Contents

1

What Sat-Solvers can and cannot do

Eugene Goldberg

1. Hard Equivalence Checking CNF formulas

1.1

—
o

=
= O OO U = W

0
t

NG YV
S 1 o hwioRg

[N}
BN

References

Introduction

Common Specification of Boolean Circuits
Equivalence Checking as SAT

Class M (p) and general resolution

Computation of existentially implied functions
Equivalence Checking in General Resolution
Equivalence Checking of Circuits with Unknown CS

A Procedure of Equivalence Checking for Circuits with
a Known CS

Experimental Results
Conclusions

ble Sets of Points

Introduction

Stable Set of Points

SSP as a reachable set of points

Testing Satisfiability of CNF Formulas by SSP Con-
struction

Testing Satisfiability of Symmetric CNF Formulas by
SSP Construction

SSPs with Excluded Directions

Conclusions

Chapter 1

WHAT SAT-SOLVERS CAN AND CANNOT
DO

Eugene Goldberg
Cadence Berkeley Labs, USA

egold@cadence.com

Abstract This chapter consists of two parts. In the first part we show that reso-
lution based SAT-solvers cannot be scalable on real-life formulas unless
some extra information about formula structure is known. In the second
part we introduce a new way of satisfiability testing that may be used
for designing more efficient and “intelligent” SAT-algorithms that will
be able to take into account formula structure.

In the last few years SAT-solvers have considerably improved their
performance. As a result, the size of the CNF formulas that can be
solved by state-of-the-art SAT-solvers [21, 23, 16, 8] in a reasonable
time has dramatically increased. This success has lead to euphoria that
reminds many people working in formal verification of early optimism
caused by the appearance of BDDs [4]. However, enthusiasts forget that
even though SAT-solvers can sometimes solve surprisingly large formu-
las, they are very far from being scalable (which is the same problem
that made people less optimistic about BDDs).

In this chapter, we will try to give a more realistic estimation of the
capabilities of SAT-solvers. The chapter is based on the results de-
scribed in [10-12] and consists of two parts. The main point of the first
part is that a SAT-solver cannot be scalable unless it is provided with
some information about the structure of the CNF formula to be tested
for satisfiability. In this part, we consider a class of formulas describ-
ing equivalence checking of combinational circuits that have a common
specification (CS). A CS S of Boolean circuits N7 and N» is just a circuit
of multi-valued gates called blocks. Either Boolean circuit is obtained
from S by replacing each block of S with its binary implementation. We
show that there is a short resolution proof that N; and N» are equiv-

2

alent however finding this proof by a deterministic algorithm is most
likely infeasible unless a CS of N7 and N3 is known. On the one hand,
it is bad news. This result means that SAT-algorithms cannot be scal-
able on equivalence checking CNF formulas (that are important from a
practical point of view) even though they have short resolution proofs of
unsatisfiability and so are very “easy”. On the other hand, this is good
news because one can have an efficient algorithm of equivalence checking
if a CS of Ny and N; is known. In other words, addressing the question
implied by the title of this chapter one can say that SAT-solvers cannot
be scalable if no information about high-level structure of formulas is
provided.

The result above implies that it is crucial for a SAT-solver to be able to
take into account structural properties of formulas. The problem is that
the existing SAT-solvers are based on the variable splitting paradigm
introduced in the DPLL procedure [7]. During variable splitting a CNF
formula is “mutilated” and its subtle structure is usually destroyed. In
the second part of this chapter, we introduce a new procedure of satisfia-
bility testing based on the notion of a stable set of points (SSP). It turns
out that to prove that a CNF formula F' is unsatisfiable it is sufficient
to show that F' evaluates to 0 (i.e. false) on a set of points called a
stable set. In a sense, proving the unsatisfiability of a CNF formula by
constructing its SSP can be viewed as “verification” by “simulation”.

In general, SSPs are much smaller than the set of all possible assign-
ments but the size of SSPs grows exponentially in the number of vari-
ables. So building a monolithic SSP point-by-point can not be used as
the basis for designing efficient universal SAT-solvers. We describe two
ways of using SSPs. First way is to compute an SSP modulo symmetries
of the formula to be tested for satisfiability. In that case, even point-by-
point computation of SSPs modulo symmetry can be efficient for highly
symmetric formulas. Another way of using SSPs is to replace computing
a monolithic SSP with constructing a sequence of much smaller SSPs of
“limited” stability. Each such an SSP is stable if “movements” in some
directions are forbidden.

1. Hard Equivalence Checking CNF formulas
1.1 Introduction

Since the general resolution system is the basis of almost all practical
SAT-solvers, it has been the focus of attention for a long time. In the
ground-breaking paper by Haken [13] it was shown that there is a class
of CNF formulas for which only exponential size proofs are possible. (In
the first part of this chapter we consider only unsatisfiable CNF formu-

What Sat-Solvers can and cannot do 3

las.) However, the impressive results of state-of-the-art SAT-solvers like
Grasp, Sato, Chaff, BerkMin suggest that for the majority of CNF for-
mulas one encounters in practice there should be short resolution proofs
of their unsatisfiability. So a natural question to ask is whether the fact
that a class of CNF formulas has short resolution proofs means that
there is an algorithm that can find these short proofs or proofs that are
“close” to them in length. (In complexity theory this question is posed
as “whether the general resolution system is automatizable”. Studying
the automatizability of proof systems was started in [2]. In [18] some
results on automatizability of general resolution were obtained.)

The objective of the first part of this chapter is to show that there
is a class of CNF formulas that have very short resolution proofs in
general resolution that are most likely very hard for a deterministic
SAT-algorithm. These formulas specify equivalence checking of Boolean
circuits and so they are very important from a practical point of view.
This result means that the power of resolution based SAT-solvers is quite
limited even for practical formulas that have provably short resolution
proofs. The good news is that one can have an efficient SAT-algorithm
for solving this class of formulas if some information about the structure
of short proofs is provided.

The class of formulas mentioned above describe equivalence checking
of circuits having a common “specification”. Let N; and Ny be two
functionally Boolean circuits with a common specification (CS) S. The
CS S is just a circuit of multi-valued gates further referred to as blocks
such that N; (or Nz) can be obtained from S by replacing each block
G of S with its implementation I;(G) (or I2(G)). The circuit I;(G) (or
I5(G)) implements the multi-output Boolean function obtained from the
truth table of G after encoding the values of multi-valued variables with
binary codes.

The problem of equivalence checking of N; and Ny can be easily re-
duced to that of testing the unsatisfiability of a CNF formula (see sec-
tion 1.1.3). Let S consist of n blocks. Let F' be a CNF specifying
equivalence checking of Ny and Ns. We show that the unsatisfiability
of F can be proven in general resolution in d * n * 3% resolution steps.
Here d is a constant and p is the size of the largest block G of the CS S
(in terms of the number of gates one needs to implement G in Ny and
N3). In particular, if p is bounded by a constant then we get a class
of CNF formulas (in the paper it is denoted by M(p)) that has linear
size resolution proofs. The parameter p is called the granularity of the
specification S.

In spite of the fact that formulas from M (p) have short resolution
proofs of unsatisfiability there are good reasons to believe that there

4

does not exist an efficient SAT-algorithm for finding such proofs. Let
F be a formula M (p) specifying equivalence checking of circuits N; and
Ny with a CS S. Let assume that the CS S is not known. On the
one hand, the problem of finding S (or a good approximation of S) is
most likely NP-hard. On the other hand, the short resolution proofs
mentioned above are closely related to CSs of N; and N;. So given such
a short proof of equivalence of N; and N3 one could recover a “good”
CS from this proof. Hence the existence of an efficient procedure for
finding a short proof of equivalence would mean that there is an efficient
algorithm for solving an NP-hard problem.

As we mentioned above the good news is that a formula F' of M (p)
can be efficiently solved by a deterministic algorithm if some extra in-
formation is provided. This extra information is a CS S of N1 and Ny
whose equivalence checking the formula F' specifies. (Namely, one just
needs to know the assignment of gates of IN; and N to blocks of S. No
other information about S is needed. In particular, one needs neither
any knowledge of the functionality of blocks of S nor the knowledge of
binary encodings used when producing N; and Ns from S.) We for-
mulate a specification aware algorithm of checking the unsatisfiability
formulas from M (p) that has the same complexity as resolution proofs.
That is it solves the formulas of M(p) in linear time.

The first part of this chapter is structured as follows. In Section 1.1.2
we introduce the notion of a CS of Boolean circuits that plays a key role
in the following exposition. Section 1.1.3 describes a common way of
reducing equivalence checking to SAT. In Section 1.1.4 we introduce a
class M (p) of CNF formulas encoding equivalence checking of Boolean
circuits with a CS of granularity p. We also describe the general resolu-
tion proof system. Section 1.1.5 describes computation of existentially
implied functions that is used in Section 1.1.6. In the latter, we proof
the main result of the first part of this chapter about the complexity
of formulas from M (p) in general resolution. In Section 1.1.7 and 1.1.8
we discuss the complexity of formulas M(p) for deterministic resolu-
tion based algorithms. In Section 1.1.7 we give reasons why formulas
from M (p) should be hard for deterministic SAT-algorithms that do not
have any knowledge of a CS of the circuits checked for equivalence. In
Section 1.1.8 we describe an efficient resolution based SAT-algorithm
for equivalence checking of circuits with a known CS. In Section 1.1.9
we show experimentally that formulas from M (p) are hard for existing
SAT-solvers while a specification aware algorithm easily solves them. In
Section 1.1.10 some conclusions are made.

What Sat-Solvers can and cannot do 5

1.2 Common Specification of Boolean Circuits

In this section, we introduce the notion of a common specification
of Boolean circuits. Let S be a combinational circuit of multi-valued
blocks (further referred to as a specification) specified by a directed
acyclic graph H. (An example of specification is shown in Fig. 1.1a.)
The sources and sinks of H correspond to primary inputs and outputs
of S. Each non-source node of H corresponds to a multi-valued block
computing a multi-valued function of multi-valued arguments. Each
node n of H is associated with a multi-valued variable V. If n is
a source of H | then the corresponding variable specifies values taken
by the corresponding primary input of S. If n is a non-source node
of S then the corresponding variable describes the values taken by the
output of the block specified by n. If n is a source (respectively a sink),
then the corresponding variable is called a primary input variable
(respectively primary output variable). We will use the notation
C=G(A,B) to indicate that a) the output of a block G is associated
with a variable C; b) the function computed by the block G is G(A,B);
c¢) only two nodes of H are connected to the node n in H and these
nodes are associated with variables A and B.

Denote by D(A) the domain of a variable A associated with a node
of H. The value of |D(A)| is called the multiplicity of A. If the
multiplicity of every variable A of S is equal to 2 then S is a Boolean
circuit.

Now we describe how a Boolean circuit NV can be produced from a
specification S by encoding the multi-valued variables. Let D(A) =
{a1,...,a:} be the domain of a variable A of S. Denote by ¢(4) a
Boolean encoding of the values of D(A) that is a mapping q : D(A) —
{0,1}™ . Denote by length(g(A)) the number of bits in ¢ that is the value
of m. The value of ¢(a;), a; € D(A) is called the code of a;. Given an
encoding g of length m of a variable A associated with a block of S,
denote by v(A) the set of m coding Boolean variables.

EXAMPLE 1 Let B be a multi-valued variable and D(B) = {b1, b2, b3, ba}.
Then the multiplicity of the variable B is 4. Let a mapping q be specified
by the following expressions q(by) = 01,q(by) = 11,q(bs) = 10,q(bs) =
00. Then q specifies an encoding of the values of B of length(q(B)) equal
to 2. The set of coding variables v(B) = {q1,q2} consists of two Boolean
variables. The Boolean vector 01 where qo = 0,q1 = 1 is the code of by
under the encoding q.

In the following exposition we make the assumptions below.

6

AssuMPTION 1 FEach gate of a Boolean circuit and each block of a spec-
ification has two inputs and one output.

ASSUMPTION 2 The multiplicity of each primary input (or output) vari-
able of a specification is a power of 2.

ASSUMPTION 3 IfV is a primary input (or output) variable of a speci-
fication, then length(q(A)) = loga(|D(A4)|)

ASSUMPTION 4 If a; and as are values of a variable A of a specification
and a1 # ag, then q(a1) # q(az).

AssuMPTION b If A and B are two different variables of a specification,
then v(A) N v(B) = 0.

REMARK 1 From Assumptions 2, 8 and 4 it follows that if A is a pri-
mary input (or output) variable, a mapping q : D(A) — {0,1}™ is bijec-
twe. In particular, any assignment to the variables of v(A) is a code of
some value a € D(A).

DEFINITION 1 Given a Boolean circuit I, denote by Inp(I) (respectively
Out(I)) the set of variables associated with primary inputs (respectively
primary outputs) of I.

DEFINITION 2 Let Xy and Xy be sets of Boolean variables and Xo C X;.
Let y be an assignment to the variables of X1. Denote by proj(y, X2) the
projection of y on Xy i.e. the part of y that consists of the assignments
to the variables of Xo.

.

EXAMPLE 2 Let X; = {1, x2,v3, 24,25} and Xo = {x1,x3,25} that is
Xo C Xy. Let y be the assignment (x1 = 0,20 = 1,23 = 1,24 = 0,25 =
0) to the variables of X1. Then proj(y, X2) is equal to (z7 = 0,23 =
1,565 == 0)

DEFINITION 3 Let C=G(A,B) be a block of specification S. Let q(A),
q(B), q(C) be encodings of variables A,B, and C respectively. A Boolean
circutt I is said to tmplement the block G if the following three con-
ditions hold:

m The set Inp(I) is a subset of v(A) Uv(B).
m The set Out(I) is equal to v(C).

m [f the set of values assigned to v(A) and v(B) form codes q(a) and
q(b) respectively where a € D(A), b € D(B), then I(z')=q(c) where

What Sat-Solvers can and cannot do 7

C =Gi(A,B)
A B C
E
ap bo co
G
3 ao b1 C1
ao ba c1
C K

ao bs co

G1 G2 ai bo c1

a1 b1 c2

a1 ba c2

a1 b3 co

A B F
(€Y (b)
q1(C) = I(q1(4),q1(B)) 2(C) = I>(a2(A), g2(B))

q(4) a(B) 71(C) q2(A) q2(B) q2(C)
0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0
1 0 0 1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1 0 0 1
1 1 0 0 1 1 1 0 0 0 1
1 1 1 0 0 1 1 1 1 0 0

(0 (d)

Figure 1.1. A specification and the functionality of two implementations of block G

!

Z' is the projection of the assignment z=(q(a),q(b)) on Inp(I),
I(Z') is the value taken by I at 2', and ¢c=G (a,b)

EXAMPLE 3 In Fig. 1.1a a specification of three blocks is shown. The
functionality of two different implementations of the block C=G1(A,B)
(Fig 1.1b) is shown in Fig. 1.1c and 1.1d. Here D(A)={ap,a1},
D (B)={by,b1,b2,bs} and D(C)={cp,c1,c2}. Since A and B are pri-
mary input variables they are encoded with a minimum length code and
91(A)=q2(A) and q1(B)=q2(B) where q1(ag)=0, q1(a1)=1, q1(by)=00,
q1(b1)=01, q1(b2)=10, q1(bs)=11. Finally, the encodings q1(C) and
q2(C) are q1(co)=00, g1 (c1)=10, g1(c2) = 01 and g2(co)=100, g2 (c1)=010,
QQ(CQ):OOI.

REMARK 2 The reason why Inp(I) in Definition 3 may not include all
the variables of v(A) and/or v(B) is that the function G(A, B) may not
distinguish some values of A or B. (G(A, B) does not distinguish, say,
values ai,az € D(A), if for any b € D(B), G(a1,b) = G(az,b).) So
to implement G(A, B) the circuit I may need only a subset of variables
of v(A) U v(B). This situation is illustrated in Fig. 1.2. Due to the
fact that some values of the variable C are indistinguishable by G2, only
two outputs of the implementation block I(G1) (out of the three) are
connected to the inputs of I(G3). This said, henceforth, for the sake
of simplicity, we will write I(q(a),q(b)) meaning I(q' (a),q' (b)), ¢’ (a)=
proj(q(a),Inp(I)) and ¢’ (b)=proj(q(b),Inp(I)).

DEFINITION 4 Let S be a multi-valued circuit. A Boolean circuit N is
said to tmplement the specification S, if it 1s bwilt according to the
following two rules.

m Fach block G of S is replaced with an implementation I of G.

m Let the output of block G1 (specified by variable C') be connected
to an input of block Go (specified by the same variable C) in S.
Then the outputs of the circuit Iy implementing G1 are properly
connected to inputs of circuit Iy implementing Go. Namely, the
primary output of I specified by a Boolean variable q; € v(C) is
connected to the input of Iy specified by the same variable of v(C)
if gi € Inp(I2).

Fig. 1.2 gives an example of a specification (Fig. 1.2a) and its imple-
mentation (Fig. 1.2b).

REMARK 3 Let N be an implementation of a specification S. Let p be
the largest number of gates used in an implementation of a multi-valued

What Sat-Solvers can and cannot do 9

P " v(F) v(H)
Gy Gs I(G>) I(Gs)
D ‘ ¢ E v(D) I v(0) v(E)
- Jre)
A B
v(A) v(B)

@ (b)

Figure 1.2. A specification and its implementation

block of S in N. We will say that S is a specification of granularity p
for N.

DEFINITION 5 The topological level of a block G in a specification S
is the length of the longest path from a primary input of S to G. (The
length of a path is measured in the number of blocks on it. The topological
level of a primary input is assumed to be 0.) Denote by level(G) the
topological level of G in S.

REMARK 4 Let N be an implementation of a specification S. From Re-
mark 1 it follows that for any value assignment h to the input variables
of N there is a unique set of values (x1,...,x1), where x; € D (X;) such
that h=(q(x1),...,q(xr)). That is there is one-to-one correspondence
between assignments to primary inputs of S and N. The same applies
to primary outputs of S and N.

DEFINITION 6 Let N be an tmplementation of S. Given a Boolean vec-
tor y of assignments to the primary inputs of N, the corresponding vector
Y =(x1,..,xx) such that y=(q(x1),...,q(xk)) is called the pre-image of
y.

PROPOSITION 1 Let N be a circuit implementing specification S. Let
I(G) be the implementation of a block C=G(A,B) of S in N. Let y be

10

o(F) = q(f) v(H) = q(h) F=f H=h
I(GZ) I(GS) Gz Gs
(D) = q(d) rl v(C) = alc) o(E) = q(e) D=d ‘ C=c E=e
oo al
v(A4) = g(a) v(B) = q(b) A=a B=b
y = (q(a), q(b), q(d), q(e)) Y = (a,b,d,e)
@ ()

Figure 1.3. An illustration to Proposition 1

a value assignment to the primary input variables of N and Y be the
pre-tmage of y. Then the values taken by the primary outputs of I(G)
(under the assignment y to the inputs of N) form the code q(c) of a value
¢, c € D(C). The latter is the value taken by the output of G when the
wputs of S take the values specified by Y .

Proofs of Proposition 1 and the following Proposition 2 are simple
and so we omit them. Instead, we explain Proposition 1 in Fig. 1.3.
Suppose that y is an assignment to the primary input variables of the
Boolean circuit (Fig. 1.3a) that is an implementation of the specifi-
cation shown in Fig. 1.3b. According to Remark 4, y can be repre-
sented as (¢(a), q(b), q(d), q(e)) where a,b,d, e are values of the variables
A, B, D, E of the specification respectively. The pre-image of y is the
vector Y = (a,b,d,e). Then the outputs of gates G1,G2 and G3 take
values ¢ = Gi(a,b),f = Ga(d,c) and h = Gs(c,e) respectively. Since
I(G1),I(G2) and I(G3) are implementations of G1,G2,G3 respectively,
their outputs take values ¢(c),q(f) and g(h) respectively.

PROPOSITION 2 Let N1, Ny be circuits implementing a specification S.
Let each primary input (or output) variable X of S have the same en-
coding in N1 and No. Then Boolean circuits N1 and No are functionally
equivalent.

DEFINITION 7 Let Ny, Ny be two functionally equivalent Boolean cir-
cuits. Let Ny, Ny implement a specification S so that for every primary

What Sat-Solvers can and cannot do 11

input (output) variable X encodings q1(X) and q2(X) (used when produc-
ing N1 and Ny respectively) are identical. Then S is called a common
specification (CS) of N1 and No.

ASSUMPTION 6 Let S be a CS of N1,Ny and C be a variable of S. We
will assume that vi(C) =v2(C) if C is a primary input variable and
v1(C) Nva(C) = 0 otherwise.

DEFINITION 8 Let S be a CS of N1,Ny. Let py (respectively ps) be the
granularity of S with respect to Ny (respectively N3). Then we will say
that S is a CS of N1,Ny of granularity p = maz(p1,p2).

DEFINITION 9 Given two functionally equivalent Boolean circuits Ny,
Ny, S is called the finest common specification if it has the smallest
granularity p among all the CSs of N1 and Na.

1.3 Equivalence Checking as SAT

In this section, we recall a common way of reducing equivalence check-
ing to the satisfiability problem.

DEFINITION 10 A disjunction of literals of Boolean variables not con-
taining two literals of the same variable is called a clause. A conjunction
of clauses is called a conjunctive normal form (CNF).

DEFINITION 11 Given a CNF F, the satisfiability problem (SAT) is
to find a value assignment to the variables of F for which F evaluates
to 1 (also called a satisfying assignment) or to prove that such an
assignment does not exist. A clause K of F is said to be satisfied by a
value assignment y if K(y) = 1. If K(y) =0, the clause K is said to be

falsified by y.

The standard conversion of an equivalence checking problem into an
instance of SAT is performed in two steps. Let N7 and Ny be Boolean
circuits to be checked for equivalence. At the first step of this conversion,
a circuit M called a miter [3] is formed from N; and Ny. The miter
M is obtained by 1) identifying the corresponding primary inputs of Ny
and Ns; 2) XORing each pair of corresponding primary outputs of Ny
and N2; 3) ORing the outputs of the added XOR gates. So the miter
of N1 and N» evaluates to 1 if and only if for some input assignment a
primary output of N; and the corresponding output of Ny evaluate to
different values. Therefore, the problem of checking the equivalence of
N1 and N3 is equivalent to testing the satisfiability of the miter of N;
and Nz.

12

At the second step of conversion, the satisfiability of the miter is
reduced to that of a CNF formula F. This formula is a conjunction of
CNF formulas Fy,..,F', specifying the functionality of the gates of M
and a one-literal clause that is satisfied only if the output of M is set to
1. The CNF F; specifies the i-th gate g; of M. Any assignment to the
variables of F'; that is inconsistent with the functionality of g; falsifies
a clause of F'; (and vice versa, a consistent assignment satisfies all the
clauses of F';.) For instance, the AND gate y=xz1x9 is specified by the
following three clauses ~x1V ~z2V y, 1V ~y, 2V ~y.

1.4 Class M(p) and general resolution

In this short section we formally define the class of equivalence check-
ing formulas we consider in the first part of this chapter. Besides, we
describe the general resolution system.

DEFINITION 12 Given a constant p, a CNF formula F' is a member of
the class M(p) if and only if it satisfies the following two conditions.

m F is the CNF formula (obtained by the procedure described in Sec-
tion 1.1.3) specifying the miter of a pair of functionally equivalent
circuits Ni,No.

m N;,Ny has a CS of granularity p' where p' < p.

DEFINITION 13 Let K and K' be clauses having opposite literals of a
variable (say variable x) and there is only one such variable. The resol-
vent of K , K' in variable x is the clause that contains all the literals of
K and K' but the positive (i.e. literal x) and negative (i.e. literal ~x)
literals of x. The operation of producing the resolvent of K and K' is
called resolution.

DEFINITION 14 General resolution is a proof system of propositional
logic that has only one inference rule. This rule is to resolve two existing
clauses to produce a new one. Given a CNF formula F, a proof L(F)
of unsatisfiability of F' in the general resolution system consists of a
sequence of resolutions resulting in the derivation of an empty clause
(i.e. a clause without literals).

General resolution is complete. This means that given an unsatisfiable
formula F' there is always a sequence of resolutions L(F') in which an
empty clause is derived.

What Sat-Solvers can and cannot do 13

1.5 Computation of existentially implied
functions

In this section, we introduce the notion of existentially implied func-
tions that is used in Section 1.1.6 in the definitions of filtering and cor-
relation functions.

DEFINITION 15 Let F(X1,X3) be a Boolean function where X1 and Xo
are sets of Boolean variables. The function H(X2) is called existen-
tially tmplied by F if

] F(Xl,Xg) — H(Xg)

m if H(z)=1 where z is an assignment to the variables of Xo, then
there is an assignment y to the variables of X1 such that F'(y,z)=1.

REMARK 5 Given a function F (X1,X32), the function H(Xs) existen-
tially implied by F is unique. It can be obtained from F' by existentially
quantifying away the variables of Xi.

PROPOSITION 3 Let F(X1,X3) and H(X3) be CNF formulas where
H(Xs) consists of all the clauses depending only on variables from Xo
that can be derived from F(X1,X3) by resolution. Then H (X2) is exis-
tentially implied by F (X1,X32).

Proof. The CNF F(X,X2) implies H(X32) because each clause of
H is implied by F since it is derived by resolution. Assume that H
is not existentially implied by F. Then there is an assignment z to
the variables of X5 such that H(z)=1 and for any assignment y to the
variables of X, F(y,z)=0. However, this means that F' implies a clause
K depending only on variables of X2 such that K (z)=0. Since K should
be in H, then H(z) should be equal to 0, which leads to a contradiction.

DEFINITION 16 Let F be a set of clauses. Denote by supp(F) the set
of variables whose literals occur in clauses of F'.

To estimate the complexity of obtaining the function existentially im-
plied by F' in general resolution, we need the following proposition.

PROPOSITION 4 Let F be a set of clauses that implies a clause K. Then
there is a sequence of at most SsubP(F)| pegolution steps that results in
the derivation of the clause K or a clause that implies K.

Proof. Denote by F' the formula that is obtained from F' by making
the assignments that set the literals of K to 0 (and removing the sat-
isfied clauses and the literals set to 0). It is not hard to see that F’ is

14

unsatisfiable since it implies an empty clause. So there is a resolution
proof L(F") that results in deducing an empty clause. Then by replacing
each clause of F' involved in L(F') with its “parent” clause from F we
get a sequence of resolutions resulting in deducing either the clause K
or a clause that implies K. The number of resolvents in L(F") cannot be
more than 3/“PP(F) (which is the total number of clauses of |supp(F")|
variables) and so it cannot be more than 3/5¢PP(F)],

REMARK 6 From Propositions 8 and 4 it follows that given a CNF
F(X;,X2) one can obtain the function H(Xsy) existentially implied by F
in no more than 315UPP(F) resolution steps.

1.6 Equivalence Checking in General Resolution

In this section, we prove some results about the complexity of formu-
las of the class M (p) (describing equivalence checking of circuits with a
CS of granularity p) in general resolution. The main idea of the proof
is that if S is a CS of Ny and Nj, then their equivalence checking re-
duces to computing filtering and correlation functions. For each vari-
able C of the specification S one needs to compute filtering functions
Ff(v1(C)),Ff(v2(C)) and the correlation function Cf(vi(C),v2(C)).
Here v1(C) (respectively v2(C)) are coding variables of the encoding
q1(C) (respectively g2(C)) used when obtaining the implementation Ny
(respectively Na).

The three main properties of these functions are that

m They can be built based only on the information about the topol-
ogy of S and about “assignment” of gates of N; and N> to blocks
of S.

m Filtering functions and correlation functions corresponding to pri-
mary input variables of the specification are constants.

m Filtering and correlation functions for a variable C' specifying the
output of a block G(A, B) can be computed “locally” from filtering
and correlation functions of variables A and B and CNFs specify-
ing implementations I;(G) and I2(G). So these functions can be
computed in topological order starting with inputs and proceeding
to outputs.

A general scheme for the computation of filtering and correlation func-
tions is shown in Fig. 1.4. To compute the filtering functions F f(v1(C))
and F' f(v2(C)) and the correlation function C f(v1(C),v2(C)) one needs
to know filtering functions F' f (v1(A)),F f(v2(A)),F f(vi(B)), F f(v2(B))
and correlation functions Cf(v1(4), v2(4)),C f(vi(B),v2(B)).

What Sat-Solvers can and cannot do 15

@) o H)
v1(C) v2(C)
C
G
A B V1 (A) U1 (B) UQ(A) UQ(B)

Figure 1.4. Computation of filtering and correlation functions

In this chapter, we consider computation of filtering and correlation
functions (represented as CNF formulas) in the general resolution proof
system. However, one can use other ways of computing these functions,
for example, employing BDDsl[4].

DEFINITION 17 Let N be an implementation of a specification S. Let C
be a variable of S. A function Ff is called a filtering function if:

» supp(Ff) Cv(C).

m If an assignment z to the wvariables of v(C) is a code q(c),

c € D(C), then Ff(z)=1. Otherwise, Ff(z)=0.

REMARK 7 If C is a primary input variable of S , then Ff(v(C))=1.
Indeed, as it follows from Remark 1, any assignment to v(C) is the code

of a value c € D(C).

PROPOSITION 5 Let N be an implementation of a specification S. Let
C=G(A,B) be a block of S. Let F be the CNF formula specifying N built
as described in Section 1.1.3 and F(I(G)) be the part of F specifying the

16

= F(I(G))

Figure 1.5. Computation of a filtering function

implementation I(G) of G in N. Then P existentially implies Ff(v(C))
where P=Ff(v(A)) N Ff(v(B)) N F(I1(G)).

Proof. To make it easier for the reader to “visualize” the proof, we
illustrate the proposition in Fig. 1.5. To prove that P — Ff(v(C)) one
needs to show that any assignment that sets P to 1 also sets Ff (v(C))
to 1. It is not hard to see that the support of all the functions of the
expression P — Ff(v(C)) is a subset of supp(F(I(G))). Let h=(x,y,z)
be an assignment that sets P to 1 where x,y,z are assignments to the
variables from v(A),v(B) and v(C) respectively. Then h has to set to 1
the functions Ff(v(A)), Ff(v(B), F(I(G)). Since h sets Ff(v(A)) to 1,
then x=q(a), a € D(A). Since h sets Ff(v(B)) to 1, then y=q(b), b €
D(B). So h = (q(a),q(b),z). To set to 1 F(I(G)), assignment z has to
be equal to ¢(c), where c=G(a,b). Then h sets Ff(v(C)) to 1.

Assume that Ff(v(C)) is not existentially implied by P. Then there
exists an assignment z=q(c), ¢ € D(C) such that Ff(z)=1 and for any
assignments z and y to the variables of v(A) and v(B) respectively,
P(z,y,z)=0. However, P(g(a), q(b), z) = 1 where a and b are values of
A and B such that G(a,b)=c, which leads to a contradiction.

DEFINITION 18 Let S be a CS of circuits N1 and No and C be a variable
of S. A function Cf is called a correlation function for encodings qi
and g2 of the values of C' (used when producing N1 and N3) if :

m supp(Cf) C v1(C) U vz (C) .

What Sat-Solvers can and cannot do 17

G — F(IL(G)) — F(I2(G))

A B

Filtering = Ff (v1(A)) A Ff(vi(B)) A Ff(v2(A)) A Ff (v2(B))
Correlation = Cf (vi(A),v2(A)) A Cf (v1(B), v2(B))
Implementation = F(I1(G)) A F(I2(Q))

Figure 1.6. Computation of a correlation function

n Cf(z1, z2)=1 for any assignment z1 to v1(C) and z3 to v2(C)
such that z1=q1(c) and zo=q2(c) where ¢ € D(C). Otherwise
C’f(zl, 22):0.

REMARK 8 If C is a primary input variable of S, then Cf(v1(C),v2(C))
= 1. Indeed, as it follows from Remark 1, any assignment to vy (C) or
vo(C') is the code of a value ¢ € D(C). Besides, from the definition of CS
it follows that q1 (C)=q2(C). Finally, from Assumption 6 it follows that
v1(C) = v3(C). So any assignment (x,y) to the variables of v1(C),v2(C)
can be represented as (q1(c),q2(c)), c € D(C).

PROPOSITION 6 Let S be a CS of circuits N1,Ny. Let C = G(A, B) be
a block of S. Let F be the CNF formula specifying the miter of Ni,No
built as described in Section 1.1.3. Let F(I;(G)) and F(I2(G)) be the
part of F specifying the implementation I (G) and I3(G) of G in N1 and
Ny respectively. Then P ezistentially implies Cf(v1(C),v2(C)) where

m P = Filtering N Correlation A\ Implementation
w Filtering = Ff(vi(A)) N Ff(v1(B)) N\ Ff(v2(A)) N\ Ff(v2(B))
n Correlation = Cf(v1(A),v2(A)) N Cf(vi(B),v2(B))

18

» Implementation = F(I1(G)) N F(I2(G)).

Proof. To make it easier for the reader to “visualize” the proof, we il-
lustrate the proposition in Fig. 1.6. To prove that P implies
Cf(v1(C),v2(C)) one needs to show that any assignment that sets P
to 1 also sets Cf(v1(C),v2(C)) to 1. It is not hard to see that the sup-
port of all the functions of the expression P — Cf (v1(C),v2(C)) is a
subset of supp(F(I1(G)) U supp(F(I2(G)). Let h=(x1, 2, y1, y2, 21,
z9) be an assignment that sets P to 1 where x1, z2, y1, y2, 21, 22 are
assignments to vi(A4), va(A4), vi(B), v2(B), v1(C), v2(C) respectively.
Then h has to set to 1 all the functions the conjunction of which forms P.
Since h has to set the function Filtering to 1, then x1=q1(a1), z2=g2(a2)
where aj,a2 € D(A) and y1=q1(b1) , y2=q2(b2), where by,b2 € D(B). So
h=(q1(a1),q2(a2), q1(b1),q2(b2), 21, z2). Since h sets the function Cor-
relation to 1, then a; has to be equal to as and b; has to be equal to
ba. So h can be represented as (gi1(a),q2(a), ¢1(b),g2(b), 21, z2) where
a € D(A) and b € D(B). Since h sets the function Implementation to
1, then z; has to be equal to ¢i(¢), c=G(a,b) and z3 has to be equal to
g2(c). So h is equal to (g1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it
sets the correlation function Cf(v1(C),v2(C)) to 1.

Assume that Cf(v1(C),v2(C)) is not existentially implied by P. Then
there exists an assignment z1=q1(c), z2=¢2(c) to the variables of v1(C)
and vy (C) respectively such that Cf(z1, z2)=1 and for any assignment
r1, X2, Y1, Y2 to the variables of vi(A), va(A4), vi(B), va(B) respec-
tively, P(21, 2, y1, Y2, 21, 22)=0. However, P(q1(a), g2(a), q1(b), g2(b),
21, z2)=1 where a, b are the values of A and B respectively for which
c¢=G(a,b). This leads to a contradiction.

PROPOSITION 7 Let F be a formula of M (p) specifying the miter of cir-
cuits N1,No obtained from a CS S of granularity p. The unsatisfiability
of F' can be proven by a resolution proof of no more than dxnx3P reso-
lution steps where n is the number of blocks in S and d is a constant.

Proof. From Proposition 5 and Proposition 6 it follows that one
can deduce correlation and filtering functions for all the variables of S
starting with blocks of topological level 1 and proceeding in topological
order. Indeed, let C=G(A,B) be a block of topological level 1. Then A
and B are primary input variables and the filtering and correlation func-
tions for them are known (they are tautologies). Then Ff(v1(C)) and
Ff(v2(C)) are existentially implied by F(I1(G)) and F(I3(G)) respec-
tively. According to Proposition 5 Ff (v1(C)) (respectively Ff(v2(C)))
can be derived by resolving clauses of F'(I1(G)) (respectively F(I2(G))).
Similarly, the correlation function Cf(v1(C),v2(C)) is existentially im-
plied by F(I1(G)) A F(I2(G)). So it can be derived from the latter by

What Sat-Solvers can and cannot do 19

resolution. After filtering and correlation functions are computed for
all the variables of level 1, the same procedure can be applied to vari-
ables of topological level 2 and so on. If S counsists of n blocks, then
in n steps one can deduce correlation functions for the primary output
variables of S. At each step two filtering and one correlation function
are computed for a variable C=G(A,B) of S. The complexity of this
step is no more than 3°7. Indeed, the support of all functions mentioned
in Proposition 5 and Proposition 6 needed for computing Ff(vi(C)),
Ff(v2(C)) and Cf(v1(C),v2(C)) is a subset of E=supp(F(I1(G))) U
supp(F'(I2(G))). The total number of gates in I;(G) and I2(G) is
bounded by 2p, each gate having 2 inputs and 1 output. So the to-
tal number of variables in E cannot be more than 6p. Then according
to Remark 6 in no more than 3° steps one can deduce CNFs Ff (v1(C)),
Ff(v2(C)) and Cf(v1(C),v2(C)). Then the total number of resolution
steps one needs to deduce correlation functions for primary output vari-
ables of S is bounded by nx3°P.

Now we show that from the correlation functions for primary out-
put variables of S one can deduce an empty clause in the number of
resolution steps linear in n % p. Let C' be a primary output variable
specifying the output of a block G of N. Let I;(G) and I>(G) be the im-
plementations of G in N; and N, respectively. Let |D(C)| = 2F (By As-
sumption 2 the multiplicity of C' is a power of 2.) Then length(q1(C))=
length(g2(C))=k. (By Assumption 3 values of C are encoded by a min-
imal length encoding.)

Now we show that there is always a correlation function
Cf(v1(C),v2(C)) specified by the CNF consisting of k pairs of two lit-
eral clauses specifying the equivalence of corresponding outputs of I1(G)
and I5(G). Let f; and fo be two Boolean variables of v1(C) and v(C)
respectively that specify corresponding outputs of N; and N». Since
S is a CS of Ny and Na, then ¢1(C) = ¢2(C). So any assignment
q1(c), g2(c) to v1(C) and v2(C) that satisfies Cf (v1(C), v2(C)) also satis-
fies clauses K'=f1V ~ fo and K"=~f1 V f2. So K' and K" are implied
by Cf(v1(C),v2(C)) and can be deduced by the procedure described in
the proof of Proposition 6. (The resolution steps one needs to deduce
equivalence clauses are already counted in the expression n * 3°P.)

Using each pair of equivalence clauses K’ and K" and the clauses
specifying the gate g=XOR(f1,f2) of the miter, one can deduce a single
literal clause ~g. This clause requires setting the output of this XOR
gate to 0. Each such a clause can be deduced in the number of resolu-
tions bounded by a constant and the total number of such clauses cannot
be more than n*p. Finally, from these unit clauses and the clauses spec-
ifying the final OR gate of the miter, the empty clause can be deduced

20

in the number of resolutions bounded by nxp. So the empty clause is
deduced in no more than n*3% + d'snxp steps where d' is a constant.
Finally, one can pick a constant d such nx3% + d'snxp < dxnx35P

REMARK 9 In Proposition 7 we give a very conservative estimate of the
complexity of deducing filtering and correlation functions. In practice
this complexity can be much lower. In a sense, the best way to interpret
the theory developed in this section is that the problem of equivalence
checking of circuits N1,No with a CS S of n blocks can be partitioned
into n subproblems of computing filtering and correlation functions for
each variable of S.

REMARK 10 In general, two functionally equivalent circuits N1,N2 may
have more than one CS. In that case, when estimating the complexity
of equivalence checking of N1,Na, it is natural to use the finest CS (see
Definition 9).

1.7 Equivalence Checking of Circuits with
Unknown CS

In Section 1.1.6 we considered equivalence checking in general reso-
lution that is a non-deterministic proof system. This means that the
proof is guided by an “oracle” that points to the next pair of clauses to
be resolved. Deterministic algorithms do not have the luxury of using
an oracle. A natural question is whether a deterministic algorithm can
benefit from the fact that the formulas from M (p) have short proofs of
unsatisfiability in general resolution. (In this section, we assume that
one has to prove the unsatisfiability of a formula F, F' € M(p) specifying
equivalence checking of N1,Ny and no CS of Ni,N; is known.) A the-
ory studying the complexity of finding proofs started only a few years
ago [2, 18] and so it cannot fully answer this question yet. However,
there is a good reason to believe that formulas of M(p) are hard for
deterministic algorithms. (Henceforth, by a deterministic algorithm we
mean a resolution based deterministic SAT-algorithm.) Indeed, let us
make the following two very plausible assumptions. First assumption is
that there is a subclass M* of formulas from M (p) such that resolution
proofs described in the proof of Proposition 7 (we will refer to them as
specification driven proofs) are “much shorter” than any other kind
of resolution proofs. Second assumption is that finding a non-trivial CS
of two Boolean circuits N1 and N is hard. If the two assumptions above
are true then formulas from M™ should be hard. Indeed, specification
driven resolution proofs very closely follow a CS of N7 and N». So know-
ing a short resolution proof of the unsatisfiability of F',F' € M™ one could

What Sat-Solvers can and cannot do 21

easily recover the CS that “guided” that proof. That would mean that
there is an efficient algorithm for extracting a common specification of
Ni and Nz, which contradicts our second assumption. One more argu-
ment in support of the conjecture that formulas from M (p) are hard for
deterministic algorithms is that formulas from M (p) are hard for the
best existing SAT-solvers (see Section 1.1.9).

To give the reader an idea of how big the difference between the size
of non-deterministic and deterministic proofs might be, let us consider
the class of formulas M(p) where p is bounded by a constant. From
Proposition 7 it follows that specification driven proofs consist of at most
d * n * 3% resolution steps that is they have linear size. On the other
hand, the complexity of these formulas for a deterministic algorithm
should be Length(F)?P) where F is a formula of M(p), Length(F) is
the length of F' and ¢(p) is a monotone increasing function that is linear
(or close to linear) in p. One argument in favor of such complexity is that
a deterministic algorithm views the whole formula F' as one “block” and
the complexity of specification driven proofs is exponential in the size of
the maximal block. Another reason is that as it was shown in [9] one can
always pick binary encodings of multi-valued variables of a CS so that
every specification driven proof will have to contain “long” clauses whose
length is a monotone increasing function of p. Then even formulas from
a class M (p) with a quite small value of p, like p=10, can be extremely
hard for a deterministic algorithm. So it is quite possible that no matter
how good and efficient your resolution based SAT-solver is it will not be
able to solve even formulas of linear complexity!

1.8 A Procedure of Equivalence Checking for
Circuits with a Known CS

In the previous section, we gave some reasons why formulas from M (p)
should be hard for a deterministic resolution based SAT-algorithm. Let
S be a CS of Boolean circuits N1,Ny and p be the granularity of S. Let
F be the formula of M(p) specifying the equivalence checking of Ny,Ns.
The good news is that if S is known then there is an efficient algo-
rithm for proving the unsatisfiability of F'. This algorithm also proceeds
in topological order of variables of S computing filtering and correla-
tion functions. The only difference with specification guided proofs of
general resolution is that the “power” of the proof “oracle” is limited.
Namely, in general resolution this oracle guides every resolution step of
the proof (pointing to the next pair of clauses to resolve). In the deter-
ministic algorithm described below the specification .S serves as an oracle
of “limited” power. Namely, this oracle helps only to identify subcircuits

22

I1(G) and I3(G) N1 and Ny that are implementations of the same block
C = G(A,B). Finding the correlation function Cf(v1(C),v2(C)) and
filtering functions Ff(v1(C)) and Ff(v2(C)) is done by this algorithm
without any “help”.

Our procedure of equivalence checking consists of two stages:

1. For each variable C of S compute filtering functions Ff(v1(C)),
Ff(v2(C)) and the correlation function Cf(v1(C), v2(C)) proceeding
in topological order of variables. If C is a primary input variable,
then Ff(v1(C)), Ff(v2(C)) and Cf(v1(C), v2(C)) are tautologies. Let
C=G(A,B). Then Ff(v1(C)) is built by computing the function existen-
tially implied (see Definition 15) by Ff(v1(4)) V Ff(vi(B)) V F(I1(G)).
(F(I1(G)) is a subset of F specifying the implementation of G in Nj.
The function Ff(ve(C) is built similarly to Ff(v1(C)).) The function
Cf(v1(C),v2(C)) is built by computing the function existentially im-
plied by Ff(v1(A)) V Ff(vi(B)) V Ff(va(A)) V Ff (v2(B)) V Cf (v1(A),
v2(4)) V Cf (v1(B), v2(B)) V F(I1(G)) V F(I2(G)).

2. Once correlation functions are computed for all primary output
variables of S, finish the proof of unsatisfiability of F' by invoking a SAT-
solver like [8],[16]. (This SAT-solver is applied to the CNF consisting of
the clauses describing the correlation functions for the primary output
variables of S, the clauses specifying the gates XORing primary outputs
of N1 and Ny and the final OR gate of the miter.)

The complexity of this procedure is about the same as in general
resolution which is equal to d x n x 3% where d is a constant and n is
the number of blocks. The only difference is that in general resolution
no resolvent is generated twice while the procedure above may generate
identical clauses when computing correlation or filtering functions. So
it will have to take care of removing duplicate clauses.

The described procedure is flexible with respect to the method of com-
puting existentially implied functions. Below we describe a few options.
Let F be a CNF and supp(F) = X1 U X3. Suppose one needs to com-
pute a CNF H(X5) that is existentially implied by F. If the value of
| X 2| is small, one can compute H(X2) by running 2¥ SAT-checks where
k=|X2|. For every assignment z to the variables of X5 one needs to
check if there is an assignment y to the variables of X7 such that (y,z)
satisfies F'. If such an assignment exists then the next assignment is
checked. Otherwise, a clause consisting of literals of variables from X»
that is falsified by the assignment z is added to the clauses of H(X32).

If the size of X4 is large, one can compute filtering and correlation
functions by existential quantification of the variables of X1. In terms of
SAT, existential quantification of a CNF F' in a variable w of X; means
adding to F' all the resolvents that can be produced by resolving clauses

What Sat-Solvers can and cannot do 23

of F in w. Of course, existential quantification in all the variables of X7
is very expensive in SAT and so it works only for blocks of a small size.
However, less expensive methods for computing H(X5) in terms of SAT
can be and should be developed.

1.9 Experimental Results

The objective of experiments was to show that equivalence checking of
circuits with a fine CS S is easy if S is known and is hard otherwise. To
produce circuits having a fine CS we used the following procedure. To get
multi-valued specifications with realistic topologies we “borrowed” them
from MCNC-91 benchmark circuits as follows. First, all the benchmarks
were technology mapped using SIS [20] consisting only of two-input AND
gates. Then from each obtained circuit N a multi-valued specification S
was produced by replacing each two-input binary gate with a two-input
single output block of four-valued variables. (In other words, S changes
the functionality of N while preserving its topology.) Then from S two
functionally equivalent Boolean circuits N1, No implementing S were
produced using two different sets of two-bit encodings of four-valued
values. The encodings were picked in such a way that the two different
implementations of the same four-valued block in N; and N2 had no
functionally equivalent outputs. This way we guaranteed that internal
functionally equivalent points in /N7 and Ny may occur only by accident.

Note that after encoding, the number of inputs and outputs in N; and
Ny is twice the number of inputs and outputs in the original Boolean
circuit N. For instance, the two circuits produced from C6288 used as a
“specification” have the topology of a 16-bit multiplier and the number
of inputs and outputs of a 32-bit multiplier.

In experiments we used the best tools that were available to us.
Namely, we used the SAT-solver BerkMin downloaded from [1], the pro-
gram Nanotrav built on top of the Colorado University Decision Diagram
(CUDD) package [6] and a SAT-based equivalence checker CSAT [14]
(courtesy of Prof. Li of UCSB). We also tried the SAT-solver Zchaff [16],
but BerkMin was up to three orders of magnitude faster on our formu-
las. In the experiments we used the special mode of BerkMin designed
for equivalence checking that is described at [1]. BerkMin was run on
the formula specifying the miter M of N; and N2 as described in Sec-
tion 1.1.3. Nanotrav was used to build a BDD for the miter M and CSAT
checked the satisfiability of the miter’s output. We first ran the three
tools on “regular” MCNC benchmarks to verify optimized versus non-
optimized circuits. (We do not report these results). The tools showed
quite decent performance. For example, BerkMin was able to quickly

24

verify all the instances including the multiplier C6288. The same kind of
performance was shown by CSAT. Nanotrav was able to build BDDs for
all the miters except C6288 very quickly (in a few seconds). In all the
experiments we ran Nanotrav using settings suggested by Fabio Somenzi
(private communication). In particular, the variable sifting option was
on. In Table 1.1.9 we give runtimes of the three programs shown in our
experiments. All the programs were run on a SUNW Ultra-80 system
with clock frequency 450MHz. In all the experiments the time limit was
set to 60,000 sec. (16.6 hours). The results of the best out of the three
programs is shown in black. In the last column we report run times of a
trivial CS driven procedure. This procedure computes filtering and cor-
relation function of blocks in terms of SAT by existentially quantifying
variables (as it was described in Section 1.1.8) and eventually deduces
an empty clause.

It is not hard to see that run times of the CS driven procedure are
linear in the size of circuits to be checked for equivalence. This is due to
the fact that the size of specification blocks is fixed (and very small). On
the other hand, the instances we generated turned out to be hard for the
three chosen tools. Even if one compares the best run times with run
times of the CS driven procedure, it is not hard to see that the former
quickly increased as the size of the instances grew.

It is unlikely that an industrial strength equivalence checker would do
much better on the circuits we generated because they have no function-
ally equivalent points. Besides, one can always produce much harder
equivalence checking problems by using even a slightly more coarse
specification (Recall that in the experiments we used a very fine CS
S consisting of four-valued blocks. That is the circuits produced from
S were “almost” identical.) As we mentioned in the introduction, the
problem of finding a short proof of equivalence of N1,No if a CS is not
known, comes down to recovering this CS from the description of N1,/No
which is computationally very hard (if not infeasible).

1.10 Conclusions

In the first part of this chapter, we introduced a class M (p) of CNF
formulas specifying equivalence checking of Boolean circuits with a com-
mon specification (CS). We showed that formulas of M (p) are “easy” for
general resolution and gave reasons why those formulas should be hard
for a deterministic algorithm that does not know a CS of the circuits to
be checked for equivalence. We also gave some experimental evidence
that formulas from M (p) are hard for existing SAT-solvers. Besides, we
formulated an efficient SAT-algorithm for equivalence checking of cir-

What Sat-Solvers can and cannot do 25
Table 1.1. Equivalence checking of circuits with a fine CS
Name of | Number | Number | CSAT Nanotrav BerkMin CS
“specifi- | of vari- | of (sec.) (BDDs) (sec.) driven
cation” ables clauses (sec.) (sec.)
C880 1,612 9,373 162.8 60,000 3.7 1.1
ttt2 2,770 17,337 281.0 1.0 11.7 1.3
x4 4,166 24,733 284.3 4.7 17.3 1.8
i9 4,054 29,861 | 75.3 1.5 32.7 2.1
terml 3,504 22,229 1,604.6 40.9 35.9 1.6
c7552 11,282 69,529 282.0 60,000 52.8 3.6
c3540 5,248 33,199 34,905.8 60,000 64.1 2.3
rot 5,980 35,229 163.6 19,315.6 72.2 2.1
9symml 960 6,105 31.07 1.9 113.2 0.5
frg2 10,316 62,943 13,610.4 22.6 1314 2.9
frgl 3,230 20,575 265.8 60,000 330.3 1.7
i10 12,998 77,941 60,000 60,000 445.0 4.8
des 28,902 179,895 12,520.3 9.7 451.7 12.1
dalu 9,426 59,991 17,496.9 60,000 518.6 3.1
x1 8,760 55,571 13,580.3 13,009.6 950.2 2.8
alu4 4,736 30,465 8,020.4 135.1 992.6 2.0
i8 14,524 91,139 60,000 98.0 1,051.5 5.1
c6288 9,540 61,421 60,000 60,000 1,955.1 5.2
k2 11,680 74,581 60,000 59,392.9 5,121.5 4.3
too_large | 58,054 376,801 60,000 60,000 60,000 15.2
t481 19,042 123,547 60,000 60,000 60,000 6.3

26

cuits with a known CS. The results of the first part of this chapter lead
to the following two conclusions.

» A resolution based SAT-solver (most probably) cannot be scalable
even on “easy” and practical formulas unless some extra informa-
tion about the structure of short proofs is provided. (In case of
equivalence checking this extra information is provided by a CS.)

s The SAT-solvers of the future should be very “intelligent” that is
very receptive to structural properties of the formula to be tested
for satisfiability.

What Sat-Solvers can and cannot do 27

2. Stable Sets of Points
2.1 Introduction

In the first part of this chapter, we showed that it is extremely im-
portant for a SAT-solver to be “receptive” to structural properties of
CNF formulas. However, the existing algorithms are not very good at
taking into account such properties. One of the reasons is that currently
there is no “natural” way of traversing the search space. For example,
in the DPLL procedure [7] which is the basis of almost all algorithms
used in practice the search is organized as a binary tree. In reality, the
search tree is used only to impose a linear order on the points of the
Boolean space to avoid visiting the same point twice. However, this
order may be in conflict with “natural” relationships between points of
the Boolean space that are imposed by the CNF formula to be checked
for satisfiability (for example, if this formula has some symmetries).

In the second part, we introduce the notion of a stable set of points
(SSP) [11]. We believe that SSPs can serve as a basis for constructing
algorithms that traverse the search space in a “natural” way. This may
lead to creating SAT-solvers that are much more “intelligent” and ef-
ficient than the existing state-of-the-art SAT-solvers. We show that a
CNF formula F' is unsatisfiable if and only if there is a set of points of the
Boolean space that is stable with respect to F. If F' is satisfiable then
any subset of points of the Boolean space is unstable, and an assignment
satisfying F' will be found in the process of constructing an SSP. We de-
scribe a simple algorithm for constructing an SSP. Interestingly, this
algorithm is, in a sense, an extension of Papadimitriou’s algorithm [17]
(or a similar algorithm that is used in the well-known program called
Walksat [19]).

A very important fact is that, generally speaking, a set of points that
is stable with respect to a CNF formula F' depends only on the clauses
(i.e. disjunctions of literals) F' consists of. So the process of constructing
an SSP can be viewed as a “natural” way of traversing the search space
when checking F' for satisfiability. In particular, if ¥’ has symmetries,
they can be easily taken into account when constructing an SSP. To
illustrate this point, we consider the class of CNF formulas that are
symmetric with respect to a group of permutations. We show that in
this case for proving the unsatisfiability of a CNF formula it is sufficient
to construct a set of points that is stable modulo symmetry.

If, for a class of formulas, SSPs are exponentially large, computing
a monolithic SSP point-by-point is too time and memory consuming.
We experimentally show that this is the case for hard random CNFs
formulas. One of the possible solutions to this problem is to exclude

28

some directions (i.e. variables) from consideration when computing an
SSP. Such a set of points is stable only with respect to “movements” in
the allowed directions. By excluding directions one can always get an
SSP of small size. We sketch a procedure of satisfiability testing in which
computing a monolithic SSP is replaced with constructing a sequence of
small SSPs with excluded directions.

The second part of this chapter is structured as follows. In Sec-
tion 1.2.2 we introduce the notion of an SSP. Section 1.2.3 relates an
SSP with a set of points “reachable” from a point. A simple algorithm
for building an SSP point-by-point is described in Section 1.2.4. We
also show experimentally in Section 1.2.4 that even small CNF formu-
las may have large sets of SSPs and so computing SSPs point-by-point
is in general infeasible. In Sections 1.2.5, 1.2.6 we discuss two possible
ways of using SSPs. In Section 1.2.5 we show that to prove a symmetric
CNF formula to be unsatisfiable it is sufficient to build an SSP modulo
symmetries of that formula. Such an SSP can be sometimes efficiently
built even point-by-point. Section 1.2.6 shows that the computation of a
monolithic SSP can be replaced with the construction of so called SSPs
with excluded directions whose size is easy to control. Finally, some
conclusions are made in Section 1.2.7.

2.2 Stable Set of Points

In this section, we introduce the notion of an SSP. Let F' be a CNF
formula of n variables z1,...,z,. Denote by B the set {0,1} of values
taken by a Boolean variable. Denote by B" the set of points of the
Boolean space specified by variables z1,...,x,. A point of B" is an
assignment of values to all n variables.

DEFINITION 19 Let p be a point of the Boolean space falsifying a clause
C. The 1-neighborhood of the point p with respect to the clause C
(written Nbhd(p,C)) is the set of points that are at Hamming distance
1 from p and that satisfy C.

REMARK 11 [t is not hard to see that the number of points in Nbhd(p, C)
s equal to that of literals in C.

EXAMPLE 4 Let C = x1 VT3 V xg be a clause specified in the Boolean

space of 6 variables x1,...,x6. Let p = (r1 = 0,20 = l,z3 = 1,
zg = 0,25 = l,z¢ = 0) be a point falsifying C. Then Nbhd(p,C)
consists of the following three points: p1 = (;y=1,z0 = l,z3 = 1,
ry = 0,25 = Liwg = 0)7 b2 = (xl = 0,22 = l,z3=0,24 = 0,

zy = Liwg =0), p3 = (vr1 = 0,22 = L,zg = L,zqg = 0,25 = 1, 25=1).

What Sat-Solvers can and cannot do 29

Points p1,p2,ps are obtained from p by flipping the value of variables
x1,T3,re respectively i.e. the variables whose literals are in C.

Denote by Z(F') the set of points at which F' takes value 0. If F is
unsatisfiable, Z(F) = B™.

DEFINITION 20 Let F' be a CNF formula and P be a subset of Z(F).
Mapping g of P to F' is called a transport function if, for any p € P,
the clause g(p) € F is falsified by p. In other words, a transport function
g:P — F 1is meant to assign each point p € P a clause that s falsified

by p.

REMARK 12 We call mapping P — F a transport function because, as
it s shown in Section 1.2.3, such a mapping allows one to introduce
some kind of “movement” of points in the Boolean space.

DEFINITION 21 Let P be a nonempty subset of Z(F'), F be a CNF for-
mula, and g: P — F be a transport function. The set P is called stable
with respect to F' and g if Vp € P, Nbhd(p,g(p)) C P. As it was men-
tioned before, “stable set of points” abbreviates to SSP.

REMARK 13 Henceforth, if we say that a set of points P is stable with
respect to a CNF formula F without mentioning a transport function,
we mean that there is a function g:P — F such that P 1is stable with
respect to F' and g.

EXAMPLE 5 Consider an unsatisfiable CNF formula F' consisting of the
following 7 clauses: C1 = x1 V x2, Co = T3 V w3, C3 = T3 V X4,
Cy =T4Vay, C5s, =T Vas, C¢ =Ty Vuag, Cr = TgVT1. Clauses
of F are composed of literals of 6 variables: x1,...,xe. The following 1/
points form an SSP P: p1=000000, po=010000, p3=011000, p4=011100,
ps=111100, pe=111110, p;=111111, pg=011111, pe=011011,
p10=010011, p11=000011, p12=100011, p13=100010, p14=100000. (Val-
ues of variables are specified in the order variables are numbered. For
example, py consists of assignments x1=0, vo=1, x3=1, v4=1, x5=0,
xzg=0.) The set P is stable with respect to the transport function g spec-
ified as: g(p1) = C1, g(p2) = Co, g(ps) = Cs, g(pa) = C4, g(ps) = C5,
9(rs) = Cs, g(p7) = C1, g(ps) = Cu, g(p9) = C3, g(p10) = C2, g(p11) =
C1, g9(p12) = Cr, g9(p13) = Cs, 9(p1a) = Cs.

The set P and the transport function g are given in Fig. 1.7. Next to
each point p;, the clause Cy=g(p;) is shown. Besides, for each point p;
the two points comprising Nbhd(p;, g(p;)) are indicated by arrows.

30

Ci=z1 Vzs, p1=000000 < p4,=100000, C5 =~z1 V 75

I

Cy =~x5 V 23, p>=010000 p13=100010, Cs =~z5 V x4
03 =~z3 V T4, p3:011000 p12:100011, 07 =~zgV ~T1

Cy =~z4 V 71, ps=011100 p11 = 000011, Ci; =z1V a2

05 =~z A T5, p5:111100 p10:010011, 02 =~T3 V L3

ngO].].O].]., 03 =~ I3 V T4

I

Cr =~zgV ~z1, pr=111111 D pe=011111, C4y =~z4 V 71

06 =~T5 N Ze, p6:]-]-]-]-]-0

Figure 1.7. Illustration to Example 5

It is not hard to see that g indeed is a transport function i.e. for
any point p; of P it is true that C(p;)=0 where C = g(p;). Besides,
for every point p; of P, the condition Nbhd(p,g(p)) C P of Definition 5
holds. Consider, for example, point p1o=010011. The value of g(p1o) is
Cs, Co =T33V x3 and thd(plo, Cz) = {p11 = 000011, pg = 011011}, the
latter being a subset of P.

PROPOSITION 8 If there is a set of points that is stable with respect to
a CNF formula F, then F is unsatisfiable.

Proof Assume the contrary. Let P be a set of points that is stable
with respect to F' and a transport function g, and p* be a satisfying
assignment i.e. F(p*) = 1. It is not hard to see that p* ¢ P because
each point p € P is assigned a clause C = g(p) such that C(p)=0 and
so F(p)=0. Let p be a point of P that is the closest to p* in Hamming
distance. Denote by C' the clause that is assigned to p by the transport
function g i.e. C = g(p). Denote by Y the set of variables values of
which are different in p and p*.

Let us show that C can not have literals of variables of Y. Assume
the contrary, i.e. that C contains a literal of x € Y. Then, since P is

What Sat-Solvers can and cannot do 31

stable with respect to F and g, it has to contain the point p’ which is
obtained from p by flipping the value of . But then p’ € P is closer
to p* than p. So we have a contradiction. Since C(p)=0 and C does
not contain literals of variables whose values are different in p and p* we
have to conclude that C'(p*) = 0. This means that p* is not a satisfying
assignment and so we have a contradiction.

PROPOSITION 9 Let F' be an unsatisfiable CNF formula of n variables.

Then set Z(F') is stable with respect to F and any transport function
Z(F)— F.

Proof Since F is unsatisfiable, then Z(F') = B™. For each point p € B",
condition Nbhd(p,g(p)) C B™ holds.

REMARK 14 From propositions 8 and 9 it follows that a CNF F is un-

satisfiable if and only if there is a set of points stable with respect to
F.

2.3 SSP as a reachable set of points

In this section, we introduce the notion of reachability that will be
used in Section 1.2.4 to formulate an algorithm for constructing an SSP.
Our main objective here is to show that the set of points reachable from a
point of the Boolean space is an SSP unless this set contains a satisfying
assignment.

DEFINITION 22 Let F' be a CNF formula and g: Z(F) — F be a trans-
port function. A sequence of k points p1,...,pr, k > 2 is called a path
from py1 to pi in a set P with a transport function g if points p1,...,pr—_1
are in P and p; € Nbhd(p;—1,9(pi—1)), 2 < i < k. (Note that the last
point of the path, i.e. py, does not have to be in P.) We will assume
that no point appears twice (or more) in a path.

ExXAMPLE 6 Consider the CNF formula and transport function of Ex-
ample 5. Let P be the set of points specified in Example 5. The sequence
of points p1,p14,p13,p12 forms a path from p1 to p12. Indeed, it is not hard
to check that Nbhd(p1,9(p1)) = {p2,p1a}, Nbhd(p14,9(p14)) = {p13,p1},

Nbhd(p13,9(p13)) = {p14,p12}, Nbhd(p12,9(p12)) = {p13,p11}. So each
point p’ of the path (except the starting point i.e. p1) is contained in the

set Nbhd(p",g(p")) where p" is the preceding point.

DEFINITION 23 Let F be a CNF formula. A point p” is called reachable
from a point p' by means of a transport function g : Z(F) — F if
there is a path from p' to p" with the transport function g. Denote by
Reachable(p, g) the set consisting of a point p and all the points that are
reachable from p by means of the transport function g.

32

PROPOSITION 10 Let F be a satisfiable CNF formula, p be a point of
Z(F) , and s be a satisfying assignment (i.e. s & Z(F)) that is the
closest to p in Hamming distance. Let g:Z(F) — F be a transport
function. Then in Z(F') there is a path from p to s with the transport
function g i.e. the satisfying assignment s is reachable from p.

Proof Denote by Y the set of variables whose values are different in
p and s. Since F(p)=0, then p € Z(F) and the function g assigns a
clause C to p where C(p)=0. All literals of C' are set to 0 by p. On
the other hand, since s is a satisfying assignment, then at least one
literal of C' is set to 1 by s. Then C contains a literal of a variable y
from Y. Denote by p' the point obtained from p by flipping the value
of y in p. The point p’ is reachable from p by means of the transport
function g. If |Y| = 1, then p’ is the satisfying assignment s. If |Y| > 1,
then p’ cannot be a satisfying assignment since, by our assumption, the
satisfying assignment s is the closest to p. Then after applying the same
reasoning to the point p’, we conclude that the clause assigned to p’ by
g must contain a literal of a variable y’ from Y \ {y}. Flipping the value
of y' in p’ we produce a point p” that is either the satisfying assignment
s or is at distance |Y'| — 2 from s. Going on in this manner we reach the
satisfying assignment s in | Y] steps.

PROPOSITION 11 Let P be a set of points that is stable with respect
to a CNF formula F and a transport function g : P — F. Then
Vp € P, Reachable(p,g) C P.

Proof Assume the contrary, i.e. that there is a point
p* € Reachable(p,g) that is not in P. Let H be a path from p to
p*. Denote by p” the first point in the sequence of points specified by H
that is not in P. (Points are numbered from p to p*). Denote by p’ the
point preceding p” in H. The point p' is in P and the latter is stable
with respect to F and g. So Nbhd(p',g(p')) C P. The point p” is in
Nbhd(p', g(p')) and so it has to be in P. We have a contradiction.

PROPOSITION 12 Let F be a CNF formula, g : Z(F) — F be a transport
function, and p be a point from Z(F'). If P = Reachable(p,g) does not
contain a satisfying assignment for F', then P is stable with respect to
F and g, and so F is unsatisfiable.

Proof Assume the contrary i.e. that P is not stable. Then there exists
a point p' of Reachable(p,g) (and so reachable from p) such that a point
p" of Nbhd(p',g(p')) is not in Reachable(p,g). Since p” is reachable from
p' it is also reachable from p. We have a contradiction.

What Sat-Solvers can and cannot do 33

REMARK 15 From Proposition 12 it follows that o CNF F is satisfi-
able if and only if, given a point p € Z(F) and a transport function
g: Z(F) — F, the set Reachable(p,g) contains a satisfying assignment.

In [11] properties of SSPs are discussed in more detail.

2.4 Testing Satisfiability of CNF Formulas by
SSP Construction

In this section, we describe a simple algorithm for constructing an SSP
that is based on Proposition 12. Let F' be a CNF formula to be checked
for satisfiability. The idea is to pick a point p of the Boolean space
and construct the set Reachable(p,g). Since no transport function g :
Z(F) — F is known beforehand, it is built on the fly. In the description
of the algorithm given below, the set Reachable(p, g) is broken down into
two parts: Boundary and Body. Boundary consists of those points of the
current set Reachable(p, g) whose 1-neighborhood has not been explored
yet. At each step of the algorithm a point p’ of Boundary is extracted
and a clause C falsified by p' is assigned as the value of g(p'). Then the
set Nbhd(p', C) is generated and its points (minus those that are already
in BodyU Boundary) are added to Boundary. This goes on until a stable
set is constructed (F' is unsatisfiable) or a satisfying assignment is found
(F is satisfiable).

1 Generate a starting point p. Boundary = {p}. Body=0, g = 0.

2 If Boundary is empty, then Body is an SSP and F' is unsatisfiable.
The algorithm terminates.

3 Pick a point p' € Boundary. Boundary=Boundary \ {p'}.

4 Find a set M of clauses that are falsified by point p'. If M = (), then
the CNF formula F is satisfiable and p' is a satisfying assignment.
The algorithm terminates.

5 Pick a clause C from M. Take C as the value of g(p’). Gen-
erate Nbhd(p',C). Boundary = Boundary U (Nbhd(p', C')\Body).
Body = Body U {p'}.

6 Go to step 2.

Interestingly, the algorithm described above can be viewed as an ex-
tension of Papadimitriou’s algorithm [17] (or a similar algorithm used
in the program Walksat [19]) to the case of unsatisfiable CNF formulas.
Papadimitriou’s algorithm (and Walksat) can be applied only to satisfi-
able CNF formulas since it does not store visited points of the Boolean

34

space. An interesting fact is that the number of points that one has to
explore to prove the unsatisfiability of a CNF formula can be very small.
For instance, in example 5, an SSP of a CNF formula of 6 variables con-
sists only of 14 points while the Boolean space of 6 variables consists
of 64 points. It can be shown that for a subclass of the class of 2-CNF
formulas (a clause of a 2-CNF formula contains at most 2 literals) the
size of minimum SSPs grows linearly in the number of variables of the
formula.

A natural question to ask is: “What is the size of SSPs for “hard”
CNF formulas?”. One example of such formulas are random CNFs for
which general resolution was proven to have exponential complexity [5].
Table 1.2 gives the results of computing SSPs for CNF formulas from
the “hard” domain (the number of clauses is 4.25 times the number of
variables [15]). For computing SSPs we used the algorithm described
above enhanced by the following heuristic. When picking a clause to be
assigned to the current point p’ of Boundary (Step 5), we give preference
to the clause C (falsified by p’) for which the maximum number of points
of Nbhd(p',C) are already in Body or Boundary. In other words, when
choosing the clause C to be assigned to p’, we try to minimize the number
of new points we have to add to Boundary.

We generated 10 random CNF's of each size (number of variables). The
starting point was chosen randomly. Table 1.2 gives the average values
of the SSP size and the share (percent) of the Boolean space taken by
an SSP. It is not hard to see that the SSP size grows very quickly. So
even for very small formulas it is very large. An interesting fact though
is that the share of the Boolean space taken by the SSP constructed by
the described algorithm steadily decreases as the number of variables
grows.

The poor performance of the proposed algorithm on random CNF
formulas suggests that computing a “monolithic” SSP point-by-point is
too time and memory consuming. There are at least three ways of solving
this problem. First way concerns computing SSPs for symmetric CNF
formulas. In Section 1.2.5 we show that to prove that a symmetric CNF
formula is unsatisfiable it suffices to build a set of points that is stable
modulo symmetry. Such a set of points can be very small. Another
way of dealing with the exponential blow-up of SSPs is described in
Section 1.2.6. The idea is to exclude some directions (i.e. variables)
from consideration when computing an SSP. This way the size of an
SSP can be drastically reduced. By constructing an SSP with excluded
directions one obtains a new implicate of the formula. By adding this
implicate to the formula we make it “simpler” (in terms of the size of
its SSPs). By computing SSPs with excluded directions and adding the

What Sat-Solvers can and cannot do 35

Table 1.2. SSPs of “hard” random CNF formulas

number of SSP size #SSP /#All_Space
variables A
10 430 41.97
11 827 40.39
12 1,491 36.41
13 2,714 33.13
14 4,931 30.10
15 8,639 26.36
16 16,200 24.72
17 30,381 23.18
18 56,836 21.68
19 103,428 19.73
20 195,220 18.62
21 392,510 18.72
22 736,329 17.55
23 1,370,890 16.34

corresponding implicates we replace the computation of a monolithic
SSP with the construction of a sequence of small size SSPs. A third
(and probably most promising) way of making SSP computation more
efficient is to build SSP in big “chunks” clustering “similar” points. We
do not study this idea here leaving it for future research.

2.5 Testing Satisfiability of Symmetric CNF
Formulas by SSP Construction

In this section, we introduce the notion of a set of points that is stable
modulo symmetry. This notion allows one to modify the algorithm of
SSP construction given in Section 1.2.4 to take into account a formula’s
symmetry. The modification itself is described at the end of the section.
We consider only the case of permutations. However, a similar approach
can be applied to a more general class of symmetries e.g. to the case
when a CNF formula is symmetric under permutations combined with
the negation of some variables.

DEFINITION 24 Let X = {x1,...,zp} be a set of Boolean variables. A
permutation w defined on set X is a bijective mapping of X onto
itself.

Let F = {C1,...,Ck} be a CNF formula. Let p = (z1,...,2,) be a
point of B™. Denote by 7w(p) the point (w(x1),...,n(zy)). Denote by
7(C;) the clause that is obtained from C; € F by replacing variables
x1,...,x, with variables 7(z1),...,m(z,) respectively. Denote by 7(F)

36

the CNF formula obtained from F' by replacing each clause C; with

DEFINITION 25 A CNF formula F s called symmetric with respect to
permutation 7 if the CNF formula w(F') consists of the same clauses as
F. In other words, F is symmetric with respect to 7 if each clause w(C;)
of w(F') is identical to a clause Cy € F.

PROPOSITION 13 Let p be a point of B™ and C be a clause falsified by

p t.e. C(p)=0. Let m be a permutation of variables {z1,...,z,} and
C' =n(C) and p' = w(p). Then C'(p') = 0.

Proof Let 6(z;) be the literal of a variable z; that is present in C'. This
literal is set to 0 by the value of z; in p. The variable z; is mapped to
7(z;) in the clause C' and the point p’. Then the value of 7(z;) in the
point p’ is the same as that of z; in p. So the value of literal §(m(x;))
in the point p’ is the same as the value of d(z;) in p i.e. 0. Hence, the
clause C' is falsified by p'.

REMARK 16 From Proposition 13 it follows that if F' is symmetric with
respect to a permutation w then F(p) = F(mw(p)). In other words, F
takes the same value at points p and w(p).

The set of the permutations, with respect to which a CNF formula is
symmetric, forms a group. Henceforth, we will denote this group by G.
The fact that a permutation 7 is an element of G will be denoted by
w € G. Denote by 1 the identity element of G.

DEFINITION 26 Let B"™ be the Boolean space specified by wvariables
X={z1,....,zn} and G be a group of permutations specified on X. De-
note by symm(p,p',G) the following binary relation between points of
B"™. A pair of points (p,p’) is in symm(p,p', G) if and only if there is
7 € G such that p' = 7(p).

DEFINITION 27 Points p and p' are called symmetric if they are in the
same equivalence class of symm(p,p',G).

DEFINITION 28 Let F be a CNF formula that is symmetric with respect
to a group of permutations G and P be a subset of Z(F). The set P
s called stable modulo symmetry with respect to F' and a transport
function g: P — F if for each p € P, every point
p' € Nbhd(p,g(p)) is either in P or there is a point p” of P that is
symmetric to p'.

PROPOSITION 14 Let B™ be the Boolean space specified by variables
X =A{x1,...,z,}. Let p be a point of B", C be a clause falsified by

What Sat-Solvers can and cannot do 37

p, and a point ¢ € Nbhd(p,C) be obtained from p by flipping the value
of a variable x;. Let m be a permutation of variables from X, p' be equal
to w(p), C' be equal to w(C), and q' € Nbhd(p',C") be obtained from p'
by flipping the value of variable w(x;). Then q¢' = w(q). In other words,
for each point q of Nbhd(p,C) there is a point q' of Nbhd(p',C") that is
symmetric to q.

Proof The value of a variable xy, k # ¢ in ¢ is the same as in p. Besides,
the value of the variable 7(z) in ¢’ is the same as in p’ (¢’ is obtained
from p’ by changing the value of the variable m(z;) and since k # ¢ then
m(zy) # m(x;)). Since p' = 7(p), then the value of zj in ¢ is the same as
the value of variable 7(zy) in ¢'. On the other hand, the value of variable
x; in g is obtained by negation of the value of z; in p. The value of the
variable m(z;) in ¢ is obtained by the negation of the value of m(x;) in
p’. Hence the values of the variable z; in ¢ and the variable m(z;) in ¢/
are the same. So ¢' = 7(q).

PROPOSITION 15 Let F be a CNF formula, P be a subset of Z(F), and
g: P — F be a transport function. If P is stable modulo symmetry with
respect to F' and g, then the CNF formula F is unsatisfiable.

Proof Denote by K(p) the set of all points that are symmetric to the
point p i.e. that are in the same equivalence class of the relation symm
as p. Denote by K (P) the union of the sets K(p), p € P. Extend the
domain of transport function g from P to K(P) in the following way.
Suppose p' is a point that is in K(P) but not in P. Then there is a
point p € P that is symmetric to p’ and so p’ = n(p), # € G. We assign
C' = n(C), C = g(p) as the value of g at p’. If there is more than one
point of P that is symmetric to p’, we pick any of them.

Now we show that K(P) is stable with respect to F and
g: K(P) — F. Let p’ be a point of K(P). Then there is a point p
of P that is symmetric to p’ and so p’ = w(p). Then from Proposi-
tion 14 it follows that for any point ¢ of Nbhd(p,g(p)) there is a point
q' € Nbhd(p',g(p')) such that ¢ = 7(q). On the other hand, since P is
stable modulo symmetry, then for any point g of Nbhd(p, g(p)) there is a
point ¢” € P symmetric to g and so ¢ = 7*(¢"), 7* € G (7* may be equal
tol € G if g isin P). Then ¢’ = m(7*(¢")). Hence ¢’ is symmetric to
q" € P and so ¢’ € K(P). This means that Nbhd(p',g(p')) C K(P) and
so K(P) is stable. Then according to Proposition 8, the CNF formula
F' is unsatisfiable.

REMARK 17 The idea of the proof was suggested to the author by Howard
Wong-Toi [22].

38

PROPOSITION 16 Let P C B™ be a set of points that is stable with respect
to a CNF formula F and transport function g : P — F. Let P' be a
subset of P such that for each point p of P that is not in P' there is a
point p' € P' symmetric to p. Then P' is stable with respect to F and g
modulo symmetry.

Proof Let p' be a point of P'. Let ¢’ be a point of Nbhd(p',g(p')). Point
p’ is in P because P’ C P. Since P is a stable set then ¢’ € P. From the
definition of the set P’ it follows that if ¢’ is not in P’ then there is a
point ' € P’ that is symmetric to ¢'. So each point ¢’ of Nbhd(p', g(p"))
is either in P’ or there is a point of P’ that is symmetric to ¢'.

DEFINITION 29 Let F' be a CNF formula, G be its group of permuta-
tions, p be a point of Z(F'), and g: P — F be a transport function. A
set Reachable(p, g, G) is called the set of points reachable from p mod-
ulo symmetry if a) the point p is in Reachable(p,g,G) b) each point p'
that is reachable from p by means of the transport function g is either in
Reachable(p, g, G) or there ezists a point p" € Reachable(p, g, G) that is
symmetric to p'.

PROPOSITION 17 Let F' be a CNF formula, G be its group of permuta-
tions, p be a point of Z(F), and g : P — F be a transport function. If
the set P=Reachable(p, g, G) does not contain a satisfying assignment,
then it is stable modulo symmetry with respect to F' and g and so F is
unsatisfiable.

Proof Assume the contrary, i.e. that P is not stable modulo symmetry.
Then there is a point p’ € P (reachable from p modulo symmetry) such
that a point p” of Nbhd(p',g(p')) is not in P and P does not contain a
point symmetric to p”. On the other hand, p” is reachable from p’ and
so it is reachable from p modulo symmetry. We have a contradiction.

REMARK 18 From Proposition 17 it follows that a CNF F that is sym-
metric with respect to a group of permutations G is satisfiable if and only
if, given a point p € Z(F), a transport function g : Z(F) — F, the set
Reachable(p, g, G) contains a satisfying assignment.

Let F' be a CNF formula and G be its group of permutations. Accord-
ing to Proposition 17 when testing the satisfiability of F' it is sufficient to
construct a set Reachable(p, g, G). This set can be built by the algorithm
of Section 1.2.4 in which step 5 is modified in the following way. Before
adding a point p” from Nbhd(p',C)\(Body U Boundary) to Boundary it
is checked if there is a point p* of BoundaryU Body that is symmetric to
p". If such a point exists, then p” is not added to Boundary.

What Sat-Solvers can and cannot do 39

For highly symmetric formulas the difference between the SSPs and
SSPs modulo symmetry can be huge. For example, for pigeon-hole for-
mulas the size of SSPs is exponential in the number of holes while the
size of minimum SSPS modulo symmetry is linear in the number of

holes [11].

2.6 SSPs with Excluded Directions

Unfortunately, the theory developed in Section 1.2.5 does not help in
solving CNF formulas that have no (or have very few) symmetries. In
this section, we describe a different way of reducing the size of SSPs. The
idea is to replace the computation of a single SSP with the construction
of a sequence of SSPs whose stability is “limited”. These SSPs are
called SSPs with excluded directions. The key point is that by excluding
some directions from consideration one can drastically reduce the size
of SSPs. The construction of an SSP with excluded directions allows
one to generate a new clause that is an implicate of the initial CNF
formula. This clause can be added to the current formula, which makes
the obtained formula simpler in terms of the size of SSPs. For the new
formula we can again build an SSP with excluded directions deducing a
new implicate of the formula. A sketch of the procedure of satisfiability
testing based on constructing SSPs with excluded directions is given at
the end of the section.

DEFINITION 30 Let F be a CNF formula. A set of excluded direc-
tions is a set E of literals that a) does not contain opposite literals of
the same variable; b) there is no clause C of F' such that all literals of
C are in E.

DEFINITION 31 Let F' be a CNF formula and C be a clause of F. Let
E be a set of excluded directions. Denote by Nbhd(p,C,E) the set of
points of Nbhd(p,C) that set to 1 only the literals of C that are not in
E.

REMARK 19 Since, according to Definition 30, there is at least one lit-
eral of C that is not in E, then Nbhd(p,C, E) is nonempty.

EXAMPLE 7 Let a point p be equal to (x7 = 0,22 = 0,23 = 0,
zg = l,os = lyzg = 1). Let a clause C of a CNF F be equal to
x1 V x3 V Tg and the set E of excluded directions be equal to {x4,Tg}.
The set Nbhd(p, C') consists of points p1,p2 and ps obtained from p by
flipping the values of variables x1,x3, xg Tespectively. On the other hand,
set Nbhd(p,C, E) consists only of points p1,pa because the point ps sets
to 1 an “excluded” literal, namely the literal Tg of E.

40

DEFINITION 32 Let P be a nonempty subset of Z(F'), F be a CNF for-
mula, and g: P — F be a transport function. Let E be a set of excluded
directions. The set P s called stable with respect to F, g and FE if
a) each point p of P sets all the literals of E to 0; b) for each point p of
P, Nbhd(p, 9(p), E) C P.

PROPOSITION 18 If there is a set of points that is stable with respect to a
CNF formula F' and a set E of excluded directions, then any assignment
satisfying F' has to set to 1 at least one literal of E. In other words, the
clause obtained by the disjunction of the literals of E is an implicate of
F.

Proof Let P be a set of points that is stable with respect to F', a trans-
port function g and a set E of excluded directions. Make the assignments
setting all the literals of £ to 0. Remove from F' all the clauses that are
satisfied by these assignments and remove from the rest of the clauses all
the literals that are in E (since they are set to 0). The obtained formula
F' is unsatisfiable because the set P is stable with respect to F’ and a
transport function g’. Indeed, according to Definition 31, each point p
of P sets all the literals of E to 0. Then the clause C = g(p) of F' cannot
be satisfied by the assignment setting a literal [of E to 0. (If a clause C
is satisfied by this assignment, it must contain the literal [but then C
cannot be falsified by p.) So all the clauses assigned to the points of P by
g are still in F'. Denote by ¢’ the transport function that maps a point p
of P to the clause C’ obtained from the clause C = g(p) by removing all
the literals of E. It is not hard to see that Nbhd(p, C') = Nbhd(p,C, E).
So for each point p of P it is true that Nbhd(p,d'(p)) C P.

REMARK 20 A set of points stable with respect to a CNF F and a set E
of excluded directions can be constructed by the algorithm of Section 1.2.4
modified in the following way. At step 1 the algorithm generates a start-

ing point setting all the literals from E to 0. At step 5 it generates set
Nbhd(p',C, E) instead of Nbhd(p',C).

EXAMPLE 8 Let p1 = (r1 = 0,29 = 0,23 = 0,24 = 0,25 = 0,
zg = 0,7 = 0). Let F be a CNF formula containing clauses C; =
z1Vaa Vs, Co =T1VagVas (and maybe some other clauses). Let the
set E of excluded directions be equal to {x2,x3,x4,x5}. Denote by pa the
point obtained from p1 by flipping the value of 1. Taking into account
that p1 falsifies clause C1 and po falsifies clause Co we can form the fol-
lowing transport function g: g(p1) = C1,9(p2) = Co. It is not hard to see
that the set of points P = {p1,p2} is stable with respect to clauses C1,Ca,
transport function g, and set E. Indeed, since literals o and xs of Cy
are in E then Nbhd(p1,9(p1), E) = {p2} C P. On the other hand, since

What Sat-Solvers can and cannot do 41

literals x4 and x5 of Cy are in E then Nbhd(p2,g(p2),E) = {p1} C P.
From Proposition 18 we conclude that the clause C = xo V x3V x4V T5
equal to the disjunction of literals of E is an implicate of the formula F'.
On the other hand, it is not hard to see that C is actually the resolvent
of clauses Cy and Cs.

REMARK 21 From Ezample 8 it follows that for an unsatisfiable formula
F we can always choose a set E of excluded directions so that there is a
set of two points that ts stable with respect to F and E. Indeed, due to
completeness of general resolution, in F' there is always a pair of clauses
C1 and Cy that produce a new resolvent. Then we form the set E of
excluded directions consisting of all the literals of C1 and Cy except the
literals of the variable in which the two clauses are resolved.

Below we sketch a procedure of satisfiability testing based on com-
puting SSPs with excluded directions.

1 Compute an SSP P of a limited size trying to minimize the set £
of excluded directions

2 Stop if a satisfying assignment is found. The formula is satisfiable.
3 Stop if E = (). The formula is unsatisfiable.

4 Add the deduced clause (disjunction of the literals of E) to the
current CNF formula.

5 Go to step 1.

The idea of the procedure is that adding new implicates gradually
reduces the complexity of the initial formula F' in terms of the size of
“monolithic” SSPs. The claim that the size of SSPs decreases is based on
the following observations. Any set of points that is stable with respect
to a CNF formula F is also stable with respect to a CNF F U{C} where
C is a clause. So by adding clauses we preserve the best SSPs seen so far
and may produce even smaller ones. The latter follows from the fact that
by adding new implicates we will eventually produce an empty clause
(at step 3 of the procedure above) and any set of clauses containing an
empty clause has an SSP consisting of only one point.

An important advantage of obtaining new implicates by computing
SSPs with excluded directions is that directions can be excluded on the
fly. The choice of directions to exclude should be aimed at the reduction
of the size of the constructed SSP (that is the directions that may lead
to the blow-up of the SSP should be excluded). Besides, when excluding
directions one can make use of the information about the structure of
the CNF formula to be tested for satisfiability.

42

2.7 Conclusions

In the second part of this chapter we show that satisfiability testing
of a CNF formula reduces to constructing a stable set of points (SSP).
An SSP of a CNF formula can be viewed as an inherent characteristic
of this formula. We give a simple procedure for computing an SSP.
As a practical application we show that the proposed procedure of SSP
construction can be easily modified to take into account symmetry (with
respect to variable permutation) of CNF formulas. Finally, we introduce
the notion of an SSP with excluded direction and describe a procedure of
satisfiability testing based on constructing such SSPs. We believe that
developing the theory of SSPs may lead to creating SAT-algorithms that
are much more efficient and “intelligent” than the ones implemented in
the state-of-the-art SAT-solvers.

References

[1] BerkMin web page. http://eigold.tripod.com/BerkMin.html

[2] Bonet M.,Pitassi T., Raz R. On interpolation and automatization
for Frege systems. SIAM Journal on Computing, 29(6):1939-1967,
2000.

[3] Brand D. Verification of large synthesized designs. Proceedings of
ICCAD-1993, pp. 534-537.

[4] Bryant R. Graph based algorithms for Boolean function manipula-
tion. IEEE Trans. on Computers, C(35):677-691.

[6] V.Chvatal, E.Szmeredi. Many hard ezamples for resolution. J. of
the ACM,vol. 35, No 4, pp.759-568.

[6] CUDD web page. http://vlsi.colorado.edu/~fabio/

[7] M.Davis, G.Logemann, D.Loveland. A Machine program for theo-
rem proving. Communications of the ACM, 1962 vol. 5,pp. 394-397.

[8] Goldberg E., Novikov Ya. BerkMin: A fast and robust SAT-solver.
Design, Automation, and Test in Europe (DATE ’02), pp. 142-149,
March 2002.

[9] Goldberg E., Novikov Ya. How good are current resolution based
SAT-solvers. presented at SAT-2003,Margherita Ligure - Portofino
(Italy), May 5-8,2003.

[10] Goldberg E., Novikov Ya. Equivalence Checking of Dissimilar
Circuits. Presented at IWLS-2003. Laguna Beach, California,
USA ,May 28-30,2003.

What Sat-Solvers can and cannot do 43

[11]

[12]

[13]

E. Goldberg. Testing Satisfiability of CNF Formulas by Computing
a Stable Set of Points. Proceedings of Conference on Automated
Deduction, CADE 2002, pp.161-180.

E. Goldberg. Proving Unsatisfiability of CNF's locally. Journal of
Automated Reasoning. vol 28:417-434, 2002.

A Haken. The intractability of resolution. Theor. Comput. Sci. 39
(1985),297-308.

F. Lu, L.-C. Wang, K.-T. Cheng, R. Huang. A circuit SAT solver
with signal correlation guided learning, DATE-2003, pp. 892-898.

D.Mitchell, B.Selman, H.J.Levesque. Hard and easy distributions of
SAT problems. Proceedings AAAI-92, San Jose,CA, 459-465.

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik.
Chaff: Engineering an efficient SAT-solver. Proceedings of DAC-
2001,pp. 530-535.

C.Papadimitriou. On selecting a satisfying truth assignment. Pro-
ceedings of FOCS-91, pp. 163-169

Razborov A., Alekhnovich M. Resolution is not automatizable un-
less W/[p] is tractable. Proc. of the 42"? IEEE FOCS-2001, pages
210-219.

B.Selman, H.Kautz, B.Cohen. Nouse strategies for improving local
search. Proceedings of AAAI-94,Vol. 1, pp. 337-343.

E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, A. San-
giovanni -Vincentelli, Sequential circuit design using synthesis and
optimization. Proceedings of ICCAD, pp 328-333, October 1992.

Silva J., Sakallah K. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions of Computers, 1999, Vol. 48,pp.
506-521.

H.Wong-Toi. Private communication.

H.Zhang. SATO: An efficient propositional prover. Proceedings of
CADE-1997, pp. 272-275.

Index

1-neighborhood of a point, 28

class M(p) (definition), 12

class M(p) (introduction), 3

common specification (definition), 11

common specification (finest), 11, 20

common specification (granularity), 3, 11

common specification (introduction), 1

correlation function (definition), 16

correlation function (iterative computa-
tion), 17

existential implication, 13

filtering function (definition), 15
filtering function (iterative computation),
15

general resolution system, 12

miter, 11
reachable set of points, 31

specification (block), 3, 5

specification (definition), 5

specification (granularity), 9

specification (implementation), 8

specification driven proofs, 20

stable set of points (computing), 33

stable set of points (definition), 29

stable set of points (modulo symmetry),
36

stable set of points (with excluded direc-
tions), 40

the satisfiability problem (SAT), 11

