20 | 15 |348,479|1,774 [27 |28 3.5 | mo PQE problem the time
6s40m [5,608{ 20 | 15 (406,474 (3,450 |27 [29 [1.2 | no limit was set to 10 sec.
65250 |6,185| 20 | 15 |556,562 2,456 |50 |54 [0.9 | no . +
65395 463 | 30 | 15 (36,088 [569 (24 |26 |1.2 | yes B§s1des, EG-PQE™ ter-
65339 [1,504] 30 | 15 [179,543]3,078 [70 |71 [3.7 | no minated as soon as b
65202 [3,100] 30 | 15 |154,014]978 |86 [89 [1.2 | no

J ’ clause of roper
65143 [260 | 40 | 15 |551,019]16,689]526 |530 |2.9 | yes Ses property
65372 |1,124] 40 | 15 |295,626]2,766 [513 |518 [1.9 | no H(So,Vo,...,Vik—1) were
65335 |1,658| 40 | 15 |207,787|2,863 |120 |124 |[7.8 | no generated. The first three

65391 |2,686] 40 | 15 |240,825 7,579 |340 |341 |9.9 | no
columns out of four de-

scribe the minimum and maximum sizes of clauses in H and the run time of
EG-PQE™. So, it took for EG-PQE™ 3.5 sec. to produce a formula H contain-
ing clauses of sizes from 27 to 28 variables. A clause @ of H with 27 variables, for
instance, specifies 2'77 tests falsifying @ that produce the same output of M;
(falsifying the clause B). Here 1747 = 1774 — 27 is the number of input variables
of M, not present in Q. The last column shows that at least one clause Q of H
specifies a property that cannot be produced by 3-valued simulation (a version
of symbolic simulation [21]). To prove this, one just needs to set the input vari-
ables of M;, present in @ to the values falsifying @ and run 3-valued simulation.
(The remaining input variables of M are assigned a don’t-care value.) If after
3-valued simulation some output variable of Mj, is assigned a don’t-care value,
the property specified by @) cannot be produced by 3-valued simulation.

Running DS-PQE, EG-PQE and EG-PQE™ on the 1,586 PQE problems
mentioned above showed that a) EG-PQE performed poorly producing proper-
ties only for 28% of problems; b) DS-PQE and EG-PQE™ showed much better
results by generating properties for 62% and 65% of problems respectively. When
DS-PQE and EG-PQE™ succeeded in producing properties, the latter could not
be obtained by 3-valued simulation in 74% and 78% of cases respectively.




11 Some Background

In this section, we discuss some research relevant to PQE and property genera-
tion. Information on BDD based QE can be found in [22,23]. SAT based QE is
described in [11,24,25,26,27,28,29,30,19]. Our first PQE solver called DS-PQE
was introduced in [1]. It is based on redundancy based reasoning that was first
introduced in [31] in terms of variables and then in [32] in terms of clauses. The
main flaw of DS-PQF is as follows. Consider taking a clause C out of IX[F].
Suppose DS-PQFE proved C redundant in a subspace where F' is satisfiable and
some quantified variables are assigned. The problem is that DS-PQE cannot
simply assume that C is redundant every time it re-enters this subspace [33].
The root of the problem is that redundancy is a structural rather than semantic
property. That is, redundancy of a clause in a formula £ (quantified or not) does
not imply such redundancy in every formula logically equivalent to .

Since EG-PQE™ uses DS-PQE as a subroutine, the former has the same
learning problem as the latter. In [8], we showed that the learning problem
above can be potentially solved using the machinery of certificate clauses. So,
in the future, the performance of PQE solving can be drastically improved via
enhanced learning in subspaces where F' is satisfiable. In [8], we also introduced
a PQE solver called START based on the machinery of certificate clauses. The
relation between EG-PQE™ and START was explained in Section 7.

We are unaware of research on property generation for combinational circuits.
As for invariants, the existing procedures typically generate some “auxiliary” in-
variants helping to prove a predefined property. For instance, they generate loop
invariants [34] or invariants relating internal points of circuits checked for equiva-
lence [35]. Another example of auxiliary invariants are clauses generated by IC3
to make an invariant P inductive [16]. As we showed in Section 9 (experiment
3), the invariants generated by PQE are different from those produced by IC3.

12 Conclusions

We consider Partial Quantifier Elimination (PQE) on propositional CNF formu-
las with existential quantifiers. In contrast to complete quantifier elimination,
PQE allows to unquantify a part of the formula. In this paper, we present two
PQE algorithms: EG-PQE and EG-PQE*Y. EG-PQE is a simple SAT-based
algorithm whereas EG-PQE™ is a modification of EG-PQE that is more pow-
erful and robust. We show that PQE can be used to generate properties of
combinational and sequential circuits. Property generation can be viewed as a
generalization of testing. Its goal is to check if a design has an unwanted property
and thus is buggy. We used PQE to generate an unwanted invariant for a buggy
FIFO buffer. We also applied PQE to invariant generation for HWMCC bench-
marks. Finally, we used PQE to generate properties of combinational circuits
mimicking symbolic simulation. Our experiments show that PQE can efficiently
generate properties for realistic designs.
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Appendix

A PQE And Interpolation

In this appendix, we recall the observation of [4] that interpolation is a spe-
cial case of PQE. Let A(X,Y) A B(Y,Z) be an unsatisfiable formula. Let I(Y")
be a formula such that AANB =1 A B and A = I. Then [ is called an inter-
polant [2]. Now, let us show that interpolation can be described in terms of PQE.
Consider the formula IW[A A B] where A and B are the formulas above and
W =X UZ. Let A*(Y) be obtained by taking A out of the scope of quantifiers
i.e. IW[A A B] = A*AIW[B]. Since AA B is unsatisfiable, A* A B is unsatisfiable
too. So, ANB = A* A B. If A= A*, then A* is an interpolant.

The general case of PQE that takes A out of IW[A A B] is different from
the instance above in three aspects. First, one does not assume that A A B is
unsatisfiable. Second, one does not assume that Vars(B) C Vars(AA B). In
other words, in general, PQE does not remove any variables from the original
formula. Third, a solution A* is implied by A A B rather than by A alone.
Summarizing, one can say that interpolation is a special case of PQE.

B Proofs Of Propositions

Proposition 1. Let H be a solution to the PQFE problem of Definition 9. That
is IX[F] = H A3X[F\G]. Then F = H (i.e. F implies H).



Proof. By conjoining both sides of the equality with H one concludes that
HA3X[F)= HA3X[F\ G| and hence HAIX[F] = 3X[F]. Then 3X[F] = H
and thus ' = H.

Proposition 2. Let a clause C be blocked in a formula F(X,Y) with respect to
a variable x € X. Then C is redundant in 3X[F] i.e. IX[F\ {C}] = IX[F].

Proof. Tt was shown in [9] that adding a clause B(X) blocked in G(X) to the
formula 3X[G] does not change the value of this formula. This entails that
removing a clause B(X) blocked in G(X) does not change the value of 3X[G]
either. So, B is redundant in 3X[G]. Let ¥ be a full assignment to Y. Then
the clause C is either satisfied by ¥ or Cj is blocked in Fjy with respect to .
(The latter follows from the definition of a blocked clause.) In either case Cy is
redundant in 3X[Fy]. Since Cj is redundant in 3X[F;] in every subspace y, C
is redundant in IX[F].

Proposition 3. Let M(X,V,W) be a combinational circuit where X, V,W are
the internal, input and output variables. Let F(X,V,W) be a formula specifying
M. Let B(W) be a clause. Let H(V') be a formula obtained by taking a clause C' €
F out of 3IX3IW[F A B]. That is 3IX3IW[F A B] = HA 3X3IWI[(F \ {C}) A B].
Let Q(V') be a clause of H. Then for every full assignment U to V falsifying Q,
the circuit M outputs an assignment @ falsifying the clause B.

Proof. From Proposition 1 it follows that ¥ A B = H and hence FF A B = Q.
This entails that Q@ = BV F. Let ¥ be a full assignment to V i.e. an input
to M. Let (7,7,%) be the execution trace produced by M under the input ¥.
Here 7, are full assignments to X and W respectively. Suppose, ¥ satisfies Q
(and so falsifies Q). Then (Z,v,w) satisfies BV F. Since (Z7,7,w) is an execution
trace, it satisfies F and so falsifies . This entails that (Z7,7,%) (and specifically
W) satisfies B and hence falsifies B.

C Examples Of Problems That Reduce To PQE

In this section, we give a few examples of how a problem can be reduced to PQE.

C.1 SAT-solving by PQE [1]

Consider the SAT problem of checking if formula IX[F(X)] is true. One can
view traditional SAT-solving as proving all clauses redundant in 3X[F] e.g. by
finding a satisfying assignment or by deriving an empty clause and adding it
to F. The reduction to PQE below facilitates developing an incremental SAT-
algorithm that needs to prove redundancy only for a fraction of clauses.

Let Z be a full assignment to X and G denote the clauses of F falsified by Z.
Checking the satisfiability of F' reduces to taking G out of the scope of quantifiers
i.e. to finding H such that 3X[F] = H A 3X[F \ G]. Since all variables of F are
quantified in 3X[F], the formula H is a Boolean constant 0 or 1. If H = 0, then
F is unsatisfiable. If H=1, then F is satisfiable because F \ G is satisfied by 7.



C.2 Equivalence checking by PQE [6]

N/(X', V' w'") and N”(X", V" w") be single-output combinational circuits to
check for equivalence. Here X', V' are the sets of internal and input variables and
w’ is the output variable of N’. (Definition of X" V" w” for N” is the same.)
The reduction to PQE below facilitates the design of a complete algorithm able
to exploit the similarity of N/ and N”. This is important because the current
equivalence checkers exploiting such similarity are incomplete. If N’ and N are
not “similar enough”, e.g. they have no functionally equivalent internal points,
the equivalence checker invokes a complete (but inefficient) procedure ignoring
similarities between N’ and N”'.

Let eq(V', V") specify a formula such that eq(v’/,7") =1 iff ¥/ = "
where U/, 7" are full assignments to V' and V" respectively. Let formulas
G (X, V' w') and G"(X", V" w") specify N’ and N"” respectively. (As usual,
we assume that a formula G specifying a circuit N is obtained by Tseitin trans-
formations [10], see Section 3.) Let h(w', w") be a formula obtained by taking eq
out of 3Z[eqg A G' AN G"] where Z = X' UV'UX"UV”. That is 3Z[egNG'ANG"] =
hAN3ZIG'ANG"]. If h = (v =w"), then N and N are equivalent. Otherwise,
N’ and N” are inequivalent, unless they are identical constants i.e. w’' =w" =1
or w'=w"=0. It is formally proved in [6] that the more similar N’, N” are
(where similarity is defined in the most general sense), the easier taking eq out
of 3Z[eq AN G' A G"] becomes.

C.3 Model checking by PQE [7]

use PQE to find the reachability diameter of a sequential circuit without com-
puting the set of all reachable states. So, one can prove an invariant by PQE
without generating a stronger invariant that is inductive. Let T'(S",V,S") de-
note the transition relation of a sequential circuit N where S, S” are the present
and next state variables and V specifies the (combinational) input variables. Let
I(S) specify the initial states of N. For the sake of simplicity, we assume that N
can stutter i.e. for every state s there exists a full assignment v to V such that
T(3,7,3) =1, (Then the sets of states reachable in m transitions and at most
m transitions are identical. If T" has no stuttering, it can be easily introduced by
adding a variable to V.)

Let Diam(I,T) denote the reachability diameter for initial states I and tran-
sition relation 7. That is every state of the circuit N can be reached in at
most Diam(I,T) transitions. Given a number m, one can use PQE to decide if
Diam(I,T) <m. This is done by checking if I is redundant in
X, [Io AL ATy). Here Iy and I; specify the initial states of N in terms of
variables of Sy and S respectively, X,,, = SoUVoU---US,,,_1UV,,_1 and T;,, =
T(So, Vo, S1)A- - AT (Sm—1, Vin—1, Sm). If I is redundant, then Diam(I,T) < m.

The idea above can be used, for instance, to prove an invariant P true in
an 1C3-like manner (i.e. by constraining P) but without generating an inductive
invariant. To prove P true, it suffices to constrain P to a formula H such that
a) I = H = P, b) Diam(H,T) < m and c) no state falsifying P can be reached



from a state satisfying H in m—1 transitions. The conditions b) and c¢) can be
verified by PQE and bounded model checking [36] respectively. In the special
case where H meets the three conditions above for m = 1, it is an inductive
mvariant.

D Combining PQE With Clause Splitting

In this appendix, we consider combining PQE with clause splitting mentioned
in Subsection 3.2. We show that the corresponding PQE problem of taking out
a clause produced by splitting is solved by EG-PQFE in linear time. We also
show that if this clause is not redundant, the solution produced by EG-PQEFE is
a single-test property.

Here we reuse the notation of Section 3 but, for the sake of simplicity, consider
a single-output combinational circuit. Let M (X, V,w) be such a circuit where
X and V specify the internal and input variables respectively and w is the
output variable of M. Let F(X,V,w) be a formula specifying the circuit M
and C be a clause of F. Consider the case of splitting C on all variables of V.

That is C = Cy A -+ A Cppq where C1 = CVI(v1),...,Cp = CVI(vp),Cpr1 =
CVI(v1)V---Vi(vp) and I(v;) is a literal of v; and V' = {w1,...,v,}. Let F’ denote
the formula obtained from F' by replacing the clause C' with C1 A -+ A Cpy1.
Denote by Uy the input assignment falsifying the literals I(vy),...,[(v,) where
'spl” stands for ’splitting’.

Consider applying EG-PQE to solve the PQE problem of taking the clause
Cp41 out of AX[F']. EG-PQEF starts with looking for an assignment satisfying

(F'\{Cp11}) ACpi1 (to find a subspace where F’'\{Cp41} does not imply Cp41).
Consider the following three cases. The first case is that the formula above is
unsatisfiable. Then Cp41 is trivially redundant in F” and hence in 3X[F’] and
EG-PQE terminates.

The second case is that there is an assignment (7, Uy, w*) satisfying F’
where 7 is a full assignment to X and w* is the output value taken by M under
the input V. (Note that any full assignment to V' that is different from Uy,

falsifies Cp41. So, any assignment satisfying (F’\ {Cp+1}) A Cpy1 has to contain
TUspi.) Then formula F” is satisfiable in subspace (U, w*) and EG-PQE adds
the plugging clause D(V,w) that is the longest clause falsified by (Vsp, w*). If

(F"\{Cp41}) ANCpi1 A D is unsatisfiable, then Cp41 is redundant in IX[F’] and
EG-PQE terminates.
The third case occurs when there is an assignment (@, Uy, w*) satisfying

(F'\{Cp+1}) A Cpt1 where w* is the negation of the output value taken by M
under input Vsp;. In this case, formula F’ is unsatisfiable in subspace (Usp;, w*).
Since, F'\{C)+1} is satisfiable in this subspace, Cp41 is not redundant in IX [F”].
To make Cpy1 redundant in subspace (Usp, w*), EG-PQE has to add the clause
B(V, w) that is the longest clause falsified by (Uspi, w*). The clause B is a solution
to the PQE problem at hand i.e. 3X[F'] = B A3X[F'\ {Cpi1}].



The clause B above is implied by F’ (and hence F') and so, is a property
of M. This property specifies the input/output behavior of M under the input
Uspi. Namely, to satisfy B when the variables of V are assigned as in Usp;, one
has to set the variable w to w*. The latter is the output produced by M under
the input ¥sp,;. So, the property B specifies the behavior of M under a single
test. In all three cases above, the SAT problem considered by EG-PQE is solved
just by initial BCP. (The reason is that the formula at hand contains the unit
clauses produced by negating C)11 or those specifying the subspace (Usp, w*).)
So, EG-PQE solves the PQE problem above in linear time.

E Tests Specified By A Property Generated By PQE

In this appendix, we show the relation between tests specified by a property
obtained via PQE (see Subsection 3.4) and those detecting stuck-at faults. Here,
we reuse the notation of Section 3. Let M (X, V,W) be a combinational circuit
where X, V,W are the internal, input and output variables respectively. Let
F(X,V,W) be a formula specifying M. Let G be an AND gate of M whose
functionality is x3 = x1 Axzo. That is 1, x2 are the input variables of G and x3 is
its output variable. The functionality of G is specified by the formula Cy AC2AC3
where C; = T1 VTa Va3, Cy = 21 VT3, C3 = x2 V T3 (see Example 2). The
clauses C1, Cy, C5 are present in formula F. Consider taking C; out of AX[F].
This clause makes G produce the output value 1 when its input values are 1. (If
x1 and xo are set to 1, the clause C; can be satisfied only by setting x3 to 1.)

Let H(V,W) be the property obtained by taking out Cj. That is
AX[F) = HA3IX[F\{C1}]. Let Q(V,W) be a clause of H. As we mentioned
earlier, we assume that H does not have redundant clauses i.e. those implied by
F\ {C1}. Then the formula (F\ {C;}) A Q is satisfiable. Let (7,7,0) be an
assignment satisfying this formula. Note that this assignment falsifies Cy. (In-
deed, assume the contrary. Then (7,7 ,%) satisfies F' because it already satisfies
F\{C1}. Since this assignment falsifies @), we have to conclude that F' # @ and
hence F' # H. So we have a contradiction.)

The fact that (Z,7,w) falsifies C; and satisfies F'\ {C}} means that one can
view this assignment as an execution trace of a faulty version Mg of M. Namely,
the output x3 of gate G is stuck at 0 in Mg;. (The clause C is falsified when
x1 = 1,22 = 1,23 = 0 i.e. if the gate G outputs 0 when its input variables are
assigned 1.) Let (7", U, W") be the execution trace of M under the input ¥'. As
we showed in Subsection 3.4, w" is different from #. So the input ¥ exposes a
stuck-at fault by making Mg, and M produce different outputs.

F Brief Description Of DS-PQFE

In this appendix, we give a high-level view of DS-PQFE and explain how it
works in EG-PQE™ in more detail. A full description of DS-PQE can be found
in [1]. DS-PQE is based on the machinery of D-sequents [32] (DS’ in the name



DS-PQE stands for 'D-sequent’). Given a formula 3X[F(X,Y)] and an assign-
ment P to X UY, a D-sequent is a record (IX[F], p) — C stating that clause
C is redundant in 3X[F] in subspace p. In EG-PQE™, DS-PQE is called in
subspaces ¥ where F is satisfiable. (Here ¥ is a full assignment to Y.) DS-PQE
terminates upon deriving a D-sequent (AX[F]|,¥”*) — C where ¥* C ¥. Such
derivation means that C' is proved redundant in 3X[F] in subspace ¥. Then the
plugging clause D falsified by ¥™ is generated where Vars(D) = Vars(y™).

DS-PQE derives the D-sequent (3X[F], ¥*) — C above by branching on
variables of X. A variable is assigned a value either by a decision or during
Boolean Constraint Propagation (BCP). A branch of the search tree goes on
until an atomic D-sequent is derived for C. This occurs when proving C in
the current subspace becomes trivial. When backtracking, DS-PQF merges D-
sequents derived in different branches using a resolution like operation called
join. For instance, the join operation applied to D-sequents (3X[F],p’) — C
where B’ = (y1 = 0,21 = 0) and (3X[F], ") = C where 3" = (yo = 1,1 = 1)
produces the D-sequent (3X[F], p) — C where B =(y1 = 0,y2 = 1).

DS-PQF has three situations where an atomic D-sequent is generated. First,
when C' is blocked in the current subspace and hence is redundant there. Then
an atomic D-sequent (3X[F], P) — C is generated where P consists of assign-
ments that made C' blocked in the current subspace. For instance, in Example 3,
DS-PQE would generate an atomic D-sequent (AX[F], (y1 = 1)) — C. Sec-
ond, an atomic D-sequent is generated when C' is satisfied by an assignment
w = b where w € X UY and b € {0,1}. (This can be a decision assignment or
an assignment derived from a clause during BCP.) Then an atomic D-sequent
(3X[F],(w = b)) — C is built. Third, an atomic D-sequent is generated when
a conflict occurs and a conflict clause C.,pg falsified in the current subspace is
derived. Adding C.,p to F' makes C redundant in the current subspace. So, an
atomic D-sequent (3X[F], P) — C' is generated where 7 is the shortest assign-
ment falsifying Cepp.

G Experiments With HWMCC-13 Benchmarks

In Section 9, we described experiments with multi-property benchmarks of the
HWMCC-13 set [18]. In this appendix, we provide some additional information.
Each benchmark consists of a sequential circuit N and invariants Py,..., P,
that are supposed to hold for N. We will refer to the invariant P,4, equal to
Py A -+ N\ P, as the aggregate invariant. We applied PQE to the generation of
invariants of N that may be unwanted. Since every invariant P implied by P44
must hold, the necessary condition for P to be unwanted is P4y 7% P.

Similarly to the experiment of Section 8, we used the formula Fj, = I(Sp) A
T(So, Vo, 51) A-+- AT (Sk-1,Vik—1,Sk) to generate invariants. The number k of
time frames was in the range of 2<k<10. Specifically, we set k to the largest
value in this range where |Fy| did not exceed 500,000 clauses. We discarded the
benchmarks with |Fz|>500,000. We also dropped the smallest benchmarks. So,
in the experiments, we used 98 out of the 178 benchmarks of the set.



We describe three experiments. In every experiment, we generated properties
H(Sy) by taking out a clause of X [F)] where X =SoUVoU---USk_1UVi_.
Property H is a local invariant claiming that no state falsifying H can be reached
in k transitions. As in the experiment of Section 8, we took out only clauses
containing an unquantified variable (i.e a variable of S). In all experiments, the
time limit for solving a PQE problem was set to 10 sec.

G.1 Experiment 1

The objective of the first experiment was to demonstrate that EG-PQE™ could
compute H for realistic designs. We also showed in this experiment that PQE
could be much easier than QE (see Section 9) and that EG-PQE™ outperforms
DS-PQE and EG-PQE. In this experiment, for each benchmark out of 98 men-
tioned above we generated PQE problems of taking a clause out of 3X[Fy].
Some of them were trivially solved by preprocessing. The latter eliminated the
blocked clauses of Fj, that were easy to identify and ran BCP launched due to the
unit clauses specifying the initial state. In all experiments, we discarded problems
solved by preprocessing i.e. we considered only non-trivial PQE problems.

Let C be a clause taken out of IXj[F)]. We
used EG-PQEFE to partition the PQE problems we
tried into two groups. The first group consisted of

Table 4: PQE problems of
the first group

pae total finished problems for which we ran FG-PQE with the time
solver probl. [num. [perc. o .
ds-pge |3,736 |1,132 | 30% limit of 10 sec. and it never encountered a subspace

eg-pge 3,736 3,296 | 88%

5p where Fj, was satisfiable. Here 57 is a full as-
eg-pge™ |3,736 |3,325| 89%

signment to Sk. (Recall that the variables of Sy are
the only unquantified variables of 3X[F)].) So, in every subspace 3 tried by
EG-PQE, formula Fj, was either unsatisfiable or (F;\{C}) = C. The second
group consisted of problems where EG-PQE encountered subspaces where Fj,
was satisfiable. For either group we generated up to 40 problems per benchmark.
For some benchmarks, the total number of non-trivial problems generated for
the first or second group was under 40. Many PQE problems of either group had
hundreds of thousands of variables.

The results for the first group are shown in Ta-
ble 4. The first column gives the name of a PQE
solver. The second column shows the number of

Table 5: PQE problems of
the second group

pae total finished PQE problems in the first group. The last two
solver probl. [num. [perc. .

ds-pge 3,094 464 |15% columns give the number and percentage of prob-
eg-pge [3,094 |74 2% lems finished in the time limit of 10 sec. Table 4
eg-pge™ [3,094 [827 [27%

shows that EG-PQE and EG-PQE™ performed
quite well finishing a very high percentage of problems. The results of DS-PQFE
are much poorer because it does not check if (Fj \ {C}) = C in the current
subspace i.e. if C is trivially redundant.

The results for the second group are shown in Table 5 that has the same
structure as Table 4. In particular, the second column gives the number of PQE
problems in the second group. Table 5 shows that EG-PQE and EG-PQE™



finished 2% and 27% of the problems respectively. So, EG-PQE™ significantly
outperformed EG-PQE. The reason is that FG-PQFE uses a satisfying assign-
ment as a proof of redundancy of the clause C in subspace 5.

G.2 Experiment 2

The second experiment was an extension of the first one. Its goal was to show
that PQE can generate invariants for realistic designs. For each clause @ of a
local invariant H generated by PQE we used ICS8 to verify if (Q was a global
invariant. If so, we checked if Pugy 7% @ held. To make the experiment less
time consuming, in addition to the time limit of 10 sec. per PQE problem, we
imposed the following constraints. First, we stopped a PQE-solver even before
the time limit if it generated more than 5 free clauses. Second, the time limit
for IC8 was set to 30 sec. Third, instead of constraining the number of PQE
problems per benchmark (i.e. the number of single clauses taken out of 3X}[Fy])
like in the first experiment, we imposed the following two constraints. First, we
stopped processing a benchmark as soon as the total of 100 free clauses was
generated (for all the PQE problems generated for this benchmark). Second, we
stopped processing a benchmark even earlier if the summary run time for all
PQE problems generated for this benchmark exceeded 2,000 sec.

A sample of 9 benchmarks out of the 98 we used in the experiment with
EG-PQE™ is shown in Table 6. Let us explain the structure of this table by
the benchmark 6s306 (the first line of the table). The name of this benchmark
is shown in the first column. The second column gives the number of latches
(7,986). The number of invariants that should hold for 6s306 is provided in the
third column (25). So, the aggregate invariant P,,, of 6s306 is the conjunction of
those 25 invariants. The fourth column shows that the number k of time frames
for 6s306 was set to 2 (since |F3| > 500,000). The value 182 shown in the fifth
column is the total number of single clauses taken out of 3X[Fy] i.e. the number
of PQE problems (where k = 2 for 6s306).

Every free clause @)
Table 6: A sample of HWMCC-13 benchmarks from generated by EG-PQE™
the experiment with EG-PQE™" when taking a clause out
of 3X[F)] was stored as
a local single-clause in-

name [lat- [in- time [clau- single-clause properties

ches |var. [fra- [ses gen. glob. invar.?” [not
of mes [taken [props|[un- [no [yes |impl. variant. The sixth col-
FPugy out dec. by Pagg
6s306|7,086 |25 | 2 [ 182 [100 [0 [94]6 |6 umn  shows  that tak-
65176 1,566 | 952 | 3 |31 [ 100 |23 [ 11|66 |11 ing clauses out of the
65428(3,700 | 340 | 4 |28 |100 |9 |5 |86 |83 scope of quantifiers was
652923,100 | 247 | 5 |24 | 100 |41 |0 |57 |57 ;
6s156|513 |32 | 6 | 113 | 100 [0 |0 | 100|100 terminated when 100
65275 (3,196 | 673 7 20 100 | O 50| 50 | 50 free clauses (specifying
6325 1,756 | 301 | 8 |22 [100 [0 |1 |99 |97 .
6s3912,686 | 387 | 9 |35 |100 |1 | 29| 70 | 70 100 local single-clause
65282 (1,933 |20 |10 [ 111 [100 [0 | 64|36 |35 invariants) were gener-

ated. Each of these 100
local invariants held in k-th time frame. The following three columns show how
many of those 100 local invariants were true globally. IC3 finished every problem



out of 100 in the time limit of 30 sec. So, the number of undecided invariants
was 0. The number of invariants IC3 proved false or true globally was 94 and 6
respectively. The last column gives the number of global invariants not implied
by Fhg¢ i.e. invariants that may be unwanted. For 6s306, this number is 6.

G.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses @1, ...,Q, to make
PAQiA---ANQy inductive. If IC3 succeeds, every (Q; is an invariant. Moreover,
Q; may be an unwanted invariant. Arguably, the cause of efficiency of IC3 is that
P is often close to an inductive invariant. So, IC3 needs to generate a relatively
small number of clauses Q); to make the constrained version of P inductive.
However, this nice feature of IC3 drastically limits the set of invariant clauses
it generates. In this subsection, we substantiate this claim by an experiment.
In this experiment, we picked the HWMCC-13 benchmarks for which one could
prove all predefined invariants Py, ..., P, within a time limit. Namely, for every
benchmark we formed the aggregate invariant P,gy = P1 A --- A Py, and ran IC3
to prove Fyyy true.
We selected the benchmarks that
Table 7: Invariants of EG-PQE" and IC3 IC3 solved in less than 1,000 sec.
(In addition to dropping the bench-

name [lat- [inva- [glob. single cls. invars marks not solved in 1.000 sec.. we
ches |riants [glob. [not not . ’ o

of inva- |impl. |impl. discarded those where P4, failed be-
BN - Zai% f;agms b5Y3P w99 b2Y7P agg cause some invariants P; were false).
S s . . .
6s325(1,756 [ 301 [ 99 99 96 Let Py, denote the inductive version
ex1 [130 |33 |25 |16 16
7 1219 T3 e el T .of P,g4g produced by {Cf)’ WheI.1 prov-
6s106[135_| 17 | 100 | 96 96 ing Fugg true. That is, Py, is Fhgg
Si?fﬁ 2’1141 g 4113 }f }f conjoined with the invariant clauses
x4 (63 3 T 1 1 produced by IC3. For each of the se-
25?(1)2 35159 f ?g ?2 fg lected benchmarks we generated in-
S . .
6s143 [ 260 1 97 36 7 variants by EG—PQE+ eXa,Ctly as 1n
65170 (3,141 | 1 13 ]13 13 Experiment 2. That is, we stopped
65252170 | 1 54 |41 34

generation of local single clause invari-
ants when their number exceeded 100.
Then we ran IC3 to identify local in-
variants that were global as well. After that we checked which of the global
invariants generated by EG-PQE™ were not implied by P,,,. The difference
from Experiment 2 was that we also checked which global invariants generated
by EG-PQE™ were not implied by PJ,,.

The results of the experiment are shown in Table 7. The first three columns
of this table are the same as in Table 6. They give the name of a benchmark,
the number of latches and the number of invariants P,...,P,, to prove. (The
actual names of examples exl,..,ex/ in the HWMCC-13 set are pdtvsarmultip,
bobtuintmulti, nusmvdmeldSmulti, nusmvdme2d3multi respectively.) The next
column of Table 7 shows the number of local invariants generated by EG-PQE™

[Total] [ [ 597 [529 |




that turn out to be global. The last two columns give the number of global
invariants that were not implied by F,g, and Py, respectively. The last row
of the table shows that in 529 cases out of 597 the invariants not implied by
P44 were not implied by P = either. So, in 89% of cases, the invariant clauses

agyg
generated by EG-PQE™ were different from those generated by IC3 to form
P .

agyg

H Experiment With Combinational Circuits

In this appendix, we give more information about the experiment with property
generation for combinational circuits described in Section 10. We formed PQE
problems as follows. For each benchmark N we picked the number k of time
frames to unroll. The value of k ranged from 10 to 40. (For larger circuits we
picked a smaller value of k.) Then we unrolled N for k time frames to form a
combinational circuit M}, and randomly generated a clause B(Sk) of 15 liter-
als. So, B depended on output variables of Mj. After that, we constructed the
subcircuit Mj, of M}, as described in Section 10. That is, M, was obtained by
removing the logic of M}, that did not feed any output variable present in B.

Let formula Fj, specify the subcircuit M. (Here we reuse the notation of Sec-
tion 10.) For every benchmark, we generated PQE problems of taking different
clauses C out of 351 [F}]. That is each PQE problem was to find H such that
3S1x[F}] = H A 351 1[F}, \ {C}]. Each clause C' to take out was chosen among
the clauses of F}, that contained a variable of Sy, (i.e. an output variable of M}).
In this way, we formed a set of 3,254 PQE problems. 1,668 of these problems
were solved by simple formula preprocessing i.e. turned out to be trivial. So, in
the experiment we used the remaining 1,586 non-trivial PQE problems.

The time limit for solving a PQE prob-

Table 8: Results of property lem was set to 10 sec. Besides, solving a

generation K
PQE problem terminated as soon as the
bae num. | properties were generated | i of I reached 5 clauses. The results of
solver of pge {[num- stronger than

prob- [ber | % | 3-val. sim. | the experiment are summarized in Table 8.
pr— 1167‘;856 T R ZZ The second column gives the total number
eg-pge |1,586 450 | 28 | 361 | 80 of PQE problems. The next two columns
eg-pge™ [1,586 [1,036] 65 [ 809 [ 78 show the number and percentage of prob-

lems where H was non-empty i.e. had at
least one clause. (Recall, that each clause of H represents a property.) The last
two columns give the number and percentage of cases where a clause of H repre-
sented a property that was stronger than ones produced by 3-valued simulation,
a version of symbolic simulation [21]. Consider, for instance, the last line of the
table corresponding to EG-PQE™. For 809 out of 1,036 PQE problems where
H was not empty, at least one clause of H constituted a property that could
not be produced by 3-valued simulation. Table 8 shows that FG-PQF had the
weakest results generating properties only for 28% of problems whereas DS-PQE
and EG-PQE™ performed much better producing properties for 62% and 65%

problems respectively.
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