
Contents
1What Sat-Solvers can and cannot do 1Eugene Goldberg1. Hard Equivalence Checking CNF formulas 21.1 Introduction 21.2 Common Speci�cation of Boolean Circuits 51.3 Equivalence Checking as SAT 111.4 Class M(p) and general resolution 121.5 Computation of existentially implied functions 131.6 Equivalence Checking in General Resolution 141.7 Equivalence Checking of Circuits with Unknown CS 201.8 A Procedure of Equivalence Checking for Circuits witha Known CS 211.9 Experimental Results 231.10 Conclusions 242. Stable Sets of Points 272.1 Introduction 272.2 Stable Set of Points 282.3 SSP as a reachable set of points 312.4 Testing Satis�ability of CNF Formulas by SSP Con-struction 332.5 Testing Satis�ability of Symmetric CNF Formulas bySSP Construction 352.6 SSPs with Excluded Directions 392.7 Conclusions 42References 42





Chapter 1WHAT SAT-SOLVERS CAN AND CANNOTDOEugene GoldbergCadence Berkeley Labs, USAegold@cadence.comAbstract This chapter consists of two parts. In the �rst part we show that reso-lution based SAT-solvers cannot be scalable on real-life formulas unlesssome extra information about formula structure is known. In the secondpart we introduce a new way of satis�ability testing that may be usedfor designing more e�cient and \intelligent" SAT-algorithms that willbe able to take into account formula structure.In the last few years SAT-solvers have considerably improved theirperformance. As a result, the size of the CNF formulas that can besolved by state-of-the-art SAT-solvers [21, 23, 16, 8] in a reasonabletime has dramatically increased. This success has lead to euphoria thatreminds many people working in formal veri�cation of early optimismcaused by the appearance of BDDs [4]. However, enthusiasts forget thateven though SAT-solvers can sometimes solve surprisingly large formu-las, they are very far from being scalable (which is the same problemthat made people less optimistic about BDDs).In this chapter, we will try to give a more realistic estimation of thecapabilities of SAT-solvers. The chapter is based on the results de-scribed in [10{12] and consists of two parts. The main point of the �rstpart is that a SAT-solver cannot be scalable unless it is provided withsome information about the structure of the CNF formula to be testedfor satis�ability. In this part, we consider a class of formulas describ-ing equivalence checking of combinational circuits that have a commonspeci�cation (CS). A CS S of Boolean circuits N1 and N2 is just a circuitof multi-valued gates called blocks. Either Boolean circuit is obtainedfrom S by replacing each block of S with its binary implementation. Weshow that there is a short resolution proof that N1 and N2 are equiv-



2alent however �nding this proof by a deterministic algorithm is mostlikely infeasible unless a CS of N1 and N2 is known. On the one hand,it is bad news. This result means that SAT-algorithms cannot be scal-able on equivalence checking CNF formulas (that are important from apractical point of view) even though they have short resolution proofs ofunsatis�ability and so are very \easy". On the other hand, this is goodnews because one can have an e�cient algorithm of equivalence checkingif a CS of N1 and N2 is known. In other words, addressing the questionimplied by the title of this chapter one can say that SAT-solvers cannotbe scalable if no information about high-level structure of formulas isprovided.The result above implies that it is crucial for a SAT-solver to be able totake into account structural properties of formulas. The problem is thatthe existing SAT-solvers are based on the variable splitting paradigmintroduced in the DPLL procedure [7]. During variable splitting a CNFformula is \mutilated" and its subtle structure is usually destroyed. Inthe second part of this chapter, we introduce a new procedure of satis�a-bility testing based on the notion of a stable set of points (SSP). It turnsout that to prove that a CNF formula F is unsatis�able it is su�cientto show that F evaluates to 0 (i.e. false) on a set of points called astable set. In a sense, proving the unsatis�ability of a CNF formula byconstructing its SSP can be viewed as \veri�cation" by \simulation".In general, SSPs are much smaller than the set of all possible assign-ments but the size of SSPs grows exponentially in the number of vari-ables. So building a monolithic SSP point-by-point can not be used asthe basis for designing e�cient universal SAT-solvers. We describe twoways of using SSPs. First way is to compute an SSP modulo symmetriesof the formula to be tested for satis�ability. In that case, even point-by-point computation of SSPs modulo symmetry can be e�cient for highlysymmetric formulas. Another way of using SSPs is to replace computinga monolithic SSP with constructing a sequence of much smaller SSPs of\limited" stability. Each such an SSP is stable if \movements" in somedirections are forbidden.1. Hard Equivalence Checking CNF formulas1.1 IntroductionSince the general resolution system is the basis of almost all practicalSAT-solvers, it has been the focus of attention for a long time. In theground-breaking paper by Haken [13] it was shown that there is a classof CNF formulas for which only exponential size proofs are possible. (Inthe �rst part of this chapter we consider only unsatis�able CNF formu-



What Sat-Solvers can and cannot do 3las.) However, the impressive results of state-of-the-art SAT-solvers likeGrasp, Sato, Cha�, BerkMin suggest that for the majority of CNF for-mulas one encounters in practice there should be short resolution proofsof their unsatis�ability. So a natural question to ask is whether the factthat a class of CNF formulas has short resolution proofs means thatthere is an algorithm that can �nd these short proofs or proofs that are\close" to them in length. (In complexity theory this question is posedas \whether the general resolution system is automatizable". Studyingthe automatizability of proof systems was started in [2]. In [18] someresults on automatizability of general resolution were obtained.)The objective of the �rst part of this chapter is to show that thereis a class of CNF formulas that have very short resolution proofs ingeneral resolution that are most likely very hard for a deterministicSAT-algorithm. These formulas specify equivalence checking of Booleancircuits and so they are very important from a practical point of view.This result means that the power of resolution based SAT-solvers is quitelimited even for practical formulas that have provably short resolutionproofs. The good news is that one can have an e�cient SAT-algorithmfor solving this class of formulas if some information about the structureof short proofs is provided.The class of formulas mentioned above describe equivalence checkingof circuits having a common \speci�cation". Let N1 and N2 be twofunctionally Boolean circuits with a common speci�cation (CS) S. TheCS S is just a circuit of multi-valued gates further referred to as blockssuch that N1 (or N2) can be obtained from S by replacing each blockG of S with its implementation I1(G) (or I2(G)). The circuit I1(G) (orI2(G)) implements the multi-output Boolean function obtained from thetruth table of G after encoding the values of multi-valued variables withbinary codes.The problem of equivalence checking of N1 and N2 can be easily re-duced to that of testing the unsatis�ability of a CNF formula (see sec-tion 1.1.3). Let S consist of n blocks. Let F be a CNF specifyingequivalence checking of N1 and N2. We show that the unsatis�abilityof F can be proven in general resolution in d � n � 36p resolution steps.Here d is a constant and p is the size of the largest block G of the CS S(in terms of the number of gates one needs to implement G in N1 andN2). In particular, if p is bounded by a constant then we get a classof CNF formulas (in the paper it is denoted by M(p)) that has linearsize resolution proofs. The parameter p is called the granularity of thespeci�cation S.In spite of the fact that formulas from M(p) have short resolutionproofs of unsatis�ability there are good reasons to believe that there



4does not exist an e�cient SAT-algorithm for �nding such proofs. LetF be a formula M(p) specifying equivalence checking of circuits N1 andN2 with a CS S. Let assume that the CS S is not known. On theone hand, the problem of �nding S (or a good approximation of S) ismost likely NP-hard. On the other hand, the short resolution proofsmentioned above are closely related to CSs of N1 and N2. So given sucha short proof of equivalence of N1 and N2 one could recover a \good"CS from this proof. Hence the existence of an e�cient procedure for�nding a short proof of equivalence would mean that there is an e�cientalgorithm for solving an NP-hard problem.As we mentioned above the good news is that a formula F of M(p)can be e�ciently solved by a deterministic algorithm if some extra in-formation is provided. This extra information is a CS S of N1 and N2whose equivalence checking the formula F speci�es. (Namely, one justneeds to know the assignment of gates of N1 and N2 to blocks of S. Noother information about S is needed. In particular, one needs neitherany knowledge of the functionality of blocks of S nor the knowledge ofbinary encodings used when producing N1 and N2 from S.) We for-mulate a speci�cation aware algorithm of checking the unsatis�abilityformulas from M(p) that has the same complexity as resolution proofs.That is it solves the formulas of M(p) in linear time.The �rst part of this chapter is structured as follows. In Section 1.1.2we introduce the notion of a CS of Boolean circuits that plays a key rolein the following exposition. Section 1.1.3 describes a common way ofreducing equivalence checking to SAT. In Section 1.1.4 we introduce aclass M(p) of CNF formulas encoding equivalence checking of Booleancircuits with a CS of granularity p. We also describe the general resolu-tion proof system. Section 1.1.5 describes computation of existentiallyimplied functions that is used in Section 1.1.6. In the latter, we proofthe main result of the �rst part of this chapter about the complexityof formulas from M(p) in general resolution. In Section 1.1.7 and 1.1.8we discuss the complexity of formulas M(p) for deterministic resolu-tion based algorithms. In Section 1.1.7 we give reasons why formulasfrom M(p) should be hard for deterministic SAT-algorithms that do nothave any knowledge of a CS of the circuits checked for equivalence. InSection 1.1.8 we describe an e�cient resolution based SAT-algorithmfor equivalence checking of circuits with a known CS. In Section 1.1.9we show experimentally that formulas from M(p) are hard for existingSAT-solvers while a speci�cation aware algorithm easily solves them. InSection 1.1.10 some conclusions are made.



What Sat-Solvers can and cannot do 51.2 Common Speci�cation of Boolean CircuitsIn this section, we introduce the notion of a common speci�cationof Boolean circuits. Let S be a combinational circuit of multi-valuedblocks (further referred to as a speci�cation) speci�ed by a directedacyclic graph H. (An example of speci�cation is shown in Fig. 1.1a.)The sources and sinks of H correspond to primary inputs and outputsof S. Each non-source node of H corresponds to a multi-valued blockcomputing a multi-valued function of multi-valued arguments. Eachnode n of H is associated with a multi-valued variable V . If n isa source of H , then the corresponding variable speci�es values takenby the corresponding primary input of S. If n is a non-source nodeof S then the corresponding variable describes the values taken by theoutput of the block speci�ed by n. If n is a source (respectively a sink),then the corresponding variable is called a primary input variable( respectively primary output variable). We will use the notationC=G(A,B) to indicate that a) the output of a block G is associatedwith a variable C; b) the function computed by the block G is G(A,B);c) only two nodes of H are connected to the node n in H and thesenodes are associated with variables A and B.Denote by D(A) the domain of a variable A associated with a nodeof H. The value of jD(A)j is called the multiplicity of A. If themultiplicity of every variable A of S is equal to 2 then S is a Booleancircuit .Now we describe how a Boolean circuit N can be produced from aspeci�cation S by encoding the multi-valued variables. Let D(A) =fa1; : : : ; atg be the domain of a variable A of S. Denote by q(A) aBoolean encoding of the values of D(A) that is a mapping q : D(A)!f0; 1gm . Denote by length(q(A)) the number of bits in q that is the valueof m. The value of q(ai), ai 2 D(A) is called the code of ai. Given anencoding q of length m of a variable A associated with a block of S,denote by v(A) the set of m coding Boolean variables.Example 1 Let B be a multi-valued variable and D(B) = fb1; b2; b3; b4g.Then the multiplicity of the variable B is 4. Let a mapping q be speci�edby the following expressions q(b1) = 01; q(b2) = 11; q(b3) = 10; q(b4) =00. Then q speci�es an encoding of the values of B of length(q(B)) equalto 2. The set of coding variables v(B) = fq1; q2g consists of two Booleanvariables. The Boolean vector 01 where q0 = 0,q1 = 1 is the code of b1under the encoding q.In the following exposition we make the assumptions below.



6Assumption 1 Each gate of a Boolean circuit and each block of a spec-i�cation has two inputs and one output.Assumption 2 The multiplicity of each primary input (or output) vari-able of a speci�cation is a power of 2.Assumption 3 If V is a primary input (or output) variable of a speci-�cation, then length(q(A)) = log2(jD(A)j)Assumption 4 If a1 and a2 are values of a variable A of a speci�cationand a1 6= a2, then q(a1) 6= q(a2).Assumption 5 If A and B are two di�erent variables of a speci�cation,then v(A) \ v(B) = ;.Remark 1 From Assumptions 2, 3 and 4 it follows that if A is a pri-mary input (or output) variable, a mapping q : D(A)! f0; 1gm is bijec-tive. In particular, any assignment to the variables of v(A) is a code ofsome value a 2 D(A).Definition 1 Given a Boolean circuit I, denote by Inp(I) (respectivelyOut(I)) the set of variables associated with primary inputs (respectivelyprimary outputs) of I.Definition 2 Let X1 and X2 be sets of Boolean variables and X2 � X1.Let y be an assignment to the variables of X1. Denote by proj(y;X2) theprojection of y on X2 i.e. the part of y that consists of the assignmentsto the variables of X2.Example 2 Let X1 = fx1; x2; x3; x4; x5g and X2 = fx1; x3; x5g that isX2 � X1. Let y be the assignment (x1 = 0; x2 = 1; x3 = 1; x4 = 0; x5 =0) to the variables of X1. Then proj(y;X2) is equal to (x1 = 0; x3 =1; x5 = 0).Definition 3 Let C=G(A,B) be a block of speci�cation S. Let q(A),q(B), q(C) be encodings of variables A,B, and C respectively. A Booleancircuit I is said to implement the block G if the following three con-ditions hold:The set Inp(I) is a subset of v(A) [ v(B).The set Out(I) is equal to v(C).If the set of values assigned to v(A) and v(B) form codes q(a) andq(b) respectively where a 2 D(A), b 2 D(B), then I(z0)=q(c) where



What Sat-Solvers can and cannot do 7

0

0

1

1

1

1

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

01

0

1 0

0 1

0 1

0 0

0

0 0

(a)

(c)

0

0

0

1

1

1

0

1

1

0

1

1

1

0

1

0

1

0

1

1 0

0 0

1 0

0 1 0

0 1

0 0 1

1 0 0

1

0

1

0

0 0

0

0

0

0

0

(b)

(d)

0 1 0

G1 G2A B F
C KEG3 C = G1(A;B)B CAa0a0a0a1a1a1a1

b1b2b3b0b2b3
c1c1c0c2c2c1c0

b0a0 b1
c0

q1(C)q1(A) q1(B)q1(C) = I1(q1(A); q1(B)) q2(C) = I2(q2(A); q2(B))q2(A) q2(B) q2(C)

Figure 1.1. A speci�cation and the functionality of two implementations of block G1



8 z0 is the projection of the assignment z=(q(a),q(b)) on Inp(I),I(z0) is the value taken by I at z0, and c=G(a,b)Example 3 In Fig. 1.1a a speci�cation of three blocks is shown. Thefunctionality of two di�erent implementations of the block C=G1(A,B)(Fig 1.1b) is shown in Fig. 1.1c and 1.1d. Here D(A)=fa0,a1g,D(B)=fb0,b1,b2,b3g and D(C)=fc0,c1,c2g. Since A and B are pri-mary input variables they are encoded with a minimum length code andq1(A)=q2(A) and q1(B)=q2(B) where q1(a0)=0, q1(a1)=1, q1(b0)=00,q1(b1)=01, q1(b2)=10, q1(b3)=11. Finally, the encodings q1(C) andq2(C) are q1(c0)=00, q1(c1)=10, q1(c2) = 01 and q2(c0)=100, q2(c1)=010,q2(c2)=001.Remark 2 The reason why Inp(I) in De�nition 3 may not include allthe variables of v(A) and/or v(B) is that the function G(A;B) may notdistinguish some values of A or B. (G(A;B) does not distinguish, say,values a1; a2 2 D(A), if for any b 2 D(B), G(a1; b) = G(a2; b).) Soto implement G(A;B) the circuit I may need only a subset of variablesof v(A) [ v(B). This situation is illustrated in Fig. 1.2. Due to thefact that some values of the variable C are indistinguishable by G2, onlytwo outputs of the implementation block I(G1) (out of the three) areconnected to the inputs of I(G2). This said, henceforth, for the sakeof simplicity, we will write I(q(a),q(b)) meaning I(q0(a),q0(b)), q0(a)=proj(q(a),Inp(I)) and q0(b)=proj(q(b),Inp(I)).Definition 4 Let S be a multi-valued circuit. A Boolean circuit N issaid to implement the speci�cation S, if it is built according to thefollowing two rules.Each block G of S is replaced with an implementation I of G.Let the output of block G1 (speci�ed by variable C) be connectedto an input of block G2 (speci�ed by the same variable C) in S.Then the outputs of the circuit I1 implementing G1 are properlyconnected to inputs of circuit I2 implementing G2. Namely, theprimary output of I1 speci�ed by a Boolean variable qi 2 v(C) isconnected to the input of I2 speci�ed by the same variable of v(C)if qi 2 Inp(I2).Fig. 1.2 gives an example of a speci�cation (Fig. 1.2a) and its imple-mentation (Fig. 1.2b).Remark 3 Let N be an implementation of a speci�cation S. Let p bethe largest number of gates used in an implementation of a multi-valued



What Sat-Solvers can and cannot do 9

(a) (b)

G1
G2 G3D EC
F H

A B I(G1)
I(G2) I(G3)

v(A) v(B)
v(D) v(C)

v(H)v(F )
v(E)

Figure 1.2. A speci�cation and its implementationblock of S in N . We will say that S is a speci�cation of granularity pfor N .Definition 5 The topological level of a block G in a speci�cation Sis the length of the longest path from a primary input of S to G. (Thelength of a path is measured in the number of blocks on it. The topologicallevel of a primary input is assumed to be 0.) Denote by level(G) thetopological level of G in S.Remark 4 Let N be an implementation of a speci�cation S. From Re-mark 1 it follows that for any value assignment h to the input variablesof N there is a unique set of values (x1,: : : ,xk), where xi 2 D(Xi) suchthat h=(q(x1),: : : ,q(xk)). That is there is one-to-one correspondencebetween assignments to primary inputs of S and N . The same appliesto primary outputs of S and N .Definition 6 Let N be an implementation of S. Given a Boolean vec-tor y of assignments to the primary inputs of N , the corresponding vectorY=(x1,..,xk) such that y=(q(x1),: : : ,q(xk)) is called the pre-image ofy.Proposition 1 Let N be a circuit implementing speci�cation S. LetI(G) be the implementation of a block C=G(A,B) of S in N . Let y be



10

(a) (b)

I(G2)
y = (q(a); q(b); q(d); q(e))v(A) = q(a) v(B) = q(b)

v(H) = q(h)
v(D) = q(d)

v(F ) = q(f)
v(C) = q(c)I(G1)

I(G3) v(E) = q(e) G1A = a B = b
C = cD = d G3G2

Y = (a; b; d; e)
E = e

F = f H = h

Figure 1.3. An illustration to Proposition 1a value assignment to the primary input variables of N and Y be thepre-image of y. Then the values taken by the primary outputs of I(G)(under the assignment y to the inputs of N) form the code q(c) of a valuec, c 2 D(C). The latter is the value taken by the output of G when theinputs of S take the values speci�ed by Y .Proofs of Proposition 1 and the following Proposition 2 are simpleand so we omit them. Instead, we explain Proposition 1 in Fig. 1.3.Suppose that y is an assignment to the primary input variables of theBoolean circuit (Fig. 1.3a) that is an implementation of the speci�-cation shown in Fig. 1.3b. According to Remark 4, y can be repre-sented as (q(a); q(b); q(d); q(e)) where a; b; d; e are values of the variablesA;B;D;E of the speci�cation respectively. The pre-image of y is thevector Y = (a; b; d; e). Then the outputs of gates G1,G2 and G3 takevalues c = G1(a; b),f = G2(d; c) and h = G3(c; e) respectively. SinceI(G1),I(G2) and I(G3) are implementations of G1,G2,G3 respectively,their outputs take values q(c),q(f) and q(h) respectively.Proposition 2 Let N1, N2 be circuits implementing a speci�cation S.Let each primary input (or output) variable X of S have the same en-coding in N1 and N2. Then Boolean circuits N1 and N2 are functionallyequivalent.Definition 7 Let N1, N2 be two functionally equivalent Boolean cir-cuits. Let N1, N2 implement a speci�cation S so that for every primary



What Sat-Solvers can and cannot do 11input (output) variable X encodings q1(X) and q2(X) (used when produc-ing N1 and N2 respectively) are identical. Then S is called a commonspeci�cation (CS) of N1 and N2.Assumption 6 Let S be a CS of N1,N2 and C be a variable of S. Wewill assume that v1(C) =v2(C) if C is a primary input variable andv1(C) \ v2(C) = ; otherwise.Definition 8 Let S be a CS of N1,N2. Let p1 (respectively p2) be thegranularity of S with respect to N1 (respectively N2). Then we will saythat S is a CS of N1,N2 of granularity p = max(p1,p2).Definition 9 Given two functionally equivalent Boolean circuits N1,N2, S is called the �nest common speci�cation if it has the smallestgranularity p among all the CSs of N1 and N2.1.3 Equivalence Checking as SATIn this section, we recall a common way of reducing equivalence check-ing to the satis�ability problem.Definition 10 A disjunction of literals of Boolean variables not con-taining two literals of the same variable is called a clause. A conjunctionof clauses is called a conjunctive normal form (CNF).Definition 11 Given a CNF F , the satis�ability problem (SAT) isto �nd a value assignment to the variables of F for which F evaluatesto 1 (also called a satisfying assignment) or to prove that such anassignment does not exist. A clause K of F is said to be satis�ed by avalue assignment y if K(y) = 1. If K(y) = 0, the clause K is said to befalsi�ed by y.The standard conversion of an equivalence checking problem into aninstance of SAT is performed in two steps. Let N1 and N2 be Booleancircuits to be checked for equivalence. At the �rst step of this conversion,a circuit M called a miter [3] is formed from N1 and N2. The miterM is obtained by 1) identifying the corresponding primary inputs of N1and N2; 2) XORing each pair of corresponding primary outputs of N1and N2; 3) ORing the outputs of the added XOR gates. So the miterof N1 and N2 evaluates to 1 if and only if for some input assignment aprimary output of N1 and the corresponding output of N2 evaluate todi�erent values. Therefore, the problem of checking the equivalence ofN1 and N2 is equivalent to testing the satis�ability of the miter of N1and N2.



12At the second step of conversion, the satis�ability of the miter isreduced to that of a CNF formula F . This formula is a conjunction ofCNF formulas F 1,..,F n specifying the functionality of the gates of Mand a one-literal clause that is satis�ed only if the output of M is set to1. The CNF F i speci�es the i-th gate gi of M . Any assignment to thevariables of F i that is inconsistent with the functionality of gi falsi�esa clause of F i (and vice versa, a consistent assignment satis�es all theclauses of F i.) For instance, the AND gate y=x1x2 is speci�ed by thefollowing three clauses �x1_ �x2_ y, x1_ �y, x2_ �y.1.4 Class M(p) and general resolutionIn this short section we formally de�ne the class of equivalence check-ing formulas we consider in the �rst part of this chapter. Besides, wedescribe the general resolution system.Definition 12 Given a constant p, a CNF formula F is a member ofthe class M(p) if and only if it satis�es the following two conditions.F is the CNF formula (obtained by the procedure described in Sec-tion 1.1.3) specifying the miter of a pair of functionally equivalentcircuits N1,N2.N1,N2 has a CS of granularity p0 where p0 � p.Definition 13 Let K and K 0 be clauses having opposite literals of avariable (say variable x) and there is only one such variable. The resol-vent of K , K 0 in variable x is the clause that contains all the literals ofK and K 0 but the positive (i.e. literal x) and negative (i.e. literal �x)literals of x. The operation of producing the resolvent of K and K 0 iscalled resolution.Definition 14 General resolution is a proof system of propositionallogic that has only one inference rule. This rule is to resolve two existingclauses to produce a new one. Given a CNF formula F , a proof L(F )of unsatis�ability of F in the general resolution system consists of asequence of resolutions resulting in the derivation of an empty clause(i.e. a clause without literals).General resolution is complete. This means that given an unsatis�ableformula F there is always a sequence of resolutions L(F ) in which anempty clause is derived.



What Sat-Solvers can and cannot do 131.5 Computation of existentially impliedfunctionsIn this section, we introduce the notion of existentially implied func-tions that is used in Section 1.1.6 in the de�nitions of �ltering and cor-relation functions.Definition 15 Let F (X1;X2) be a Boolean function where X1 and X2are sets of Boolean variables. The function H(X2) is called existen-tially implied by F ifF (X1,X2) ! H(X2)if H(z)=1 where z is an assignment to the variables of X2, thenthere is an assignment y to the variables of X1 such that F (y,z)=1.Remark 5 Given a function F (X1,X2), the function H(X2) existen-tially implied by F is unique. It can be obtained from F by existentiallyquantifying away the variables of X1.Proposition 3 Let F (X1;X2) and H(X2) be CNF formulas whereH(X2) consists of all the clauses depending only on variables from X2that can be derived from F (X1,X2) by resolution. Then H(X2) is exis-tentially implied by F (X1,X2).Proof. The CNF F (X1,X2) implies H(X2) because each clause ofH is implied by F since it is derived by resolution. Assume that His not existentially implied by F . Then there is an assignment z tothe variables of X2 such that H(z)=1 and for any assignment y to thevariables of X1, F (y,z)=0. However, this means that F implies a clauseK depending only on variables of X2 such that K(z)=0. Since K shouldbe in H, then H(z) should be equal to 0, which leads to a contradiction.Definition 16 Let F be a set of clauses. Denote by supp(F) the setof variables whose literals occur in clauses of F .To estimate the complexity of obtaining the function existentially im-plied by F in general resolution, we need the following proposition.Proposition 4 Let F be a set of clauses that implies a clause K. Thenthere is a sequence of at most 3jsupp(F )j resolution steps that results inthe derivation of the clause K or a clause that implies K.Proof. Denote by F 0 the formula that is obtained from F by makingthe assignments that set the literals of K to 0 (and removing the sat-is�ed clauses and the literals set to 0). It is not hard to see that F 0 is



14unsatis�able since it implies an empty clause. So there is a resolutionproof L(F 0) that results in deducing an empty clause. Then by replacingeach clause of F 0 involved in L(F 0) with its \parent" clause from F weget a sequence of resolutions resulting in deducing either the clause Kor a clause that impliesK. The number of resolvents in L(F 0) cannot bemore than 3jsupp(F 0)j (which is the total number of clauses of jsupp(F 0)jvariables) and so it cannot be more than 3jsupp(F )j.Remark 6 From Propositions 3 and 4 it follows that given a CNFF (X1;X2) one can obtain the function H(X2) existentially implied by Fin no more than 3jsupp(F )j resolution steps.1.6 Equivalence Checking in General ResolutionIn this section, we prove some results about the complexity of formu-las of the class M(p) (describing equivalence checking of circuits with aCS of granularity p) in general resolution. The main idea of the proofis that if S is a CS of N1 and N2, then their equivalence checking re-duces to computing �ltering and correlation functions. For each vari-able C of the speci�cation S one needs to compute �ltering functionsFf(v1(C)),Ff(v2(C)) and the correlation function Cf(v1(C); v2(C)).Here v1(C) (respectively v2(C)) are coding variables of the encodingq1(C) (respectively q2(C)) used when obtaining the implementation N1(respectively N2).The three main properties of these functions are thatThey can be built based only on the information about the topol-ogy of S and about \assignment" of gates of N1 and N2 to blocksof S.Filtering functions and correlation functions corresponding to pri-mary input variables of the speci�cation are constants.Filtering and correlation functions for a variable C specifying theoutput of a block G(A;B) can be computed \locally" from �lteringand correlation functions of variables A and B and CNFs specify-ing implementations I1(G) and I2(G). So these functions can becomputed in topological order starting with inputs and proceedingto outputs.A general scheme for the computation of �ltering and correlation func-tions is shown in Fig. 1.4. To compute the �ltering functions Ff(v1(C))and Ff(v2(C)) and the correlation function Cf(v1(C); v2(C)) one needsto know �ltering functions Ff(v1(A)),Ff(v2(A)),Ff(v1(B)), Ff(v2(B))and correlation functions Cf(v1(A); v2(A)),Cf(v1(B); v2(B)).



What Sat-Solvers can and cannot do 15
G

B
C

A
I1(G) I2(G)

v1(A) v1(B) v2(A) v2(B)

Cf (v1(C); v2(C))v1(C) v2(C)Ff (v1(C)) Ff (v2(C))

Ff (v2(B))Ff (v1(A)) Ff (v1(B)) Ff (v2(A))Cf (v1(B); v2(B))Cf (v1(A); v2(A)),Figure 1.4. Computation of �ltering and correlation functionsIn this chapter, we consider computation of �ltering and correlationfunctions (represented as CNF formulas) in the general resolution proofsystem. However, one can use other ways of computing these functions,for example, employing BDDs[4].Definition 17 Let N be an implementation of a speci�cation S. Let Cbe a variable of S. A function Ff is called a �ltering function if:supp(Ff) � v(C).If an assignment z to the variables of v(C) is a code q(c),c 2 D(C), then Ff(z)=1. Otherwise, Ff(z)=0.Remark 7 If C is a primary input variable of S , then Ff(v(C))�1.Indeed, as it follows from Remark 1, any assignment to v(C) is the codeof a value c 2 D(C).Proposition 5 Let N be an implementation of a speci�cation S. LetC=G(A,B) be a block of S. Let F be the CNF formula specifying N builtas described in Section 1.1.3 and F (I(G)) be the part of F specifying the



16

A
CG

B

Ff (v(A))^ Ff (v(B))^ F (I(G))! Ff (v(c))

v(B)v(A)
v(C)

Ff (v(A)) Ff (v(B))
I(G) F (I(G))

Figure 1.5. Computation of a �ltering functionimplementation I(G) of G in N . Then P existentially implies Ff(v(C))where P=Ff(v(A)) ^ Ff(v(B)) ^ F (I(G)).Proof. To make it easier for the reader to \visualize" the proof, weillustrate the proposition in Fig. 1.5. To prove that P ! Ff (v(C)) oneneeds to show that any assignment that sets P to 1 also sets Ff (v(C))to 1. It is not hard to see that the support of all the functions of theexpression P ! Ff (v(C)) is a subset of supp(F (I(G))). Let h=(x,y,z)be an assignment that sets P to 1 where x,y,z are assignments to thevariables from v(A),v(B) and v(C) respectively. Then h has to set to 1the functions Ff (v(A)), Ff (v(B), F (I(G)). Since h sets Ff (v(A)) to 1,then x=q(a), a 2 D(A). Since h sets Ff (v(B)) to 1, then y=q(b), b 2D(B). So h = (q(a); q(b); z). To set to 1 F (I(G)), assignment z has tobe equal to q(c), where c=G(a,b). Then h sets Ff (v(C)) to 1.Assume that Ff (v(C)) is not existentially implied by P . Then thereexists an assignment z=q(c), c 2 D(C) such that Ff (z)=1 and for anyassignments x and y to the variables of v(A) and v(B) respectively,P (x,y,z)=0. However, P (q(a), q(b), z) = 1 where a and b are values ofA and B such that G(a,b)=c, which leads to a contradiction.Definition 18 Let S be a CS of circuits N1 and N2 and C be a variableof S. A function Cf is called a correlation function for encodings q1and q2 of the values of C (used when producing N1 and N2) if :supp(Cf ) � v1(C) [ v2(C) .



What Sat-Solvers can and cannot do 17
I1(G) I2(G)

v1(A) v1(B) v2(A) v2(B)
v2(C)v1(C)

 � F (I1(G))G C
BA

 � F (I2(G))
Filtering = Ff (v1(A)) ^ Ff (v1(B)) ^ Ff (v2(A)) ^ Ff (v2(B))

Filtering ^ Correlation ^ Implementation ! Cf (v1(C); v2(C))

Correlation = Cf (v1(A); v2(A)) ^ Cf (v1(B); v2(B))Implementation = F (I1(G)) ^ F (I2(G))Figure 1.6. Computation of a correlation functionCf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C)such that z1=q1(c) and z2=q2(c) where c 2 D(C). OtherwiseCf(z1, z2)=0.Remark 8 If C is a primary input variable of S, then Cf(v1(C),v2(C))� 1. Indeed, as it follows from Remark 1, any assignment to v1(C) orv2(C) is the code of a value c 2 D(C). Besides, from the de�nition of CSit follows that q1(C)=q2(C). Finally, from Assumption 6 it follows thatv1(C) = v2(C). So any assignment (x; y) to the variables of v1(C),v2(C)can be represented as (q1(c),q2(c)), c 2 D(C).Proposition 6 Let S be a CS of circuits N1,N2. Let C = G(A;B) bea block of S. Let F be the CNF formula specifying the miter of N1,N2built as described in Section 1.1.3. Let F (I1(G)) and F (I2(G)) be thepart of F specifying the implementation I1(G) and I2(G) of G in N1 andN2 respectively. Then P existentially implies Cf(v1(C); v2(C)) whereP = Filtering ^ Correlation ^ ImplementationFiltering = Ff(v1(A)) ^ Ff(v1(B)) ^ Ff(v2(A)) ^ Ff(v2(B))Correlation = Cf(v1(A),v2(A)) ^ Cf(v1(B),v2(B))



18 Implementation = F (I1(G)) ^ F (I2(G)).Proof. To make it easier for the reader to \visualize" the proof, we il-lustrate the proposition in Fig. 1.6. To prove that P impliesCf (v1(C),v2(C)) one needs to show that any assignment that sets Pto 1 also sets Cf (v1(C),v2(C)) to 1. It is not hard to see that the sup-port of all the functions of the expression P ! Cf (v1(C),v2(C)) is asubset of supp(F (I1(G)) [ supp(F (I2(G)). Let h=(x1, x2, y1, y2, z1,z2) be an assignment that sets P to 1 where x1, x2, y1, y2, z1, z2 areassignments to v1(A), v2(A), v1(B), v2(B), v1(C), v2(C) respectively.Then h has to set to 1 all the functions the conjunction of which forms P .Since h has to set the function Filtering to 1, then x1=q1(a1), x2=q2(a2)where a1,a2 2 D(A) and y1=q1(b1) , y2=q2(b2), where b1,b2 2 D(B). Soh=(q1(a1),q2(a2), q1(b1),q2(b2), z1, z2). Since h sets the function Cor-relation to 1, then a1 has to be equal to a2 and b1 has to be equal tob2. So h can be represented as (q1(a),q2(a), q1(b),q2(b), z1, z2) wherea 2 D(A) and b 2 D(B). Since h sets the function Implementation to1, then z1 has to be equal to q1(c), c=G(a,b) and z2 has to be equal toq2(c). So h is equal to (q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence itsets the correlation function Cf (v1(C),v2(C)) to 1.Assume that Cf (v1(C),v2(C)) is not existentially implied by P . Thenthere exists an assignment z1=q1(c), z2=q2(c) to the variables of v1(C)and v2(C) respectively such that Cf (z1, z2)=1 and for any assignmentx1, x2, y1, y2 to the variables of v1(A), v2(A), v1(B), v2(B) respec-tively, P (x1, x2, y1, y2, z1, z2)=0. However, P (q1(a), q2(a), q1(b), q2(b),z1, z2)=1 where a, b are the values of A and B respectively for whichc=G(a,b). This leads to a contradiction.Proposition 7 Let F be a formula of M(p) specifying the miter of cir-cuits N1,N2 obtained from a CS S of granularity p. The unsatis�abilityof F can be proven by a resolution proof of no more than d�n�36p reso-lution steps where n is the number of blocks in S and d is a constant.Proof. From Proposition 5 and Proposition 6 it follows that onecan deduce correlation and �ltering functions for all the variables of Sstarting with blocks of topological level 1 and proceeding in topologicalorder. Indeed, let C=G(A,B) be a block of topological level 1. Then Aand B are primary input variables and the �ltering and correlation func-tions for them are known (they are tautologies). Then Ff (v1(C)) andFf (v2(C)) are existentially implied by F (I1(G)) and F (I2(G)) respec-tively. According to Proposition 5 Ff (v1(C)) (respectively Ff (v2(C)))can be derived by resolving clauses of F (I1(G)) (respectively F (I2(G))).Similarly, the correlation function Cf (v1(C),v2(C)) is existentially im-plied by F (I1(G)) ^ F (I2(G)). So it can be derived from the latter by



What Sat-Solvers can and cannot do 19resolution. After �ltering and correlation functions are computed forall the variables of level 1, the same procedure can be applied to vari-ables of topological level 2 and so on. If S consists of n blocks, thenin n steps one can deduce correlation functions for the primary outputvariables of S. At each step two �ltering and one correlation functionare computed for a variable C=G(A,B) of S. The complexity of thisstep is no more than 36p. Indeed, the support of all functions mentionedin Proposition 5 and Proposition 6 needed for computing Ff (v1(C)),Ff (v2(C)) and Cf (v1(C),v2(C)) is a subset of E=supp(F (I1(G))) [supp(F (I2(G))). The total number of gates in I1(G) and I2(G) isbounded by 2p, each gate having 2 inputs and 1 output. So the to-tal number of variables in E cannot be more than 6p. Then accordingto Remark 6 in no more than 36p steps one can deduce CNFs Ff (v1(C)),Ff (v2(C)) and Cf (v1(C),v2(C)). Then the total number of resolutionsteps one needs to deduce correlation functions for primary output vari-ables of S is bounded by n�36p.Now we show that from the correlation functions for primary out-put variables of S one can deduce an empty clause in the number ofresolution steps linear in n � p. Let C be a primary output variablespecifying the output of a block G of N . Let I1(G) and I2(G) be the im-plementations of G in N1 and N2 respectively. Let jD(C)j = 2k (By As-sumption 2 the multiplicity of C is a power of 2.) Then length(q1(C))=length(q2(C))=k. (By Assumption 3 values of C are encoded by a min-imal length encoding.)Now we show that there is always a correlation functionCf (v1(C),v2(C)) speci�ed by the CNF consisting of k pairs of two lit-eral clauses specifying the equivalence of corresponding outputs of I1(G)and I2(G). Let f1 and f2 be two Boolean variables of v1(C) and v2(C)respectively that specify corresponding outputs of N1 and N2. SinceS is a CS of N1 and N2, then q1(C) = q2(C). So any assignmentq1(c); q2(c) to v1(C) and v2(C) that satis�es Cf (v1(C); v2(C)) also satis-�es clauses K 0=f1_ � f2 and K 00=�f1 _ f2. So K 0 and K 00 are impliedby Cf (v1(C),v2(C)) and can be deduced by the procedure described inthe proof of Proposition 6. (The resolution steps one needs to deduceequivalence clauses are already counted in the expression n � 36p.)Using each pair of equivalence clauses K 0 and K 00 and the clausesspecifying the gate g=XOR(f1,f2) of the miter, one can deduce a singleliteral clause �g. This clause requires setting the output of this XORgate to 0. Each such a clause can be deduced in the number of resolu-tions bounded by a constant and the total number of such clauses cannotbe more than n�p. Finally, from these unit clauses and the clauses spec-ifying the �nal OR gate of the miter, the empty clause can be deduced



20in the number of resolutions bounded by n�p. So the empty clause isdeduced in no more than n�36p + d0�n�p steps where d0 is a constant.Finally, one can pick a constant d such n�36p + d0�n�p � d�n�36pRemark 9 In Proposition 7 we give a very conservative estimate of thecomplexity of deducing �ltering and correlation functions. In practicethis complexity can be much lower. In a sense, the best way to interpretthe theory developed in this section is that the problem of equivalencechecking of circuits N1,N2 with a CS S of n blocks can be partitionedinto n subproblems of computing �ltering and correlation functions foreach variable of S.Remark 10 In general, two functionally equivalent circuits N1,N2 mayhave more than one CS. In that case, when estimating the complexityof equivalence checking of N1,N2, it is natural to use the �nest CS (seeDe�nition 9).1.7 Equivalence Checking of Circuits withUnknown CSIn Section 1.1.6 we considered equivalence checking in general reso-lution that is a non-deterministic proof system. This means that theproof is guided by an \oracle" that points to the next pair of clauses tobe resolved. Deterministic algorithms do not have the luxury of usingan oracle. A natural question is whether a deterministic algorithm canbene�t from the fact that the formulas from M(p) have short proofs ofunsatis�ability in general resolution. (In this section, we assume thatone has to prove the unsatis�ability of a formula F , F 2M(p) specifyingequivalence checking of N1,N2 and no CS of N1,N2 is known.) A the-ory studying the complexity of �nding proofs started only a few yearsago [2, 18] and so it cannot fully answer this question yet. However,there is a good reason to believe that formulas of M(p) are hard fordeterministic algorithms. (Henceforth, by a deterministic algorithm wemean a resolution based deterministic SAT-algorithm.) Indeed, let usmake the following two very plausible assumptions. First assumption isthat there is a subclass M� of formulas from M(p) such that resolutionproofs described in the proof of Proposition 7 (we will refer to them asspeci�cation driven proofs) are \much shorter" than any other kindof resolution proofs. Second assumption is that �nding a non-trivial CSof two Boolean circuits N1 and N2 is hard. If the two assumptions aboveare true then formulas from M� should be hard. Indeed, speci�cationdriven resolution proofs very closely follow a CS of N1 and N2. So know-ing a short resolution proof of the unsatis�ability of F ,F 2M� one could



What Sat-Solvers can and cannot do 21easily recover the CS that \guided" that proof. That would mean thatthere is an e�cient algorithm for extracting a common speci�cation ofN1 and N2, which contradicts our second assumption. One more argu-ment in support of the conjecture that formulas from M(p) are hard fordeterministic algorithms is that formulas from M(p) are hard for thebest existing SAT-solvers (see Section 1.1.9).To give the reader an idea of how big the di�erence between the sizeof non-deterministic and deterministic proofs might be, let us considerthe class of formulas M(p) where p is bounded by a constant. FromProposition 7 it follows that speci�cation driven proofs consist of at mostd � n � 36p resolution steps that is they have linear size. On the otherhand, the complexity of these formulas for a deterministic algorithmshould be Length(F )g(p) where F is a formula of M(p), Length(F ) isthe length of F and g(p) is a monotone increasing function that is linear(or close to linear) in p. One argument in favor of such complexity is thata deterministic algorithm views the whole formula F as one \block" andthe complexity of speci�cation driven proofs is exponential in the size ofthe maximal block. Another reason is that as it was shown in [9] one canalways pick binary encodings of multi-valued variables of a CS so thatevery speci�cation driven proof will have to contain \long" clauses whoselength is a monotone increasing function of p. Then even formulas froma class M(p) with a quite small value of p, like p=10, can be extremelyhard for a deterministic algorithm. So it is quite possible that no matterhow good and e�cient your resolution based SAT-solver is it will not beable to solve even formulas of linear complexity!1.8 A Procedure of Equivalence Checking forCircuits with a Known CSIn the previous section, we gave some reasons why formulas fromM(p)should be hard for a deterministic resolution based SAT-algorithm. LetS be a CS of Boolean circuits N1,N2 and p be the granularity of S. LetF be the formula of M(p) specifying the equivalence checking of N1,N2.The good news is that if S is known then there is an e�cient algo-rithm for proving the unsatis�ability of F . This algorithm also proceedsin topological order of variables of S computing �ltering and correla-tion functions. The only di�erence with speci�cation guided proofs ofgeneral resolution is that the \power" of the proof \oracle" is limited.Namely, in general resolution this oracle guides every resolution step ofthe proof (pointing to the next pair of clauses to resolve). In the deter-ministic algorithm described below the speci�cation S serves as an oracleof \limited" power. Namely, this oracle helps only to identify subcircuits



22I1(G) and I2(G) N1 and N2 that are implementations of the same blockC = G(A;B). Finding the correlation function Cf (v1(C); v2(C)) and�ltering functions Ff (v1(C)) and Ff (v2(C)) is done by this algorithmwithout any \help".Our procedure of equivalence checking consists of two stages:1. For each variable C of S compute �ltering functions Ff (v1(C)),Ff (v2(C)) and the correlation function Cf (v1(C), v2(C)) proceedingin topological order of variables. If C is a primary input variable,then Ff (v1(C)), Ff (v2(C)) and Cf (v1(C), v2(C)) are tautologies. LetC=G(A,B). Then Ff (v1(C)) is built by computing the function existen-tially implied (see De�nition 15) by Ff (v1(A)) _ Ff (v1(B)) _ F (I1(G)).(F (I1(G)) is a subset of F specifying the implementation of G in N1.The function Ff (v2(C) is built similarly to Ff (v1(C)).) The functionCf (v1(C),v2(C)) is built by computing the function existentially im-plied by Ff (v1(A)) _ Ff (v1(B)) _ Ff (v2(A)) _ Ff (v2(B)) _ Cf (v1(A),v2(A)) _ Cf (v1(B), v2(B)) _ F (I1(G)) _ F (I2(G)).2. Once correlation functions are computed for all primary outputvariables of S, �nish the proof of unsatis�ability of F by invoking a SAT-solver like [8],[16]. (This SAT-solver is applied to the CNF consisting ofthe clauses describing the correlation functions for the primary outputvariables of S, the clauses specifying the gates XORing primary outputsof N1 and N2 and the �nal OR gate of the miter.)The complexity of this procedure is about the same as in generalresolution which is equal to d � n � 36p where d is a constant and n isthe number of blocks. The only di�erence is that in general resolutionno resolvent is generated twice while the procedure above may generateidentical clauses when computing correlation or �ltering functions. Soit will have to take care of removing duplicate clauses.The described procedure is 
exible with respect to the method of com-puting existentially implied functions. Below we describe a few options.Let F be a CNF and supp(F ) = X1 [ X2. Suppose one needs to com-pute a CNF H(X2) that is existentially implied by F . If the value ofjX2j is small, one can compute H(X2) by running 2k SAT-checks wherek=jX2j. For every assignment z to the variables of X2 one needs tocheck if there is an assignment y to the variables of X1 such that (y,z)satis�es F . If such an assignment exists then the next assignment ischecked. Otherwise, a clause consisting of literals of variables from X2that is falsi�ed by the assignment z is added to the clauses of H(X2).If the size of X2 is large, one can compute �ltering and correlationfunctions by existential quanti�cation of the variables of X1. In terms ofSAT, existential quanti�cation of a CNF F in a variable w of X1 meansadding to F all the resolvents that can be produced by resolving clauses



What Sat-Solvers can and cannot do 23of F in w. Of course, existential quanti�cation in all the variables of X1is very expensive in SAT and so it works only for blocks of a small size.However, less expensive methods for computing H(X2) in terms of SATcan be and should be developed.1.9 Experimental ResultsThe objective of experiments was to show that equivalence checking ofcircuits with a �ne CS S is easy if S is known and is hard otherwise. Toproduce circuits having a �ne CS we used the following procedure. To getmulti-valued speci�cations with realistic topologies we \borrowed" themfrom MCNC-91 benchmark circuits as follows. First, all the benchmarkswere technology mapped using SIS [20] consisting only of two-input ANDgates. Then from each obtained circuit N a multi-valued speci�cation Swas produced by replacing each two-input binary gate with a two-inputsingle output block of four-valued variables. (In other words, S changesthe functionality of N while preserving its topology.) Then from S twofunctionally equivalent Boolean circuits N1, N2 implementing S wereproduced using two di�erent sets of two-bit encodings of four-valuedvalues. The encodings were picked in such a way that the two di�erentimplementations of the same four-valued block in N1 and N2 had nofunctionally equivalent outputs. This way we guaranteed that internalfunctionally equivalent points in N1 and N2 may occur only by accident.Note that after encoding, the number of inputs and outputs in N1 andN2 is twice the number of inputs and outputs in the original Booleancircuit N . For instance, the two circuits produced from C6288 used as a\speci�cation" have the topology of a 16-bit multiplier and the numberof inputs and outputs of a 32-bit multiplier.In experiments we used the best tools that were available to us.Namely, we used the SAT-solver BerkMin downloaded from [1], the pro-gram Nanotrav built on top of the Colorado University Decision Diagram(CUDD) package [6] and a SAT-based equivalence checker CSAT [14](courtesy of Prof. Li of UCSB). We also tried the SAT-solver Zcha� [16],but BerkMin was up to three orders of magnitude faster on our formu-las. In the experiments we used the special mode of BerkMin designedfor equivalence checking that is described at [1]. BerkMin was run onthe formula specifying the miter M of N1 and N2 as described in Sec-tion 1.1.3. Nanotrav was used to build a BDD for the miterM and CSATchecked the satis�ability of the miter's output. We �rst ran the threetools on \regular" MCNC benchmarks to verify optimized versus non-optimized circuits. (We do not report these results). The tools showedquite decent performance. For example, BerkMin was able to quickly



24verify all the instances including the multiplier C6288. The same kind ofperformance was shown by CSAT. Nanotrav was able to build BDDs forall the miters except C6288 very quickly (in a few seconds). In all theexperiments we ran Nanotrav using settings suggested by Fabio Somenzi(private communication). In particular, the variable sifting option wason. In Table 1.1.9 we give runtimes of the three programs shown in ourexperiments. All the programs were run on a SUNW Ultra-80 systemwith clock frequency 450MHz. In all the experiments the time limit wasset to 60,000 sec. (16.6 hours). The results of the best out of the threeprograms is shown in black. In the last column we report run times of atrivial CS driven procedure. This procedure computes �ltering and cor-relation function of blocks in terms of SAT by existentially quantifyingvariables (as it was described in Section 1.1.8) and eventually deducesan empty clause.It is not hard to see that run times of the CS driven procedure arelinear in the size of circuits to be checked for equivalence. This is due tothe fact that the size of speci�cation blocks is �xed (and very small). Onthe other hand, the instances we generated turned out to be hard for thethree chosen tools. Even if one compares the best run times with runtimes of the CS driven procedure, it is not hard to see that the formerquickly increased as the size of the instances grew.It is unlikely that an industrial strength equivalence checker would domuch better on the circuits we generated because they have no function-ally equivalent points. Besides, one can always produce much harderequivalence checking problems by using even a slightly more coarsespeci�cation (Recall that in the experiments we used a very �ne CSS consisting of four-valued blocks. That is the circuits produced fromS were \almost" identical.) As we mentioned in the introduction, theproblem of �nding a short proof of equivalence of N1,N2 if a CS is notknown, comes down to recovering this CS from the description of N1,N2which is computationally very hard (if not infeasible).1.10 ConclusionsIn the �rst part of this chapter, we introduced a class M(p) of CNFformulas specifying equivalence checking of Boolean circuits with a com-mon speci�cation (CS). We showed that formulas ofM(p) are \easy" forgeneral resolution and gave reasons why those formulas should be hardfor a deterministic algorithm that does not know a CS of the circuits tobe checked for equivalence. We also gave some experimental evidencethat formulas from M(p) are hard for existing SAT-solvers. Besides, weformulated an e�cient SAT-algorithm for equivalence checking of cir-



What Sat-Solvers can and cannot do 25

Table 1.1. Equivalence checking of circuits with a �ne CSName of\speci�-cation" Numberof vari-ables Numberofclauses CSAT(sec.) Nanotrav(BDDs)(sec.) BerkMin(sec.) CSdriven(sec.)C880 1,612 9,373 162.8 60,000 3.7 1.1ttt2 2,770 17,337 281.0 1.0 11.7 1.3x4 4,166 24,733 284.3 4.7 17.3 1.8i9 4,954 29,861 75.3 1.5 32.7 2.1term1 3,504 22,229 1,604.6 40.9 35.9 1.6c7552 11,282 69,529 282.0 60,000 52.8 3.6c3540 5,248 33,199 34,905.8 60,000 64.1 2.3rot 5,980 35,229 163.6 19,315.6 72.2 2.19symml 960 6,105 31.07 1.9 113.2 0.5frg2 10,316 62,943 13,610.4 22.6 131.4 2.9frg1 3,230 20,575 265.8 60,000 330.3 1.7i10 12,998 77,941 60,000 60,000 445.0 4.8des 28,902 179,895 12,520.3 9.7 451.7 12.1dalu 9,426 59,991 17,496.9 60,000 518.6 3.1x1 8,760 55,571 13,580.3 13,009.6 950.2 2.8alu4 4,736 30,465 8,020.4 135.1 992.6 2.0i8 14,524 91,139 60,000 98.0 1,051.5 5.1c6288 9,540 61,421 60,000 60,000 1,955.1 5.2k2 11,680 74,581 60,000 59,392.9 5,121.5 4.3too large 58,054 376,801 60,000 60,000 60,000 15.2t481 19,042 123,547 60,000 60,000 60,000 6.3



26cuits with a known CS. The results of the �rst part of this chapter leadto the following two conclusions.
A resolution based SAT-solver (most probably) cannot be scalableeven on \easy" and practical formulas unless some extra informa-tion about the structure of short proofs is provided. (In case ofequivalence checking this extra information is provided by a CS.)

The SAT-solvers of the future should be very \intelligent" that isvery receptive to structural properties of the formula to be testedfor satis�ability.



What Sat-Solvers can and cannot do 272. Stable Sets of Points2.1 IntroductionIn the �rst part of this chapter, we showed that it is extremely im-portant for a SAT-solver to be \receptive" to structural properties ofCNF formulas. However, the existing algorithms are not very good attaking into account such properties. One of the reasons is that currentlythere is no \natural" way of traversing the search space. For example,in the DPLL procedure [7] which is the basis of almost all algorithmsused in practice the search is organized as a binary tree. In reality, thesearch tree is used only to impose a linear order on the points of theBoolean space to avoid visiting the same point twice. However, thisorder may be in con
ict with \natural" relationships between points ofthe Boolean space that are imposed by the CNF formula to be checkedfor satis�ability (for example, if this formula has some symmetries).In the second part, we introduce the notion of a stable set of points(SSP) [11]. We believe that SSPs can serve as a basis for constructingalgorithms that traverse the search space in a \natural" way. This maylead to creating SAT-solvers that are much more \intelligent" and ef-�cient than the existing state-of-the-art SAT-solvers. We show that aCNF formula F is unsatis�able if and only if there is a set of points of theBoolean space that is stable with respect to F . If F is satis�able thenany subset of points of the Boolean space is unstable, and an assignmentsatisfying F will be found in the process of constructing an SSP. We de-scribe a simple algorithm for constructing an SSP. Interestingly, thisalgorithm is, in a sense, an extension of Papadimitriou's algorithm [17](or a similar algorithm that is used in the well-known program calledWalksat [19]).A very important fact is that, generally speaking, a set of points thatis stable with respect to a CNF formula F depends only on the clauses(i.e. disjunctions of literals) F consists of. So the process of constructingan SSP can be viewed as a \natural" way of traversing the search spacewhen checking F for satis�ability. In particular, if F has symmetries,they can be easily taken into account when constructing an SSP. Toillustrate this point, we consider the class of CNF formulas that aresymmetric with respect to a group of permutations. We show that inthis case for proving the unsatis�ability of a CNF formula it is su�cientto construct a set of points that is stable modulo symmetry.If, for a class of formulas, SSPs are exponentially large, computinga monolithic SSP point-by-point is too time and memory consuming.We experimentally show that this is the case for hard random CNFsformulas. One of the possible solutions to this problem is to exclude



28some directions (i.e. variables) from consideration when computing anSSP. Such a set of points is stable only with respect to \movements" inthe allowed directions. By excluding directions one can always get anSSP of small size. We sketch a procedure of satis�ability testing in whichcomputing a monolithic SSP is replaced with constructing a sequence ofsmall SSPs with excluded directions.The second part of this chapter is structured as follows. In Sec-tion 1.2.2 we introduce the notion of an SSP. Section 1.2.3 relates anSSP with a set of points \reachable" from a point. A simple algorithmfor building an SSP point-by-point is described in Section 1.2.4. Wealso show experimentally in Section 1.2.4 that even small CNF formu-las may have large sets of SSPs and so computing SSPs point-by-pointis in general infeasible. In Sections 1.2.5, 1.2.6 we discuss two possibleways of using SSPs. In Section 1.2.5 we show that to prove a symmetricCNF formula to be unsatis�able it is su�cient to build an SSP modulosymmetries of that formula. Such an SSP can be sometimes e�cientlybuilt even point-by-point. Section 1.2.6 shows that the computation of amonolithic SSP can be replaced with the construction of so called SSPswith excluded directions whose size is easy to control. Finally, someconclusions are made in Section 1.2.7.2.2 Stable Set of PointsIn this section, we introduce the notion of an SSP. Let F be a CNFformula of n variables x1; : : : ; xn. Denote by B the set f0; 1g of valuestaken by a Boolean variable. Denote by Bn the set of points of theBoolean space speci�ed by variables x1,...,xn. A point of Bn is anassignment of values to all n variables.Definition 19 Let p be a point of the Boolean space falsifying a clauseC. The 1-neighborhood of the point p with respect to the clause C(written Nbhd(p,C)) is the set of points that are at Hamming distance1 from p and that satisfy C.Remark 11 It is not hard to see that the number of points in Nbhd(p;C)is equal to that of literals in C.Example 4 Let C = x1 _ x3 _ x6 be a clause speci�ed in the Booleanspace of 6 variables x1; : : : ; x6. Let p = (x1 = 0; x2 = 1; x3 = 1;x4 = 0; x5 = 1; x6 = 0) be a point falsifying C. Then Nbhd(p;C)consists of the following three points: p1 = (x1=1; x2 = 1; x3 = 1,x4 = 0; x5 = 1; x6 = 0), p2 = (x1 = 0; x2 = 1;x3=0; x4 = 0,x5 = 1; x6 = 0), p3 = (x1 = 0; x2 = 1; x3 = 1; x4 = 0; x5 = 1;x6=1).



What Sat-Solvers can and cannot do 29Points p1; p2; p3 are obtained from p by 
ipping the value of variablesx1,x3,x6 respectively i.e. the variables whose literals are in C.Denote by Z(F ) the set of points at which F takes value 0. If F isunsatis�able, Z(F ) = Bn.Definition 20 Let F be a CNF formula and P be a subset of Z(F ).Mapping g of P to F is called a transport function if, for any p 2 P ,the clause g(p) 2 F is falsi�ed by p. In other words, a transport functiong:P ! F is meant to assign each point p 2 P a clause that is falsi�edby p.Remark 12 We call mapping P ! F a transport function because, asit is shown in Section 1.2.3, such a mapping allows one to introducesome kind of \movement" of points in the Boolean space.Definition 21 Let P be a nonempty subset of Z(F ), F be a CNF for-mula, and g: P ! F be a transport function. The set P is called stablewith respect to F and g if 8p 2 P , Nbhd(p; g(p)) � P . As it was men-tioned before, \stable set of points" abbreviates to SSP.Remark 13 Henceforth, if we say that a set of points P is stable withrespect to a CNF formula F without mentioning a transport function,we mean that there is a function g:P ! F such that P is stable withrespect to F and g.Example 5 Consider an unsatis�able CNF formula F consisting of thefollowing 7 clauses: C1 = x1 _ x2, C2 = x2 _ x3, C3 = x3 _ x4,C4 = x4 _ x1, C5 = x1 _ x5, C6 = x5 _ x6, C7 = x6 _ x1. Clausesof F are composed of literals of 6 variables: x1,: : : ,x6. The following 14points form an SSP P : p1=000000, p2=010000, p3=011000, p4=011100,p5=111100, p6=111110, p7=111111, p8=011111, p9=011011,p10=010011, p11=000011, p12=100011, p13=100010, p14=100000. (Val-ues of variables are speci�ed in the order variables are numbered. Forexample, p4 consists of assignments x1=0, x2=1, x3=1, x4=1, x5=0,x6=0.) The set P is stable with respect to the transport function g spec-i�ed as: g(p1) = C1, g(p2) = C2, g(p3) = C3, g(p4) = C4, g(p5) = C5,g(p6) = C6, g(p7) = C7, g(p8) = C4, g(p9) = C3, g(p10) = C2, g(p11) =C1, g(p12) = C7, g(p13) = C6, g(p14) = C5.The set P and the transport function g are given in Fig. 1.7. Next toeach point pi, the clause Ck=g(pi) is shown. Besides, for each point pithe two points comprising Nbhd(pi; g(pi)) are indicated by arrows.



30 C1 = x1 _ x2,C2 =�x2 _ x3,

C6 =�x5 ^ x6,
C3 =�x3 _ x4,C4 =�x4 _ x1,C5 =�x1 ^ x5,

p1=000000p2=010000p3=011000p4=011100p5=111100p6=111110p7=111111C7 =�x6_ �x1,

p14=100000,p13=100010,
p11 = 000011;p10=010011,
p8=011111,p9=011011,

C5 =�x1 _ x5
C1 = x1 _ x2

C3 =� x3 _ x4C4 =�x4 _ x1

C6 =�x5 _ x6
C2 =�x2 _ x3
C7 =�x6_ �x1p12=100011,

Figure 1.7. Illustration to Example 5It is not hard to see that g indeed is a transport function i.e. forany point pi of P it is true that C(pi)=0 where C = g(pi). Besides,for every point pi of P , the condition Nbhd(p; g(p)) � P of De�nition 5holds. Consider, for example, point p10=010011. The value of g(p10) isC2, C2 = x2 _ x3 and Nbhd(p10; C2) = fp11 = 000011; p9 = 011011g, thelatter being a subset of P .Proposition 8 If there is a set of points that is stable with respect toa CNF formula F , then F is unsatis�able.Proof Assume the contrary. Let P be a set of points that is stablewith respect to F and a transport function g, and p� be a satisfyingassignment i.e. F (p�) = 1. It is not hard to see that p� =2 P becauseeach point p 2 P is assigned a clause C = g(p) such that C(p)=0 andso F (p)=0. Let p be a point of P that is the closest to p� in Hammingdistance. Denote by C the clause that is assigned to p by the transportfunction g i.e. C = g(p). Denote by Y the set of variables values ofwhich are di�erent in p and p�.Let us show that C can not have literals of variables of Y . Assumethe contrary, i.e. that C contains a literal of x 2 Y . Then, since P is



What Sat-Solvers can and cannot do 31stable with respect to F and g, it has to contain the point p0 which isobtained from p by 
ipping the value of x. But then p0 2 P is closerto p� than p. So we have a contradiction. Since C(p)=0 and C doesnot contain literals of variables whose values are di�erent in p and p� wehave to conclude that C(p�) = 0. This means that p� is not a satisfyingassignment and so we have a contradiction.Proposition 9 Let F be an unsatis�able CNF formula of n variables.Then set Z(F ) is stable with respect to F and any transport functionZ(F )! F .Proof Since F is unsatis�able, then Z(F ) = Bn. For each point p 2 Bn,condition Nbhd(p; g(p)) � Bn holds.Remark 14 From propositions 8 and 9 it follows that a CNF F is un-satis�able if and only if there is a set of points stable with respect toF .2.3 SSP as a reachable set of pointsIn this section, we introduce the notion of reachability that will beused in Section 1.2.4 to formulate an algorithm for constructing an SSP.Our main objective here is to show that the set of points reachable from apoint of the Boolean space is an SSP unless this set contains a satisfyingassignment.Definition 22 Let F be a CNF formula and g: Z(F )! F be a trans-port function. A sequence of k points p1; : : : ; pk, k � 2 is called a pathfrom p1 to pk in a set P with a transport function g if points p1,...,pk�1are in P and pi 2 Nbhd(pi�1,g(pi�1)), 2 � i � k. (Note that the lastpoint of the path, i.e. pk, does not have to be in P .) We will assumethat no point appears twice (or more) in a path.Example 6 Consider the CNF formula and transport function of Ex-ample 5. Let P be the set of points speci�ed in Example 5. The sequenceof points p1,p14,p13,p12 forms a path from p1 to p12. Indeed, it is not hardto check that Nbhd(p1; g(p1)) = fp2; p14g, Nbhd(p14; g(p14)) = fp13; p1g,Nbhd(p13; g(p13)) = fp14; p12g, Nbhd(p12; g(p12)) = fp13; p11g. So eachpoint p0 of the path (except the starting point i.e. p1) is contained in theset Nbhd(p00; g(p00)) where p00 is the preceding point.Definition 23 Let F be a CNF formula. A point p00 is called reachablefrom a point p0 by means of a transport function g : Z(F ) ! F ifthere is a path from p0 to p00 with the transport function g. Denote byReachable(p; g) the set consisting of a point p and all the points that arereachable from p by means of the transport function g.



32Proposition 10 Let F be a satis�able CNF formula, p be a point ofZ(F ) , and s be a satisfying assignment (i.e. s 62 Z(F )) that is theclosest to p in Hamming distance. Let g:Z(F ) ! F be a transportfunction. Then in Z(F ) there is a path from p to s with the transportfunction g i.e. the satisfying assignment s is reachable from p.Proof Denote by Y the set of variables whose values are di�erent inp and s. Since F (p)=0, then p 2 Z(F ) and the function g assigns aclause C to p where C(p)=0. All literals of C are set to 0 by p. Onthe other hand, since s is a satisfying assignment, then at least oneliteral of C is set to 1 by s. Then C contains a literal of a variable yfrom Y . Denote by p0 the point obtained from p by 
ipping the valueof y in p. The point p0 is reachable from p by means of the transportfunction g. If jY j = 1, then p0 is the satisfying assignment s. If jY j > 1,then p0 cannot be a satisfying assignment since, by our assumption, thesatisfying assignment s is the closest to p. Then after applying the samereasoning to the point p0, we conclude that the clause assigned to p0 byg must contain a literal of a variable y0 from Y n fyg. Flipping the valueof y0 in p0 we produce a point p00 that is either the satisfying assignments or is at distance jY j � 2 from s. Going on in this manner we reach thesatisfying assignment s in jYj steps.Proposition 11 Let P be a set of points that is stable with respectto a CNF formula F and a transport function g : P ! F . Then8p 2 P , Reachable(p; g) � P .Proof Assume the contrary, i.e. that there is a pointp� 2 Reachable(p; g) that is not in P . Let H be a path from p top�. Denote by p00 the �rst point in the sequence of points speci�ed by Hthat is not in P . (Points are numbered from p to p�). Denote by p0 thepoint preceding p00 in H. The point p0 is in P and the latter is stablewith respect to F and g. So Nbhd(p0; g(p0)) � P . The point p00 is inNbhd(p0; g(p0)) and so it has to be in P . We have a contradiction.Proposition 12 Let F be a CNF formula, g : Z(F )! F be a transportfunction, and p be a point from Z(F ). If P = Reachable(p; g) does notcontain a satisfying assignment for F , then P is stable with respect toF and g, and so F is unsatis�able.Proof Assume the contrary i.e. that P is not stable. Then there existsa point p0 of Reachable(p,g) (and so reachable from p) such that a pointp00 of Nbhd(p0,g(p0)) is not in Reachable(p,g). Since p00 is reachable fromp0 it is also reachable from p. We have a contradiction.



What Sat-Solvers can and cannot do 33Remark 15 From Proposition 12 it follows that a CNF F is satis�-able if and only if, given a point p 2 Z(F ) and a transport functiong : Z(F )! F , the set Reachable(p; g) contains a satisfying assignment.In [11] properties of SSPs are discussed in more detail.2.4 Testing Satis�ability of CNF Formulas bySSP ConstructionIn this section, we describe a simple algorithm for constructing an SSPthat is based on Proposition 12. Let F be a CNF formula to be checkedfor satis�ability. The idea is to pick a point p of the Boolean spaceand construct the set Reachable(p; g). Since no transport function g :Z(F )! F is known beforehand, it is built on the 
y. In the descriptionof the algorithm given below, the set Reachable(p; g) is broken down intotwo parts: Boundary and Body. Boundary consists of those points of thecurrent set Reachable(p; g) whose 1-neighborhood has not been exploredyet. At each step of the algorithm a point p0 of Boundary is extractedand a clause C falsi�ed by p0 is assigned as the value of g(p0). Then theset Nbhd(p0; C) is generated and its points (minus those that are alreadyin Body[Boundary) are added to Boundary. This goes on until a stableset is constructed (F is unsatis�able) or a satisfying assignment is found(F is satis�able).1 Generate a starting point p. Boundary = fpg. Body=;, g = ;.2 If Boundary is empty, then Body is an SSP and F is unsatis�able.The algorithm terminates.3 Pick a point p0 2 Boundary. Boundary=Boundary n fp0g.4 Find a setM of clauses that are falsi�ed by point p0. IfM = ;, thenthe CNF formula F is satis�able and p0 is a satisfying assignment.The algorithm terminates.5 Pick a clause C from M . Take C as the value of g(p0). Gen-erate Nbhd(p0; C). Boundary = Boundary [ (Nbhd(p0; C)nBody).Body = Body [ fp0g.6 Go to step 2.Interestingly, the algorithm described above can be viewed as an ex-tension of Papadimitriou's algorithm [17] (or a similar algorithm usedin the program Walksat [19]) to the case of unsatis�able CNF formulas.Papadimitriou's algorithm (and Walksat) can be applied only to satis�-able CNF formulas since it does not store visited points of the Boolean



34space. An interesting fact is that the number of points that one has toexplore to prove the unsatis�ability of a CNF formula can be very small.For instance, in example 5, an SSP of a CNF formula of 6 variables con-sists only of 14 points while the Boolean space of 6 variables consistsof 64 points. It can be shown that for a subclass of the class of 2-CNFformulas (a clause of a 2-CNF formula contains at most 2 literals) thesize of minimum SSPs grows linearly in the number of variables of theformula.A natural question to ask is: \What is the size of SSPs for \hard"CNF formulas?". One example of such formulas are random CNFs forwhich general resolution was proven to have exponential complexity [5].Table 1.2 gives the results of computing SSPs for CNF formulas fromthe \hard" domain (the number of clauses is 4.25 times the number ofvariables [15]). For computing SSPs we used the algorithm describedabove enhanced by the following heuristic. When picking a clause to beassigned to the current point p0 of Boundary (Step 5), we give preferenceto the clause C (falsi�ed by p0) for which the maximum number of pointsof Nbhd(p0; C) are already in Body or Boundary. In other words, whenchoosing the clause C to be assigned to p0, we try to minimize the numberof new points we have to add to Boundary.We generated 10 random CNFs of each size (number of variables). Thestarting point was chosen randomly. Table 1.2 gives the average valuesof the SSP size and the share (percent) of the Boolean space taken byan SSP. It is not hard to see that the SSP size grows very quickly. Soeven for very small formulas it is very large. An interesting fact thoughis that the share of the Boolean space taken by the SSP constructed bythe described algorithm steadily decreases as the number of variablesgrows.The poor performance of the proposed algorithm on random CNFformulas suggests that computing a \monolithic" SSP point-by-point istoo time and memory consuming. There are at least three ways of solvingthis problem. First way concerns computing SSPs for symmetric CNFformulas. In Section 1.2.5 we show that to prove that a symmetric CNFformula is unsatis�able it su�ces to build a set of points that is stablemodulo symmetry. Such a set of points can be very small. Anotherway of dealing with the exponential blow-up of SSPs is described inSection 1.2.6. The idea is to exclude some directions (i.e. variables)from consideration when computing an SSP. This way the size of anSSP can be drastically reduced. By constructing an SSP with excludeddirections one obtains a new implicate of the formula. By adding thisimplicate to the formula we make it \simpler" (in terms of the size ofits SSPs). By computing SSPs with excluded directions and adding the



What Sat-Solvers can and cannot do 35Table 1.2. SSPs of \hard" random CNF formulasnumber ofvariables SSP size #SSP/#All Space(%)10 430 41.9711 827 40.3912 1,491 36.4113 2,714 33.1314 4,931 30.1015 8,639 26.3616 16,200 24.7217 30,381 23.1818 56,836 21.6819 103,428 19.7320 195,220 18.6221 392,510 18.7222 736,329 17.5523 1,370,890 16.34corresponding implicates we replace the computation of a monolithicSSP with the construction of a sequence of small size SSPs. A third(and probably most promising) way of making SSP computation moree�cient is to build SSP in big \chunks" clustering \similar" points. Wedo not study this idea here leaving it for future research.2.5 Testing Satis�ability of Symmetric CNFFormulas by SSP ConstructionIn this section, we introduce the notion of a set of points that is stablemodulo symmetry. This notion allows one to modify the algorithm ofSSP construction given in Section 1.2.4 to take into account a formula'ssymmetry. The modi�cation itself is described at the end of the section.We consider only the case of permutations. However, a similar approachcan be applied to a more general class of symmetries e.g. to the casewhen a CNF formula is symmetric under permutations combined withthe negation of some variables.Definition 24 Let X = fx1; : : : ; xng be a set of Boolean variables. Apermutation � de�ned on set X is a bijective mapping of X ontoitself.Let F = fC1; : : : ; Ckg be a CNF formula. Let p = (x1; : : : ; xn) be apoint of Bn. Denote by �(p) the point (�(x1); : : : ; �(xn)). Denote by�(Ci) the clause that is obtained from Ci 2 F by replacing variablesx1; : : : ; xn with variables �(x1); : : : ; �(xn) respectively. Denote by �(F )



36the CNF formula obtained from F by replacing each clause Ci with�(Ci).Definition 25 A CNF formula F is called symmetric with respect topermutation � if the CNF formula �(F ) consists of the same clauses asF . In other words, F is symmetric with respect to � if each clause �(Ci)of �(F ) is identical to a clause Ck 2 F .Proposition 13 Let p be a point of Bn and C be a clause falsi�ed byp i.e. C(p)=0. Let � be a permutation of variables fx1; : : : ; xng andC 0 = �(C) and p0 = �(p). Then C 0(p0) = 0.Proof Let �(xi) be the literal of a variable xi that is present in C. Thisliteral is set to 0 by the value of xi in p. The variable xi is mapped to�(xi) in the clause C 0 and the point p0. Then the value of �(xi) in thepoint p0 is the same as that of xi in p. So the value of literal �(�(xi))in the point p0 is the same as the value of �(xi) in p i.e. 0. Hence, theclause C 0 is falsi�ed by p0.Remark 16 From Proposition 13 it follows that if F is symmetric withrespect to a permutation � then F (p) = F (�(p)). In other words, Ftakes the same value at points p and �(p).The set of the permutations, with respect to which a CNF formula issymmetric, forms a group. Henceforth, we will denote this group by G.The fact that a permutation � is an element of G will be denoted by� 2 G. Denote by 1 the identity element of G.Definition 26 Let Bn be the Boolean space speci�ed by variablesX=fx1,....,xng and G be a group of permutations speci�ed on X. De-note by symm(p,p0,G) the following binary relation between points ofBn. A pair of points (p; p0) is in symm(p; p0; G) if and only if there is� 2 G such that p0 = �(p).Definition 27 Points p and p0 are called symmetric if they are in thesame equivalence class of symm(p,p0,G).Definition 28 Let F be a CNF formula that is symmetric with respectto a group of permutations G and P be a subset of Z(F ). The set Pis called stable modulo symmetry with respect to F and a transportfunction g: P ! F if for each p 2 P , every pointp0 2 Nbhd(p; g(p)) is either in P or there is a point p00 of P that issymmetric to p0.Proposition 14 Let Bn be the Boolean space speci�ed by variablesX = fx1; : : : ; xng. Let p be a point of Bn, C be a clause falsi�ed by



What Sat-Solvers can and cannot do 37p, and a point q 2 Nbhd(p;C) be obtained from p by 
ipping the valueof a variable xi. Let � be a permutation of variables from X, p0 be equalto �(p), C 0 be equal to �(C), and q0 2 Nbhd(p0; C 0) be obtained from p0by 
ipping the value of variable �(xi). Then q0 = �(q). In other words,for each point q of Nbhd(p;C) there is a point q0 of Nbhd(p0; C 0) that issymmetric to q.Proof The value of a variable xk, k 6= i in q is the same as in p. Besides,the value of the variable �(xk) in q0 is the same as in p0 (q0 is obtainedfrom p0 by changing the value of the variable �(xi) and since k 6= i then�(xk) 6= �(xi)). Since p0 = �(p), then the value of xk in q is the same asthe value of variable �(xk) in q0. On the other hand, the value of variablexi in q is obtained by negation of the value of xi in p. The value of thevariable �(xi) in q0 is obtained by the negation of the value of �(xi) inp0. Hence the values of the variable xi in q and the variable �(xi) in q0are the same. So q0 = �(q).Proposition 15 Let F be a CNF formula, P be a subset of Z(F ), andg : P ! F be a transport function. If P is stable modulo symmetry withrespect to F and g, then the CNF formula F is unsatis�able.Proof Denote by K(p) the set of all points that are symmetric to thepoint p i.e. that are in the same equivalence class of the relation symmas p. Denote by K(P ) the union of the sets K(p), p 2 P . Extend thedomain of transport function g from P to K(P ) in the following way.Suppose p0 is a point that is in K(P ) but not in P . Then there is apoint p 2 P that is symmetric to p0 and so p0 = �(p), � 2 G. We assignC 0 = �(C), C = g(p) as the value of g at p0. If there is more than onepoint of P that is symmetric to p0, we pick any of them.Now we show that K(P ) is stable with respect to F andg: K(P ) ! F . Let p0 be a point of K(P ). Then there is a point pof P that is symmetric to p0 and so p0 = �(p). Then from Proposi-tion 14 it follows that for any point q of Nbhd(p; g(p)) there is a pointq0 2 Nbhd(p0; g(p0)) such that q0 = �(q). On the other hand, since P isstable modulo symmetry, then for any point q of Nbhd(p; g(p)) there is apoint q00 2 P symmetric to q and so q = ��(q00), �� 2 G (�� may be equalto 1 2 G if q is in P ). Then q0 = �(��(q00)). Hence q0 is symmetric toq00 2 P and so q0 2 K(P ). This means that Nbhd(p0; g(p0)) � K(P ) andso K(P ) is stable. Then according to Proposition 8, the CNF formulaF is unsatis�able.Remark 17 The idea of the proof was suggested to the author by HowardWong-Toi [22].



38Proposition 16 Let P � Bn be a set of points that is stable with respectto a CNF formula F and transport function g : P ! F . Let P 0 be asubset of P such that for each point p of P that is not in P 0 there is apoint p0 2 P 0 symmetric to p. Then P 0 is stable with respect to F and gmodulo symmetry.Proof Let p0 be a point of P 0. Let q0 be a point of Nbhd(p0,g(p0)). Pointp0 is in P because P 0 � P . Since P is a stable set then q0 2 P . From thede�nition of the set P 0 it follows that if q0 is not in P 0 then there is apoint r0 2 P 0 that is symmetric to q0. So each point q0 of Nbhd(p0; g(p0))is either in P 0 or there is a point of P 0 that is symmetric to q0.Definition 29 Let F be a CNF formula, G be its group of permuta-tions, p be a point of Z(F ), and g: P ! F be a transport function. Aset Reachable(p; g;G) is called the set of points reachable from p mod-ulo symmetry if a) the point p is in Reachable(p; g;G) b) each point p0that is reachable from p by means of the transport function g is either inReachable(p; g;G) or there exists a point p00 2 Reachable(p; g;G) that issymmetric to p0.Proposition 17 Let F be a CNF formula, G be its group of permuta-tions, p be a point of Z(F ), and g : P ! F be a transport function. Ifthe set P=Reachable(p; g;G) does not contain a satisfying assignment,then it is stable modulo symmetry with respect to F and g and so F isunsatis�able.Proof Assume the contrary, i.e. that P is not stable modulo symmetry.Then there is a point p0 2 P (reachable from p modulo symmetry) suchthat a point p00 of Nbhd(p0,g(p0)) is not in P and P does not contain apoint symmetric to p00. On the other hand, p00 is reachable from p0 andso it is reachable from p modulo symmetry. We have a contradiction.Remark 18 From Proposition 17 it follows that a CNF F that is sym-metric with respect to a group of permutations G is satis�able if and onlyif, given a point p 2 Z(F ), a transport function g : Z(F ) ! F , the setReachable(p; g;G) contains a satisfying assignment.Let F be a CNF formula and G be its group of permutations. Accord-ing to Proposition 17 when testing the satis�ability of F it is su�cient toconstruct a set Reachable(p; g;G). This set can be built by the algorithmof Section 1.2.4 in which step 5 is modi�ed in the following way. Beforeadding a point p00 from Nbhd(p0; C)n(Body [ Boundary) to Boundary itis checked if there is a point p� of Boundary[Body that is symmetric top00. If such a point exists, then p00 is not added to Boundary.



What Sat-Solvers can and cannot do 39For highly symmetric formulas the di�erence between the SSPs andSSPs modulo symmetry can be huge. For example, for pigeon-hole for-mulas the size of SSPs is exponential in the number of holes while thesize of minimum SSPS modulo symmetry is linear in the number ofholes [11].2.6 SSPs with Excluded DirectionsUnfortunately, the theory developed in Section 1.2.5 does not help insolving CNF formulas that have no (or have very few) symmetries. Inthis section, we describe a di�erent way of reducing the size of SSPs. Theidea is to replace the computation of a single SSP with the constructionof a sequence of SSPs whose stability is \limited". These SSPs arecalled SSPs with excluded directions. The key point is that by excludingsome directions from consideration one can drastically reduce the sizeof SSPs. The construction of an SSP with excluded directions allowsone to generate a new clause that is an implicate of the initial CNFformula. This clause can be added to the current formula, which makesthe obtained formula simpler in terms of the size of SSPs. For the newformula we can again build an SSP with excluded directions deducing anew implicate of the formula. A sketch of the procedure of satis�abilitytesting based on constructing SSPs with excluded directions is given atthe end of the section.Definition 30 Let F be a CNF formula. A set of excluded direc-tions is a set E of literals that a) does not contain opposite literals ofthe same variable; b) there is no clause C of F such that all literals ofC are in E.Definition 31 Let F be a CNF formula and C be a clause of F . LetE be a set of excluded directions. Denote by Nbhd(p,C,E) the set ofpoints of Nbhd(p;C) that set to 1 only the literals of C that are not inE.Remark 19 Since, according to De�nition 30, there is at least one lit-eral of C that is not in E, then Nbhd(p;C;E) is nonempty.Example 7 Let a point p be equal to (x1 = 0; x2 = 0; x3 = 0,x4 = 1; x5 = 1; x6 = 1). Let a clause C of a CNF F be equal tox1 _ x3 _ x6 and the set E of excluded directions be equal to fx4; x6g.The set Nbhd(p;C) consists of points p1; p2 and p3 obtained from p by
ipping the values of variables x1; x3; x6 respectively. On the other hand,set Nbhd(p;C;E) consists only of points p1; p2 because the point p3 setsto 1 an \excluded" literal, namely the literal x6 of E.



40Definition 32 Let P be a nonempty subset of Z(F ), F be a CNF for-mula, and g: P ! F be a transport function. Let E be a set of excludeddirections. The set P is called stable with respect to F, g and E ifa) each point p of P sets all the literals of E to 0; b) for each point p ofP , Nbhd(p; g(p); E) � P .Proposition 18 If there is a set of points that is stable with respect to aCNF formula F and a set E of excluded directions, then any assignmentsatisfying F has to set to 1 at least one literal of E. In other words, theclause obtained by the disjunction of the literals of E is an implicate ofF .Proof Let P be a set of points that is stable with respect to F , a trans-port function g and a set E of excluded directions. Make the assignmentssetting all the literals of E to 0. Remove from F all the clauses that aresatis�ed by these assignments and remove from the rest of the clauses allthe literals that are in E (since they are set to 0). The obtained formulaF 0 is unsatis�able because the set P is stable with respect to F 0 and atransport function g0. Indeed, according to De�nition 31, each point pof P sets all the literals of E to 0. Then the clause C = g(p) of F cannotbe satis�ed by the assignment setting a literal l of E to 0. (If a clause Cis satis�ed by this assignment, it must contain the literal l but then Ccannot be falsi�ed by p.) So all the clauses assigned to the points of P byg are still in F 0. Denote by g0 the transport function that maps a point pof P to the clause C 0 obtained from the clause C = g(p) by removing allthe literals of E. It is not hard to see that Nbhd(p;C 0) = Nbhd(p;C;E).So for each point p of P it is true that Nbhd(p; g0(p)) � P .Remark 20 A set of points stable with respect to a CNF F and a set Eof excluded directions can be constructed by the algorithm of Section 1.2.4modi�ed in the following way. At step 1 the algorithm generates a start-ing point setting all the literals from E to 0. At step 5 it generates setNbhd(p0; C;E) instead of Nbhd(p0; C).Example 8 Let p1 = (x1 = 0; x2 = 0; x3 = 0; x4 = 0; x5 = 0,x6 = 0; x7 = 0). Let F be a CNF formula containing clauses C1 =x1 _ x2 _ x3; C2 = x1 _ x4 _ x5 (and maybe some other clauses). Let theset E of excluded directions be equal to fx2; x3; x4; x5g. Denote by p2 thepoint obtained from p1 by 
ipping the value of x1. Taking into accountthat p1 falsi�es clause C1 and p2 falsi�es clause C2 we can form the fol-lowing transport function g: g(p1) = C1; g(p2) = C2. It is not hard to seethat the set of points P = fp1; p2g is stable with respect to clauses C1; C2,transport function g, and set E. Indeed, since literals x2 and x3 of C1are in E then Nbhd(p1; g(p1); E) = fp2g � P . On the other hand, since



What Sat-Solvers can and cannot do 41literals x4 and x5 of C2 are in E then Nbhd(p2; g(p2); E) = fp1g � P .From Proposition 18 we conclude that the clause C = x2 _ x3 _ x4 _ x5equal to the disjunction of literals of E is an implicate of the formula F .On the other hand, it is not hard to see that C is actually the resolventof clauses C1 and C2.Remark 21 From Example 8 it follows that for an unsatis�able formulaF we can always choose a set E of excluded directions so that there is aset of two points that is stable with respect to F and E. Indeed, due tocompleteness of general resolution, in F there is always a pair of clausesC1 and C2 that produce a new resolvent. Then we form the set E ofexcluded directions consisting of all the literals of C1 and C2 except theliterals of the variable in which the two clauses are resolved.Below we sketch a procedure of satis�ability testing based on com-puting SSPs with excluded directions.1 Compute an SSP P of a limited size trying to minimize the set Eof excluded directions2 Stop if a satisfying assignment is found. The formula is satis�able.3 Stop if E = ;. The formula is unsatis�able.4 Add the deduced clause (disjunction of the literals of E) to thecurrent CNF formula.5 Go to step 1.The idea of the procedure is that adding new implicates graduallyreduces the complexity of the initial formula F in terms of the size of\monolithic" SSPs. The claim that the size of SSPs decreases is based onthe following observations. Any set of points that is stable with respectto a CNF formula F is also stable with respect to a CNF F [fCg whereC is a clause. So by adding clauses we preserve the best SSPs seen so farand may produce even smaller ones. The latter follows from the fact thatby adding new implicates we will eventually produce an empty clause(at step 3 of the procedure above) and any set of clauses containing anempty clause has an SSP consisting of only one point.An important advantage of obtaining new implicates by computingSSPs with excluded directions is that directions can be excluded on the
y. The choice of directions to exclude should be aimed at the reductionof the size of the constructed SSP (that is the directions that may leadto the blow-up of the SSP should be excluded). Besides, when excludingdirections one can make use of the information about the structure ofthe CNF formula to be tested for satis�ability.



422.7 ConclusionsIn the second part of this chapter we show that satis�ability testingof a CNF formula reduces to constructing a stable set of points (SSP).An SSP of a CNF formula can be viewed as an inherent characteristicof this formula. We give a simple procedure for computing an SSP.As a practical application we show that the proposed procedure of SSPconstruction can be easily modi�ed to take into account symmetry (withrespect to variable permutation) of CNF formulas. Finally, we introducethe notion of an SSP with excluded direction and describe a procedure ofsatis�ability testing based on constructing such SSPs. We believe thatdeveloping the theory of SSPs may lead to creating SAT-algorithms thatare much more e�cient and \intelligent" than the ones implemented inthe state-of-the-art SAT-solvers.References[1] BerkMin web page. http://eigold.tripod.com/BerkMin.html[2] Bonet M.,Pitassi T., Raz R. On interpolation and automatizationfor Frege systems. SIAM Journal on Computing, 29(6):1939-1967,2000.[3] Brand D. Veri�cation of large synthesized designs. Proceedings ofICCAD-1993, pp. 534-537.[4] Bryant R. Graph based algorithms for Boolean function manipula-tion. IEEE Trans. on Computers, C(35):677-691.[5] V.Chvatal, E.Szmeredi. Many hard examples for resolution. J. ofthe ACM,vol. 35, No 4, pp.759-568.[6] CUDD web page. http://vlsi.colorado.edu/�fabio/[7] M.Davis, G.Logemann, D.Loveland. A Machine program for theo-rem proving. Communications of the ACM, 1962,vol. 5,pp. 394-397.[8] Goldberg E., Novikov Ya. BerkMin: A fast and robust SAT-solver.Design, Automation, and Test in Europe (DATE '02), pp. 142-149,March 2002.[9] Goldberg E., Novikov Ya. How good are current resolution basedSAT-solvers. presented at SAT-2003,Margherita Ligure - Porto�no(Italy), May 5-8,2003.[10] Goldberg E., Novikov Ya. Equivalence Checking of DissimilarCircuits. Presented at IWLS-2003. Laguna Beach, California,USA,May 28-30,2003.



What Sat-Solvers can and cannot do 43[11] E. Goldberg. Testing Satis�ability of CNF Formulas by Computinga Stable Set of Points. Proceedings of Conference on AutomatedDeduction, CADE 2002, pp.161-180.[12] E. Goldberg. Proving Unsatis�ability of CNFs locally. Journal ofAutomated Reasoning. vol 28:417-434, 2002.[13] A.Haken. The intractability of resolution. Theor. Comput. Sci. 39(1985),297-308.[14] F. Lu, L.-C. Wang, K.-T. Cheng, R. Huang. A circuit SAT solverwith signal correlation guided learning, DATE-2003, pp. 892-898.[15] D.Mitchell, B.Selman, H.J.Levesque. Hard and easy distributions ofSAT problems. Proceedings AAAI-92, San Jose,CA, 459-465.[16] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik.Cha�: Engineering an e�cient SAT-solver. Proceedings of DAC-2001,pp. 530-535.[17] C.Papadimitriou. On selecting a satisfying truth assignment. Pro-ceedings of FOCS-91, pp. 163-169[18] Razborov A., Alekhnovich M. Resolution is not automatizable un-less W[p] is tractable. Proc. of the 42nd IEEE FOCS-2001, pages210-219.[19] B.Selman, H.Kautz, B.Cohen. Noise strategies for improving localsearch. Proceedings of AAAI-94,Vol. 1, pp. 337-343.[20] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, A. San-giovanni -Vincentelli, Sequential circuit design using synthesis andoptimization. Proceedings of ICCAD, pp 328-333, October 1992.[21] Silva J., Sakallah K. GRASP: A Search Algorithm for PropositionalSatis�ability. IEEE Transactions of Computers, 1999, Vol. 48,pp.506-521.[22] H.Wong-Toi. Private communication.[23] H.Zhang. SATO: An e�cient propositional prover. Proceedings ofCADE-1997, pp. 272-275.





Index
1-neighborhood of a point, 28class M(p) (de�nition), 12class M(p) (introduction), 3common speci�cation (de�nition), 11common speci�cation (�nest), 11, 20common speci�cation (granularity), 3, 11common speci�cation (introduction), 1correlation function (de�nition), 16correlation function (iterative computa-tion), 17existential implication, 13�ltering function (de�nition), 15�ltering function (iterative computation),15general resolution system, 12

miter, 11reachable set of points, 31speci�cation (block), 3, 5speci�cation (de�nition), 5speci�cation (granularity), 9speci�cation (implementation), 8speci�cation driven proofs, 20stable set of points (computing), 33stable set of points (de�nition), 29stable set of points (modulo symmetry),36stable set of points (with excluded direc-tions), 40the satis�ability problem (SAT), 11


