
Equivalence Checking of Dissimilar Circuits
Eugene Goldberg (Cadence Berkeley Labs, USA),

Yakov Novikov (National Academy of Science, Belarus)

Abstract
We introduce the notion of a Common Specification of circuits
that generalizes the current notion of structural similarity. A CS
S of circuits N1 and N2 is a circuit of multi-valued blocks from
which N1 and N2 can be produced by binary encoding. We show
that the equivalence checking of N1,N2 in general resolution
(which a non-deterministic proof system) is linear in the number
of blocks in S. However, there are reasons to believe that
equivalence checking of circuits N1,N2 is hard for a deterministic
algorithm if their CS is not known. We give some experimental
data that substantiates this conjecture.

1. Introduction

Combinational equivalence checking is one of the most
widely used techniques of formal verification. In particular,
equivalence checking is the basic procedure for the verification of
sequential circuits. The existing methods of equivalence checking
fall into the following two classes. The first class consists of the
methods that do not make any assumption about the structure of
circuits to be checked for equivalence. One of the methods of this
class is to compute the functionality of circuits to be checked for
equivalence as BDDs [3]. Another method is to reduce
equivalence checking to the satisfiability problem (SAT) and use a
universal SAT-solver [4],[8]. Finally, it is possible to combine
building BDDs and SAT solving as it was suggested in [5]. The
main drawback of the methods of the first class is their
unscalability due to exponential growth of required memory
and/or runtime.

The second class consists of methods that make use of the
structural similarity of circuits to be checked for equivalence. The
equivalence checkers of this class are a mixture of methods using
random simulation, BDDs, SAT, ATPG, graph isomorphism (see
for instance [2],[6],[7]). These methods operate under the
assumption that many internal points of the circuits to be
compared are related by short relationships. In the majority of
cases the short relationships to be deduced are equivalences [6]
(sometimes implications [7] and/or replacability relationships
[2]). The deduction of these relationships allows one to
decompose the initial problem into a (polynomial size) set of
smaller problems. Methods of this class dominate in the
equivalence checking domain since they allow one to verify very
large industrial designs.

In spite of the great progress achieved in equivalence
checking, the existing tools can only prove the equivalence of
circuits with many functionally equivalent internal points. One
might say that current synthesis procedures do not change circuits
very much. Therefore hard equivalence checking problems (when
the number of equivalent internal points is small) are rare and
should not be given any serious consideration. However, this
situation may change soon. Due to close relation between

synthesis and verification, a significant improvement of
verification procedures may lead to putting into practice synthesis
methods that would change circuits much more that they do now.

 A more serious objection to a quest for more robust
equivalence checkers is that the problem of equivalence checking
of dissimilar circuits may be inherently hard. So no scalable
equivalence checking algorithm exists for such circuits. In this
paper we try to show that equvialence checking is probably both
hard and easy (and scalable) depending on whether or not the
program has information about a Common Specification (CS) of
the circutis to be checked for equivalence

Let N1 and N2 be two Boolean circuits to be checked for
equivalence. A CS S is just a circuit of multi-valued gates further
referred to as blocks such that N1 (or N2) can be obtained from S
by replacing each block G of S with its implementation I1(G) (or
I2(G)). The circuit I1(G) (or I2(G)) implements a multi-output
Boolean function obtained from the truth table of G after
encoding the values of multi-valued variables with binary codes.

Any pair of functionally equivalent circuits N1,N2 has a CS S.
If N1,N2 are identical copies of a circuit N*, then N* can be
considered as their CS. Each “block” of the specification N* is
“ implemented” with only one gate of N1 or N2. So N* is the
“ finest” possible CS. If N1 and N2 are completely structurally
dissimilar, they have a trivial CS consisting of only one block
where N1 and N2 are implementations of this block. If circuits N1
and N2 are structurally similar they have a set of non-trivial CSs
i.e. ones different from a trivial single block CS mentioned
above. (Henceforth, when we say that N1 and N2 have a CS we
mean that they have a non-trivial CS.) The “ finest” CS of N1 and
N2 (i.e. the one with blocks of the smallest size) can be viewed
as a measure of the structural similarity of these circuits. The size
of a block G of S is measured in the number p of gates in the
implementation of G in N1 or N2 (whichever is larger). If the size
of the largest block of S is p we will say that S is a CS of
granularity p. (Henceforth, when we say that S is a fine CS we
mean that the granulrity of S is small.)

In this paper, we show that the equivalence checking of
circuits N1 and N2 with a CS S can be performed in general
resolution in d∗n∗36p resolution steps. Here d is a constant, n is
the number of blocks in S and p is the granularity of S. This result
means that the complexity of equivalence checking in general
resolution is linear in the number of blocks of S and exponential
in their size. So, for instance, if the granularity of S is bounded by
a constant, then equivalence checking is linear in the size of
circuits N1,N2 and so is easily scalable no matter how large these
circuits are. It is worth mentioning that the factor 36p is a worst
case estimate for the complexity of computing so called filtering
and correlation functions (see Section 4) for a block of S. In
practice, computing these functions for a block should be much
easier.

The upper bound on complexity of equivalence checking
above is obtained in general resolution, that is in a non-
deterministic proof system. However, it is not hard to formulate a
deterministic algorithm for equivalence checking of circuits N1,N2

with a known CS S that has the same complexity as in general
resolution. (This algorithm is basically formulated in Proposition
6, Proposition 7 and Proposition 8). So if one knows a fine CS of
N1 and N2, their equivalence checking can be done very
efficiently. On the other hand, there is a reason to believe that if a
CS of N1 and N2 is unknown (even if there exists a very fine CS of
N1 and N2), their equivalance checking is hard. This reason is that
finding a short proof of equivalence basically means recovering a
CS (i.e. the underlying high-level structure) from the low-level
description of N1 and N2. It is highly unlikely that there exists an
efficient algorithm for that.

To substantiate our claim that equivalence checking without
any knowledge of a CS is hard we study the performance of state-
of-the-art SAT-solvers Zchaff [8], BerkMin [4] and a specialized
version of BerkMin called SEC (Sat based Equivalence Checking)
on equivalence checking instances. All the three programs show a
decent performance on MCNC benchmarks when checking the
equivalence of the original and synthesized circuits. However,
their perfromance quickly degrades when they are used for
equivalence checking of circuits with a CS of very small
granularity. In particular, some instances cannot be solved in
many hours. On the other hand, an algorithm that knows the CS
and generate resolution proofs described in Section 4 should be
able to solve these instances in a few seconds.

2. Common Specification of Boolean Circuits

In this section, we introduce the notion of a common
specification of Boolean circuits. Let S be a combinational circuit
of multi-valued blocks (further referred to as a specification)
specified by a directed acyclic graph H. The sources and sinks of
H correspond to primary inputs and outputs of S. Each non-source
node of H corresponds to a multi-valued block computing a
multi-valued function of multi-valued arguments. Each node of n
of H is associated with a multi-valued variable V. If n is a source
of H , then the corresponding variable specifies values taken by
the corresponding primary input of S. If n is a non-source node
of S then the corresponding variable describes the values taken by
the output of the block specified by n. If n is a source
(respectively a sink), then the corresponding variable is called a
primary input variable (respectively primary output variable).
We will use the notation C=G(A,B) to indicate that a) the output
of a block G is associated with a variable C; b) the function
computed by the block G is G(A,B); c) only two nodes of H are
connected to the node n in H and these nodes are associated with
variables A and B.

Denote by D(V) the domain of the variable V associated
with a node of H. The value of |D(V)| is called the multiplicity of
V. If the multiplicity of every variable V of S is equal to 2 then S
is a Boolean circuit.

Now we describe how a Boolean circuit N can be produced
from a specification S by encoding the multi-valued variables. Let
D(V)={ v1,…,vt} be the domain of a variable V of S. Denote by
q(V) a Boolean encoding of the values of D(V) that is a mapping
q:D(V)→{ 0,1} m . Denote by length(q(V)) the number of bits in q
that is the value of m. The value of q(vi), vi ∈ D(V) is called the
code of vi. Given an encoding q of length m of a variable V

associated with a block of S, denote by v(V) the set of m coding
Boolean variables.

In the following exposition we make the assumptions
below.
Assumption 1. Each gate of a Boolean circuit and each block
of a specification has two inputs and one output.
Assumption 2. The multiplicity of each primary input (or
output) variable of a specification is a power of 2.
Assumption 3. If V is a primary input (or output) variable of a
specification, then length(q(V))=log2(|D(V)|)
Assumption 4. If v1 and v2 are values of a variable V of a
specification and v1 ≠ v2 , then q(v1) ≠ q(v2).
Assumption 5. If A and B are two different variables of a
specification , then v(A) ∩ v(B) = ∅.
Remark 1. From Assumption 2, Assumption 3, and Assumption
4 it follows that if A is a primary input (or output) variable, a
mapping q:D(A)→{ 0,1} m

 is bijective. In particular, any
assignment to the variables of v(A) is a code of some value
a ∈ D(A).
Definition 1. Given a Boolean circuit I, denote by Inp(I)
(respectively Out(I)) the set of variables associated with primary
inputs (respectively primary outputs) of I.
Definition 2. Let X1 and X2 be sets of Boolean variables and
X2 ⊆ X1. Let y be an assignment to the variables of X1. Denote by
proj(y,X2) the projection of y on X2 i.e. the part of y that consists of
the assignments to the variables of X2.
Definition 3. Let C=G(A,B) be a block of specification S. Let
q(A),q(B),q(C) be encodings of variables A,B, and C respectively.
A Boolean circuit I is said to implement the block G if the
following three conditions hold:
1) The set Inp(I) is a subset of v(A) ∪ v(B).
2) The set Out(I) is equal to v(C).
3) If the set of values assigned to v(A) and v(B) form codes q(a)
and q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z’)=q(c).
Here z’ is the projection of the assignment z=(q(a),q(b)) on Inp(I),
I(z’) is the value taken by I at z’ , and c=G(a,b).
Remark 2. The reason why Inp(I) may not include all the
variables of v(A) and/or v(B) is that the function G(A,B) may not
distinguish some values of A or B. (G(A,B) does not distinguish,
say, values a1,a2 ∈ D(A), if for any b ∈ D(B), G(a1,b)=G(a2,b).)
So to implement G(A,B) the circuit I may need only a subset of
variables of v(A) ∪ v(B). This said, for the sake of simplicity, we
will write I(q(a),q(b)) meaning I(q’ (a),q’ (b)), q’ (a)=
proj(q(a),Inp(I)) and q’ (b)=proj(q(b),Inp(I)).
Definition 4. Let S be a multi-valued circuit. A Boolean circuit
N is said to implement the specification S, if it is built according
to the following two rules.
1) Each block G of S is replaced with an implementation I of
G.
2) Let the output of block G1 (specified by variable R) be
connected to an input of block G2 (specified by the same variable
R) in S. Then the outputs of the circuit I1 implementing G1 are
properly connected to inputs of circuit I2 implementing G2.
Namely, the primary output of I1 specified by a Boolean variable x
∈ v(R) is connected to the input of I2 specified by the same
variable of v(R) if x ∈ Inp(I2).

In Fig. 1a a specification of three blocks is shown. The
functionality of two different implementations of the block

C=G1(A,B) (Fig. 1b) are shown in Fig. 1c and 1d. Here
D(A)={ a0,a1} , D(B)={ b0,b1,b2,b3} and D(C)={ c0,c1,c2} . Since A
and B are primary input variables they are encoded with a
minimum length encoding and q1(A)=q2(A) and q1(B)=q2(B)
where q1(a0)=0, q1(a1)=1, q1(b0)=00, q1(b1)=01, q1(b2)=10,
q1(b3)=11. Finally, the encodings q1(C) and q2(C) are q1(c0)=00,
q1(c1)=10, q1(c2)=01 and q2(c0)=100, q2(c1)=010, q2(c2)=001.
Remark 3. Let N be an implementation of a specification S. Let
p be the largest number of gates used in an implementation of a
multi-valued block of S in N. We will say that S is a specification
of granularity p for N.
Definition 5. The topological level of a block G in a
specification S is the length of the longest path from a primary
input of S to G. (The length of a path is measured in the number of
blocks on it. The topological level of a primary input is assumed to
be 0.) Denote by level(G) the topological level of G in S.

Let N be an implementation of a specification S. From
Assumption 4 it follows that for any value assignment h to the
input variables of N there is a unique set of values (x1,…,xk),
where xi ∈ D(Xi) such that h=(q(x1),…,q(xk)). That is there is one-
to-one correspondence between assignments to primary inputs of
S and N. The same applies to primary outputs of S and N.

Figure 1. A specification and the functionality of two
implementations of a block

Definition 6. Let N be an implementation of S. Given a Boolean
vector y of assignments to the primary inputs of N, the
corresponding vector Y=(x1,..,xk) such that y=(q(x1),…,q(xk)) is
called the pre-image of y.

Proposition 1. Let N be a circuit implementing specification S.
Let I(G) be the implementation of a block C=G(A,B) of S in N .
Let y be a value assignment to the primary input variables of N
and Y be the pre-image of y. Then the values of primary outputs
of I(G) form the code q(c) where c is the value taken by the output
of G when the inputs of S take the values specified by Y.
Proof. The proposition can be proven by induction in topological
levels of variables of the specification S. According to Remark 1,
the proposition holds for the variables of topological level 0
(primary input variables of S). Let C=G(A,B) be a block of S and
level(G)=n, n>0. Let I(G) be the implementation of G in N. By
the induction hypothesis, values taken by the variables of v(A) and
v(B) in N under the input assignment y should be q(a) and q(b)
respectively. Here a and b are values of variables A and B under
the input assignment Y. Then from Definition 3 it follows that the
outputs of I(G) take the values of q(C) where c=G(a,b) .
Proposition 2. Let N1, N2 be circuits implementing a
specification S. Let each primary input (or output) variable X of S
have the same encoding in N1 and N2. Then Boolean circuits N1
and N2 are functionally equivalent.
Proof. Let y be an arbitrary assignment to input variables of N1
and N2. Since the encodings of primary input variables of S in N1
and N2 are the same, then the pre-image Y of y for N1 and N2 is the
same. Let C be a primary output variable of S associated with a
block G. From Proposition 1 it follows that the values taken by
the implementations I1(G) and I2(G) of G in N1 and N2 are equal
to q1(c) and q2(c) respectively. Here c is the value taken by the
output of G under input assignment Y and q1 and q2 are encodings
of the primary output variable C in N1 and N2. Since C has the
same encoding in N1 and N2, then q1(c) = q2(c).
Definition 7. Let N1, N2 be two functionally equivalent Boolean
circuits. Let N1, N2 implement a specification S so that for every
primary input (output) variable X encodings q1(X) and q2(X) (used
when producing N1 and N2 respectively) are identical. Then N is
called a common specification (CS) of N1 and N2.
Remark 4. Let S be a CS of N1,N2 and C be a variable of S.
We will assume that v1(C) =v2(C) if C is a primary input variable
and v1(C) ∩ v2(C) = ∅ otherwise.
Definition 8. Let S be a CS of N1,N2. Let p1 (respectively p2) be
the granularity of S with respect to N1 (respectively N2). Then we
will say that S is a CS of N1,N2 of granularity p = max(p1,p2).
Definition 9. Given two functionally equivalent Boolean circuits
N1, N2, S is called the finest common specification if it has the
smallest granularity p among all the CSs of N1 and N2.

3. Equivalence Checking as SAT

Since in this paper we formulate the complexity of
equivalence checking in terms of resolution proofs, we recall a
common way of reducing equivalence checking to the
satisfiability problem.
Definition 10. A disjunction of literals of Boolean variables not
containing two literals of the same variable is called a clause. A

A B C
a0 b0 c0

a0 b1 c1

a0 b2 c1

a0 b3 c0

a1 b0 c1

a1 b1 c2

a1 b2 c2

a1 b3 c0

A B F

C K

E

G1 G2

G3

q1(A) q1(B) q1(C)

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

q2(A) q2(B) q2(C)

0 0 0 1 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 1 0 0

C=G1(A,B)

(a) (b)

(c) (d)

 I1(q1(A),q1(B)) I2(q2(A),q2(B))

conjunction of clauses is called a conjunctive normal form
(CNF).

Definition 11. Given a CNF F, the satisfiability problem (SAT)
is to find a value assignment to the variables of F for which F
evaluates to 1 (also called a satisfying assignment) or to prove
that such an assignment does not exist. A clause K of F is said to
be satisfied by a value assignment y if K(y)=1.

The standard conversion of an equivalence checking
problem into an instance of SAT is performed in two steps. Let N1
and N2 be Boolean circuits to be checked for equivalence. At the
first step of this conversion, a circuit M called a miter [2] is
formed from N1 and N2. The miter M is obtained by 1) identifying
the corresponding primary inputs of N1 and N2; 2) XORing each
pair of corresponding primary outputs of N1 and N2; 3) ORing the
outputs of the added XOR gates. So the miter of N1 and N2
evaluates to 1 if and only if for some input assignment a primary
output of N1 and the corresponding output of N2 evaluate to
different values. Therefore, the problem of checking the
equivalence of N1 and N2 is equivalent to testing the satisfiability
of the miter of N1 and N2.

At the second step of conversion, the satisfiability of the
miter is reduced to that of a CNF formula F. This formula is a
conjunction of CNF formulas F1,..,Fn specifying the functionality
of the gates of M and a one-literal clause that is satisfied only if
the output of M is set to 1. The CNF Fi specifies the i-th gate gi of
M. Any assignment to the variables of Fi that is inconsistent with
the functionality of gi falsifies a clause of Fi (and vice versa, a
consistent assignment satisfies all the clauses of Fi.) For instance,
the AND gate y=x1x2 is specified by the following three clauses
~x1 ∨ ~x2 ∨ y, x1 ∨ ~y, x2 ∨ ~y.

4. Equivalence Checking in General
Resolution

In this section, we prove some results about the complexity of
equivalence checking of circuits with a CS of granularity p. The
main idea of the proof is that if S is a CS of N1 and N2, then their
equivalence checking reduces to computing filtering and
correlation functions for each variable of S. The two main
properties of these functions are that
• They can be built based only on the information about the

topology of S and about “assignment” of gates of N1 and N2
to blocks of S.

• Filtering and correlation functions for a variable C
specifying the output of a block G(A,B) can be computed
“ locally” from filtering and correlation functions of variables
A and B and CNFs specifying implementations I1(G) and
I2(G). So these functions can be computed in topological
order starting with inputs and proceeding to outputs.

Definition 12. Given a constant p, a CNF formula F is a
member of the class M(p) if and only if it satisfies the following
two conditions.
• F is the CNF formula (obtained by the procedure described

in Section 3) specifying the miter of a pair of functionally
equivalent circuits N1,N2.

• N1,N2 has a CS of granularity p.
Definition 13. Let K and K’ be clauses having opposite literals
of a variable (say variable x) and there is only one such variable.

The resolvent of K , K’ in variable x is the clause that contains all
the literals of K and K’ but the positive (i.e. literal x) and negative
(i.e. literal ~x) literals of x. The operation of producing the
resolvent of K and K’ is called resolution.
Definition 14. General resolution is a proof system of
propositional logic that has only one inference rule. This rule is to
resolve two existing clauses to produce a new one. Given a CNF
formula F, a proof L(F) of unsatisfiability of F in the general
resolution system consists of a sequence of resolutions resulting in
the derivation of an empty clause (i.e. a clause without literals).

 General resolution is complete, which means that given an
unsatisfiable formula F there is always a proof L(F) that derives
an empty clause.
Definition 15. Let F be a set of clauses. Denote by supp(F) the
set of variables whose literals occur in clauses of F.

The following three propositions are used in the proof of
Proposition 8.
Proposition 3. Let F be a set of clauses that implies a clause K.
Then there is a sequence of resolutions of at most 3|supp(F)| steps that
results in the derivation of a clause that implies K.
Proof. Denote by F’ the formula that is obtained from F by
making the assignments that set the literals of K to 0 (and
removing the satisfied clauses and the literals set to 0). It is not
hard to see that F’ is unsatisfiable since it implies an empty
clause. So there is a resolution proof L(F’) that results in
deducing an empty clause. Then by replacing each clause of F’
involved in L(F’) with its “parent” clause from F we get a
sequence of resolutions resulting in deducing a clause that
implies K. The number of resolvents in L(F’) cannot be more
than 3|supp(F’)| (i.e. the total number of clauses of |supp(F’)|
variables) and so it cannot be more than 3|supp(F)|.
Proposition 4. Let A,B,C be Boolean functions and A ∧ B→
C. Then for any function A’ → A, it is true that A’ ∧ B→ C.
Proof. Let x be an assignment that sets A’ ∧ B to 1. Then A’ (x)=1
and B(x)=1. Since A’ → A, then A(x)=1. Then A(x) ∧ B(x) = 1 and
so C(x)=1.
Proposition 5. Let X1 and X2 be sets of Boolean variables,
F(X1,X2) and H(X2) be CNF formulas and F imply H. Then in at
most 3|supp(F)| resolution steps one can derive a CNF formula H’
that implies H(X2) such that supp(H’) ⊆ supp(H).
Proof. Let K be a clause of H. From Proposition 3 it follows that
in at most 3|supp(F)| steps one can derive a clause K’ that implies K.
Since K’→ K, then supp(K’) ⊆ supp(K). So in at most |H| ∗
3|supp(F)| steps, where |H| is the number of clauses in H, one can
derive a CNF H’ implying H such that supp(H’) ⊆ supp(H). (The
fact that H’ implies H follows from Proposition 4.) However, if
one does not produce the same resolvent twice, the total number
of resolution steps when deriving H’ cannot be more than 3|supp(F)|
(because it is the total number of clauses of |supp(F)| variables).
Definition 16. Let N be an implementation of a specification S.
Let C be a variable of S. A function Ff is called a filtering
function if:

• supp(Ff) ⊆ v(C).

• If an assignment z to the variables of v(C) is a code q(c), c ∈
D(C), then Ff(z)=1. Otherwise, Ff(z)=0.

Remark 5. If C is a primary input variable of S , then Ff(v(C))≡1.
Indeed, as it follows from Remark 1 any assignment to C is the
code of a value c ∈ D(C).
Proposition 6. Let N be an implementation of a specification S.
Let C=G(A,B) be a block of S. Let F be the CNF formula
specifying N built as described in Section 3 and F(I(G)) be the
part of F specifying the implementation I(G) of G in N. Then
P → Ff(v(C)) where P=Ff(v(A)) ∧ Ff(v(B)) ∧ F(I(G)).
Proof. To prove that P → Ff(v(C)) one needs to show that any
assignment that sets P to 1 also sets Ff(v(C)) to 1. It is not hard to
see that the support of all the functions of the expression P →
Ff(v(C)) is a subset of supp(F(I(G))). Let h=(x,y,z) be an
assignment that sets P to 1 where x,y,z are assignments to the
variables from v(A),v(B) and v(C) respectively. Then h has to set
to 1 the functions Ff(v(A)), Ff(v(B), F(I(G)). Since h sets Ff(v(A))
to 1, then x=q(a), a ∈ D(A). Since h sets Ff(v(B)) to 1, then
y=q(b), b ∈ D(B). So h=(q(a),q(b),z). To set to 1 F(I(G))
assignment z has to be equal to q(c), where c=G(a,b). Then h sets
Ff(v(C)) to 1.
Definition 17. Let S be a CS of circuits N1 and N2 and C be
a variable of S. A function Cf is called a correlation
function for encodings q1 and q2 of the values of C (used
when producing N1 and N2) if :

• supp(Cf) ⊆ v1(C) ∪ v2(C) .

• Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C)
such that z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise
Cf(z1, z2)=0.

Remark 6. If C is a primary input variable of S, then
Cf(v1(C),v2(C)) ≡ 1. Indeed, as it follows from Remark 1 any
assignment to v1(C) or v2(C) is the code of a value c ∈ D(C).
Besides, from the definition of CS it follows that q1(C)=q2(C).
Finally, from Remark 4 it follows that v1(C)=v2(C). So any
assignment (x,y) to the variables of v1(C),v2(C) can be represented
as (q1(c),q2(c)), c ∈ D(C).
Proposition 7. Let S be a CS of circuits N1,N2. Let
C=G(A,B) be a block of S. Let F be the CNF formula specifying
the miter of N1,N2 built as described in Section 3. Let F(I1(G)) and
F(I2(G)) be the part of F specifying the implementation I1(G) and
I2(G) of G in N1 and N2 respectively. Then P implies
Cf(v1(C),v2(C)). Here P = Filtering ∧ Correlation ∧
Implementation and Filtering = Ff(v1(A)) ∧ Ff(v1(B)) ∧ Ff(v2(A)) ∧
Ff(v2(B)), Correlation = Cf(v1(A),v2(A)) ∧ Cf(v1(B),v2(B)),
Implementation = F(I1(G)) ∧ F(I2(G)).
Proof. To prove that P implies Cf(v1(C),v2(C)) one needs to
show that any assignment that sets P to 1 also sets
Cf(v1(C),v2(C)) to 1. It is not hard to see that the support of all
the functions of the expression P → Cf(v1(C),v2(C)) is a subset
of supp(F(I1(G)) ∪ supp(F(I2(G)). Let h=(x1, x2, y1, y2, z1, z2) be
an assignment that sets P to 1 where x1, x2, y1, y2, z1, z2 are
assignments to v1(A), v2(A), v1(B), v2(B), v1(C), v2(C) respectively.
Then h has to set to 1 all the functions the conjunction of which
forms P. Since h has to set the function Filtering to 1, then
x1=q1(a1), x2=q2(a2) where a1,a2 ∈ D(A) and y1=q1(b1) , y2=q2(b2),
where b1,b2 ∈ D(B). So h=(q1(a1),q2(a2), q1(b1),q2(b2), z1, z2). Since h
sets the function Correlation to 1 then a1 has to be equal to a2 and

b1 has to be equal to b2. So h can be represented as (q1(a),q2(a),
q1(b),q2(b), z1, z2) where a ∈ D(A) and b ∈ D(B). Since h sets the
function Implementation to 1, then z1 has to be equal to q1(c),
c=G(a,b) and z2 has to be equal to q2(c). So h is equal to
(q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it sets the correlation
function Cf(v1(C),v2(C)) to 1.
Proposition 8. Let F be a formula of M(p) specifying the miter
of circuits N1,N2 obtained from a CS S of granularity p. The
unsatisfiability of F can be proven by a resolution proof of no
more than d∗n∗36p resolution steps where n is the number of
blocks in S and d is a constant.

Proof. From Proposition 6 and Proposition 7 it follows that one
can deduce correlation and filtering functions for all the variables
of S starting with blocks of topological level 1 and proceeding in
topological order. Indeed, let C=G(A,B) be a block of topological
level 1. Then A and B are primary input variables and the filtering
and correlation functions for them are known (they are
tautologies). From Proposition 6 it follows that Ff(v1(C)) and
Ff(v2(C)) are implied by F(I1(G)) and F(I2(G)) respectively. From
Proposition 5 it follows that a CNF implying Ff(v1(C))
(respectively Ff(v2(C))) can be derived by resolving clauses of
F(I1(G)) (respectively F(I2(G))). Similarly, the correlation
function Cf(v1(C),v2(C)) is implied by F(I1(G)) ∧ F(I2(G)). So a
funciton implying Cf(v1(C),v2(C)) can be derived from the latter
by resolution. From Proposition 4 it follows that to apply
Proposition 6 and Proposition 7, instead of the functions
Ff(v1(C)), Ff(v2(C)) and Cf(v1(C),v2(C)), one can use any
functions implying them. After filtering and correlation functions
are computed for all the variables of level 1, the same procedure
can be applied to variables of topological level 2 and so on. If S
consists of n blocks, then in n steps one can deduce correlation
functions for the primary output variables of S. At each step two
filtering and one correlation function are computed for a variable
C=G(A,B) of S. The complexity of this step is no more than 36p.
Indeed, the support of all functions mentioned in Proposition 6
and Proposition 7 needed for computing Ff(v1(C)), Ff(v2(C)) and
Cf(v1(C),v2(C)) is a subset of A=supp(F(I1(G))) ∪ supp(F(I2(G))).
The total number of gates in I1(G) and I2(G) is bounded by 2p,
each gate having 2 inputs and 1 output. So the total number of
variables in A cannot be more than 6p. Then from Proposition 5 it
follows that in at most 36p steps one can deduce CNFs implying
Ff(v1(C)), Ff(v2(C)) and Cf(v1(C),v2(C)). Then the total number of
resolution steps one needs to deduce functions implying the
correlation functions for the primary output variables of S is
bounded by n∗36p.

Now we show that from the correlation functions for primary
output variables of S, one can deduce an empty clause in the
number of resolution steps linear in n∗p. Let C be a primary
output variable specifying the output of a block G of N. Let I1(G)
and I2(G) be the implementations of G in N1 and N2 respectively.
Let |D(C)|=2k (By Assumption 2 the multiplicity of C is a power
of 2.) Then length(q1(C))= length(q2(C))=k. (By Assumption 3,
values of S are encoded by a minimal length encoding.)

Now we show that there is always a correlation function
Cf(v1(C),v2(C)) that implies the CNF consisting of k pairs of two
literal clauses specifying the equivalence of corresponding outputs
of I1(G) and I2(G). Let f1 and f2 be two Boolean variables of v1(C)
and v2(C) respectively that specify corresponding outputs of N1
and N2. Since S is a CS of N1 and N2, then q1(C)=q2(C). So any

assignment q1(c),q2(c) to v1(C) and v2(C) that satisfies
Cf(v1(C),v2(C)) also satisfies clauses K’=f1 ∨ ~f2 and K” =~f1 ∨ f2.
So K’ and K” are implied by Cf(v1(C),v2(C)) and so clauses
implying them can be deduced by the procedure described in the
proof of Proposition 7. (The resolution steps one needs to deduce
equivalence clauses are already counted in the expression n∗36p)

Using each pair of equivalence clauses K’ and K” (or
clauses implying them) and the clauses specifying the gate
g=XOR(f1,f2) of the miter, one can deduce a single literal clause
~g. This clause requires setting the output of this XOR gate to 0.
Each such a clause can be deduced in the number of resolutions
bounded by a constant and the total number of such clauses
cannot be more than n∗p. Finally, from these unit clauses and the
clauses specifying the final OR gate of the miter, the empty clause
can be deduced in the number of resolutions bounded by n∗p. So

the empty clause is deduced in no more than n∗36p + d’∗n∗p
steps where d’ is a constant. Finally, one can pick a
constant d such n∗36p + d’∗n∗p ≤ d∗n∗36p
Remark 7. In Proposition 8 we give a worst case estimate of the
complexity of deducing filtering and correlation functions. In
practice, this complexity can be much lower. In a sense, the best
way to interpret the theory developed in this section is that the
complexity of equivalence checking of circuits N1,N2 with a CS S
is linear in the number of blocks in S.

5. Tuning a General Purpose SAT-Solver for
Equivalence Checking

In Section 4 we showed that equivalence checking of
circutis with a fine CS is easy in general resolution. It can be also
shown that there is a deterministic algorithm of equivalence
checking of circuits N1,N2 with a known CS S whose complexity
is the same as in general resolution. In particular, this algorithm is
linear in the number of blocks in S and exponential in their size.
(The description of this algorithm will be included in our next
paper.)

Now we want to show that the equivalence checking of
circuits having a CS is hard if the latter is not known. The theory
that could answer this question is still in development [9]. So we
made an attempt to substantiate our claim experimentally. The list
of tools that it makes sense to try for equivalence checking of
circuits with a CS is very short. Regular methods of equivalence
checking that are based on establishing strong relationships (like
equivalence and/or implication) between internal points of N1 and
N2 are useless. It is very easy to generate ciruits with a fine CS
that have neither equivalences nor implications between internal
points of N1 and N2.

Probably, the most reasonable thing to do is to try state-of-
the-art universal SAT-solvers like [4][8]. On the one hand, they
show good performance on many classes of CNF formulas. On
the other hand, modern SAT-sovlers are very efficient and can
handle quite large instances. The main drawback of a universal
SAT-solver is that it does not make any assumptions about the
structure of the formula. To solve this problem we developed a
Sat-based Equivalence Checker (SEC) that is a modification of
our SAT-solver BerkMin. In contrast to BerkMin, SEC has some
knowledge about the topology of circuits to be checked for
equivalence (but it does not have any information about CSs).

 The detailed description of BerkMin can be found in [4].
For the lack of space, here we describe only the features of
BerkMin that has been changed in SEC. BerkMin is based on
conflict clause recording. A conflict clause “encodes” a
contradictory assignment to variables of the formula that implies
assigning opposite values to some variable. Such a conflict occurs
at each leaf of the search tree built by the SAT-solver. After
encountering such a conflict the SAT-solver has to backtrack. A
conflict clause is recorded to avoid repeating the same
contradictory assignment again.

Conflict clauses are stored in BerkMin as a chronologically
ordered stack that plays a key role in BerkMin’s decision-making.
(The most recently deduced clause is put on the top of the stack.).
Namely, the next variable to be branched on is selected among the
variables whose literals are in the topmost unsatisfied clause K of
the stack. (If all the conflict clauses are satisfied and only some
clauses of the initial formula are left unsatisfied, SEC uses the
same decision making procedure as BerkMin.) Among the
variables of K, the one with the highest activity is selected. The
activity of a variable x is the number of times clauses containing
either literal of x have been involved in conflicts. The activity of
each variable is periodically divided by a small constant as it was
suggested in [8].

One more feature of BerkMin is its use of restarts. From
time to time BerkMin abandons the current search tree (preserving
deduced conflict clauses) and starts building a new one. Before
the restart BerkMin runs a data-base cleaning procedure to get rid
of clauses that are not used in conflicts any more and clauses that
have become redundant due to deducing single literal conflict
clauses.

In SEC, we made three changes in decision-making and
restart procedures. These changes were meant to make SEC
“mimic” short resolution proofs that compute filtering and
correlation functions in the topological order of blocks of the
specfiication. Of course, since SEC employs conflict driven
learning , it deduces clauses that are very different from ones
filtering and correlation CNFs consist of. The first change made
in SEC , is that the next branching variable is selected among the
topmost clause K of the stack of conflict clauses that has literals
of free (i.e. unassigned) variables. That is even if K is satisfied,
SEC picks the next branching variable among the free variables of
K. Only after all the free variables of K have been assigned, the
next topmost clause of the stack having literals of free variables is
selected. The effectiveness of this heuristic in decision making
can be explained by the necessity to produce clauses relating
internal points of both circuits like clauses of a restricting set.
Otherwise, if we just satisfy the topmost clause of the stack as
BerkMin does, there is a danger of getting stuck in one of the two
circuits (by producing conflict clauses relating only points of this
circuit) or getting biased toward one of the two circuits.

The second change is that among the free variables of K, the
variable x with the largest value of activity(x)∗f(level(x)) is
selected. Here activity(x) is the activity of x computed exactly as
in BerkMin, level(x) is the topological level of the gate whose
output is specified by x in the miter. The function f is a simple
monotonically growing function. The intuition behind this
heuristic is that short resolution proofs deduce clauses of
restricting and filtering sets in topological order starting from
inputs. SAT-solvers like BerkMin (or Chaff) tend to derive
clauses in terms of deduced variables. So by giving preference to
variables with higher topological levels in decision making we

make variables of lower levels more likely to be deduced (and so
to be used in conflict clauses.) In other words, this heuristic helps
implement the following strategy of conflict clause deduction,
given a choice of literals to be used in a conflict clause, try to use
literals of variables that are closer to inputs.

The third change is that SEC uses “ light” and “heavy”
restarts. Before a heavy restart SEC applies the same database
cleaning procedure as BerkMin does, while a light restart is not
preceded by database cleaning. Light restarts occur very often.
Namely, as soon as a conflict occurs at depth greater than 15 of
the current search tree and at least one conflict have already
occurred before, the current search tree is abandoned. The
intuition behind new restart heristic is that each restart can be
considered as a way of quickly changing the current set of
branching variables. The short resolution proofs described in
Section 4 that SEC tried to “simulate” consist of n steps. At each
step, filtering functions Ff(q1(C)),Ff(q2(C)) and the correlation
function Cf(q1(C),q2(C)) are computed for a variable C of the
specification. Switching to computing these three functions for
some other variable C’ can be viewed as a restart. This is because
sets of variables involved in computing filtering and correlation
functions for C and C’ are different. So, if the circuits to be
checked for equivalence have a fine CS, restarts should be made
frequently.

6. Experimental Results

In the experiments we compared the performance of Zchaff
(downloaded from [11]), BerkMin (version 561 that can be
downloaded from [1]) and SEC. None of the three programs used
any kind of formula preprocessing. The experiments were run on a
SUNW Ultra-80 system with clock frequency 450MHz. In all the
experiments the time limit was set to 60,000 sec. (16.6 hours). In
each table the best result is shown in bold.

Table 1. Equivalence checking of MCNC-91 benchmarks

Name Zchaff

sec.

BerkMin

sec.

SEC

sec.

C3540 125.6 13.7 5.0

C5315 75.71 10.5 3.8

C6288 60,000 60,000 211.7

C880 4.0 0.6 0.2

alu4 2.53 0.9 1.0

dalu 3.48 1.6 2.5

des 367.3 15.6 18.4

i8 6.5 1.8 3.7

k2 1.7 0.9 2.2

t481 8.5 3.8 3.1

too_large 265.3 62.2 48.3

x1 3.3 0.5 1.1

Table 2. Equivalence checking of multipliers

Name Zchaff

sec.

BerkMin

sec.

SEC

sec.

mlp9 2,287.8 761.5 10.6

mlp10 25,858.5 3,854.4 14.2

mlp12 60,000 41,315.3 37.0

mlp14 60,000 60,000 51.4

mlp18 60,000 60,000 144.6

mlp24 60,000 60,000 1,437.8

mlp32 60,000 60,000 12,035.1

First, we tested these programs on “ regular” instances where

the circuits to be checked for equivalence may have many
functionally equivalent points. Table 1 shows the result of
equivalence checking for some MCNC-91 circuits. In the
experiments we checked for equivalence the original circuit and
the circuit obtained by optimization in SIS [10] using a logic
optimization script, script.rugged.

 Table 3. Equivalence checking of circuits with a CS

Name of
topology

Zchaff

(sec.)

Berk-
Min
(sec.)

SEC
(sec.)

C880 60,000 200.1 3.7

ttt2 799.4 77.2 11.7

x4 769.5 139.0 17.3

i9 23.5 11.5 32.7

term1 60,000 1,183.6 35.9

c7552 803.5 74.5 52.8

c3540 60,000 4,172.0 64.1

rot 60,000 1,346.9 72.2

9symml 210.6 58.2 113.2

frg2 7,711.0 1,552.9 131.4

frg1 60,000 3,602.4 330.3

i10 60,000 38,244.6 445.0

des 1,390.3 331.1 451.7

dalu 60,000 20,234.4 518.6

x1 60,000 60,000 950.2

alu4 25,503.6 2,372.6 992.6

i8 35,721.5 4,039.7 1,051.5

c6288 60,000 60,000 1,955.1

k2 60,000 60,000 5,121.5

too_large 60,000 60,000 60,000

t481 60,000 60,000 60,000

All three programs relatively easily solved all the instances
except C6288 (a 16-bit multiplier) that was solved only by SEC.
To the best of our knowledge this is the first time when a SAT-
solver is able to solve the miter of 16-bit multipliers without
deducing internal equivalences or any preprocessing.
Table 2 shows that SEC can handle much larger multipliers (up to
a 32-bit multiplier). In the experiments we verified the original
circuit of a regular shift-add multiplier against the one obtained by
optimization in SIS using script.rugged.

In Table 3 we compare the performance of these three
programs on circuits with a CS. These circuits were obtained
using the following technique. To get multi-valued specifications
with realistic topologies we “borrowed” them from the MCNC-91
benchmark circuits as follows. First all the benchmarks were
technology mapped using SIS to get circuits consisting only of
two-input AND gates (with possible input inversion). Then from
each obtained circuit N a multi-valued specification S was
produced by replacing each two-input binary gate with a two-
input four-valued gate. (In other words, S changes the
functionality of N while preserving its topology.) Then from S two
functionally equivalent Boolean circuits N1, N2 were produced
using two different sets of two-bit encodings of four-valued
values. The encodings were picked in such a way that the two
different implementations of the same four-valued gate in N1 and
N2 had no functionally equivalent outputs. That guaranteed that
internal functionally equivalent points in N1 and N2 may occurr
only by accident. Note that after encoding the number of inputs
and outputs in N1 and N2 is twice the number of inputs and
outputs in the original Boolean network N. For instance, the two
circuits produced from C6288 have the topology of a 16-bit
multiplier and the number of inputs and outputs of a 32-bit
multiplier.

It is not hard to see that the performance of BerkMin and
Zchaff is much worse on formulas from Table 3 even though they
are only a few times larger than formulas of Table 1. SEC does
much better than BerkMin or Zchaff but even its performance
quickly degrades as the size of the formulas of Table 3 grows. We
believe that if we generated circuits from slightly more coarse
spcecifications, the performance of SEC (let alone BerkMin and
Chaff) would be much worse. On the other hand, an algorithm
that knows the CS used when generating the circuits to be
checked for equivalence (and that computes filtering and
correlation functions as it was described in Section 4) should be
able to solve each formula from Table 3 in a few seconds.

7. Conclusions

We introduce a notion of a Common Specification (CS) of
Boolean circuits that generalizes the existing notion of structural

similarity. We show that the equivalence of circuits N1,N2 with a
CS S can be proved in general resolution in the number of
resolutions that is linear in the number of blocks of S and is
exponential in the “size” of the largest block. This suggests that a
deterministic algorithm that “knows” S has about the same
perfromance (in particular, it is linear in the number of blocks of
S). On the other hand, there are good reasons to believe that if S is
not known then checking N1 and N2 for equivalence is hard. We
give some expiremental results that substantiate this claim.

8. References

[1] BerkMin web page. http://eigold.tripod.com/BerkMin.html

[2] Brand, D., Verification of large synthesized designs.
Proceedings of ICCAD-1993,pp 534-537.

[3] Bryant.,R.E. Graph based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C(35):677-
691.

[4] Goldberg,E.,and Novikov,Y. BerkMin: A fast and robust
SAT-solver. Design, Automation, and Test in Europe (DATE
'02), pages 142-149, March 2002.

[5] Gupta, A., and Ashar, P. Integrating Boolean satisfiability
checker and BDDs for combinational equivalence checking.
Proc. Int. Conf. on VLSI Design, Chennai, India 1998.

[6] Kuehlmann, A., and Krohm, F. Equivalence checking using
cuts and heaps. Proceedings of DAC-1997.

[7] Kunz, W., Pradhan, D., Recursive learning: a new implica-
tion technique for efficient solutions to cad problems - test,
verification and optimization. IEEE Tran. on CAD 13(9)
Sep. 1994

[8] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and
Malik, S. Chaff: Engineering an efficient SAT-solver.
Proceedings of DAC-2001.

[9] Razborov, A., Alekhnovich, M. Resolution is not automa-
tizable unless W[p] is tractable. FOCS-2001, pp.210-219.

[10] Sentovich, E. e.a. Sequential circuit design using synthesis
and optimization. Proceedings of ICCAD, pp 328-333,
October 1992.

[11] Zchaff web page. http://ee.princeton.edu/~chaff/zchaff.php

