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Abstract—IC3, a well-known model checker, proves a property
of a transition system ξ by building a sequence of formulas
F0, . . . , Fk. Formula Fi, 0 ≤ i ≤ k over-approximates the set
of states reachable in at most i transitions. The basic algorithm
of IC3 cannot guarantee that the value of k never exceeds the
reachability diameter of ξ. We describe an algorithm called IC4
that gives such a guarantee. (IC4 stands for ”IC3 + Improved
Convergence”). One can argue that the average convergence rate
of IC4 is better than for IC3 as well. Improving convergence
can facilitate some other variations of the basic algorithm. As
an example, we describe a version of IC4 employing property
decomposition. The latter means replacing an original (strong)
property with a conjunction of weaker properties to prove by IC4.
We argue that addressing the convergence problem is important
for making the property decomposition approach work.

I. INTRODUCTION

IC3 is a model checker [2] that has become very popular

due to its high scalability. Let ξ be a transition system and

P be a safety property of ξ. IC3 builds a sequence of formu-

las F0, . . . , Fk where Fi over-approximates the set of states

reachable from an initial state of ξ in at most i transitions.

Property P is proved when Fi becomes an inductive invariant

of ξ for some 0 ≤ i ≤ k.

One of the reasons for high performance of IC3 is that the

value of k above is typically much smaller than Diam(ξ) (i.e.

the reachability diameter of ξ). So, on average, IC3 converges

to an inductive invariant much faster than an RA-tool (where

RA stands for “reachability analysis”). Interestingly, the worst

case behavior of an RA-tool and IC3 is quite different from

their average behavior. Namely, IC3 cannot guarantee that k
never exceeds Diam(ξ). We introduce a modification of IC3

called IC4 that fixes the problem above. (IC4 stands for “IC3

+ Improved Convergence”). On one hand, IC4 has the same

worst case behavior as an RA-tool. On the other hand, the

average convergence rate of IC4 is arguably better than that

of IC3 as well.

The main difference between IC4 and IC3 is as follows. IC3

checks if formula Fk is an inductive invariant by “pushing” the

clauses of Fk to Fk+1. If every clause of Fk can be pushed to

Fk+1, the former is an inductive invariant. Otherwise, there is

at least one clause C ∈ Fk that cannot be pushed to Fk+1. In

this case, IC3 moves on re-trying to push C to Fk+1 when new

clauses are added to Fk. In contrast to IC3, IC4 applies extra

effort to push C to Fk+1. Namely, it derives new inductive

clauses to exclude states that prevent C from being pushed to

Fk+1. This extra effort results either in successfully pushing

C to Fk+1 or in proving that C is “unpushable”.

The proof of unpushability consists of finding a reachable

state s that satisfies formula Fk+1 and falsifies clause C.

The existence of s means that Fk cannot be turned into an

inductive invariant by adding more clauses. Thus, semantically,

the difference between IC4 and IC3 is that the former starts

building a new over-approximation Fk+1 only after it proved

that adding one more time frame is mandatory. Operationally,

IC4 and IC3 are different in that IC4 generates a small set of

reachable states.

An appealing feature of IC3 is its ability to generate

property-specific proofs. So it seems natural to decompose a

hard property P into a conjunction P1 ∧ . . . Pm of weaker

properties and then generate m property-specific proofs for

Pi. However, the convergence issues of IC3 are arguably more

pronounced for weak properties (see Subsection VII-B). So, to

make property decomposition work, one should use IC4 rather

than IC3 to prove properties Pi. In this paper, we describe a

variation of IC4 employing property decomposition.

At the time of writing the first version of the paper we

were not aware of QUIP, a version of IC3 published at

[1]. We fix this omission and describe the relation between

IC4 and QUIP in Subsection VII-A. QUIP more aggressively

than the basic IC3 pushes clauses to future time frames and

generates reachable states as a proof that a clause cannot be

pushed. However, no relation of QUIP’s good performance

with improvement of its convergence rate has been established

either theoretically or experimentally.

The contribution of this paper is as follows. First, we show

the reason why IC3 has a poor upper bound on the convergence

rate (Section III). Second, we formulate a new version of IC3

called IC4 (Section IV) that is meant for fixing this problem. In

particular, we show that IC4 indeed has a better upper bound

than IC3 (Section V). We also give an estimate of the number

of reachable states IC4 has to generate (Section VI). Third,

we discuss arguments in favor of IC4 (Section VII). Fourth,

we describe IC4-PD, a version of IC4 meant for solving hard

problems by property decomposition (Section VIII).

II. A BRIEF OVERVIEW OF IC3

Let I and T be formulas1 specifying the initial states and

transition relation of a transition system ξ respectively. Let P
be a formula specifying a safety property of ξ. IC3 proves P
by building a set of formulas F0, . . . , Fk. Here formula Fi,

0 ≤ i ≤ k depends on the set of state variables of i-th time

frame (denoted as Si) and over-approximates the set of states2

1We assume that all formulas are propositional and are represented in CNF
(conjunctive normal form)

2A state is an assignment to the set of state variables.
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reachable in at most i transitions. That is every state reachable

in at most i transitions is an Fi-state 3.

IC3 builds formula Fk as follows. Formula F0 is always

equal to I . Every formula Fk , k > 0 is originally set to P .

(So Fk → P is always true because the only modification

applied to Fk is adding clauses.) Then IC3 tries to exclude

every Fk-state that is a predecessor of a bad state4 i.e. a state

s that breaks Fk∧T → P ′. Here T is a short for T (Sk, Sk+1)
and P ′, as usual, means that P depends on next-state variables

i.e. those of Sk+1. Exclusion of s is done by derivation of a

so-called inductive clause C falsified by s. Adding C to Fk

excludes s from consideration. (If s cannot be excluded, IC3

generates a counterexample.)

One of the properties of formulas Fi maintained by IC3

is Fi → Fi+1. To guarantee this, IC3 maintains two stronger

properties of Fi: a) Clauses(Fi+1) ⊆ Clauses(Fi) and b)

Fi 6= Fi+1 implies that Fi 6≡ Fi+1. That is the set of clauses of

Fi contains all the clauses of Fi+1 and the fact that Fi contains

at least one clause that is not in Fi+1 means that Fi and

Fi+1 are logically inequivalent. Since every formula Fi implies

P , one cannot have more than |P -states| different formulas

F0, . . . , Fk. That is if the value of k exceeds |P -states|, there

should be two formulas Fi−1, Fi, i < k such that Fi−1 = Fi.

This means that Fi−1 is an inductive invariant and property P
holds.

III. CONVERGENCE RATE OF IC3 AND CLAUSE PUSHING

We will refer to the number of time frames one has to

unroll before proving property P as the convergence rate.

We will refer to the latter as ConvRate(P ). As we mentioned

in Section II, an upper bound on ConvRate(P ) of the basic

version of IC3 formulated in [2] is |P -states|. Importantly,

the value of |P -states| can be much larger than Diam(ξ)
(i.e. the reachability diameter of ξ). Of course, on average,

ConvRate(P ) of IC3 is much smaller than Diam(ξ), let alone

|P -states|. However, as we argue below, a poor upper bound

on ConvRate(P ) is actually a symptom of a problem.

Recall that formula Fk specifies an over-approximation of

the set of states reachable in at most k transitions. So, it cannot

exclude a state s reachable in j transitions where j ≤ k. (That

is such a state s cannot falsify Fk.) On the other hand, Fk may

exclude states reachable in at least k+ 1 transitions or more.

Suppose IC3 just finished constructing formula Fk. At this

point Fk ∧ T → P ′ holds i.e. no bad state can be reached

from an Fk-state in one transition. After constructing Fk, IC3

invokes a procedure for pushing clauses from Fk to Fk+1.

In particular, this procedure checks for every clause C of

Fk if implication Fk ∧ T → C′ holds. We will refer to this

implication as the pushing condition. If the pushing condition

holds for clause C, it can be pushed from Fk to Fk+1. If

3Given a formula H(S), a state s is said to be an H-state if H(s) = 1.
4Given a property P , a P -state is called a bad state.

the pushing condition holds for every clause5 of Fk, then

Fk ∧ T → F ′

k
and Fk is an inductive invariant.

Suppose that the pushing condition does not hold for a

clause C of Fk. Below, we describe two different reasons

for the pushing condition to be broken. IC3 does not try

to identify which of the reasons takes place. This feature of

IC3 is the cause of its poor upper bound on ConvRate(P ).
Moreover, intuitively, this feature should affect the average

value of ConvRate(P ) as well.

The first reason for breaking the pushing condition is that

clause C excludes a state s that is reachable in (k+1)-th time

frame from an initial state. In this case, formula Fk cannot be

turned into an inductive invariant by adding more clauses. In

particular, the broken pushing condition cannot be fixed for C.

The second reason for breaking the pushing condition is that

clause C excludes a state s that is unreachable in (k + 1)-th
time frame from an initial state. In this case, every Fk-state q

that is a predecessor of s can be excluded by deriving a clause

falsified by q. So in this case, the broken pushing condition

can be fixed. In particular, by fixing broken pushing conditions

for Fk one may turn the latter into an inductive invariant.

IV. INTRODUCING IC4

A. A high-level view of IC4

We will refer the version of IC3 with a better convergence

rate described in this paper as IC4. The main difference

between IC3 and IC4 is that the latter makes an extra effort in

pushing clauses to later time frames. This new feature of IC4

is implemented in a procedure called NewPush (see Figure 1).

It is invoked after IC4 has built Fk where the predecessors of

bad states are excluded i.e. as soon as Fk∧T → P ′ holds. For

every clause C of Fk , NewPush checks the pushing condition

(see Section III). If this condition is broken, NewPush tries

to fix it or proves that it cannot be fixed and hence C is

“unpushable”.

Depending on the clause-pushing effort, one can identify

three different versions of IC4: minimal, maximal and heuris-

tic. The minimal IC4 stops fixing pushing conditions as soon

as NewPush finds a clause of Fk that cannot be pushed. After

that the minimal IC4 switches into the “IC3 mode” where

the pushing conditions are not fixed for the remaining clauses

of Fk. The maximal IC4 tries to fix the pushing condition for

every inductive clause of Fk . That is if a clause C ∈ Fk cannot

be pushed to Fk+1, the maximal IC4 tries to fix the pushing

condition (regardless of how many unpushable clauses of Fk

has been already identified). Moreover, if an inductive clause

C is added to Fi, i < k, the maximal IC4 try to fix the pushing

condition for C if it cannot be immediately pushed to Fi+1.

A heuristic IC4 uses a heuristic to stay between minimal

and maximal IC4 in terms of the clause-pushing effort. In this

paper, we describe the minimal IC4 unless otherwise stated.

So, when we just say IC4 we mean the minimal version of it.

5In reality, since both Fk and Fk+1 contain the clauses of P , only the
inductive clauses of Fk added to strengthen P are checked for the pushing
condition.



// Fk = {F0, . . . , Fk};
//
NewPush(I, T, P,Fk){
1 NewClauses := true;
2 Fk+1 := P
3 while (NewClauses) {
4 NewClauses := false;
5 foreach C ∈ (Fk \ P ) {
6 if (C ∈ (Fk+1 \ P )) continue;

7 s := SAT (Fk ∧ T ∧ C′);
8 if (s = nil) {
9 Fk+1 := Fk+1 ∪ {C}
10 continue; }
11 (Fk, t) := ExclState(s, I, T, P, Fk);
12 if (t 6= nil) return(C, t);
13 NewClauses := true}}
14 return(nil ,nil); }

Fig. 1. The NewPush procedure

B. Description of NewPush

The pseudo-code of NewPush is given in Fig. 1. At this point

IC4 has finished generation of Fk. In particular, no bad state

can be reached from an Fk-state in one transition. NewPush

tries to push every inductive clause of Fk to Fk+1. If a clause

C ∈ Fk is unpushable, NewPush returns C and a trace t

leading to a state falsified by clause C. Trace t proves the

unpushability of C and hence the fact that Fk cannot be turned

into an inductive invariant by adding more clauses. If every

clause of Fk can be pushed to Fk+1, then Fk is an inductive

invariant and NewPush returns (nil, nil) instead of clause C
and trace t.

NewPush consists of two nested loops. A new iteration of

the outer loop (lines 3-13) starts if variable NewClauses equals

true. The value of this variable is set in the inner loop (lines

5-13) depending on whether new clauses are added to Fk. In

every iteration of the inner loop, NewPush checks the pushing

condition (line 7) for an inductive clause of Fk that is not in

Fk+1. If it holds, then C is pushed to Fk+1.

If the pushing condition fails, an Fk+1-state s is generated

that falsifies clause C. Then NewPush tries to check if s

is reachable exactly as IC3 does this when looking for a

counterexample. The only difference is that s is a good state6.

As we mentioned above, if s is reachable by a trace t,

NewPush terminates returning C and t. Otherwise, it sets

variable NewClauses to true and starts a new iteration of the

inner loop.

V. BETTER CONVERGENCE RATE OF IC4

As we mentioned in Section II, an upper bound on

ConvRate(P ) is |P -states|. Below, we show that using proce-

dure NewPush described in Section IV brings the upper bound

on ConvRate(P ) for IC4 down to Diam(ξ). (Note that if

property P holds, Diam(ξ) ≤ |P -states|.)

6Recall that at this point of the algorithm, no bad state can be reached from
an Fk-state in one transition.

Let Fk be a formula for which NewPush is called when

k ≥ Diam(ξ). At this point Fk ∧ T → P ′ holds. Let s be

a state breaking the pushing condition for a clause C of Fk.

That is s falsifies C (and hence it is not an Fk-state) but is

reachable from an Fk-state in one transition.

Recall that Fk is an over-approximation of the set of states

that can be reached in at most k-transitions. Since s falsifies

Fk, reaching it from an initial state of ξ requires at least k+1
transitions. However, this is impossible since k+1 > Diam(ξ)
and hence state s is unreachable. This means that every

Fk-state that is a predecessor of s can be excluded by an

inductive clause added to Fk . So eventually, NewPush will fix

the pushing condition for C. After fixing all broken pushing

conditions for clauses of Fk, NewPush will turn Fk into an

inductive invariant.

VI. NUMBER OF REACHABLE STATES TO GENERATE

The number of generated reachable states depends on which

of the three versions of IC4 is considered (see Subsec-

tion IV-A). Let k denote the maximal number of time frames

unfolded by IC4. In the case of the minimal IC4, the upper

bound on the number of reachable states for proving property

P is equal7 to k ∗ (k + 1)/2. For the maximal IC4, the

upper bound is k ∗ |Unpush(F )| where F = F1 ∪ · · · ∪ Fk

and Unpush(F ) is the subset of F consisting of unpushable

clauses. Indeed, an inductive clause C ∈ Fi is proved

unpushable only once. This proof consists of a trace to a state

falsified by Fi. The length of this trace is equal to i and hence

bounded by k. The upper bound for the maximal IC4 above

is loose because one assumes that

• the length of every trace proving unpushability equals k
• two (or more) clauses cannot be proved unpushable by

the same reachable state.

Re-using reachable states can dramatically reduce the total

number of reachable states one needs to generate. For instance,

for the minimal IC4, this number can drop as low as k.

For the maximal IC4, the total number of reachable states

can go as low as m + k where m is the total number of

reachable states generated to prove the unpushability of clauses

of Unpush(F ).

VII. A FEW ARGUMENTS IN FAVOR OF IC4

In this section, we give some arguments in favor of IC4.

The main argument is given in Subsection VII-A where we

relate IC4 with a model checker called QUIP. The latter was

introduced8 in [1] in 2015. In Subsections VII-B and VII-C,

we describe a few potential advantages of IC4 that were not

discussed in [1] (in terms of QUIP).

7For every formula Fi, i = 1, . . . , k, IC4 generates one reachable state s

falsifying a clause of Fi. To reach s, one needs to generate a trace of i states.
So the number of reachable states generated for Fi is equal to i. The total
number of reachable states is equal to 1 + 2 + ...+ k.

8As we mentioned in the introduction, at the time of writing the first version
of our paper we were not aware of QUIP.



A. IC4 and QUIP

As we mentioned in the introduction, QUIP makes an extra

effort to push clauses to future time frames. To show that a

clause cannot be pushed, QUIP generates a reachable state.

Although the premise of QUIP is that the strategy above

may lead to a faster generation of an inductive invariant,

this claim has not been justified theoretically. The advantage

of QUIP over IC3 is shown in [1] in terms of better run

times and a greater number of solved problems. So, no direct

experimental data is provided on whether QUIP has a better

convergence rate than IC3. (As mentioned in [1] and in the first

version of our paper, having at one’s disposal reachable states

facilitates construction of better inductive clauses9. So one

cannot totally discard the possibility that the performance of

QUIP is mainly influenced by this “side effect”.) Nevertheless,

great experimental results of QUIP is an encouraging sign.

B. Proving weak properties

In this subsection, we argue that IC4 should have more

robust performance than IC3 on weak properties. Let Fi be an

over-approximation of the set of states reachable in at most i
transitions and P be the property to prove. As we mentioned

earlier, there are two conditions one needs to satisfy to turn Fi

into an inductive invariant: Fi∧T → P ′ and Fi∧T → F ′

i
. We

will refer to a state s breaking the first condition (respectively

second condition) as a state of the first kind (respectively

second kind). Only states of the first kind (i.e. Fi-states from

which there is a transition to a bad state) are explicitly excluded

by IC3. States of the second kind are excluded implicitly via

generalization of inductive clauses. On the other hand, IC4

excludes states of both kinds explicitly and implicitly (via

generalization of inductive clauses).

First, assume that P is a strong property meaning that there

is a lot of bad states. Then by excluding states of the first

kind coupled with generalization of inductive clauses, IC3 also

excludes many states of the second kind. Now assume that P
is a weak property that has, say, only one bad state. Let us also

assume that excluding states reaching this bad state is easy.

Intuitively, in this case, IC3 is less effective in excluding the

states of the second kind (because their exclusion is just a side

effect of excluding states of the first kind). On the other hand,

IC4 does not have this problem and so arguably should have a

more robust behavior than IC3 when proving weak properties.

C. Test generation

Formal verification of some properties of transition system

ξ does not guarantee that the latter is correct10. In this case,

testing is employed to get more confidence in correctness of ξ.

Traces generated by IC4 can be used as tests in two scenarios.

First, one can check that reachable states found by IC4 satisfy

9By avoiding the exclusion of known reachable states, one increases the
chance for an inductive clause to be a part of an inductive invariant.

10Moreover, ξ can be incorrect even if a supposedly complete set of
properties P1, . . . , Pn is proved true [4], [3]. For instance, the designer may
“misdefine” a property and so instead of verifying the right property P ′

i
(that

does not hold) a formal tool checks a weaker property Pi (that holds).

IC4-PD(I, T, P ){
1 Inv := ∅
2 while (true) {
3 s := CheckSat(Inv ∧ P )
4 if (s = nil) return(Inv ,nil)
5 Q := FormProp(s)
6 (J,Cex ) := IC4 ∗(I, T, P, Inv , Q)
7 if (Cex 6= nil) return(nil ,Cex )
8 if (J = Q)
9 J := Strengthen(I, T, Inv , J)
10 Inv := Inv ∧ J } }

Fig. 2. The IC4-PD procedure

the properties that formal verification tools failed to prove.

Second, one can just inspect the states visited by ξ and the

outputs produced in those states to check if they satisfy some

(formal or informal) criteria of correctness.

VIII. INTRODUCING IC4-PD

In this section, we present IC4-PD, a version of IC4

employing property decomposition. In Subsection VIII-A,

we describe two obstacles one has to overcome to make

property decomposition work. Subsection VIII-B introduces

a straightforward implementation of IC4-PD.

A. Property decomposition: two obstacles to overcome

As we mentioned in the introduction, an appealing feature of

IC3 is its ability to generate property-specific proofs. Let P be

a hard property to prove. Let P be represented as P1∧· · ·∧Pk

(i.e. P is decomposed into k weaker properties). Let Jk be an

inductive invariant for property Pk. Then J1 ∧ · · · ∧ Jk is an

inductive invariant for property P . So one can prove P via

finding property-specific proofs Ji, i = 1, . . . , k.

To make the idea of property decomposition work one has

to overcome at least two obstacles. The first obstacle11 is that

the search space one has to examine to prove Pi is, in general,

not a subset12 of the search space for P . In [5], we show that

this issue can be addressed by using the machinery of local

proofs13.

The second obstacle is as follows. As we argued in Sub-

section VII-B, weak properties are more likely to expose the

convergence rate problem of IC3. For that reason, replacing a

strong property P with weaker properties Pi may actually lead

to performance degradation if properties Pi are proved by IC3.

On the other hand, IC4 should be more robust when solving

weak properties. So one can address the second obstacle by

using IC4 (rather than IC3) to prove properties Pi.

11This obstacle is of a general nature and is not caused by using IC3.
12The reason is that when proving Pi one may need to consider traces

that contain two and more P -states. These traces break property P without
breaking property Pi.

13To prove that Pi holds globally one needs to show that no trace of Pi-
states reaches a P i-state. Proving Pi locally means showing that no trace of
P -states (rather than Pi-states) reaches a P i-state. As we show in [5], if P
is false, there is property Pi that breaks both globally and locally. So if every
Pi holds locally, then it does globally too and P is true.



B. Description of IC4-PD

The pseudocode of IC4-PD is shown in Fig. 2. IC4-PD

accepts formulas I, T, P specifying the initial states, the tran-

sition relation and the property to prove respectively. IC4-PD

returns either an inductive invariant Inv or a counterexample

Cex . Computation is performed in a while loop. First, IC4-

PD checks if there is a P -state s breaking Inv → P (line 3).

If not, then Inv is an inductive invariant proving P (line 4).

Otherwise, IC4-PD forms a new property Q to prove (line 5).

Q consists of one clause, namely, the longest clause falsified

by s. So, the latter is the only Q-state.

Then IC4-PD calls IC4∗, a version of IC4 that proves

Q locally14 with respect to the target property P (see Sub-

section VIII-A). That is IC4∗ checks is there is a trace

of P -states (rather than Q-states) leading to the Q-state. If

not, then Q holds locally. IC4∗ uses the current Inv as a

constraint15. Namely, IC4∗ looks for a formula J satisfying

Inv ∧ J ∧ T → J ′ (rather than J ∧ T → J ′).

If IC4∗ finds a counterexample Cex , then Q and hence P
fail (line 7). Otherwise, IC4∗ returns an inductive invariant

J . If Q is itself an inductive property (and so J = Q), IC4

tries to strengthen J like an inductive clause is strengthened

by IC3 (line 9). This is done to avoid enumerating P -states

one by one if many properties Q turn out to be inductive. If J
is already strengthened (and so J 6= Q), then Inv is replaced

with Inv ∧ J and a new iteration begins.
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