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Abstract 
We introduce the notion of a Common Specification of circuits 
that  generalizes the current notion of structural similarity.  A CS 
S of circuits N1 and N2 is a circuit of multi-valued blocks from 
which N1 and N2 can be produced by binary encoding. We show 
that  the equivalence checking of N1,N2  in general resolution 
(which a non-deterministic proof system) is linear in the number 
of blocks in S.  However, there are reasons to believe that 
equivalence checking of circuits N1,N2 is hard for a deterministic 
algorithm if their CS is not known. We give some experimental 
data that  substantiates  this conjecture. 

1. Introduction 
 

Combinational equivalence checking  is one of the most 
widely used techniques of formal verification.  In particular, 
equivalence checking is the basic procedure for the verification of 
sequential circuits. The existing methods of equivalence checking 
fall into the following two classes. The first class consists of the 
methods that do not make any assumption about the structure of 
circuits to be checked for equivalence. One of the methods of this 
class is to compute the functionality of circuits to be checked for 
equivalence as  BDDs [3]. Another method is to reduce 
equivalence checking to the satisfiability problem (SAT) and use a 
universal SAT-solver [4],[8]. Finally, it is possible to combine 
building BDDs and SAT solving as it was suggested in [5]. The 
main drawback of the methods of the first class is their 
unscalability due to exponential growth of required memory 
and/or runtime. 

The second class consists of methods that make use of the 
structural similarity of  circuits to be checked for equivalence. The 
equivalence checkers of this class are a mixture of  methods using 
random simulation, BDDs, SAT, ATPG, graph isomorphism (see 
for instance [2],[6],[7]).  These methods operate under the 
assumption that many internal points of the circuits to be 
compared are related by short relationships. In the majority of 
cases the short relationships to be deduced are equivalences [6] 
(sometimes implications [7] and/or replacability relationships 
[2]). The deduction of these relationships allows one to 
decompose the initial problem into a (polynomial size) set  of 
smaller problems. Methods of this class dominate in the 
equivalence checking domain since they allow one to verify very  
large industrial designs. 

In spite of the great progress achieved in equivalence 
checking, the existing tools can only prove the equivalence of 
circuits with many functionally equivalent internal points. One 
might say that current synthesis  procedures do not change circuits 
very much. Therefore hard equivalence checking problems (when 
the number of equivalent internal points is small) are rare and 
should not be given any serious consideration. However, this 
situation may change soon. Due to close relation between 

synthesis and verification, a significant improvement of  
verification procedures may lead to putting into practice synthesis 
methods that would change circuits much more that they do now. 

 A more serious objection to a quest  for more robust 
equivalence checkers is  that the problem of equivalence checking  
of  dissimilar circuits may be inherently hard.  So no scalable 
equivalence checking algorithm exists for such circuits.  In this 
paper we try to show that equvialence checking is probably both 
hard and easy  (and scalable) depending on whether or not the 
program has information about a Common Specification (CS) of 
the circutis to be checked for equivalence  

Let N1 and N2  be two Boolean circuits to be checked for 
equivalence. A CS S  is just a circuit of multi-valued gates further 
referred to as blocks such that N1 (or N2) can be obtained from S 
by replacing each block G of S with its implementation I1(G) (or 
I2(G)).  The circuit I1(G) (or I2(G)) implements a multi-output 
Boolean function obtained from the truth table of G after 
encoding the values of multi-valued variables with binary codes.  

Any pair of functionally equivalent circuits N1,N2 has a CS S. 
If N1,N2 are identical copies of a circuit N*, then N* can be 
considered as their CS. Each “block”  of the specification N* is 
“ implemented”  with only one gate of N1 or N2. So N* is the 
“ finest”  possible CS. If N1 and N2  are completely structurally 
dissimilar, they have a trivial  CS consisting of only one  block 
where N1 and N2 are implementations of this block. If  circuits N1 
and N2  are structurally similar they have a set of non-trivial CSs 
i.e. ones different  from a trivial single block CS mentioned 
above.  (Henceforth, when we say that N1 and N2 have a CS we 
mean that they have a non-trivial CS.) The “ finest”  CS of N1 and 
N2  (i.e. the one with  blocks of the smallest size) can be viewed  
as a measure of the structural similarity of these circuits.  The size 
of a block G of S is measured in the number p of gates in the 
implementation  of G in N1 or N2 (whichever is larger). If the size 
of the largest block of S is p we will say that  S is a CS of 
granularity p. (Henceforth, when we say that S is a fine CS we 
mean that the granulrity of S is small.) 

In this paper, we show that the equivalence checking of 
circuits N1 and N2 with a CS S can be performed in general 
resolution in d∗n∗36p resolution steps. Here d is a constant, n is 
the number of blocks in S and p is the granularity of S. This result 
means that the complexity of equivalence checking in general 
resolution is  linear in the number of blocks of S and exponential 
in their size. So, for instance, if the granularity of S is bounded by 
a constant, then equivalence checking is linear in the size of 
circuits N1,N2 and so is easily scalable no matter how large these 
circuits are. It is worth mentioning that the factor 36p is a worst 
case estimate for the complexity of computing so called filtering 
and correlation functions (see Section 4) for a block of S. In 
practice, computing these functions for a block should be much 
easier. 

The upper bound on complexity of equivalence checking 
above is obtained in general resolution, that is in a non-
deterministic proof system. However, it is not hard to formulate a 
deterministic algorithm  for equivalence checking of circuits N1,N2 



with a known CS S that has the same complexity as in general 
resolution. (This algorithm is basically formulated in  Proposition 
6, Proposition 7 and Proposition 8). So if one knows a fine CS of 
N1 and N2, their equivalence checking can be done very 
efficiently. On the other hand, there is a reason to believe that if a 
CS of N1 and N2 is unknown (even if there exists a very fine CS of 
N1 and N2), their equivalance checking is hard. This reason is that 
finding a short proof of equivalence basically means recovering a 
CS (i.e. the underlying high-level structure) from the low-level 
description of N1 and N2. It is highly unlikely that there exists  an 
efficient algorithm for that. 

To substantiate our claim that equivalence checking without 
any knowledge of  a CS is hard we study the performance of state-
of-the-art SAT-solvers  Zchaff [8], BerkMin [4] and a specialized 
version of BerkMin called SEC (Sat based Equivalence Checking) 
on equivalence checking instances.  All the three programs show a 
decent performance on MCNC benchmarks when checking the  
equivalence of the original and   synthesized circuits.  However, 
their perfromance quickly degrades when they are used for 
equivalence checking of circuits with a  CS of very small 
granularity. In particular, some instances cannot be solved in 
many hours. On the other hand, an algorithm that knows the CS 
and generate resolution proofs described in Section 4 should be 
able to solve  these instances in a few seconds. 
 
 

2. Common Specification of Boolean Circuits 
 

In this section, we introduce the notion of a  common 
specification of Boolean circuits.  Let S be a combinational circuit 
of multi-valued blocks (further referred to as a specification) 
specified by a directed acyclic graph H.  The sources and sinks of 
H correspond to primary inputs and outputs of S. Each non-source  
node of H corresponds to a multi-valued block  computing a 
multi-valued function of multi-valued arguments.  Each node of n 
of H is associated with a multi-valued variable V. If n is a source  
of H , then the corresponding variable specifies values taken by 
the corresponding primary input  of S.  If n is a non-source node 
of S then the corresponding variable describes the values taken by 
the output of the block specified by n. If n is a source 
(respectively a sink), then the corresponding variable is called a 
primary input variable (respectively primary output variable). 
We will use the notation C=G(A,B) to indicate that a) the output 
of a block G is associated with a variable C; b) the function 
computed by the block G is G(A,B); c) only two nodes of H are 
connected to the node n in H and these nodes are associated with 
variables A and B. 

Denote by D(V) the domain of the variable V  associated 
with a node of H.  The value of |D(V)| is called the multiplicity of 
V.  If the multiplicity of  every variable V of S is equal to 2 then S 
is a Boolean circuit. 

Now we describe how a Boolean circuit N can be produced 
from a specification S  by encoding the multi-valued variables. Let  
D(V)={ v1,…,vt}  be the domain of a variable V of S. Denote by 
q(V) a Boolean encoding of the values of D(V)  that  is a mapping 
q:D(V)→{ 0,1} m . Denote by length(q(V)) the number of bits in q 
that is the value of m. The value of q(vi),  vi ∈ D(V)  is called the 
code of vi.  Given an encoding q of length m of a variable  V 

associated with a block  of S, denote by v(V) the set of m coding 
Boolean variables. 

In the following exposition we make the  assumptions 
below.  
Assumption 1.  Each gate of a Boolean circuit and each block 
of a specification has two inputs and one output. 
Assumption 2. The multiplicity of each primary input (or 
output) variable  of a specification is a power of 2. 
Assumption 3.  If V is a primary input (or output) variable of a 
specification, then  length(q(V))=log2(|D(V)|) 
Assumption 4.  If v1 and v2 are values  of a variable V  of a 
specification  and v1  ≠ v2 , then q(v1) ≠ q(v2). 
Assumption 5. If A and B are two different variables of a 
specification , then v(A) ∩ v(B)  = ∅. 
Remark 1.  From Assumption 2, Assumption 3, and Assumption 
4 it follows that if  A is a primary input (or output) variable, a 
mapping q:D(A)→{ 0,1} m

  is bijective. In particular, any 
assignment to the variables of v(A) is a code of  some value          
a ∈ D(A). 
Definition 1. Given a Boolean circuit I, denote by Inp(I) 
(respectively Out(I)) the set of variables associated with primary 
inputs  (respectively primary outputs) of I. 
Definition 2.  Let X1 and X2 be sets of Boolean variables and     
X2 ⊆ X1. Let y be an assignment to the variables of X1. Denote by 
proj(y,X2) the projection of y on X2 i.e. the part of y that consists of 
the assignments to the variables of X2. 
Definition 3. Let C=G(A,B)  be a block of  specification S.  Let 
q(A),q(B),q(C) be encodings of variables A,B, and C respectively. 
A Boolean circuit I is said to implement the block G if the 
following three conditions hold: 
1) The set Inp(I) is a subset of v(A) ∪ v(B). 
2) The set Out(I) is equal to v(C). 
3) If the set of values assigned to v(A) and v(B) form codes q(a) 
and q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z’ )=q(c). 
Here z’  is the projection of the assignment z=(q(a),q(b)) on Inp(I),    
I(z’ ) is the value taken by I at z’ ,      and c=G(a,b). 
Remark 2.   The reason why Inp(I) may not include all the 
variables of v(A) and/or  v(B) is that the function G(A,B) may not 
distinguish some values of A or B. (G(A,B) does not distinguish, 
say, values a1,a2 ∈ D(A), if for any b ∈ D(B), G(a1,b)=G(a2,b).)   
So to implement G(A,B) the circuit I may need only a subset of 
variables of v(A) ∪ v(B). This said, for the sake of simplicity, we 
will write I(q(a),q(b)) meaning  I(q’ (a),q’ (b)), q’ (a)= 
proj(q(a),Inp(I)) and q’ (b)=proj(q(b),Inp(I)). 
Definition 4. Let S be a multi-valued circuit. A Boolean circuit 
N  is said to implement the specification S, if it is built according 
to the following  two rules. 
1) Each block G of S  is replaced with an implementation  I of 
G. 
2) Let the output of block G1 (specified by variable R) be 
connected to an input of block G2 (specified by the same variable 
R) in S. Then the outputs of the circuit I1 implementing G1 are 
properly connected to inputs of circuit I2 implementing G2. 
Namely, the primary output of I1 specified by a Boolean variable x 
∈ v(R) is connected to the input of I2 specified by the same 
variable of v(R) if x ∈ Inp(I2).  

In Fig. 1a a specification of three blocks is shown. The 
functionality of two  different implementations of the block 



C=G1(A,B) (Fig. 1b) are shown in Fig. 1c and 1d. Here 
D(A)={ a0,a1} , D(B)={ b0,b1,b2,b3}  and D(C)={ c0,c1,c2} . Since A 
and B are primary input variables they are encoded with a 
minimum length encoding and q1(A)=q2(A) and q1(B)=q2(B) 
where  q1(a0)=0, q1(a1)=1, q1(b0)=00, q1(b1)=01, q1(b2)=10, 
q1(b3)=11. Finally, the encodings q1(C) and q2(C) are q1(c0)=00, 
q1(c1)=10, q1(c2)=01 and  q2(c0)=100, q2(c1)=010, q2(c2)=001. 
Remark 3.   Let N  be an implementation of a specification S. Let 
p be the largest number of gates used in an implementation of  a 
multi-valued block  of S  in N. We will say that S is a specification 
of granularity p for N. 
Definition 5. The topological level of a block G in a 
specification S is the length of the longest path from a primary 
input of S to G. (The length of a path is measured in the number of 
blocks on it. The topological level of a primary input is assumed to 
be 0.) Denote by level(G) the topological level of G in S. 

Let N be an implementation of a specification S. From 
Assumption 4 it follows that for any value assignment h to the 
input variables of N there is a unique set of values (x1,…,xk), 
where xi ∈ D(Xi) such that h=(q(x1),…,q(xk)). That is there is one-
to-one correspondence between assignments to primary inputs of 
S and N.  The same applies to primary outputs of S and N. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A specification and the functionality of two  
implementations of a block 

Definition 6. Let N  be an implementation of S. Given a Boolean 
vector y of assignments to the primary inputs of N, the 
corresponding vector Y=(x1,..,xk) such that y=(q(x1),…,q(xk )) is 
called the pre-image of y. 

Proposition 1. Let N be a circuit implementing specification S. 
Let I(G)  be the implementation of a block C=G(A,B) of S in N .  
Let y be a value assignment to the primary input variables of N 
and Y be the pre-image of y. Then  the values of primary outputs 
of I(G) form the code q(c) where c is the value taken by the output 
of G when the inputs of S  take the values specified by Y. 
Proof.  The proposition can be proven by induction in topological 
levels of variables of the specification S.  According to Remark 1, 
the proposition holds for the variables of topological level 0 
(primary input variables of S).  Let C=G(A,B)  be a block of S and 
level(G)=n, n>0. Let I(G) be the implementation of G in N.  By 
the induction hypothesis, values taken by the variables of v(A) and 
v(B) in N under the input assignment y should be q(a) and q(b) 
respectively. Here a and b are values of variables A and B under 
the input assignment Y. Then from Definition 3 it follows that the 
outputs of  I(G) take the values of  q(C) where c=G(a,b) .        
Proposition 2.  Let N1, N2 be circuits implementing a 
specification S.  Let each primary input (or output) variable X of S 
have the same encoding in N1 and N2. Then Boolean circuits N1 
and N2 are functionally equivalent. 
Proof. Let y be an arbitrary assignment to input variables of N1  
and N2. Since the encodings of primary input variables of S in N1 
and N2 are the same, then the pre-image Y of y for N1 and N2 is the 
same.  Let C be a primary output variable of S associated with a 
block G. From Proposition 1 it follows that the values taken by 
the implementations I1(G) and I2(G) of G in N1 and N2 are equal 
to q1(c) and q2(c) respectively. Here c is the value taken by the 
output of G under input assignment Y and q1 and q2 are encodings 
of the primary output variable C in N1 and N2. Since C has the 
same encoding in N1 and N2, then q1(c) = q2(c).                          
Definition 7.  Let N1, N2 be two functionally equivalent Boolean 
circuits. Let N1, N2  implement a specification S  so that for every 
primary input (output) variable X encodings q1(X) and q2(X) (used 
when producing N1 and N2 respectively) are identical. Then N is 
called a common specification (CS) of N1 and N2. 
Remark 4.  Let  S  be a CS of N1,N2  and  C be a variable of S. 
We will assume that v1(C) =v2(C)  if C is a primary input variable 
and v1(C) ∩ v2(C) = ∅ otherwise. 
Definition 8. Let S  be a CS of N1,N2.  Let p1 (respectively p2) be 
the granularity of S with respect to N1 (respectively  N2). Then we 
will say that S is a CS of  N1,N2 of granularity p  = max(p1,p2). 
Definition 9. Given two functionally equivalent Boolean circuits 
N1, N2,  S  is called the finest common specification if it has the 
smallest granularity p among all the CSs of N1 and N2. 

 

3. Equivalence Checking as SAT 
 

Since in this paper we formulate the complexity of 
equivalence checking in terms of  resolution proofs, we recall a 
common way of reducing equivalence checking  to the 
satisfiability problem. 
Definition 10. A disjunction of literals of Boolean variables not 
containing two literals of the same variable is called a clause. A 

A B C 
a0 b0 c0 

a0 b1 c1 

a0 b2 c1 

a0 b3 c0 

a1 b0 c1 

a1 b1 c2 

a1 b2 c2 

a1 b3 c0 

 
A B F 

C K 

E 

G1 G2 

G3 

q1(A) q1(B) q1(C) 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 1 

1 1 1 1 1 

 

q2(A) q2(B) q2(C) 

0 0 0 1 0 0 

0 0 1 0 1 0 

0 1 0 0 1 0 

0 1 1 1 0 0 

1 0 0 0 1 0 

1 0 1 0 0 1 

1 1 0 0 0 1 

1 1 1 1 0 0 

 

C=G1(A,B) 

(a) (b) 

(c) (d) 

      I1(q1(A),q1(B))       I2(q2(A),q2(B)) 



conjunction of clauses is called a conjunctive normal form 
(CNF). 

Definition 11. Given a CNF F, the satisfiability problem (SAT) 
is to find a value assignment to the variables of F for which F 
evaluates to 1 (also called a satisfying assignment) or to prove 
that such an assignment  does not exist. A clause K of F is said to 
be satisfied by a value assignment y if K(y)=1. 

The standard conversion of an equivalence checking 
problem into an instance of SAT is performed in two steps. Let N1 
and N2 be Boolean circuits to be checked for equivalence. At the 
first step of this conversion, a circuit M called a miter [2] is 
formed from N1 and N2. The miter M is obtained by 1) identifying 
the corresponding primary inputs of N1 and N2; 2) XORing each 
pair of corresponding primary outputs of N1 and N2; 3) ORing  the 
outputs of the added XOR gates.  So the miter of N1 and N2 
evaluates to 1 if and only if for some input assignment a primary 
output of N1 and the    corresponding output of N2 evaluate to 
different values. Therefore, the problem of checking the 
equivalence of N1 and N2 is equivalent to testing the satisfiability 
of the miter of N1 and N2.  

At the second step of conversion, the satisfiability of the 
miter is reduced to that of a CNF formula F. This formula is a 
conjunction of CNF formulas F1,..,Fn specifying the functionality 
of the gates of M  and a  one-literal clause that is satisfied only if 
the output of M is set to 1. The CNF Fi specifies the i-th gate gi of 
M. Any assignment to the variables of Fi that is inconsistent with 
the functionality of gi falsifies a clause of Fi (and vice versa, a 
consistent assignment satisfies all the clauses of Fi.) For instance,  
the AND gate y=x1x2 is specified by the following three clauses  
~x1 ∨ ~x2 ∨ y,  x1 ∨ ~y,  x2 ∨ ~y. 
 

4. Equivalence Checking in General  
Resolution 
 
In this section, we prove some results about the complexity of 
equivalence checking of circuits with a CS of granularity p.  The 
main idea of the proof is that if S is a CS of  N1 and N2, then their 
equivalence checking reduces to computing filtering and 
correlation functions for each variable of S. The two main 
properties of these functions are that  
• They can be  built based only on the information about the 

topology of S and about “assignment”  of gates of N1 and N2  
to blocks of S. 

• Filtering and correlation functions for a variable C  
specifying the output of a block G(A,B) can be computed 
“ locally”  from filtering and correlation functions of variables 
A and B and CNFs specifying implementations I1(G) and 
I2(G). So these functions can be computed in topological 
order  starting with inputs and proceeding to outputs. 

Definition 12. Given a constant p,  a CNF formula F is a 
member of the class M(p) if and only if it satisfies the following 
two conditions. 
• F is the CNF formula (obtained by the procedure described 

in Section 3) specifying the miter of a pair of functionally 
equivalent circuits N1,N2.  

• N1,N2 has a CS of granularity p. 
Definition 13. Let K and K’  be clauses having opposite literals 
of a variable (say variable x) and there is only one such variable. 

The resolvent of K , K’  in variable x is the clause that contains all 
the literals of K and K’  but the positive (i.e. literal x) and negative 
(i.e. literal ~x) literals of x. The operation of producing the 
resolvent of K and K’  is called resolution. 
Definition 14.  General resolution is a proof system of 
propositional logic that has only one inference rule. This rule is to 
resolve two existing clauses to produce a new one. Given a CNF 
formula F, a proof L(F) of unsatisfiability of F in the general 
resolution system consists of a sequence of resolutions resulting in 
the derivation of an empty clause (i.e. a clause without literals). 

    General resolution is complete, which means that given an 
unsatisfiable formula F there is always a proof L(F) that derives 
an empty clause.  
Definition 15. Let F be a set of clauses. Denote by supp(F) the 
set of variables whose literals occur in clauses of F. 

The following three propositions are used in the proof of 
Proposition 8. 
Proposition 3. Let F be a set of clauses that implies a clause K. 
Then there is a  sequence of resolutions of at most 3|supp(F)| steps that 
results in the derivation of  a clause that implies K. 
Proof.  Denote by F’  the formula that is obtained from F by 
making the assignments that set the literals of K to 0 (and 
removing the satisfied clauses and the literals set to 0). It is not 
hard to see that F’  is unsatisfiable since it implies an empty 
clause.  So there is a resolution proof L(F’ ) that results in 
deducing an empty clause.  Then  by replacing each clause of F’  
involved in L(F’ ) with its “parent”  clause  from F we get  a 
sequence of resolutions resulting in deducing  a clause that 
implies K. The number of resolvents in L(F’ )  cannot be more 
than 3|supp(F’)| (i.e. the total number of clauses of |supp(F’ )|   
variables)  and so it cannot be more than 3|supp(F)|.     
Proposition 4.  Let A,B,C  be Boolean functions and  A ∧ B→ 
C. Then for any function A’  → A, it is true that  A’  ∧ B→ C. 
Proof.  Let x be an assignment that sets A’  ∧ B to 1. Then A’ (x)=1 
and B(x)=1. Since A’  → A, then A(x)=1. Then A(x) ∧ B(x) = 1 and 
so C(x)=1.   
Proposition 5. Let X1 and X2 be sets of Boolean variables, 
F(X1,X2)  and H(X2)  be CNF formulas and F  imply H. Then in at 
most  3|supp(F)|  resolution steps one can derive a CNF formula H’  
that implies H(X2)  such that supp(H’ ) ⊆ supp(H). 
Proof.  Let K be a clause of H. From Proposition 3 it follows that 
in at most 3|supp(F)| steps one can  derive a clause K’  that implies K. 
Since K’→ K, then  supp(K’ ) ⊆ supp(K). So in at most |H| ∗ 
3|supp(F)|  steps, where |H| is the number of clauses in H, one can 
derive a CNF H’  implying H such that supp(H’ ) ⊆ supp(H).  (The 
fact that H’  implies H follows from Proposition 4.) However, if 
one does not produce the same resolvent twice, the total number 
of resolution steps when  deriving  H’  cannot be more than 3|supp(F)|  
(because it is the total number of clauses of |supp(F)| variables). 
Definition 16. Let N  be an implementation of a specification S. 
Let C  be a variable of S. A function Ff  is called a filtering  
function if: 

• supp(Ff)  ⊆  v(C). 

• If an assignment z to the variables of  v(C) is a code q(c), c ∈ 
D(C),  then Ff(z)=1. Otherwise, Ff(z)=0. 



Remark 5.  If C is a primary input variable of S , then Ff(v(C))≡1. 
Indeed, as it follows from Remark 1 any assignment to C is the 
code of a value c ∈ D(C). 
Proposition 6. Let N  be an implementation of a specification S. 
Let  C=G(A,B) be a block of S. Let F be the CNF formula 
specifying N  built as described in Section 3 and F(I(G)) be the 
part of F specifying the implementation I(G) of G in N.  Then      
P → Ff(v(C))    where P=Ff(v(A)) ∧ Ff(v(B)) ∧ F(I(G)). 
Proof. To prove that P → Ff(v(C)) one needs to show that any 
assignment that sets P to 1 also sets Ff(v(C)) to 1. It is not hard to 
see that the support of all the functions of the expression P → 
Ff(v(C)) is a subset of supp(F(I(G))).  Let  h=(x,y,z)  be an 
assignment that sets  P to 1 where x,y,z are assignments to the 
variables from v(A),v(B) and v(C) respectively.  Then h has to set 
to 1 the  functions Ff(v(A)), Ff(v(B), F(I(G)). Since h sets Ff(v(A)) 
to 1, then x=q(a), a ∈ D(A). Since h sets Ff(v(B)) to 1, then 
y=q(b), b ∈ D(B). So h=(q(a),q(b),z). To set to 1 F(I(G))  
assignment z has to be equal to q(c), where c=G(a,b). Then h sets 
Ff(v(C)) to 1.                                                                                
Definition 17. Let S be a CS of circuits N1 and N2 and C be 
a variable of S. A function Cf  is called a correlation 
function  for encodings q1 and q2 of  the values of C  (used 
when producing N1 and N2) if : 

• supp(Cf ) ⊆  v1(C) ∪ v2(C) . 

• Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C) 
such that  z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise 
Cf(z1, z2)=0.  

Remark 6.  If C is a primary input variable of S, then 
Cf(v1(C),v2(C)) ≡ 1. Indeed, as it follows from  Remark 1 any 
assignment to v1(C) or v2(C) is the code of a value c ∈ D(C).  
Besides,  from the definition of  CS it follows that q1(C)=q2(C).  
Finally, from Remark 4 it follows that v1(C)=v2(C). So any 
assignment (x,y) to the variables of v1(C),v2(C) can be represented 
as  (q1(c),q2(c)), c ∈ D(C). 
Proposition 7.  Let S be a CS of circuits N1,N2. Let  
C=G(A,B) be a block of S. Let F be the CNF formula specifying 
the miter of N1,N2 built as described in Section 3. Let F(I1(G)) and 
F(I2(G))  be the part of F specifying the implementation I1(G) and 
I2(G) of G in N1 and N2 respectively.  Then P  implies 
Cf(v1(C),v2(C)). Here P = Filtering ∧ Correlation ∧ 
Implementation and Filtering = Ff(v1(A)) ∧ Ff(v1(B)) ∧ Ff(v2(A)) ∧ 
Ff(v2(B)), Correlation = Cf(v1(A),v2(A)) ∧ Cf(v1(B),v2(B)), 
Implementation = F(I1(G)) ∧ F(I2(G)).  
Proof.  To prove that P implies Cf(v1(C),v2(C)) one needs to 
show that any assignment that sets P to 1 also sets 
Cf(v1(C),v2(C)) to 1. It is not hard to see that the support of all 
the functions of the expression P → Cf(v1(C),v2(C))  is a subset 
of supp(F(I1(G)) ∪   supp(F(I2(G)).   Let h=(x1, x2, y1, y2, z1, z2)  be 
an assignment that sets P to 1 where  x1, x2, y1, y2, z1, z2  are 
assignments to v1(A), v2(A), v1(B), v2(B), v1(C), v2(C) respectively. 
Then h has to set to 1 all the functions the conjunction of which 
forms P. Since h has to set the function Filtering to 1, then 
x1=q1(a1), x2=q2(a2) where a1,a2 ∈ D(A) and y1=q1(b1) , y2=q2(b2), 
where b1,b2 ∈ D(B). So h=(q1(a1),q2(a2), q1(b1),q2(b2), z1, z2). Since h 
sets the function Correlation to 1 then a1 has to be equal to a2 and 

b1 has to be equal to b2. So h can be represented as (q1(a),q2(a), 
q1(b),q2(b), z1, z2)  where a ∈ D(A) and b ∈ D(B). Since h sets the 
function Implementation to 1, then z1 has to be equal to q1(c), 
c=G(a,b) and z2 has to be equal to q2(c). So h is equal to 
(q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it sets the correlation 
function Cf(v1(C),v2(C)) to 1.                                                     
Proposition 8.  Let F be a formula of M(p) specifying the miter 
of circuits N1,N2 obtained from a CS S of granularity p. The 
unsatisfiability of F can be proven by a resolution proof of no 
more than d∗n∗36p resolution steps where n is the number of 
blocks in S  and d  is a constant. 

Proof. From Proposition 6 and Proposition 7 it follows that one 
can deduce correlation and filtering functions for all the variables 
of S starting with blocks of topological level 1 and proceeding in 
topological order.  Indeed, let C=G(A,B) be a block of topological 
level 1. Then A and B are primary input variables and the filtering 
and correlation functions for them are known (they are 
tautologies). From Proposition 6 it follows that Ff(v1(C)) and 
Ff(v2(C)) are implied by F(I1(G)) and F(I2(G)) respectively. From 
Proposition 5 it follows that  a CNF implying Ff(v1(C)) 
(respectively  Ff(v2(C)))  can be derived by resolving clauses of  
F(I1(G))  (respectively F(I2(G))). Similarly, the correlation 
function Cf(v1(C),v2(C)) is implied by F(I1(G))  ∧ F(I2(G)).  So a 
funciton implying Cf(v1(C),v2(C)) can be derived from the latter 
by resolution. From Proposition 4 it follows that to apply 
Proposition 6 and Proposition 7, instead of the functions 
Ff(v1(C)), Ff(v2(C)) and Cf(v1(C),v2(C)), one can use any 
functions implying them. After filtering and correlation functions 
are computed for all the variables of level 1, the same procedure 
can be applied to variables of topological level 2 and so on. If S 
consists of n blocks, then in n steps one can deduce correlation 
functions for the primary output variables of S. At each step two 
filtering and one correlation function are computed for a variable 
C=G(A,B) of S. The complexity of this step is no more than 36p.  
Indeed, the support of all functions mentioned in Proposition 6 
and Proposition 7 needed for  computing Ff(v1(C)), Ff(v2(C)) and 
Cf(v1(C),v2(C)) is a subset of A=supp(F(I1(G))) ∪ supp(F(I2(G))). 
The total  number of gates in I1(G) and I2(G) is bounded by 2p, 
each gate having 2 inputs and 1 output. So the total number of 
variables in A cannot be more than 6p. Then from Proposition 5 it 
follows that in at most 36p steps one can deduce CNFs implying 
Ff(v1(C)), Ff(v2(C)) and Cf(v1(C),v2(C)). Then the total number of 
resolution steps one needs to deduce functions implying the 
correlation functions  for the primary output variables of S  is 
bounded by n∗36p. 

Now we show that from the correlation functions for primary 
output variables of S, one can deduce an empty clause in  the 
number of resolution steps linear in n∗p.  Let C be a primary 
output variable specifying the output of a block G of N. Let I1(G) 
and I2(G) be the implementations of G in N1 and N2 respectively. 
Let |D(C)|=2k (By Assumption 2 the multiplicity of C is a power 
of 2.) Then length(q1(C))= length(q2(C))=k. (By  Assumption 3, 
values of S are encoded by a minimal length encoding.)   

Now we show that there is always a correlation function 
Cf(v1(C),v2(C)) that implies the CNF  consisting of k pairs of two 
literal clauses specifying the equivalence of corresponding outputs 
of I1(G) and I2(G). Let f1 and f2 be two Boolean variables of v1(C) 
and v2(C) respectively that specify corresponding outputs of N1 
and N2. Since S is a CS of N1 and N2, then q1(C)=q2(C). So any 



assignment q1(c),q2(c) to v1(C) and v2(C) that satisfies 
Cf(v1(C),v2(C)) also satisfies clauses K’=f1 ∨ ~f2 and K” =~f1 ∨ f2. 
So K’  and K”  are implied by Cf(v1(C),v2(C)) and so clauses 
implying them can be deduced by the procedure described in the 
proof of Proposition 7. (The resolution steps one needs to deduce 
equivalence clauses are already counted in  the expression n∗36p)  

Using each pair of equivalence clauses  K’  and K”  (or 
clauses implying them)  and the clauses specifying the gate 
g=XOR(f1,f2) of the miter, one can deduce  a single literal clause 
~g. This clause requires  setting the output of this XOR gate to 0. 
Each such a clause can be deduced in the number of resolutions 
bounded by a constant and the total number of such clauses 
cannot be more than n∗p. Finally, from these unit clauses and the 
clauses specifying the final OR gate of the miter, the empty clause 
can be deduced in the number of resolutions bounded by n∗p. So 

the empty clause is deduced in no more than n∗36p + d’∗n∗p 
steps where d’  is a constant. Finally, one can pick a 
constant d such  n∗36p + d’∗n∗p ≤ d∗n∗36p         
Remark 7. In Proposition 8 we give  a worst case estimate of the 
complexity of deducing filtering and correlation functions. In 
practice, this complexity can be much lower. In a sense, the best 
way to interpret the theory developed in this section is that the 
complexity of equivalence checking of circuits N1,N2 with a CS S 
is linear in the number of blocks in S.  
 

5. Tuning a General Purpose SAT-Solver for 
Equivalence Checking 
 

In Section 4 we showed that equivalence checking of 
circutis with a fine CS is easy in general resolution. It can be also 
shown   that there is a deterministic algorithm of  equivalence 
checking of circuits N1,N2  with a known CS S whose complexity 
is the same as in general resolution. In particular, this algorithm is 
linear in the number of blocks in S and exponential in their size. 
(The description of this algorithm will be included in our next 
paper.)  

Now we want to show that the equivalence checking of 
circuits having  a CS is hard if the latter is not known.  The theory 
that could answer this question is still in development  [9]. So we 
made an attempt to substantiate our claim experimentally.  The list 
of tools that  it makes sense to  try for equivalence checking of 
circuits with a CS is very short. Regular methods of equivalence 
checking that are based on establishing strong relationships (like 
equivalence and/or implication)  between internal points of N1 and 
N2 are useless. It is very easy to generate ciruits with a fine CS 
that have neither equivalences nor implications between internal 
points of N1 and N2.   

Probably, the most reasonable thing to do is to try state-of-
the-art  universal SAT-solvers like [4][8]. On the one hand, they 
show good performance on many classes of  CNF formulas. On 
the other hand, modern SAT-sovlers are very efficient and can 
handle quite large instances.  The main drawback of a universal 
SAT-solver is that it does not make any assumptions about the 
structure of the formula. To solve this problem we developed a 
Sat-based Equivalence Checker (SEC) that is a modification of 
our SAT-solver BerkMin. In contrast to BerkMin, SEC has some 
knowledge about the topology of circuits to be checked for 
equivalence (but it does not have any information about  CSs). 

 The detailed description of BerkMin can be found in [4]. 
For the lack of space, here we describe only the features of 
BerkMin that has been changed in SEC.  BerkMin is based on 
conflict clause recording. A conflict clause “encodes”  a 
contradictory assignment to  variables of the formula that  implies 
assigning opposite values to some variable. Such a conflict occurs 
at each leaf of the search tree built by the SAT-solver. After 
encountering such a conflict the  SAT-solver has to backtrack. A 
conflict clause is recorded to avoid repeating the same 
contradictory assignment  again.    

Conflict clauses are stored in BerkMin as a chronologically 
ordered stack  that plays a key role in BerkMin’s decision-making. 
(The most recently deduced clause is put on the top of the stack.).  
Namely, the next variable to be branched on is selected among the 
variables whose literals are in the topmost unsatisfied clause K  of 
the stack. (If all the conflict clauses are satisfied and only some 
clauses of the initial formula are left unsatisfied,  SEC uses the 
same decision making procedure as BerkMin.)  Among the 
variables of K, the one with the highest activity is selected. The 
activity of a variable x is the number of times clauses containing 
either literal of x have been  involved in conflicts. The activity of 
each variable is periodically divided by a small constant as it was 
suggested in [8]. 

One more feature of BerkMin is its use of restarts. From 
time to time BerkMin abandons the current search tree (preserving 
deduced conflict clauses) and starts building a new one. Before 
the restart BerkMin runs a data-base cleaning procedure to get rid 
of clauses that are not used in conflicts any more and clauses that  
have become redundant due to deducing single literal conflict 
clauses.  

In SEC, we made three changes in decision-making and 
restart procedures.  These changes were meant to make SEC 
“mimic”   short resolution proofs that  compute filtering and 
correlation functions in the topological order of blocks of the 
specfiication. Of course, since SEC employs conflict driven 
learning , it deduces clauses that  are very different from ones 
filtering and correlation CNFs consist of.  The first change made 
in SEC , is that the next branching variable is selected among the 
topmost clause K  of the stack of conflict clauses that has literals 
of free (i.e. unassigned) variables. That is even if K is satisfied,  
SEC picks the next branching variable among the free variables of 
K. Only after all the free variables of K have been assigned, the 
next topmost clause of the stack having literals of free variables is 
selected. The effectiveness of this heuristic in decision making 
can be explained by  the necessity to produce clauses relating  
internal points of both circuits  like clauses of a restricting set.  
Otherwise, if we just satisfy the topmost clause of the stack as  
BerkMin does, there is a danger of  getting stuck in one of the two 
circuits (by producing conflict clauses relating only points of this 
circuit)  or getting biased toward one of the two circuits. 

The second change is that among the free variables of K, the 
variable x with the largest value of activity(x)∗f(level(x)) is 
selected. Here activity(x) is the activity of x computed exactly as 
in BerkMin, level(x) is the topological level of the gate whose 
output is specified by x in the miter. The function f is a simple 
monotonically growing function.  The intuition behind this 
heuristic is that short resolution proofs deduce clauses of 
restricting and filtering sets  in topological order starting from 
inputs. SAT-solvers like BerkMin (or Chaff) tend to derive 
clauses in terms of deduced variables.  So by giving preference to 
variables with higher topological levels in  decision making we 



make variables of lower levels more likely to be deduced (and so 
to be used in conflict clauses.)  In other words, this heuristic helps 
implement the following strategy of conflict clause deduction, 
given a choice of literals to be used in  a conflict clause, try to use 
literals of variables that are closer to inputs.  

The third change is that  SEC uses “ light”  and “heavy”  
restarts. Before  a heavy restart  SEC applies the same database 
cleaning procedure as BerkMin does, while a light restart is not 
preceded by database cleaning. Light restarts occur very often. 
Namely, as soon as a conflict occurs at depth  greater than 15 of 
the current search  tree and at least one conflict have already 
occurred before, the current search tree is abandoned.  The 
intuition behind new restart heristic is that each restart can be 
considered as a way of quickly changing the current set of 
branching variables.  The short resolution proofs described in  
Section 4 that SEC tried  to “simulate”  consist of n steps. At each 
step,  filtering functions Ff(q1(C)),Ff(q2(C)) and the correlation 
function Cf(q1(C),q2(C)) are computed for a variable C of the 
specification. Switching to computing these three functions for 
some other variable C’  can be viewed as a restart. This is  because 
sets of variables involved in computing filtering and correlation 
functions for C and C’  are different. So,  if the circuits to be  
checked for equivalence have a fine CS, restarts should be made 
frequently. 

 
 

6. Experimental Results 
 

In the experiments we compared the performance of Zchaff 
(downloaded from [11]), BerkMin (version 561 that can be 
downloaded from [1]) and SEC.  None of the three programs used 
any kind of formula preprocessing. The experiments were run on a  
SUNW Ultra-80 system with clock frequency 450MHz. In all the 
experiments the time limit was set to 60,000 sec. (16.6 hours).  In 
each table the best result is shown in bold. 

 
Table 1. Equivalence checking of MCNC-91 benchmarks 

Name Zchaff 

sec. 

BerkMin 

sec. 

SEC 

sec. 

C3540  125.6 13.7        5.0        

C5315  75.71 10.5        3.8        

C6288  60,000 60,000     211.7        

C880  4.0 0.6       0.2       

alu4  2.53 0.9       1.0    

dalu  3.48 1.6        2.5      

des  367.3 15.6       18.4       

i8  6.5 1.8      3.7     

k2  1.7 0.9       2.2      

t481      8.5 3.8       3.1        

too_large  265.3 62.2      48.3      

x1  3.3   0.5   1.1    

 
 

Table 2. Equivalence checking of multipliers 

 
Name Zchaff  

sec. 

BerkMin 

sec. 

SEC 

sec. 

mlp9  2,287.8 761.5 10.6 

mlp10  25,858.5 3,854.4 14.2   

mlp12         60,000 41,315.3 37.0  

mlp14  60,000 60,000 51.4 

mlp18  60,000 60,000 144.6     

mlp24  60,000 60,000 1,437.8 

mlp32  60,000 60,000 12,035.1 

 
First, we tested these programs on “ regular”  instances where 

the circuits to be checked for equivalence may have many 
functionally equivalent points. Table 1 shows the result of 
equivalence checking for some MCNC-91 circuits. In the 
experiments  we checked for equivalence the original circuit and 
the circuit  obtained by optimization in SIS  [10] using a logic 
optimization script, script.rugged.   

 
  Table 3. Equivalence checking of circuits with a CS 

Name of 
topology 

Zchaff 

(sec.) 

Berk-
Min 
(sec.) 

SEC 
(sec.) 

C880 60,000 200.1  3.7 

ttt2  799.4 77.2  11.7 

x4  769.5 139.0  17.3 

i9  23.5 11.5  32.7  

term1  60,000 1,183.6 35.9 

c7552  803.5 74.5 52.8 

c3540  60,000 4,172.0  64.1  

rot  60,000 1,346.9 72.2  

9symml  210.6 58.2 113.2 

frg2  7,711.0 1,552.9 131.4 

frg1  60,000 3,602.4 330.3  

i10  60,000 38,244.6 445.0 

des  1,390.3 331.1 451.7 

dalu  60,000 20,234.4 518.6 

x1  60,000 60,000 950.2  

alu4  25,503.6 2,372.6  992.6 

i8  35,721.5 4,039.7 1,051.5 

c6288  60,000 60,000  1,955.1 

k2 60,000 60,000 5,121.5 

too_large  60,000 60,000  60,000  

t481  60,000 60,000  60,000  

 



All  three programs relatively easily solved all the instances 
except C6288 (a 16-bit multiplier) that was solved only by SEC. 
To the best of our knowledge this is the first time when a SAT-
solver is able to solve the miter of 16-bit multipliers without 
deducing internal equivalences or any preprocessing.  
Table 2 shows that SEC can handle much larger multipliers (up to 
a 32-bit multiplier). In the experiments we verified the original 
circuit of a regular shift-add multiplier against the one obtained by  
optimization in SIS using script.rugged. 

In Table 3 we compare the performance of these three 
programs on circuits with a CS. These circuits were obtained 
using the following technique. To get multi-valued specifications 
with realistic topologies we “borrowed” them from the MCNC-91 
benchmark circuits as follows. First all the benchmarks were 
technology mapped using SIS to get circuits consisting only of  
two-input AND gates (with possible input inversion). Then from 
each obtained circuit N  a multi-valued specification S was 
produced by replacing each two-input binary gate  with a two-
input  four-valued gate. (In other words, S changes the 
functionality of N while preserving its topology.) Then from S two 
functionally equivalent Boolean circuits N1, N2 were produced 
using two different sets of two-bit encodings of four-valued 
values.  The encodings were picked in such a way that the two 
different implementations of the same four-valued gate in N1 and 
N2 had no functionally equivalent outputs. That guaranteed that 
internal functionally equivalent points in N1 and N2 may occurr 
only by accident. Note that after encoding the number of inputs 
and outputs in N1 and N2 is twice the number of inputs and 
outputs in the original Boolean network N. For instance, the two 
circuits produced from C6288 have the topology of a 16-bit 
multiplier and the number of inputs and outputs of a 32-bit 
multiplier. 

It is not hard to see that the performance of BerkMin and 
Zchaff is much worse on formulas from Table 3 even though they 
are only a few times larger than  formulas of Table 1. SEC does  
much better than BerkMin or Zchaff but even its performance 
quickly degrades as the size of the formulas of Table 3 grows. We 
believe that if we generated circuits from slightly more coarse 
spcecifications, the performance of SEC (let alone BerkMin and 
Chaff) would be much worse. On the other  hand, an algorithm 
that knows the CS used when generating the circuits to be 
checked for equivalence (and that computes filtering and 
correlation functions as it was described in Section 4)  should be 
able to solve each formula  from Table 3 in a few seconds. 

 

7. Conclusions 
 

We introduce a notion of a Common Specification (CS) of 
Boolean circuits that generalizes the existing notion of structural 

similarity. We show that the equivalence of  circuits N1,N2 with a 
CS S can be proved in general resolution in the number of 
resolutions that is linear in the number of blocks of S and is 
exponential in the “size”  of the largest block. This suggests that a 
deterministic algorithm that “knows” S has about the same 
perfromance (in particular, it is linear in the number of blocks of 
S). On the other hand, there are good reasons to believe that if S is 
not known then checking N1 and N2 for equivalence is hard. We 
give some expiremental results that  substantiate this claim. 
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