
Generation Of Complete Test Sets

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We use testing to check if a combinational circuit N always
evaluates to 0 (written as N ≡ 0). The usual point of view is that to prove
N ≡ 0 one has to check the value of N for all 2|X| input assignments
where X is the set of input variables of N . We use the notion of a Stable
Set of Assignments (SSA) to show that one can build a complete test set
(i.e. a test set proving N ≡ 0) that consists of less than 2|X| tests. Given
an unsatisfiable CNF formula H(W), an SSA of H is a set of assignments
to W proving unsatisfiability of H. A trivial SSA is the set of all 2|W |

assignments to W . Importantly, real-life formulas can have SSAs that
are much smaller than 2|W |. Generating a complete test set for N using
only the machinery of SSAs is inefficient. We describe a much faster
algorithm that combines computation of SSAs with resolution derivation
and produces a complete test set for a “projection” of N on a subset
of variables of N . We give experimental results and describe potential
applications of this algorithm.

1 Introduction

Testing is an important part of verification flows. For that reason, any progress
in understanding testing and improving its quality is of great importance. In this
paper, we consider the following problem. Given a single-output combinational
circuit N , find a set of input assignments (tests) proving that N evaluates to 0
for every test (written as N ≡ 0) or find a counterexample1. We will call a set
of input assignments proving N ≡ 0 a complete test set (CTS)2. We will call a
CTS trivial if it consists of all possible tests. Typically, one assumes that proving
N ≡ 0 involves derivation of a trivial CTS, which is infeasible in practice. Thus,
testing is used only for finding an input assignment refuting N ≡ 0. In this
paper, we present an approach for building a non-trivial CTS that consists only
of a subset of all possible tests.

Let N(X,Y, z) be a single-output combinational circuit where X and Y are
sets of variables specifying input and internal variables of N respectively. Vari-
able z specifies the output of N . Let FN (X,Y, z) be a formula defining the

1 Circuit N usually describes some property of a multi-circuit M , the latter being the
real object of verification. For instance, N may specify a requirement that M never
outputs some combinations of values.

2 Term CTS is sometimes used to say that a test set is complete in terms of a coverage
metric i.e. that every event considered by this metric is tested. Our application of
term CTS is obviously quite different.

ar
X

iv
:1

80
4.

00
07

3v
1

 [
cs

.L
O

]
 3

0
M

ar
 2

01
8

functionality of N (see Section 3). We will denote the set of variables of circuit
N (respectively formula H) as Vars(N) (respectively Vars(H)). Every assign-
ment3 to Vars(FN) satisfying FN corresponds to a consistent assignment4 to
Vars(N) and vice versa. Then the problem of proving N ≡ 0 reduces to showing
that formula FN ∧ z is unsatisfiable. From now on, we assume that all formulas
mentioned in this paper are propositional. Besides, we will assume that every
formula is represented in CNF i.e. as a conjunction of disjunctions of literals.
We will also refer to a disjunction of literals as a clause.

Our approach is based on the notion of a Stable Set of Assignments (SSA)
introduced in [10]. Given formula H(W), an SSA of H is a set P of assignments
to variables of W that have two properties. First, every assignment of P falsifies
H. Second, P is a transitive closure of some neighborhood relation between
assignments (see Section 2). The fact that H has an SSA means that the former is
unsatisfiable. Otherwise, an assignment satisfying H is generated when building
its SSA. If H is unsatisfiable, the set of all 2|W | assignments is always an SSA of
H . We will refer to it as trivial. Importantly, a real-life formula H can have a lot
of SSAs whose size is much less than 2|W |. We will refer to them as non-trivial.
As we show in Section 2, the fact that P is an SSA of H is a structural property
of the latter. That is this property cannot be expressed in terms of the truth
table of H (as opposed to a semantic property of H). For that reason, if P is
an SSA for H, it may not be an SSA for some other formula H ′ that is logically
equivalent to H.

We show that a CTS for N can be easily extracted from an SSA of formula
FN ∧ z. This makes a non-trivial CTS a structural property of circuit N that
cannot be expressed in terms of its truth table. Unfortunately, building an SSA
even for a formula of small size is inefficient. To address this problem, we present
a procedure that constructs a simpler formula H(V) where V ⊆ Vars(FN ∧ z)
for which an SSA is generated. Formula H is implied by FN ∧ z. Thus, the
unsatisfiability of H proved by construction of its SSA implies that FN ∧ z is
unsatisfiable too and N ≡ 0. A test set extracted from an SSA of H can be
viewed as a CTS for a “projection” of N on variables of V .

We will refer to the procedure for building formula H above as SemStr
(“Semantics and Structure”). The name is due to the fact that SemStr combines
semantic and structural derivations. SemStr can be applied to an arbitrary CNF
formula G(V,W). If G is unsatisfiable, SemStr returns a formula H(V) implied
by G and its SSA. Otherwise, it produces an assignment to V ∪W satisfying
G. The semantic part of SemStr is to derive H. Its structural part consists of
proving that H is unsatisfiable by constructing an SSA. Formula H produced
when G is unsatisfiable is logically equivalent to ∃W [G]. Thus, SemStr can be
viewed as a quantifier elimination algorithm for unsatisfiable formulas. On the

3 By an assignment to a set of variables V , we mean a full assignment where every
variable of V is assigned a value.

4 An assignment to a gate G of N is called consistent if the value assigned to the output
variable of G is implied by values assigned to its input variables. An assignment to
variables of N is called consistent if it is consistent for every gate of N .

other hand, SemStr can be applied to check satisfiability of a CNF formula,
which makes it a SAT-algorithm.

The notion of non-trivial CTSs helps better understand testing. The latter is
usually considered as an incomplete version of a semantic derivation. This point
of view explains why testing is efficient (because it is incomplete) but does not
explain why it is effective (only a minuscule part of the truth table is sampled).
Since a non-trivial CTS for N is its structural property, it is more appropriate
to consider testing as a version of a structural derivation (possibly incomplete).
This point of view explains not only efficiency of testing but provides a better
explanation for its effectiveness: by using circuit-specific tests one can cover a
significant part of a non-trivial CTS.

The contribution of this paper is threefold. First, we use the machinery of
SSAs to introduce the notion of non-trivial CTSs (Section 3). Second, we present
SemStr , a SAT-algorithm that combines structural and semantic derivations
(Section 4). We show that this algorithm can be used for computing a CTS for a
projection of a circuit. We also discuss some applications of SemStr (Sections 6
and 7). Third, we give experimental results showing the effectiveness of tests
produced by SemStr (Section 8). In particular, we describe a procedure for
“piecewise” construction of test sets that can be potentially applied to very
large circuits.

2 Stable Set Of Assignments

2.1 Some definitions

Let ~p be an assignment to a set of variables V . Let ~p falsify a clause C. Denote
by Nbhd(~p, C) the set of assignments to V satisfying C that are at Hamming
distance 1 from ~p. (Here Nbhd stands for “Neighborhood”). Thus, the number
of assignments in Nbhd(~p, C) is equal to that of literals in C. Let ~q be another
assignment to V (that may be equal to ~p). Denote by Nbhd(~q, ~p, C) the subset
of Nbhd(~p, C) consisting only of assignments that are farther away from ~q than
~p (in terms of the Hamming distance).

Example 1. Let V = {v1, v2, v3, v4} and ~p=0110. We assume that the values are
listed in ~p in the order the corresponding variables are numbered i.e. v1 = 0,
v2 = 1, v3 = 1, v4 = 0. Let C = v1 ∨ v3. (Note that ~p falsifies C.) Then
Nbhd(~p, C)={~p1, ~p2} where ~p1 = 1110 and ~p2=0100. Let ~q = 0000. Note that ~p2
is actually closer to ~q than ~p. So Nbhd(~q, ~p, C)={~p1}.

Definition 1. Let H be a formula5 specified by a set of clauses {C1, . . . , Ck}. Let
P = {~p1, . . . , ~pm} be a set of assignments to Vars(H) such that every ~pi ∈ P fal-
sifies H. Let Φ denote a mapping P → H where Φ(~pi) is a clause C of H falsified
by ~pi. We will call Φ an AC-mapping where “AC” stands for “Assignment-to-
Clause”. We will denote the range of Φ as Φ(P). (So, a clause C of H is in
Φ(P) iff there is an assignment ~pi ∈ P such that C = Φ(~pi).)
5 In this paper, we use the set of clauses {C1, . . . , Ck} as an alternative representation

of a CNF formula C1 ∧ · · · ∧ Ck.

Definition 2. Let H be a formula specified by a set of clauses {C1, . . . , Ck}. Let
P = {~p1, . . . , ~pm} be a set of assignments to Vars(H). P is called a Stable Set
of Assignments6 (SSA) of H with center ~pinit ∈ P if there is an AC-mapping
Φ such that for every ~pi ∈ P , Nbhd(~pinit , ~pi, C) ⊆ P holds where C = Φ(~pi).

Note that if P is an SSA of H with respect to AC-mapping Φ, then P is also
an SSA of Φ(P).

Example 2. Let H consist of four clauses: C1 = v1 ∨ v2 ∨ v3, C2 = v1, C3 = v2,
C4 = v3. Let P = {~p1, ~p2, ~p3, ~p4} where ~p1 = 000, ~p2 = 100, ~p3 = 010, ~p4 =
001. Let Φ be an AC-mapping specified as Φ(~pi) = Ci, i = 1, . . . , 4. Since ~pi
falsifies Ci, i = 1, . . . , 4, Φ is a correct AC-mapping. Set P is an SSA of H with
respect to Φ and center ~pinit=~p1. Indeed, Nbhd(~pinit , ~p1, C1)={~p2, ~p3, ~p4} where
C1 = Φ(~p1) and Nbhd(~pinit , ~pi, Ci) = ∅, where Ci = Φ(~pi), i = 2, 3, 4. Thus,
Nbhd(~pinit , ~pi, Φ(~pi)) ⊆ P , i = 1, . . . , 4.

2.2 SSAs and satisfiability of a formula

Proposition 1. Formula H is unsatisfiable iff it has an SSA.

The proof is given in Section A of the appendix. A similar proposition was proved
in [10] for “uncentered” SSAs (see Footnote 6).

Corollary 1. Let P be an SSA of H with respect to PC-mapping Φ. Then the
set of clauses Φ(P) is unsatisfiable. Thus, every clause of H \Φ(P) is redundant.

The set of all assignments to Vars(H) forms the trivial uncentered SSA of H.
Example 2 shows a non-trivial SSA. The fact that formula H has a non-trivial
SSA P is its structural property. That is one cannot express the fact that P is
an SSA of H using only the truth table of H. For that reason, P may not be an
SSA of a formula H ′ logically equivalent to H.

The relation between SSAs and satisfiability can be explained as follows.
Suppose that formula H is satisfiable. Let ~pinit be an arbitrary assignment to
Vars(H) and ~s be a satisfying assignment that is the closest to ~pinit in terms of
the Hamming distance. Let P be the set of all assignments to Vars(H) that falsify
H and Φ be an AC-mapping from P to H. Then ~s can be reached from ~pinit by
procedure BuildPath shown in Figure 1. (This procedure is non-deterministic:
an oracle is used in line 7 to pick a variable to flip.) It generates a sequence
of assignments ~p1, . . . , ~pi where ~p1 = ~pinit and ~pi=~s. First, BuildPath checks
if current assignment ~pi equals ~s. If so, then ~s has been reached. Otherwise,
BuildPath uses clause C = Φ(~pi) to generate next assignment. Since ~s satisfies
C, there is a variable v ∈ Vars(C) that is assigned differently in ~pi and ~s.
BuildPath generates a new assignment ~pi+1 obtained from ~pi by flipping the
value of v.

6 In [10], the notion of “uncentered” SSAs was introduced. The definition of an un-
centered SSA is similar to Definition 2. The only difference is that one requires that
for every pi ∈ P , Nbhd(~pi, C) ⊆ P holds instead of Nbhd(~pinit , ~pi, C) ⊆ P .

BuildPath(H,Φ, ~pinit , ~s){
1 Path := nil
2 ~p1 := ~pinit

3 i := 1
4 while (~pi 6= ~s) {
5 Path := AddAssgn(Path, ~pi)
6 C := Φ(~pi)
7* v := FindVar(C, ~pi, ~s)
8 ~pi+1 := FlipVar(~pi, v)
9 i := i+ 1 }
10 return(Path) }

Fig. 1. BuildPath procedure

BuildPath converges to ~s in k steps where
k is the Hamming distance between ~p and ~s.
Importantly, BuildPath reaches ~s for any AC-
mapping. Let P be an SSA of H with respect
to center ~pinit and AC-mapping Φ. Then if
BuildPath starts with ~pinit and uses Φ as AC-
mapping, it can reach only assignments of P .
Since every assignment of P falsifies H, no sat-
isfying assignment can be reached.

A procedure for generation of SSAs called
BuildSSA is shown in Figure 2. It accepts for-
mula H and outputs either a satisfying assign-
ment or an SSA of H, a center ~pinit and AC-
mapping Φ. BuildSSA maintains two sets of

assignments denoted as E and Q. Set E contains the examined assignments i.e.
ones whose neighborhood is already explored. Set Q specifies assignments that
are queued to be examined. Q is initialized with an assignment ~pinit and E is
originally empty. BuildSSA updates E and Q in a while loop. First, BuildSSA
picks an assignment ~p of Q and checks if it satisfies H. If so, ~p is returned as
a satisfying assignment. Otherwise, BuildSSA removes ~p from Q and picks a
clause C of H falsified by ~p. The assignments of Nbhd(~pinit , ~p, C) that are not
in E are added to Q. After that, ~p is added to E as an examined assignment,
pair (~p, C) is added to Φ and a new iteration begins. If Q is empty, E is an SSA
with center ~pinit and AC-mapping Φ.

3 Complete Test Sets

BuildSSA(H){
1 E = ∅; Φ := ∅
2 ~pinit := PickInitAssgn(H)
3 Q := {~pinit}
4 while (Q 6= ∅) {
5 ~p := PickAssgn(Q)
6 Q := Q \ {~p}
7 if (SatAssgn(~p,H))
8 return(~p,nil ,nil ,nil)
9 C := PickFalsifClause(H, ~p)
10 New := Nbhd(~pinit , ~p, C) \ E
11 Q := Q ∪New
12 E := E ∪ {~p}
13 Φ := Φ ∪ {(~p, C)}}
14 return(nil , E, ~pinit , Φ) }

Fig. 2. BuildSSA procedure

Let N(X,Y, z) be a single-output combina-
tional circuit where X and Y are sets of
variables specifying input and internal vari-
ables of N . Variable z specifies the output
of N . Let N consist of gates G1, . . . , Gk.
Then N can be represented as CNF formula
FN = FG1 ∧· · ·∧FGk

where FGi , i = 1, . . . , k
is a CNF formula specifying the consistent
assignments of gate Gi. Proving N ≡ 0 re-
duces to showing that formula FN ∧ z is un-
satisfiable.

Example 3. CircuitN shown in Figure 3 rep-
resents equivalence checking of expressions
(x1 ∨ x2)∧ x3 and (x1 ∧ x3)∨ (x2 ∧ x3). The
former is specified by gates G1 and G2 and
the latter by G3, G4 and G5. Formula FN is

equal to FG1∧· · ·∧FG6 where, for instance, FG1 = C1∧C2∧C3, C1 = x1∨x2∨y1,

C2 = x1 ∨ y1, C3 = x2 ∨ y1. Every satisfying assignment to Vars(FG1
) cor-

responds to a consistent assignment to gate G1 and vice versa. For instance,
(x1 = 0, x2 = 0, y1 = 0) satisfies FG1 and is a consistent assignment to G1

since the latter is an OR gate. Formula FN ∧ z is unsatisfiable due to functional
equivalence of expressions (x1 ∨ x2)∧ x3 and (x1 ∧ x3)∨ (x2 ∧ x3). Thus, N ≡ 0.

Fig. 3. Example of circuit
N(X,Y, z)

Let ~x be a test i.e. an assignment to X. The
set of assignments to Vars(N) sharing the same
assignment ~x to X forms a cube of 2|Y |+1 assign-
ments. (Recall that Vars(N) = X ∪Y ∪{z}.) De-
note this set as Cube(~x). Only one assignment of
Cube(~x) specifies the correct execution trace pro-
duced by N under ~x. All other assignments can
be viewed as “erroneous” traces under test ~x.

Definition 3. Let T be a set of tests {~x1, . . . , ~xk}
where k ≤ 2|X|. We will say that T is a Com-
plete Test Set (CTS) for N if Cube(~x1)∪ · · · ∪
Cube(~xk) contains an SSA for formula FN ∧ z.

If T satisfies Definition 3, set Cube(~x1)∪ · · · ∪
Cube(~xk) “contains” a proof that N ≡ 0 and so
T can be viewed as complete. If k = 2|X|, T is
the trivial CTS. In this case, Cube(~x1) ∪ · · · ∪
Cube(~xk) contains the trivial SSA consisting of

all assignments to Vars(FN ∧ z). Given an SSA P of FN ∧ z, one can easily
generate a CTS by extracting all different assignments to X that are present in
the assignments of P .

Example 4. Formula FN ∧ z of Example 3 has an SSA of 21 assignments to
Vars(FN ∧ z). They have only 5 different assignments to X = {x1, x2, x3}. So
the set {101, 100, 011, 010, 000} of those assignments is a CTS for N .

Definition 3 is meant for circuits that are not “too redundant”. Its extension
to the case of high redundancy is given in Section B of the appendix.

4 Description Of SemStr Procedure

4.1 Motivation

Building an SSA can be inefficient even for a small formula. This makes con-
struction of a CTS for N from an SSA of FN ∧ z impractical. We address this
problem by introducing procedure called SemStr (a short for “Semantics and
Structure”). Given formula G(V,W), SemStr generates a simpler formula H(V)
implied by G at the same time trying to build an SSA for H. We will refer to
W as the set of variables to exclude. If SemStr succeeds in constructing an SSA
of H, the latter is unsatisfiable and so is G. SemStr can be applied to FN ∧ z

to generate tests as follows. Let V be a subset of Vars(FN ∧ z). First, SemStr is
applied to construct formula H(V) implied by FN ∧ z and an SSA of H. Then
a set of tests T is extracted from this SSA.

The test set T above can be considered as a CTS for a projection of circuit
N on V . On the other hand, T can be viewed as an approximation of a CTS
for circuit N , since H(V) is essentially an abstraction of formula FN ∧ z. In
this paper, we give two examples of building a test set for N from an SSA of
H generated by SemStr . In the first example, V is the set X of input variables.
Then an SSA found by SemStr for H(X) is itself a test set. The second example
is given in Subsection 8.3 where a “piecewise” construction of tests is described.

Example 5. Consider the circuit N of Figure 3. Assume that V = X where
X = {x1, x2, x3} is the set of input variables. Application of SemStr to FN ∧ z
produces formula H(X) = (x1 ∨x3)∧ (x2 ∨x3)∧ (x1 ∨x2)∧x3. Besides, SemStr
generates an SSA of H with center ~pinit=000 that consists of four assignments to
X: {000, 001, 011, 101}. (The AC-mapping is omitted here.) These assignments
form a CTS for projection of N on X and an approximation of CTS for N .

4.2 High-level description

In Figure 4, we describe SemStr as a recursive procedure. Like DPLL-like SAT-
algorithms [6,13,15], SemStr makes decision assignments, runs the Boolean Con-
straint Propagation (BCP) procedure and performs branching. In particular, it
uses decision levels [13]. A decision level consists of a decision assignment to
a variable and assignments to single variables implied by the former. SemStr
accepts formula G(V,W), partial assignment ~a to variables of W and index d of
current decision level. In the first call of SemStr , ~a = ∅, d = 0. In contrast to
DPLL, SemStr keeps a subset of variables (namely those of V) unassigned. If G
is satisfiable, SemStr outputs an assignment to V ∪W satisfying G. Otherwise,
it returns an SSA P of formula G, its center and an AC-mapping Φ. The latter
maps P to clauses of G that consist only of variables of V . (SemStr derives such
clauses by resolution7). Hence formula H = Φ(P) depends only of variables of
V . The existence of an SSA means that H and hence G are unsatisfiable.

We will refer to a clause C of G as a V -clause, if V ∩ Vars(C) 6= ∅ and
all literals of W of C (if any) are falsified in the current node of the search
tree by ~a. If a conflict occurs when assigning variables of W , SemStr behaves
as a regular SAT-solver with conflict clause learning. Otherwise, the behavior
of SemStr is different in two aspects. First, after BCP completes the current
decision level, SemStr tries to build an SSA of the set of V -clauses. If it suc-
ceeds in finding an SSA, G is unsatisfiable in the current branch and SemStr
backtracks. Thus, SemStr has a “non-conflict” backtracking mode. Second, in
the non-conflict backtracking mode, SemStr uses a non-conflict learning. The

7 Recall that resolution is applied to clauses C′ and C′′ that have opposite literals of
some variable w. The result of resolving C′ and C′′ on w is the clause consisting of
all literals of C′ and C′′ but those of w.

objective of this learning is as follows. In every leaf of the search tree, SemStr
maintains the invariant that the set of current V -clauses is unsatisfiable. Sup-
pose that a V -clause C contains a literal of a variable w ∈W that is falsified by
the current partial assignment ~a. If SemStr unassigns w during backtracking, C
stops being a V -clause. To maintain the invariant above, SemStr uses resolution
to produce a new V -clause that is a descendant of C and does not contain w.

4.3 SemStr in more detail

// V - set of variables to keep
// W - set of variables to exclude
//
SemStr(G,~a, d){
1 (Cnfl ,~a) = RunBcp(G,~a, d)
2 if (Cnfl) {
3 C := CnflCls(G,~a, d)
4 G := G ∪ {C}
5 ~v := ArbitrAssgn(V)
6 return(G,nil , {~v}, ~v, {(~v, C)}) }
− −−−−−−−−−−−−−−
7 (~v, P, ~pinit , Φ) := BldSSA(G,~a))
8 if (P = nil){
9 if (|~a| = |W |)
10 return(G,~a ∪ ~v,nil ,nil ,nil) }
11 else {
12 (G,Φ) :=Normalize(G,Φ,P,~a,d)
13 return(G,nil , P, ~pinit , Φ) }
− −−−−−−−−−−−−−−
14 w := PickVar(W,~a)
15 d := d+ 1
16 ~a0 := AddDecLvl(~a,(w = 0), d)
17 (G,~s,P0, ~pinit , Φ0) :=SemStr(G,~a0, d)
18 if (~s 6= nil) return(G,~s,nil ,nil ,nil)
19 if (w 6∈ Vars(Φ0(P0)))
20 return(G,nil ,P0, ~pinit , Φ0)

21 ~a1 := AddDecLvl(~a,(w = 1), d)
22 (G,~s, P1, Φ1) := SemStr(G,~a1, d)
23 if (~s 6= nil) return(G,~s,nil ,nil ,nil)
24 H0 := Φ0(P0); H1 := Φ1(P1);
25 (G,P,~pinit , Φ) :=Excl(G,H0,H1,~a, w)
26 return(G,nil , P, ~pinit , Φ) }

Fig. 4. SemStr procedure

As shown in Figure 4, SemStr consists
of three parts separated by dotted lines.
In the first part (lines 1-6), SemStr runs
BCP to fill in the current decision level
number d. Since SemStr does not as-
sign variables of V , BCP ignores clauses
that contain a variable of V . If, during
BCP, a clause consisting only of vari-
ables of W gets falsified, a conflict oc-
curs. Then SemStr generates a conflict
clause C (line 3) and adds it to G. In
this case, formula H(V) consists sim-
ply of C that is empty (has no liter-
als) in subspace specified by ~a. Any set
P = {~v} where ~v is an arbitrary assign-
ment to V is an SSA of H in subspace
specified by ~a.

If no conflict occurs in the first part,
SemStr starts the second part (lines 7-
13). Here, SemStr runs BldSSA proce-
dure to check if the current set of V -
clauses is unsatisfiable by building an
SSA. If BldSSA fails to build an SSA
(line 8), it checks if all variables of W
are assigned (line 9). If so, formula G is
satisfiable. SemStr returns a satisfying
assignment (line 10) that is the union
of current assignment ~a to W and as-
signment ~v to V returned by BldSSA.
(Assignment ~v satisfies all the current
V -clauses).

If BldSSA succeeds in building an
SSA P with respect to an AC-function

Φ and center ~pinit (line 11), SemStr performs operation called Normalize over
formula H where H = Φ(P) (line 12). After that, SemStr returns. Let w be the
decision variable of the current decision level (i.e. level number d). The objective
of Normalize is to guarantee that every clause of H contains no more than one

variable assigned at level d and this variable is w. Let C be a clause of H that
violates this rule. Suppose, for instance, that C has one or more literals falsified
by implied assignments of level d. In this case, Normalize performs a sequence of
resolution operations that starts with clause C and terminates with a clause C∗

that contains only variable w. (This is similar to the conflict generation procedure
of a SAT-solver. It starts with a clause rendered unsatisfiable that has at least
two literals assigned at the conflict level. After a sequence of resolutions, this
procedure generates a clause where only one literal is falsified at the conflict
level.) Importantly, C∗ and C are identical as V -clauses i.e. they are different
only in literals of W . Clause C∗ is added to G and replaces C in AC-function Φ
and hence in H.

Excl(G,H0, H1,~a, w){
1 H := H0 ∪H1

2 Hw := {C ∈ H|w∈Vars(C)}
3 H :=H \Hw

4 while (true) {
5 (~v,P,~pinit , Φ) :=BldSSA(H,~a)
6 if (P 6= nil) return(G,P, ~pinit , Φ)
7 C := GenCls(Hw, ~v)
8 H := H ∪ {C} }
9 G := G ∪ {C} } }

Fig. 5. Excl procedure

If neither satisfying assignment nor
SSA is found in the second part, SemStr
starts the third part (lines 14-26) where
it branches. First, a decision variable w is
picked to start decision level number d+ 1.
SemStr adds assignment w = 0 to ~a and
calls itself to explore the left branch (line
17). If this call returns a satisfying assign-
ment ~s, SemStr ends the current invoca-
tion and returns ~s (line 18). If ~s = nil (i.e.
no satisfying assignment is found), SemStr
checks if the set of clauses Φ0(P0) found to
be unsatisfiable in branch w = 0 contains
variable w. If not, then branch w = 1 is

skipped and SemStr returns SSA P0, ~pinit and AC-mapping Φ0 found in the left
branch. Otherwise, SemStr examines branch w = 1 (lines 21-23).

Finally, SemStr merges results of both branches by calling procedure Excl.
Formulas H0 and H1 specify unsatisfiable V -clauses of branches w = 0 and w = 1
respectively. This means that formula H1 ∧H2 is unsatisfiable in the subspace
specified by ~a. However, SemStr maintains a stronger invariant that all V -clauses
are unsatisfiable in subspace ~a. This invariant is broken after unassigning w
since the clauses of H1 ∧H2 containing variable w are not V -clauses any more.
Procedure Excl “excludes” w to restore this invariant via producing new V -
clauses obtained by resolving clauses of H1 and H2 on w.

The pseudo-code of Excl is shown in Figure 5. First, Excl builds formula H
that consists of clauses of H1 ∪H2 minus those that have variable w (lines 1-3).
Then Excl tries to build an SSA P of H by calling procedure BldSSA in a while
loop (lines 4-9). If BldSSA succeeds, Excl returns the SSA found by BldSSA.
Otherwise, BldSSA returns an assignment ~v that satisfies H. This satisfying
assignment is eliminated by generating a V -clause C falsified by ~v and adding
it to H. Clause C is generated by resolving two clauses of H1 ∪H2 on variable
w. After that, a new iteration begins.

5 Example Of How SemStr Operates

Let V = {v1, v2}, W = {w1, w2} and G(V,W) be a formula of 6 clauses: C1 =
w1 ∨ v1, C2 = w1 ∨w2, C3 = w2 ∨ v2, C4 = v1 ∨ v2, C5 = w1 ∨ v1, C6 = w1 ∨ v2.

Let us consider how SemStr operates on the formula above. We will identify
invocations of SemStr by partial assignment ~a to W . For instance, since ~a is
empty in the initial call of SemStr , the latter is denoted as SemStr∅. We will
also use ~a as a subscript to identify G under assignment ~a. The first part of
SemStr∅ (see Figure 4) does not trigger any action because G∅ does not contain
unit clauses (i.e. unsatisfied clauses that have only one unassigned literal). In
the second part of SemStr∅, procedure BldSSA fails to build an SSA because the
only V -clause of G∅ is C4. So the current set of V -clauses is satisfiable. Having
found out that not all variables of W are assigned (line 9 of Figure 4), SemStr∅
leaves the second part.

Let w1 be the variable of W picked in the third part for branching (line
14). SemStr∅ uses assignment w1 = 0 to start decision level number 1. (In the
original call, the decision level value is 0). Then SemStr (w1=0) is invoked that
operates as follows. G(w1=0) contains unit clauses C1 =��w1∨v1 and C2 =��w1∨w2

(we crossed out literal w1 as falsified). Unit clause C1 is ignored by BCP, since
SemStr does not assign variables of V . On the other hand, BCP assigns value
1 to w2 to satisfy C2. So current ~a equals (w1 = 0, w2 = 1) and decision level
number 1 contains one decision and one implied assignment. At this point, BCP
stops. The only clause consisting solely of variables of W (clause C2) is satisfied.
So no conflict occurred and SemStr (w1=0) finishes the first part of the code.

Current formula G(w1=0,w2=1) has the following V -clauses: C1 = ��w1 ∨ v1,
C3 = ��w2 ∨ v2, C4 = v1 ∨ v2. This set of V -clauses is unsatisfiable. BldSSA
proves this by generating a set P of three assignments: ~v1=11, ~v2=01, ~v3=10
that is an SSA. The center is ~v1 and the AC-function Φ is defined as Φ(~v1) =
C4, Φ(~v2) = C1, Φ(~v3) = C3. So formula H = Φ(P) for subspace ~a consists of
clauses C1, C3, C4. Note that H needs normalization, since C3 contains literal
w2 falsified by the implied assignment of level 1. Procedure Normalize (line 12)
fixes this problem. It produces new clause C7 = w1 ∨ v2 obtained by resolving
C3 = w2 ∨ v2 with clause C2 = w1 ∨w2 on w2. (Note that C2 is the clause from
which assignment w2 = 1 was derived during BCP.) Clause C7 is added to G.
It replaces clause C3 in Φ and hence in H. So now Φ(~v3) = C7 and H consists
of clauses C1, C7, C4. At this point, SemStr (w1=0) terminates returning SSA P ,
center ~v1, AC-mapping Φ and modified G to SemStr∅.

Having completed branch w1 = 0, SemStr∅ invokes SemStr (w1=1). Since
G(w1=1) does not have any unit clauses, no action is taken in the first part.
Formula G(w1=1) contains three V -clauses: C4 = v1 ∨ v2, C5 = ��w1 ∨ v1 and
C6 = ��w1 ∨ v2. Procedure BldSSA proves them unsatisfiable by generating a
set P of three assignments ~v1=11, ~v2=01, ~v3=10 that is an SSA with respect
to center ~v1 and AC-function: Φ(~v1) = C4, Φ(~v2) = C5, Φ(~v3) = C6. So for-
mula H = Φ(P) consists of clauses C4, C5, C6. It does not need normalization.
SemStr (w1=1) terminates returning SSA P , ~v1, and Φ to SemStr∅.

Finally, SemStr∅ calls Excl to merge the results of branches w1 = 0 and
w1 = 1 by excluding variable w1. Formulas H0 and H1 passed to Excl specify
unsatisfiable sets of V -clauses found in branches w1 = 0 and w1 = 1 respectively.
Here, H0 = {C1, C4, C7} and H1 = {C4, C5, C6}. Excl starts by generating
formulas Hw1 and H (lines 1-3 of Figure 5). Formula Hw1 = {C1, C5, C6, C7}
consists of the clauses of H0 ∪H1 with variable w1. Formula H = {C4} is equal
to (H0∪H1)\Hw1 . Then Excl tries to build an SSA for H in a while loop (lines
4-9). Since current formula H is satisfiable, a satisfying assignment ~v is returned
by BldSSA in the first iteration. Assume that ~v=01. To exclude this assignment,
Excl generates clause C8 = v1 (by resolving C1 = w1∨v1 of H0 and C5 = w1∨v1
of H1 on w1) and adds it to H and G.

H is still satisfiable. Thus, the satisfying assignment ~v = 10 is returned by
BldSSA in the second iteration. To exclude it, clause C9 = v2 is generated (by
resolving C7 = w1 ∨ v2 and C6 = w1 ∨ v2) and added to H and G. In the
third iteration, BldSSA proves H unsatisfiable by generating an SSA P of three
assignments ~v1=11, ~v2=01, ~v3=10. Assignment ~v1 is the center and the AC-
function is defined as Φ(~v1) = C4, Φ(~v2) = C8, Φ(~v3) = C9 where C4 = v1 ∨ v2,
C8 = v1, C9 = v2. The modified formula G with P , ~v1 and Φ are returned by
Excl to SemStr∅. They are also returned by SemStr∅ as the final result.

6 Application Of SemStr To Testing

Let M be a multi-output combinational circuit. In this section, we consider some
applications of SemStr to testing M . They can be used in two scenarios. The
first scenario is as follows. Let ξ be a property of M specified by a single-output
circuit N . Consider the case where ξ can be proved by a SAT-solver. If one
needs to check ξ only once, using the current version of SemStr does not make
much sense (it is slower than a SAT-solver). Assume however that one frequently
modifies M and needs to check that property ξ still holds. Then one can apply
SemStr to generate a CTS for a projection of N and then re-use this CTS as a
high-quality test set every time circuit M is modified (Subsection 6.1).

The second scenario is as follows. Assume that some properties of M cannot
be solved by a SAT-solver and/or one needs to verify the correctness of circuit
M “as a whole”. (In the latter case, a SAT-solver is typically used to construct
tests generating events required by a coverage metric.) Then tests generated
by SemStr can be used, for instance, to hit corner cases more often (Subsec-
tion 6.2) or to empower a traditional test set with CTSs for local properties of
M (Subsection 6.3).

6.1 Verification of design changes

Let M∗ be a circuit obtained by modification of M . Suppose that one needs
to check whether M∗ is still correct. This can be done by checking if M∗ is
logically equivalent to M . However, equivalence checking cannot be used if the
functionality of M∗ has been intentionally modified. Another option is to run

a test set previously generated for M to verify M∗. Generation of CTSs can
be used to empower this option. The idea here is to re-use CTSs generated for
testing the properties of M that should hold for M∗ as well.

Let ξ be a property of M that is supposed to be true for M∗ too. Let N be
a single-output circuit specifying ξ for M and T be a CTS constructed to check
if N ≡ 0. To verify if ξ holds for M∗, one just needs to apply T to circuit N∗

specifying property ξ in M∗. Of course, the fact that N∗ evaluates to 0 for the
tests of T does not mean that ξ holds for M∗. Nevertheless, since T is specifically
generated for ξ, there is a good chance that a test of T will break ξ if M∗ is
buggy. In Subsection 8.3, we substantiate this intuition experimentally.

6.2 Verification of corner cases

Fig. 6. Subcircuit K
of circuit M

Let K be a single-output subcircuit of circuit M as
shown in Figure 6. The input variables of K (set XK)
is a subset of the input variables of M (set X). Sup-
pose that the output of K takes value 0 much more
frequently then 1. Then one can view an assignment ~x
to X for which K evaluates to 1 as specifying a “corner
case” i.e. a rare event. Hitting such a corner case even
once by a random test can be very hard. This issue can
be addressed by using a coverage metric that requires
setting the value of K to both 0 and 1. (The task of
finding a test for which K evaluates to 1, can be easily
solved, for instance, by using a SAT-solver.) The prob-
lem however is that hitting a corner case only once may
be insufficient.

Fig. 7. The miter of cir-
cuits K ′ and K ′′

Ideally, it would be nice to have an option of gen-
erating a test set where the ratio of assignments for
which K evaluates to 1 is higher than in the truth ta-
ble of K. One can achieve this objective as follows. Let
N be a miter of circuits K ′ and K ′′ (see Figure 7) i.e.
a circuit that evaluates to 1 iff K ′ and K ′′ are func-
tionally inequivalent. Let K ′ and K ′′ be two copies
of circuit K. So N ≡ 0 holds. Let TK be a CTS for
projection of N on XK . Set TK can be viewed as a
result of “squeezing” the truth table of K. Since this
truth table is dominated by assignments for which K
evaluates to 0, this part of the truth table is reduced
the most8. So, one can expect that the ratio of tests
of TK for which K evaluates to 1 is higher than in the

truth table of K. In Subsection 8.4, we substantiate this intuition experimen-
tally. Extending an assignment ~xK of TK to an assignment ~x to X is easy e.g.
one can randomly assign the variables of X \XK .

8 One can give a more precise explanation of when and why using TK should work.

6.3 Empowering testing by adding CTSs of local properties

Let Ξ = {ξ1, . . . , ξk} be a set of local9 properties of M specified by single-output
circuits N1, . . . , Nk respectively. Typically, testing is used to check if circuit M
is correct “as a whole”. This notion of correctness is a conjunction of many
properties including those of Ξ. Let T be a test set generated by a traditional
testing procedure (e.g. driven by some coverage metric). An obvious flaw of T is
that it does not guarantee that the properties of Ξ hold. This problem can be
addressed by using a formal verification procedure, e.g. a SAT-solver, to check
if these properties hold. Note, however, that proving the properties of Ξ by a
formal verification tool does not add any new tests to T and therefore does not
make T more powerful. 1 Now, assume that every property ξi of Ξ is proved
by building a CTS Ti for projection of Ni on its input variables. Let T ∗ denote
T ∪ T1 ∪ · · · ∪ Tk. Set T ∗ is more powerful than T combined with proving the
properties of Ξ by a formal verification tool. Indeed, in addition to guaranteeing
that the properties of Ξ hold, set T ∗ contains more tests than T and hence
can identify new bugs. In Subsection 8.5, we provide some experimental data on
using SemStr to verify local properties.

7 Application Of SemStr To Sat-Solving

Conflict Driven Clause Learning (CDCL) [13,15] has played a major role in
boosting the performance of modern SAT-solvers. However, CDCL has the fol-
lowing flaw. Suppose one needs to check satisfiability of formula G equal to
A(X,Y) ∧ B(Y,Z) where |Y | is much smaller than |X| and |Z|. One can view
G as describing interaction of two blocks specified by A and B where Y is the
set of variables via which these blocks communicate. Sets X and Z specify the
internal variables of these blocks. A CDCL SAT-solver tends to produce clauses
that relate variables of X and Z turning G into a “one-block” formula. This can
make finding a short proof much harder. (Intuitively, this flaw of CDCL becomes
even more detrimental when a formula describes interaction of n small blocks
where n is much greater than 2.) A straightforward way to solve this problem is
to avoid resolving clauses on variables of Y . However, a resolution-based SAT-
solver cannot do this. A goal of a resolution proof is to generate an empty clause,
which cannot be achieved without resolving clauses on variables of Y .

SemStr does not have the problem above since it can just replace resolutions
on variables of Y with building an SSA for clauses depending on Y . Then, in-
stead of generating an empty clause, SemStr produces an unsatisfiable formula
H(Y) implied by G. Thus, SemStr can facilitate finding good proofs. However,
SemStr has another issue to address. Currently SemStr computes SSAs “explic-
itly” i.e. in terms of single assignments. The proof system specified by such SSAs
is much weaker than resolution. This can negate the positive effect of preserving
the structure of G. A potential solution of this problem is to compute an SSA
in clusters e.g. cubes of assignments where a cube can contain an exponential

9 Informally, property ξi of M is “local” if only a fraction of M is responsible for ξi.

number of assignments. This makes SSAs a more powerful proof system. (For
instance, in [10], the machinery of SSAs is used to efficiently solve pigeon-hole
formulas that are hard for resolution.) Computing SSAs in clusters is far from
trivial and SemStr can be used as a starting point in this line of research.

8 Experiments

In this section, we describe results of four experiments. In the first experiment
(Subsection 8.2), we compute CTSs for circuits and their projections. In Sub-
section 8.3, we describe the second experiment where SemStr is used for bug
detection. In particular, we introduce a method for “piecewise” construction of
tests. Importantly, this method has the potential of being as scalable as SAT-
solving and so could be used to generate high-quality tests for very large circuits.
In the third experiment, (Subsection 8.4) we use CTSs to test corner cases. In
the last experiment (Subsection 8.5), we apply SemStr to verification of local
properties. In the first three experiments, we used miters i.e. circuits specifying
the property of equivalence checking (see Figure 7). In the fourth experiment, we
tested circuits specifying the property that an implication between two formulas
holds.

8.1 A few remarks about current implementation of SemStr

Let SemStr be applied to G(V,W) to produce a formula H(V) and its SSA.
As we mentioned in Section 4, when assigning values to variables of W , SemStr
behaves almost like a regular SAT-solver. So one can use the techniques employed
by state-of-the-art SAT-solvers to enhance their performance. However, to make
implementation simpler and easier to modify, we have not used those techniques
in SemStr . For instance, when a variable is assigned a value (implied or decision),
a separate node of the search tree is created, no watched literals are used to speed
up BCP and so on.

Currently, SemStr does not re-use SSAs obtained in the previous leafs of the
search tree. After backtracking, SemStr starts building an SSA from scratch.
On the other hand, it is quite possible that, say, an SSA of 100,000 assignments
generated in the right branch w = 1 could have been obtained by making minor
changes in the SSA of the left branch w = 0. Implementation of SSA re-using
should boost the performance of SemStr (see Section C of the appendix).

8.2 Computing CTSs for circuits and projections

The objective of the first experiment was to give examples of circuits with non-
trivial CTSs and to show that computing a CTS for a projection of N is much
more efficient than for N . The miter N of circuits M ′ and M ′′ (like the one shown
in Figure 7 for circuits K ′ and K ′′) we used in this experiment was obtained
as follows. Circuit M ′ was a subcircuit extracted from the transition relation of
an HWMCC-10 benchmark. (The motivation was to use realistic circuits.) For

the nine miters we used in this experiment, circuit M ′ was extracted from nine
different transition relations. Circuit M ′′ was obtained by optimizing M ′ with
ABC, a high-quality tool developed at UC Berkeley [18].

The results of the first experiment are shown in Table 1. The first column of
Table 1 lists the names of the examples. The second and third columns give the
number of input variables and that of gates in N . The following group of three
columns provide results of computing a CTS for N . This CTS was obtained by
applying SemStr to formula FN ∧z with an empty set of variables to exclude. In
this case, the resulting formula H is equal to FN ∧ z and SemStr just constructs
its SSA. The first column of this group gives the size of the SSA found by
SemStr . The second column shows the number of different assignments to X
in the assignments of this SSA. (Recall that X is the set of input variables of
N .) The third column of this group gives the run time of SemStr . The last two
columns of Table 1 describe results of computing CTS for a projection of N on
X. We will denote this projection by NX . This CTS is obtained by applying
SemStr to FN ∧z using Y ∪z as the set of variables to exclude (where Y specifies
the set of internal variables of N). The first column of the two gives the size of
the SSA generated for formula H(X) by SemStr . The second column shows the
run time of SemStr .

Table 1. CTSs for circuits and their projec-
tions
name #inp #ga- CTS for original CTS for

vars tes circuit projection
#SSA #tests time #tests time

(s.) (s.)
ex1 12 54 125,734 500 0.3 28 0.01
ex2 14 59 262,405 3,231 0.6 1,101 0.04
ex3 16 53 438,985 7,211 1.0 867 0.01
ex4 16 63 3,265,861 15,868 9.4 1,452 0.02
ex5 17 66 94,424 952 0.3 137 0.01
ex6 40 117 memout ∗ ∗ 589 0.02
ex7 40 454 memout ∗ ∗ 112,619 5.9
ex8 50 317 memout ∗ ∗ 211,650 4.1
ex9 55 215 memout ∗ ∗ 6,267 0.1

For circuits ex1,..,ex5, SemStr
managed to build non-trivial
CTSs for the original circuits.
Their size is much smaller than
2|X|. For instance, the trivial CTS
for ex5 consists of 217=131,072
tests, whereas SemStr found a
CTS of 952 tests. (So, to prove M ′

and M ′′ equivalent it suffices to
run 952 out of 131,072 tests.) For
circuits ex6,..,ex9, SemStr failed
to build a non-trivial CTS due to
memory overflow. On the other
hand, SemStr built a CTS for

projection NX for all nine examples. Table 1 shows that finding a CTS for
NX takes much less time than for N . In Subsection 8.3, we demonstrate that
although a CTS for NX is only an approximation of a CTS for N , it makes a
high-quality test set.

8.3 Using CTSs to detect bugs

In the second experiment, we used SemStr to generate tests exposing inequiva-
lence of circuits. Let N∗ denote the miter of circuits M ′ and M ′′ where M ′′ is
obtained from M ′ by introducing a bug. (Similarly to Subsection 8.3, M ′ was
extracted from the transition relation of a HWMCC-10 benchmark and for the
nine examples of Table 2 below we used nine different transition relations.) De-
note by N the miter of circuits M ′ and M ′′ where M ′′ is just a copy of M ′.

In this experiment, we applied the idea of Subsection 6.1: reuse the test set T
generated to prove N ≡ 0 to test if N∗ ≡ 0 holds. To run a single test ~x, we
used Minisat 2.0 [7,19]. Namely, we added unit clauses specifying ~x to formula
FN∗ ∧ z and checked its satisfiability.

Table 2. Bug detection

name #inp #ga- random test generation
vars tes testing by SemStr

#tests time stra- #tests time
×106 (s.) tegy (s.)

ex10 37 73 > 100 181 1 254 0.02
ex11 39 155 > 100 466 1 1,742 0.1
ex12 41 591 > 100 826 1 25,396 2.2
ex13 42 307 > 100 725 2 4,021 1.1
ex14 50 217 > 100 489 2 10,147 7.2
ex15 50 249 > 100 1,290 1 41,048 1.3
ex16 52 1,003 > 100 707 2 707,589 106
ex17 67 405 > 100 2,194 2 2,281 1.7
ex18 70 265 > 100 1,312 2 5,413 0.7

To generate T we used two
strategies. In strategy 1, T was
generated as a CTS for projec-
tion NX . Strategy 2 was employed
when SemStr failed to build a
CTS for NX due to memory over-
flow or exceeding a time limit. In
this case, we partitioned X into
subsets X1, . . . , Xk and computed
sets T1, . . . , Tk where Ti is a CTS
for projection NXi . (In the exam-
ples where we used strategy 2, the
value of k was 2 or 3). The Carte-

sian product T1 × · · · × Tk forms a test set for N . Instead of building the entire
set T , we randomly generated tests of T one by one as follows. The next test ~x
of T to try was formed by taking the union of ~xi,i = 1, . . . , k randomly picked
from corresponding Ti,i = 1, . . . , k. Note that in the extreme case where every
Xi consists of one variable, strategy 2 reduces to generation of random tests.
Indeed, let Xi = {xi},i = 1, . . . , k where k = |X|. Then formula H(Xi) for pro-
jection NXi is equal to xi ∧ xi. The only SSA for H(Xi) is trivial and consists
of assignments xi = 0 and xi = 1 (and so does Ti). By randomly choosing a test
of Ti one simply randomly assigns 0 or 1 to xi.

Fig. 8. Circuit
K whose output
value is biased
to 0

We compared our approach with random testing on small
circuits. Our objective was to show that although random
testing is much more efficient (test generation is very cheap),
testing based on CTSs is much more effective. The majority
of faults we tried was easy for both approaches. In Table 2,
we list some examples that turned out to be hard for random
testing. The first three columns are the same as in Table 1.
The next two columns describe the performance of random
testing: the number of tests we tried (in millions) and the
time taken by Minisat to run all tests. The last three columns
describe the performance of our approach. The first column
of these three shows whether strategy 1 or 2 was used. The
second column gives the number of tests from T one needed to
run before finding a bug. (Thus, this number is smaller than
|T |.) The last column of these three shows the total run-time

that consists of the time taken by SemStr to generate T and the time taken by
Minisat to run tests.

Table 2 shows that tests extracted from CTSs for projections of N are very
effective. The fact that these tests are effective even for strategy 2 is very en-

couraging for the following reason. Computing a CTS for a projection NV where
V is small is close to regular SAT-solving. (They become identical if V = ∅.)
Implementation of improvements mentioned in Subsection 8.1 should make com-
puting a CTS for NV almost as scalable as SAT-solving. Thus, by breaking X
into relatively small subsets X1, . . . , Xk and using piecewise construction of tests
as described above, one will get an effective test set that can be efficiently com-
puted even for very large circuits.

8.4 Using CTSs to check corner cases

Table 3. Using CTSs for checking corner cases

name #inp and #ga- random testing test generation
vars inps tes by SemStr

#te- #hi- time #te- #hits time
sts ts (s.) sts (s.)

ex19 50 10 72 105 54 0.6 832 51 0.03

ex19* 60 20 72 107 0 65 1,803 207 0.1

ex20 50 10 160 105 5 1.3 21,496 1,303 0.4

ex20* 60 20 160 107 0 129 161,195 10,036 3.1

ex21 65 10 108 105 68 0.8 49,947 4,168 1.2

ex21* 75 20 108 107 0 81 44,432 3,528 1.2

ex22 51 10 296 105 81 1.8 50,388 4,560 4.9

ex22* 61 20 296 107 0 184 235,452 22,326 26

ex23 60 10 125 105 43 1.2 6,834 259 0.2

ex23* 70 20 125 107 0 122 21,083 1,807 0.4

In the third experiment, we
used CTSs to test corner
cases (see Subsection 6.2).
First we formed a circuit K
that evaluates to 0 for almost
all input assignments. So the
input assignments for which
K evaluates to 1 specify “cor-
ner cases”. Then we com-
pared the frequency of hitting
the corner cases of K by ran-
dom testing and by tests of
a set T built by SemStr . The
test set T was obtained as fol-
lows. Let N be the miter of
copies K ′ and K ′′ (see Fig-

ure 7). Set T was generated as a CTS for the projection of N on its input
variables.

Circuit K was formed as follows. First, we extracted a circuit R as a subcir-
cuit of a transition relation (as described in the previous subsections). Then we
formed circuit K by composing an n-input AND gate and circuit R as shown in
Figure 8. Circuit K outputs 1 only if R evaluates to 1 and the first n− 1 inputs
variables the AND gate are set to 1 too. So the input assignments for which K
evaluates to 1 are “corner cases”.

The results of our experiment are given in Table 3. The first column specifies
the name of an example. The next two columns give the total number of input
variables of K and the number of input variables in the multi-input AND gate
(see Figure 8). The next three columns describe the performance of random
testing. The first column of the three gives the total number of tests. The next
column shows the number of times circuit K evaluated to 1 (i.e. a corner case
was hit). The last column of the three gives the total run time. The last three
columns of Table 3 describe the results of SemStr . The first column of the three
shows the size of a CTS generated as described above. The next column gives
the number of times a corner case was hit. The last column shows the total run
time (that also includes the time used to generate the CTS).

The examples of Table 3 were generated in pairs that shared the same circuit
R and were different only the size of the AND gate (see Figure 8). For instance, in
ex19 and ex19* we used 10-input and 20-input AND gates respectively. Table 3
shows that for circuits with 10-input AND gates, random testing was able to hit
corner cases but the percentage of those events was very low. For instance, for
ex19, only for 0.05% of tests the output value of K was 1 (54 out of 105 tests).
The same ratio for tests generated by SemStr was 6.12% (51 out of 832 tests).
A significant percentage of tests generated by SemStr hit corner cases even in
examples with 20-input AND gates in sharp contrast to random testing that
failed to hit a single corner case.

8.5 Using CTSs to verify local properties

In the last experiment, we used SemStr to build CTSs for local properties (see
Subsection 6.3). Our objective here was just to show that even the current imple-
mentation of SemStr was powerful enough to generate CTSs for local properties
of non-trivial circuits.

Table 4. Tests for local properties

HWMCC-10 #inp #lat- #gates |C| #tests time
benchmark vars ches s.
nusmvbrp 11 52 518 3 8,690 0.7
cmugigamax 34 29 646 4 1,158 0.2
kenoopp1 49 51 619 2 84 0.5
kenflashp01 61 57 1,292 7 46 0.9
nusmvguidancep1 84 86 1,823 3 767 1.2
visprodcellp01 30 78 2,807 2 534 1.4
pdtswvroz10x6p1 7 81 3,088 4 76 0.1
pdtvissoap2 21 205 4,333 2 6,408 1.6
pdtvissfeistel 68 361 9,976 2 5,078 0.1

In the experiment, we tested
local properties defined as fol-
lows. Let MT be a combina-
tional circuit specifying a tran-
sition relation T (X,S, Y, S′).
Here S and S′ are sets of the
present and next state vari-
ables, and X and Y are sets
of the combinational input and
internal variables respectively.
So X ∪S and S′ specify the in-

put and output variables of MT respectively. Let P be a set of clauses specifying
an inductive invariant for T . That is P (S)∧T → P (S′). Let C be a clause of P .
Then P (S)∧T → C(S′). This implication can be viewed as a property of circuit
MT . We will refer to it as a property specified by clause C (and predicate P).
It states10 that for every input assignment satisfying P , the output assignment
of MT satisfies C. Typically, C is a short clause i.e. the number of literals of C
is much smaller than |S′|. If only a small part of MT feeds the output variables
present in C, then the property specified by C is local.

Table 4 shows the results of our experiment. The first column gives the name
of an HWMCC-10 benchmark specified by MT . The next three columns show

10 Let N be the circuit obtained by composing MT and a |C|-input AND gate repre-
senting the negation of C. Then N evaluates to 1 iff the output of MT falsifies C.
Proving P (S) ∧ T → C(S′) reduces to showing that N ≡ 0 for every input assign-
ment satisfying P . This is a variation of the problem we consider in this paper (i.e.
checking if N ≡ 0 holds). Fortunately, this variation of the original problem can be
solved by SemStr .

the number of input combinational variables, state variables and gates in MT .
The next column gives the number of literals of clause C randomly picked from
an inductive invariant (generated by IC3 [2]). The last two columns describe
the results of SemStr in building a CTS for a projection of circuit N defined in
Footnote 10 on the set of input variables (i.e. on X∪S). These columns describe
the size of the CTS and the run time taken by SemStr to build it. Table 4 shows
that SemStr managed to build CTSs for local properties of non-trivial circuits
(e.g. for circuit pdtvissfeistel that has 9,976 gates and 361 latches).

9 Background

As we mentioned earlier, the objective of applying a test to a circuit is typically
to check if the output assignment produced for this test is correct. This notion
of correctness usually means satisfying the conjunction of many properties of
this circuit. For that reason, one tries to spray tests uniformly in the space of
all input assignments. To avoid generation of tests that for some reason should
be or can be excluded, a set of constraints can be used [12]. Another way to
improve the effectiveness of testing is to run many tests at once as it is done in
symbolic simulation [3]. Our approach is different from those above in that it is
“property-directed” and hence can be used to generate property-specific tests.

The method of testing introduced in [11] is based on the idea that tests should
be treated as a “proof encoding” rather than a sample of the search space. (The
relation between tests and proofs have been also studied in software verification,
e.g. in [8,9,1]). A flaw of this approach is that testing is treated as a second-class
citizen whose quality can be measured only by a formal proof it encodes. In this
paper, we take a different point of view where testing becomes the part of a
formal proof that performs structural derivations.

In [14], it was shown that Craig’s interpolation [4] can be used in model
checking. An efficient procedure for extraction of an interpolant from a resolu-
tion proof was given in [17,14]. A flaw of this procedure is that the size of this
interpolant strongly depends on the quality of the proof. As we mentioned in Sec-
tion 7, SemStr offers a new way to solve formulas with structure. In particular,
SemStr can be used to compute interpolants. Let formula G(X,Y, Z) be equal to
A(X,Y)∧B(Y, Z) and one applies SemStr to solve formula G by excluding the
variables of X ∪Z. Then formula H(Y) produced from G by SemStr can be rep-
resented as H1∧H2 where H1 and H2 are interpolants for A and B respectively.
That is A → H1 → B and B → H2 → A. (This is due to the fact that SemStr
forbids resolutions on variables of Y .) An advantage of SemStr is that it takes
into account formula structure and hence can potentially produce high-quality
interpolants. However, currently, using SemStr for interpolant generation does
not scale as well as extraction of an interpolant from a proof.

Reasoning about SAT in terms of random walks was pioneered in [16]. The
centered SSAs we introduce in this paper bear some similarity to sets of as-
signments generated in de-randomization of Schöning’s algorithm [5]. Typically,
centered SSAs are much smaller than uncentered SSAs introduced in [10]. A

big advantage of the uncentered SSA though is that its definition facilitates
computing an SSA in clusters of assignments (rather than single assignments).

10 Conclusion

We consider the problem of finding a Complete Test Set (CTS) for a combina-
tional circuit N that is a test set proving that N ≡ 0. We use the machinery of
stable sets of assignments to derive non-trivial CTSs i.e. ones that do not include
all possible input assignments. The existence of non-trivial CTSs implies that it
is more natural to consider testing as structural rather than semantic derivation
(the former being derivation of a property that cannot be expressed in terms of
the truth table). Since computing a CTS for the entire circuit N is impractical,
we present a procedure called SemStr that computes a CTS for a projection
of N on a subset of its variables. The importance of SemStr is twofold. First,
it can be used for generation of effective test sets. In particular, we describe a
procedure for “piecewise” construction of tests that can be potentially applied to
very large circuits. Second, SemStr can be used as a starting point in designing
verification tools that efficiently combine structural and semantic derivations.

References

1. N. Beckman, A. Nori, S. Rajamani, R. Simmons, S. Tetali, and A. Thakur. Proofs
from tests. IEEE Transactions on Software Engineering, 36(4):495–508, July 2010.

2. A. R. Bradley. Sat-based model checking without unrolling. In VMCAI, pages
70–87, 2011.

3. R. Bryant. Symbolic simulation—techniques and applications. In DAC-90, pages
517–521, 1990.

4. W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic, 22(3):269–285, 1957.

5. E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schöning. A deterministic (22/(k+1))n algorithm for k-sat
based on local search. Theoretical Computer Science, 289(1):69 – 83, 2002.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

7. N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages 502–518, Santa
Margherita Ligure, Italy, 2003.

8. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In TAP, pages
169–188, 2007.

9. P. Godefroid and N. Klarlund. Software model checking: Searching for computa-
tions in the abstract or the concrete. In Integrated Formal Methods, pages 20–32,
2005.

10. E. Goldberg. Testing satisfiability of cnf formulas by computing a stable set of
points. In Proc. of CADE-02, pages 161–180, 2002.

11. E. Goldberg. On bridging simulation and formal verification. In VMCAI-08, pages
127–141, 2008.

12. N. Kitchen and A.Kuehlmann. Stimulus generation for constrained random simu-
lation. In ICCAD-07, pages 258–265, 2007.

13. J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for satisfiability.
In ICCAD-96, pages 220–227, 1996.

14. K. L. Mcmillan. Interpolation and sat-based model checking. In CAV-03, pages
1–13. Springer, 2003.

15. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient sat solver. In DAC-01, pages 530–535, New York, NY, USA, 2001.

16. C. H. Papadimitriou. On selecting a satisfying truth assignment. In 32nd Annual
Symposium of Foundations of Computer Science, pages 163–169, Oct 1991.

17. P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

18. Berkeley Logic Synthesis and Verification Group. ABC: A system for sequential
synthesis and verification, 2017. http://www.eecs.berkeley.edu/∼alanmi/abc.

19. Minisat2.0. http://minisat.se/MiniSat.html.

Appendix

A Proofs

Proposition 1. Formula H is unsatisfiable iff it has an SSA.

Proof. If part. Assume the contrary. Let P be an SSA of H with center ~pinit and
H is satisfiable. Let ~s be an assignment satisfying H. Let ~p be an assignment of
P that is the closest to ~s in terms of the Hamming distance. Let C = Φ(~p). Since
~s satisfies clause C, there is a variable v ∈ Vars(C) that is assigned differently
in ~p and ~s. Let ~p∗ be the assignment obtained from ~p by flipping the value of v.
Note that ~p∗ ∈ Nbhd(~pinit , ~p, C).

Assume that ~p∗ ∈ P . In this case, ~p∗ is closer to ~s than ~p and we have a
contradiction. Now, assume that ~p∗ 6∈ P . In this case, Nbhd(~pinit , ~p, C) 6⊆ P and
so set P is not an SSA. We again have a contradiction.

Only if part. Assume that formula H is unsatisfiable. By applying BuildSSA
shown in Figure 2 to H, one generates a set P that is an SSA of H with respect
to some center ~pinit and AC-mapping Φ.

B CTSs And Circuit Redundancy

Let N ≡ 0 hold. Let R be a cut of circuit N . We will denote the circuit between
the cut and the output of N as NR (see Figure 9). We will say that N is non-
redundant if NR 6≡ 0 for any cut R other than the cut specified by primary
inputs of N .

Definition 3 of a CTS may not work well if N is highly redundant. Assume,
for instance, that NR ≡ 0 holds for cut R. This means that the clauses specifying
gates of N below cut R (i.e. ones that are not in NR) are redundant in FN ∧ z.
Then one can build an SSA P for FN∧z as follows. Let PR be an SSA for FNR

∧z.
Let ~v be an arbitrary assignment to the variables of Vars(N) \Vars(NR). Then

http://minisat.se/MiniSat.html

by adding ~v to every assignment of PR one obtains an SSA for FN∧z. This means
that for any test ~x, Cube(~x) contains an SSA of FN ∧ z. Therefore, according to
Definition 3, circuit N has a CTS consisting of just one test.

Fig. 9. A cut R in
circuit N

The problem above can be solved using the following ob-
servation. Let T be a set of tests {~x1, . . . , ~xk} for N where
k ≤ 2|X|. Denote by ~ri the assignment to the variables
of cut R produced by N under input ~xi. Let TR denote
{~r1, . . . , ~rk}. Denote by T ∗R the set of assignments to vari-
ables of R that cannot be produced in N by any input as-
signment. Now assume that T is constructed so that TR∪T ∗R
is a CTS for circuit NR. This does not change anything if
NR is itself redundant (i.e. if NR′ ≡ 0 for some cut R′ that
is closer to the output of N than R). In this case, it is still
sufficient to use T of one test because NR has a CTS of
one assignment (in terms of cut R). Assume however, that
NR is non-redundant. In this case, there is no “degenerate”

CTS for NR and T has to contain at least |TR| tests. Assuming that T ∗R alone is
far from being a CTS for NR, a CTS T for N will consist of many tests.

So a solution to the problem caused by redundancy of N is as follows. One
should require that for every cut R where NR ≡ 0 holds, set TR ∪ T ∗R should be
a CTS for NR. The fact that there always exists at least one cut R where NR is
non-redundant eliminates degenerate single-test CTSs for N .

C Reusing SSAs

Let SemStr be applied to formula G(V,W) to produce formula H(V) and its
SSA. Let us explain the idea of SSA reusing by the following example. Let P0 be
the SSA generated by SemStr in branch w = 0 where w ∈W . Let us show how
SSA P1 for branch w = 1 can be derived from P0. Let Φ0 be the AC-mapping
for P0. Assume for the sake of simplicity that

• only one clause B of Φ0(P0) contains literal w
• only assignment ~q ∈ P0 is mapped by Φ0 to clause B.

Thus, the only reason why P0 is not an SSA in branch w = 1 is that ~q is not
mapped to any clause. (Recall that SSAs built by SemStr consist of assignments
to V . So the construction of an SSA in branch w = 1 is different from w = 0
only because some V -clauses of branch w = 0 are satisfied in branch w = 1 and
vice versa.) Let BuildSSA* denote the modification of procedure BuildSSA (see
Figure 2) aimed at re-using P0 when building SSA P1.

Recall that BuildSSA maintains sets E and Q. The former consists of the
assignments whose neighborhood has been already explored and the latter stores
the assignments whose neighborhood is yet to be explored. BuildSSA* splits Q
into two sets: Q′ and Q′′. An assignment ~p is put in Q′ if

• ~p is in P0 and

• clause Φ0(~p) is not satisfied by w = 1

(In our case, every assignment of P0 but the assignment ~q above is put in set Q′.)
On the other hand, every assignment whose neighborhood is yet to be considered
and that does not satisfy the two conditions above is put in set Q′′. The reason
for this split is that the assignments from Q′ are cheaper to process. Namely,
if ~p ∈ Q′, then instead of looking for a clause falsified by ~p, BuildSSA* uses
clause Φ0(~p). For that reason, assignments of Q′ are the first to be considered
by BuildSSA*. An assignment of Q′′ is processed only if Q′ is currently empty.

BuildSSA* starts with the same center ~pinit that was used when building P0.
If ~pinit is different from ~q, it is put in Q′. Otherwise, it is put in Q′′. Let ~p be the
assignment picked by BuildSSA* from Q′ or Q′′. Let C be the clause to which ~p
is mapped by Φ1. Let ~p∗ be an assignment of Nbhd(~pinit , ~p, C). If ~p∗ satisfies the
two conditions above, BuildSSA* puts it in Q′. Otherwise, ~p∗ is added to Q′′.

	Generation Of Complete Test Sets
	Eugene Goldberg

