1507.02297v3 [cs.LO] 11 Aug 2015

arxXiv

Equivalence Checking and Simulation By
Computing Range Reduction

Eugene Goldberg
eu.goldberg@gmail.com

Abstract—We introduce new methods of equivalence checking
and simulation based on Computing Range Reduction (CRR).
Given a combinational circuit NV, the CRR problem is to compute
the set of outputs that disappear from the range of NN if a set of
inputs of \V is excluded from consideration. Importantly, in many
cases, range reduction can be efficiently found even if computing
the entire range of N is infeasible.

Solving equivalence checking by CRR facilitates generation of
proofs of equivalence that mimic a “cut propagation” approach.
A limited version of such an approach has been successfully used
by commercial tools. Functional verification of a circuit NV by
simulation can be viewed as a way to reduce the complexity
of computing the range of N. Instead of finding the entire
range of N and checking if it contains a bad output, such
a range is computed only for one input. Simulation by CRR
offers an alternative way of coping with the complexity of range
computation. The idea is to exclude a subset of inputs of N and
compute the range reduction caused by such an exclusion. If the
set of disappeared outputs contains a bad one, then N is buggy.

I. INTRODUCTION

The objective of this paper is to emphasize the importance
of developing efficient algorithms for Computing Range Re-
duction (CRR). Earlier we showed that CRR can be used
for model checking [3]. Adding equivalence checking and
simulation to the list of problems that can be handled by CRR
makes the need for developing efficient CRR algorithms more
obvious.

A. The CRR problem

Let N(X,Y,Z) be a combinational circuit where X,Y, Z
are the sets of input, intermediate and output variables of N
respectively (see Figure [TI). We will refer to the set of all
outputs produced by N as the range of N. By an “output”
here we mean a complete assignment of values to the variables
of Z. We will also use term “input” to denote a complete
assignment to the variables of X.

Suppose that one excludes a set K of
‘ complete assignments to X from the set
of available inputs to N. If an output
z is produced only by inputs that are
in K, excluding the inputs of K from
consideration leads to disappearance of z
/ \ from the range of N. The CRR problem
i is to compute the outputs of N that are
excluded from the range of N if the
inputs of a set K are excluded from
consideration.

Fig. 1. Combinational
circuit N

B. Equivalence checking by CRR

Equivalence Checking can be a hard problem even for
combinational circuits. This is especially true when the circuits
to be compared have few functionally equivalent internal
points. Our motivation here is that, as we argue in Sec-
tion equivalence checking by CRR facilitates construction
of “natural” proofs. Such proofs are generated by industrial
equivalence checkers when the circuits to be compared have
a lot of internal points that are functionally equivalent.

Application of CRR to equiv-
alence checking is based on the
following observation. Let N’
and N’ be single-output com-
binational circuits to be checked
for equivalence. (The expression
“a single-output circuit” means
that this circuit has only one
output variable. Whether we use
term “output” to refer to an “out-
put variable” or “output assign-
ment” should be clear from the
context.) Let M be a two-output circuit composed of N’ and
N"" as shown in Figure 2| Note that the sets X’ and X" of
input variables of N’ and N are independent of each other.
Then, if N’ and N” are not constants, the range of circuit M
consists of all four assignments to the output variables z’,z"”
of N’ and N”.

Let (x’,x’") denote an assignment to variables X’ U X",
Suppose that one excludes from consideration all assignments
(x’,x'") where ' # x’’. Then if N’ and N are functionally
equivalent, such constraint on inputs of M should lead to dis-
appearing assignments (2’ = 0,2"” = 1) and (2’ =1,2" = 0)
from the range of M. If this is not the case, then there is
an input (x’,x’") of M where x’=z"" for which N’ and N”
evaluate to different values i.e. N’ and N are inequivalent.

C. Simulation by CRR

Functional verification of a combinational circuit /N comes
down to checking if the range of N contains an erroneous
output. The straightforward approach of computing the range
of N is extremely inefficient. Simulation can be viewed as a
way to simplify the range computation problem by reducing
the set of inputs of N to only one (regular simulation) or to
a subset of inputs (symbolic simulation [2])). In this paper, we
consider a different way to cope with complexity of range
computation called simulation-by-exclusion. It is based on

Fig. 2. M is a two-output circuit
composed of independent circuits
N’ and N

the idea of computing the reduction of range of N caused
by excluding some inputs from consideration rather than the
entire range of V.

Suppose that one needs to check if an erroneous output z
is produced by N. Assume that a set of inputs K is excluded
from consideration. Let () be the set of outputs that disappear
from the range of N due to exclusion of inputs from K. One
can have only the following two cases. The first case is z € Q.
This means that either z is not in the range of N i.e. IV is
correct or N is buggy but there is an input & ¢ K producing
z. So exclusion of the inputs of K does not make z disappear
from the range of N. Then one can safely remove the inputs
of K from further consideration because if IV is buggy, the set
of available inputs still contains a counterexample. The second
case is z € (). Then IV is buggy because z is in its range.

In this paper, we describe the basic algorithm of simulation-
by-exclusion and a few of its modifications.

D. CRR by partial quantifier elimination

In [5)], we showed that the CRR problem comes down to
Partial Quantifier Elimination (PQE). The difference between
partial and complete elimination is that, in PQE, only a part
of the formula is taken out of the scope of quantifiers. Let us
explain the relation between CRR and PQE in the context of
equivalence checking. Let FQ (X', X"') denote a propositional
formula such that FQ(x’, 2"”) = 1 iff ' = «”. Equivalence
checking by CRR comes down to taking E() out of the scope
of quantifiers in formula IW[EQ A F' A F"']. Here formulas
F' and F" specify circuits N’ and N" of Figure [2land W =
X uX"uy' uy”.

Taking E(@ out of the scope of quantifiers means
finding a quantifier-free formula H(z’,2”) such that
IWIEQANF' ANF"] = HAIW[F'AF”]. If an output of
circuit M of Figure [2| disappears from its range after ex-
cluding inputs falsifying EQ, this output falsifies H. So if
H(0,1) = H(1,0) = 0, circuits N" and N are equivalent.

Let us explain the benefits of solving PQE. We assume
here and henceforth that all formulas are represented in the
Conjunctive Normal Form (CNF). The appeal of PQE is that
it allows one to focus on deriving implications that matter.
Namely, formula H can be built solely from clauses that
are implied by formula EQ A F’ A F” and are not implied
by formula F' A F”. This means that a PQE solver can
ignore the resolvents obtained only from clauses of F’ A F”
focusing on resolvents that are descendants of clauses of EQ).
Such zooming in on the “right” resolvents can make building
formula H much more efficient.

E. Difference in CRR for equivalence checking and simulation

Our methods of using CRR for equivalence checking and
simulation are different in one important aspect. In equivalence
checking, one builds a circuit M of Figure [2| and eliminates
the spurious behaviors where @’ # x’’. The presence of a
bug corresponds to the situation when an erroneous output is
not excluded from the range of M under the input constraints.
Conversely, simulation-by-exclusion is based on elimination

of valid inputs. Then, the presence of a bug corresponds to
the situation where an erroneous output is excluded from the
range of the circuit under test.

The difference above is important for the following reason.
When describing application of CRR to equivalence checking
and simulation in Subsections and [we assumed that
range reduction is computed precisely. However, a PQE solver
computes a superset of the set of excluded outputs [3] that
may include outputs that are not in the range (see Subsec-
tion [l[-D]) We will refer to such outputs as noise. Adding
noise to the set of excluded outputs in equivalence checking
by CRR cannot trigger false alarms. (As we mentioned above
the situation of concern here is when a bad output of M is not
excluded under input constraints.) Conversely, in simulation-
by-exclusion, adding noise can set off a false alarm. This
happens when a bad output z is in the set of excluded outputs
computed by a PQE solver but, in reality, z is not in the range
of the circuit.

E Structure of the paper

This paper is structured as follows. Section [lI| formally
defines the CRR problem. Solving this problem by PQE is
discussed in Section In Section [IV] we introduce a method
of equivalence checking by CRR. Simulation-by-exclusion
is discussed in Sections [V] and Some background and
conclusions are given in Section and Section [VIII| respec-
tively.

II. PROBLEM OF COMPUTING RANGE REDUCTION

Let N(X,Y,Z) be a combinational circuit where XY, Z
are input, intermediate and output variables respectively. Let
N evaluate to output z (i.e. a complete assignment to Z) under
an input (i.e. a complete assignment to X'). We will say that
z is produced by N.

Let A(X) be a set of inputs of N. Denote by Rng(IN, A)
the range of N under inputs of A. That is an output z is in
Rng(N, A) iff z is produced by N for some input « € A. If
A consists of all 21X! inputs of N, then Rng(N, A) specifies
the entire range of N. From the definition of Rng(N, A) it
follows that Rng(N, A\ B) C Rng(N, A) where B is a set
of inputs of N.

Definition 1: Let A and B be sets of inputs of circuit
N such that AN B # (). The CRR problem is to find
the set Rng(N,A) \ Rng(N,A\ B). If an output z is in
Rng(N, A)\ Rng(N, A\ B), we will say that z is excluded
from Rng(N, A) due to excluding inputs of B.

Below, we give definition of an approximate solution to the
CRR problem. The reason is that, as we showed in [5], algo-
rithms for partial quantifier elimination provide only approx-
imate solutions to the CRR problem (see Subsection [[II-D).

Definition 2: Let @ denote Rng(N,A)\ Rng(N,A\ B)
from Definition [I| Let @Q* be a superset of Q). We will say
that * is an approximate solution of the CRR problem if
for every z € Q* \ @ it is true that z & Rng(N, A). In other
words, an approximate solution of the CRR problem is the

precise solution modulo outputs that are not in Rng(N, A).
We will refer to such outputs as noise.

III. COMPUTING RANGE REDUCTION BY PARTIAL
QUANTIFIER ELIMINATION

In this section, we relate range computation with quanti-
fier elimination and range reduction computation with partial
quantifier elimination. Besides, we recall our previous results
on complete and partial quantifier elimination.

A. Complete and partial quantifier elimination

Given a quantified CNF formula IW[F(V, W)], the prob-
lem of Quantifier Elimination (QE) is to find a quantifier-free
formula H (V') such that H = 3W[F].

Given a quantified CNF formula IW[G(V, W) A F(V,W)],
the problem of Partial Quantifier Elimination (PQE) is to
find a quantifier-free CNF formula G*(V') such that G* A
JWI[F] = IW[G A F]. We will say that formula G* is
obtained by taking G out of the scope of quantifiers in
IW[G A F]. The term “partial” emphasizes the fact that, in
contrast to QE, only a part of the quantified formula is taken
out of the scope of quantifiers.

In this paper, we do not discuss algorithms for solving the
PQE problem. In Subsection we only explain how a
PQE algorithm implements a cut advancement strategy. More
information can be found in [6].

B. Computing range by QFE and range reduction by PQFE

Let F(X,Y,Z) be a CNF formula specifying circuit
N(X,Y,Z). That is every consistent assignment of Boolean
values to variables of N is a satisfying assignment for F
and vice versa. Let H(Z) be a CNF formula such that
H = 3X3Y[F]. Then the outputs of N satisfying H specify
the range of N. So computing the range of N comes down to
solving the QE problem. Assume that only inputs satisfying
formula G(X) are considered. Then a CNF formula H(Z)
equivalent to 3X3JY[G A F] specifies the range of N under
inputs satisfying G.

Suppose that we are interested only in finding how the range
of N reduces if the inputs falsifying G are excluded i.e. only
inputs satisfying GG are considered. As we showed in [5]], this
problem comes down to finding CNF formula G*(Z) such
that G* A AW[F] = 3W[G A F] where W = X UY. Here
G* specifies an approximate solution to the CRR problem (see
Definition 2) i.e.

« the outputs falsifying G* specify a superset of the set
of outputs disappearing from the range of N due to
excluding inputs falsifying G

« every output z falsifying G* either disappeared from the
range of N due to excluding inputs falsifying G or is not
in the range of N

C. Complexity of computing range and range reduction

As we mentioned above, computing the range of NV reduces
to QE whereas finding range reduction comes down to PQE.
So the complexity of computing range and range reduction is
directly related to that of QE and PQE.

The difference between QE and PQE can be expressed in
terms of computing clause redundancy [4], [6]. For the sake of
simplicity, in descriptions of algorithms of [4] and [6] given
below we omitted the fact that they use branching. (First the
problem is solved in subspaces. Then the results of branches
are merged to produce a solution that holds for the entire
search space.)

As we showed in [3l], [4], to eliminate quantifiers from
IWIF(X,Y,Z)] where W = X UY one needs to find a
CNF formula H(Z) implied by F that makes all the clauses
of F with quantified variables redundant in 3W [F' A H]. Then
formula H is logically equivalent to W [F]. We will refer to
clauses containing variables of W (i.e. quantified variables) as
W -clauses.

Clauses of H are built from F' by adding resolvent clauses.
If a resolvent is a W -clause, its redundancy has to be proved
along with the original W-clauses of F'. Eventually, a suffi-
cient number of clauses depending only on free variables (i.e.
those of Z) is added to make the new and old W -clauses of
F' redundant.

Now, let us consider the PQE problem of taking formula
G(X) out of the scope of quantifiers in IW[G A F|. As we
showed in [6], this problem comes down to finding formula
G*(Z) implied by G A F that makes redundant the clauses
of G in IWI[G* A G A F]. The clauses of G* are built by
resolving clauses of G A F. If a resolvent is a W-clause and
is a descendant of a clause of G, its redundancy needs to be
proved as well. On the other hand, W -resolvents produced
solely from clauses of F' do not need to be proved redundant.
This can make PQE drastically simpler than QE if G is much
smaller than F.

D. Quality of PQE-solving

In this subsection, we clarify the relation between the
quality of a PQE-algorithm and that of an approximate solution
to the CRR problem. As in the previous subsection, we assume
that formula G*(Z) is obtained by taking formula G(X) out
of the scope of quantifiers in IW[G A F]. Here W = X UY
and F specifies circuit N(X,Y, Z).

The definitions below are based on the following observa-
tion. If G* is a solution to the PQE problem above, a formula
obtained by adding to G* a clause C'(Z) implied by F is also
a solution to the PQE problem. One can view C' as “noise”.
Such a clause is falsified only by outputs that are not in the
range of N. In general, the set of outputs falsifying a clause
of G* can contain outputs that are in the range of N and those
that are not.

Definition 3: Let C be a clause of G*. We will say that C'
is noise-free if every output falsifying C is in the range of
N. Otherwise, clause C'is called noisy. Formula G* is called
a noisy solution to the PQE problem if it contains a noisy
clause. Otherwise, G* is called noise-free.

IV. EQUIVALENCE CHECKING BY COMPUTING RANGE
REDUCTION

In this section, we describe equivalence checking by CRR.
In Subsection we give the main proposition on which

our method is based. Subsection [[V-B| compares equivalence
checking by CRR and SAT-solving.
A. Main proposition

The intuition behind applying CRR to equivalence checking
was described in the introduction. In this subsection, we
substantiate this intuition in a formal proposition.

Let N'(X',Y’,2") and N"(X",Y" 2") be single-output
combinational circuits to be checked for equivalence. Let
MX', X" Y' Y" 2 2") be the circuit composed of N’
and N” as shown in Figure Let F/(X',)Y',2') and
F"(X"Y", 2") be CNF formulas specifying N’ and N”
respectively. Assume that X' = {zf,...,z}} and X" =
{z,...,2}}. Denote by EQ(X’, X") formula (z} = z) A
-+ A (2}, =) that is satisfied by inputs &’ and =’ to N’
and N iff ' = x”.

Proposition 1: Let H(Z', 2"") be a CNF formula obtained by
taking EQ(X’, X") out of the scope of quantifiers from the
formula IW[EQ A F' A F”] where W = X' UX"UY'UY".
Circuits N’ and N" are functionally equivalent iff one of the
two conditions below hold:

1) H(0,1) = H(1,0) =0

2) Circuits N’ and N” are identical constants (i.e. N =

N'"=0or NN =N"=1.).

Proof: The if part. Assume that H(0,1) = H(1,0) = 0.

Since H(z',2") is a solution to the PQE problem, it is implied
by formula EQ A F’ A F”. This means that for any consistent
assignments (x’,vy’,2’) and (x”,y’,2") to N’ and N" such
that «’=x" the values of 2’ and z” are equal to each other.
Thus N’ and N’ are functionally equivalent. If the second
condition holds i.e. N’ and N’ are identical constants, then
N’,N" are obviously equivalent.
The only if part. Assume that N’ and N" are functionally
equivalent. We need to prove that one of the conditions above
holds. Assume the contrary i.e. that H(0,1) = H(1,0) =0
does not hold and N/, N are not identical constants.

Let us assume, for the sake of clarity, that H(0,1) = 1.
(The case when H(1,0) = 1 can be considered in a similar
manner.) This means that formula H does not contain a clause
C(#,7") falsified by an assignment 2’ = 0,z” = 1. Let us
consider the following two reasons for that.

First, C' is not implied by EQ A F' A F". This means that
there is an assignment x’=x’’ to N’ and N” for which N’
evaluates to 0 and N evaluates to 1. Hence N’ and N are
inequivalent and we have a contradiction.

Second, C' is implied by both FQ A F' A F" and F' A F”
and one does not need to add clause C' to make formula FQ)
redundant. Since F’ and I’ do not share variables, the fact
that F/ A F” implies C' means that the circuit M does not
produce output 2/ = 0,z” = 1 even when inputs of M are
not constrained by E(Q. This is possible only if at least one of
the circuits N/,N" is a constant. Let us consider the following
three cases.

e N’ and N are identical constants. Contradiction.

e N’ is a constant 1 and N” is either a constant O or a

non-constant circuit. Hence N’ £ N’ . Contradiction.

e N is a constant 0 and N’ is either a constant 1 or a
non-constant circuit. So N’ % N, Contradiction.
|]

B. Equivalence checking by regular SAT-solving and CRR

In this subsection, we compare equivalence checking by a
SAT-solver with Conflict Driven Clause Learning (CDCL) and
by CRR.

The equivalence checking
of circuits N'(X',Y',2)
and N"(X",Y",2") can
be performed by checking
the satisfiability of formula
F equal to F'(X,Y',2') A
F”(X, Y”,Z”) A (Z/ £ Z”).
Indeed, the existence of an
Fig. 3. Equivalence checking by assignment T, y/’ y/,’ z /’ 2
cut advancement satisfying F' means that N’ and
N" produce different output values for the same input x. We
will refer to the method of equivalence checking by a SAT
solver based on CDCL solver as EC_CDCL. Here EC stands
for Equivalence Checking.

Proposition [I] justifies

the following method of

equivalence checking by CRR. We will refer to
this method as EC_CRR. This method solves the
PQE problem specified by formula F equal to

HW[EQ(X/,X”) A F/(X/, Y/7 Zl) A F"(X", Y//7 Z”)]
where W = X’UX”UY’'UY"”. Namely, EC_CRR computes
formula H(z', z") obtained by taking EQ out of the scope of
quantifiers in IW[EQ A F' A F"]. If H(0,1) = H(1,0) =0,
then N’ and N’ are equivalent. Otherwise, one needs to
check if N/ and N” are identical constants. If so, then N’
and N are equivalent, otherwise they are not. Theoretically,
proving N’ and N inequivalent does not require generation
of a counterexample. The very fact that H(0,1) = 1 or
H(1,0) = 1 and N’, N” are not constants guarantees that
N’ and N are not equivalent. However, in a practical
implementation of EC_CRR, a counterexample may be
generated before computation of formula H is completed.

To distinguish the formulas F' solved by EC_CDCL and
EC_CRR, we will refer to them as F°%! and F°" respec-
tively. The SAT problem can be viewed as a special case
of QE where all variables of the formula are existentially
quantified. Since EC_CRR is actually a PQE algorithm, one
can compare EC_CRR and EC_CDCL in terms of computing
clause redundancy as we did Subsection [[lI-C] In those terms,
the objective of deriving an empty clause by a SAT-solver
is to make redundant all clauses with quantified variables
(i.e. all clauses containing literals). So the difference between
EC_CDCL and EC_CRR is that the former is aimed at
making redundant all clauses of ¢! while the goal of the
latter is to make redundant only a small subset of clauses of
F° (namely those of FQ).

The fact that EC_CRR needs to prove redundancy of a
smaller set of clauses than EC_CDCL does not necessarily
imply greater efficiency of EC_CRR. What matters, though,

is that solving the PQE problem specified by F'“'" facilitates
generation of proofs based on the cut advancement strategy
shown in Figure 3] Such proofs are natural for structurally
similar circuits. Here is a naive version of how this works.
To make clauses of E(@ redundant one just needs to produce
new clauses obtained by resolving F'Q) with those of F' A F”.
Note that a PQE solver has to make redundant a new resolvent
(depending on a quantified variable) only if it is a descendant
of a clause from FQ. In general, such a clause will contain
variables of both F” and F" relating variables of N’ and N”.
The set G; of new resolvents that made the clauses of QF
redundant specify a new “cut” that consists of the variables
present in GG1. After that a set G2 of descendants of G that
make the clauses of G; redundant is built. This goes on until
the cut consisting of variables z’ and z”’ is reached.

A cut advancement strategy has been successfully used by
industrial equivalence checkers. However, it is applied only
when N’ and N” are so structurally similar that one can
build a cut consisting of internal points of N’ and N that are
functionally equivalent. So this version of cut advancement is
very limited. On the other hand, EC_CRR can arguably extend
the cut advancement strategy to a much more general class of
equivalence checking problems.

V. Two WAYS To HANDLE COMPLEXITY OF RANGE
COMPUTATION

Function verification of a combinational circuit N (X,Y, Z)
comes down to checking if there is an input for which N
produces an erroneous output. We assume that the erroneous
outputs are specified by the user as a set F/. A straightforward
way to verify IV is to find the range of N and check if
it overlaps with E. As we mentioned in Subsection [[II-B]
finding the range of /N comes down to solving the QE problem.
Although, in general, the latter is very hard, in some cases, it
can be efficiently solved for real-life circuits. For example, if
N is a single-output circuit, computing its range comes down
to Circuit-SAT that, in many practical cases, can be solved by
state-of-the-art SAT-solvers. In Sections [V] and [V} we assume
that functional verification of IV is too hard for a SAT-solver.

In this section, we consider two methods for reducing the
complexity of computing range of N. One method is to
compute range of N for a subset of inputs. This method is
used in traditional simulation. We introduce another method
based on the following idea: compute range reduction caused
by excluding some inputs of N rather than the entire range.

A. Simulation as range computatio

Let F(X,Y,Z) be a CNF formula specifying circuit N.
Computing the range of N comes down to finding formula
H(Z) logically equivalent to IW[F] where W = X UY.
Simulation can be viewed as a way to decrease the complexity

! Traditionally, given a combinational circuit N (X,Y, Z), simulation is
a deterministic procedure for computing the output z produced by N when
an input « is applied. Unfortunately, this procedure does not have a trivial
extension to the case when two or more inputs are applied at once. For that
reason, we use a semantic notion of simulation as a computation of the range
of N for a subset of inputs, omitting a detailed description of this computation.

of finding H(Z) by shrinking the set of allowed inputs to only
one. Let S(X) be a CNF formula satisfied by only one input
x. Then computing the output produced by N comes down
to solving the QE problem IW[S A F]. Formula S can be
represented as a set of | X| unit clauses satisfied only by x.
(A clause is called unit if it contains exactly one literal.) A
solution H(Z) for this QE problem can be represented as a
set of |Z| unit clauses satisfied only by the output of N for
input .

An obvious flaw of traditional simulation is that it provides
information about the value of N only for one input out of
21X, One can address this issue by using formulas S with
many satisfying assignments, Then solving the QE problem
specified by IW[S A F] finds the range of N where all
inputs satisfying S are processed together. Unfortunately, the
complexity of QE grows very fast as the number of inputs
satisfying S increases. One way to reduce the complexity
of QE when S allows many inputs is employed in symbolic
simulation [2]. The idea is to pick formulas S for which all
inputs satisfying .S have the same execution trace.

B. Simulation-by-exclusion

We described the main idea of simulation-by-exclusion
in Subsection Given constraints excluding some inputs,
compute only reduction of range of /N caused by this exclusion
rather than the entire range of N under allowed inputs.
Here we continue explanation describing how simulation-by-
exclusion is implemented by PQE. Let the complete assign-
ments to X falsifying CNF formula Q(X) specify the inputs
excluded from consideration. Let CNF formula Q*(Z) be
obtained by taking Q(X) out of the scope of quantifiers in
IW[Q A F] where W = X UY. Then the outputs falsifying
Q™ specify the range reduction of N due to exclusion of inputs
falsifying Q.

Suppose that no output falsifying Q* is in the set F
of erroneous outputs of N. This implies that either IV is
correct or there is an input & producing an output from £ (a
counterexample) that is not excluded i.e. @ satisfies (). This
means that removing all inputs falsifying) from consideration
is safe because it cannot remove all counterexamples (if any).

As we mentioned earlier, a PQE solver provides only an
approximate solution to the CRR problem. This means that
even if an output z falsifying Q* is in E, one still needs to
check if z is in the range of N. A trivial way to do it is to
check if formula C, A F is satisfiable where C,, is the longest
clause falsified by z. If so, clause C, is not implied by F' and
z is in the range of V.

Checking the satisfiability of C, A F' may be expensive.
However, in the algorithm of simulation-by-exclusion we
introduce in Section formula F' is constantly updated by
adding clauses excluding inputs of N. This may drastically
simplify the SAT-check above. Besides, there are at least two
techniques to make this SAT-check even simpler. The first
technique is based on the fact that all inputs producing z (if
any) falsify . So checking if z is in the range of N reduces
to testing the satisfiability Q A C, A F.

The second technique is based on the following observation.
Let R be a resolution derivation of a clause C' of Q* falsified
by z. Then if z is in the range of N, every cut Cut(R) of
proof R has to include at least one clause A that is implied
by @ A F but not F. (We assume here that R is a directed
graph nodes of which correspond to original clauses of Q A F’
or resolvents.) If every clause of Cut(R) is implied by F' then
the clause C derived by R is implied by F' too and so z is not
in the range of N. So to find out if 2z is in the range of IV it
is sufficient to check if formula AA Q A C, A F is satisfiable
for every clause A of Cut(R). The longer clause A is the
simpler this SAT-check. If all such formulas are unsatisfiable
for Cut(R) then z is not in the range of N. Otherwise, an
input of N producing z can be extracted from an assignment
satisfying formula AANQAC, A F.

C. Simulation-by-exclusion versus regular simulation

In this subsection, term ‘“regular simulation” refers to
finding a solution H(Z) to the QE problem specified by
IW[Q A F| that we introduced in Subsection (see also
Footnote [T)).

The main difference between regular simulation and
simulation-by-exclusion is as follows. In regular simulation,
to get a result one needs to perform a computation that goes
all the way from inputs to outputs. If only one input x is
allowed by @, this computation produces an execution trace
consisting of values assigned to variables of N when applying
input . On the other hand, simulation-by-exclusion can get
a valuable result even by a local computation that does not
reach the outputs of V.

Let us consider the example of
Figure [] showing a circuit V. Sup-
pose that lines xi,xo feed only
gates G; and G and lines yi,yo
feed only gate G3. Note that the
output of G3 specified by ys; im-
plements function z; = z9 ie.
ys = 1 iff values of x; and x, are
equal. Let C denote clause x1 V .
It is not hard to show that C is
redundant in formula IWI[C A F]
i.e. AW[C A F] = IW|[F). The re-
dundancy of C' means that one can
exclude the inputs falsifying C' (i.e. all the inputs for which
x1 = 0,29 = 0) from consideration because such exclusion
does not change the range of N. Indeed, since x1,x2, Y1, Y2
feed only gates G1,G2,Gj3, circuit N produces the same
output for two inputs that are different only in the values of x;
and/or xo if these inputs produce the same assignment to ys.
Since, even after excluding assignment x; = 0,22 = 0, both
values of y3 can still be produced, the set of outputs circuit
N can generate remains intact.

Importantly, the fact that clause C' can be safely used to
exclude inputs of N is derived locally without any knowledge
of the rest of the circuit V. Such a result cannot be reproduced
efficiently by regular simulation. To exclude the inputs falsified

Fig. 4. An example illustrat-
ing simulation-by-exclusion

by C' from consideration one would need to solve the QE
problem specified by W [C A F|. The complexity of such QE
can be very high if the size of circuit IV is large. Of course,
if regular simulation succeeds in performing QE, it might find
a bug. However, if no bug is found, the result is the same
as for simulation-by-exclusion: the inputs falsifying C' can be
excluded. However the price of this result in regular simulation
can be dramatically higher than in simulation-by-exclusion.

VI. A FEW ALGORITHMS IMPLEMENTING
SIMULATION-BY-EXCLUSION

In this section, we describe a few algorithms implementing
simulation-by-exclusion. The basic algorithm is shown in
Figure [5] and described in Subsections and Two
modifications of this algorithm are given in Subsection
For the sake of clarity, we will assume that one needs to
verify a single-output circuit N. We will assume that if N
is correct it always evaluates to 0. An input for which N
evaluates to 1 is a counterexample showing that NV is buggy.
The extension of algorithms of this section to multi-output
circuits is straightforward.

A. Algorithm description

The algorithm of simulation-by-exclusion called SimByExl]
consists of three parts separated in Figure [5] by the dotted
lines. In the first part (lines 1-6), an input & is generated
for which IV evaluates to O (lines 2-4). This input is never
excluded and serves two purposes. First, it guarantees that
N is not a constant 1. Second, keeping & allowed prevents
SimByExcl from excluding all inputs for which N evaluates
to 0. SimByExcl also builds formula F' specifying N (line 1)
and generates Cz, the longest clause falsified by & (line 5).
Finally, SimByExcl initializes formula G that accumulates the
clauses excluding inputs of N (line 6).

The second part of SimByExcl (lines 7-14) consists of a
while loop. In every iteration of this loop, a new clause C(X)
is generated (line 10). Clause C excludes at least one new
input of N constructed as an assignment satisfying formula
G N Cgz (line 8). If SimByExcl fails to find such x, all inputs
of N but & have been excluded. Then NV is correct since, for
the excluded inputs, it takes the same value as for & i.e. O.

After generating clause C, SimByExcl computes CNF for-
mula C*(z) (line 11). It is obtained by taking C out of the
scope of quantifiers in IW[C A F] where W = X UY.
Formula C* can only consist of clause Z or be empty (no
clauses) in which case C* is always true. Note that formula
C* cannot consist of unit clause z because SimByExcl never
excludes all inputs for which IV evaluates to 0. Hence clause
z is not implied by C' A F. If C* is empty, then the inputs
falsifying C' can be safely excluded from consideration. So
clause C is added to F' (line 13) and to G (line 14).

If C* is not empty and hence equal to Z, SimByExcl breaks
the loop (line 12) and executes the third part of the algorithm
(lines 15-17). In this part, SimByExcl checks whether the
derived clause Z is pure noise or C' excludes a counterex-
ample. If no counterexample is excluded by C, then clause

/I N(X,Y,z) is a single-output circuit
// X is the set of input variables

/I'Y is the set of internal variables

/I z specifies the output variable

/I SimByExcl returns a counterexample

1 or nil if no counterexample exists
1
SimByEzcl(N){

1 F(X,Y,z):= GenCnfForm(N);
& := Genlnp(X);

3 wal(z) := Simulate(N, &);

4 if (val(z) = 1) return(&);

5 Cz = LongestFalsifClause(&);

6 G:=0;

7 while (true) {

8 x := FindSatAssgn(G A Cz);

9 if (& = nil) return(nil);

10 C := GenFulsifClause(x, &);

11 C*:= SolwePQE(SWI[C AF)); I W=XUY

12 if (C* = Z) break;
13 F:=FAC,
u G:=GAC;}

15 if ((C' A F A 2) = false) return(nil);

16 (z,y,2) := SatAssgn(C N F A z);

17 return(x); }
Fig. 5. The basic algorithm of simulation-by-exclusion

Z 18 just noise, i.e. ' — Z and so N is correct. Otherwise,

SimByExcl extracts a counterexample from an assignment

satisfying C A F A z.

Note that one can just check whether N is constant O by run-
ning the SAT-check on F' A z where F' is the original formula
specifying N. SAT-checking of FAzAC can be much simpler
for the following two reasons. First, F' is constantly updated
by SimByExcl by adding clauses excluding inputs. As we
explain in Subsection such clauses are obtained by non-
resolution derivation and so are very valuable for a resolution-
based SAT-solver. Second, the negation of clause C' consists
of unit clauses that can additionally simplify the SAT-check.
One more way to simplify this SAT-check that we described in
Subsection is to exploit the resolution derivation of clause
Z. For the sake of simplicity this possibility is not mentioned
in Figure [3

B. Completeness and soundness of SimByExcl

SimByExcl produces an answer for every circuit /V and so it
is complete. Indeed, in every iteration of the while loop, Sim-
ByExcl excludes at least one new input of NV that has not been
excluded so far. So the set of allowed inputs monotonically
decreases. Eventually, SimByExcl either excludes all inputs but
& or derives a clause z. In either case, SimByExcl terminates
returning a result.

SimByExcl is sound. It reports that N is correct in two cases.
First, when a clause 7 is generated and SimByExcl proves that
F' — Z. Then F' Az is unsatisfiable and hence no counterexam-
ple exists. Second, SimByExcl reports that N is correct when
all inputs of N but & are excluded by added clauses. Since
SimByExcl guarantees that a new clause cannot remove all

SimByExcl(N){

6 G:=0;
6.1 NumNewClauses := 0;
7 while (true) {

12 if (C* = Z) break;

13 F:=FAC,

14 G:=GAC,

141 NumNewClauses := NumNewClauses + 1;
142 if (NumNewClauses > #threshold) {

143 NumNewClauses := (J;

144 answer := SatCheck(F A z, #backtracks);
145 if (answer # unfinished) return(answer);}}

Fig. 6. Modification of the algorithm shown in Figure 3]
counterexamples and N evaluates to 0 at &, this means that
N evaluates to O for all inputs. SimByExcl reports that N is
buggy when an assignment satisfying F' A z is found. This
assignment specifies an input for which N evaluates to 1.

C. Two modifications of the algorithm

In this subsection, we consider two modifications of Sim-
ByExcl that can be used to improve its efficiency. The first
modification is given in Figure [6] The high-lighted part shows
the lines added to the code of SimByExcl of Figure [5]

The main idea here is to occasionally run a light SAT-check
on formula F'A z. We assume that the effort of the SAT-solver
is limited by some parameter specifying e.g. the maximum
number of backtracks. Such a SAT-check is invoked when
the number of new clauses added to F' exceeds a threshold.
Such a strategy makes sense because clauses added to F'
by SimByExcl are not derived by resolution. Deriving such
clauses by resolution may be dramatically more complex,
which makes them quite valuable for a resolution based SAT-
solver.

Consider for instance, derivation of clause C' = x1 V o
for circuit N shown in Figure [(see discussion of Subsec-
tion[V-C). Assume that circuit N has only one output specified
by variable z. Suppose that formula F' A z is satisfiable (i.e.
N is buggy) and C excludes at least one counterexample.
Then C is not even implied by F' A z and thus cannot be
derived by resolution. However, even if C' is implied by F'A z,
its resolution derivation may be very hard and involve many
clauses of F'. On the other hand, a PQE-solver is capable of
concluding that C' can be safely added to F' just by examining
the clauses specifying gates G1,G2,G3 and using the fact that
variables x1, 22,1, y2 do not feed any other gates.

The second modification is shown in Figure[/| In this mod-
ification one occasionally runs regular simulation. We assume
that only tests that have not been excluded yet are generated.
These are the tests satisfying formula G. A simulation run
is performed when the number of new clauses added to G
exceeds a threshold. We assume that the number of tests
generated in a simulation run is limited by parameter #tries.
Performing occasional simulation runs makes sense because

SimByExcl(N){

6 G:=0;
6.1 NumNewClauses := 0;
7 while (true) {

12 if (C* = Z) break;

13 F:=FAC,

4 G:=GANC,

141 NumNewClauses := NumNewClauses + 1;

142 if (NumNewClauses > #threshold) {
143 NumNewClauses := {;

14.4 Cex := RunSim(N, G, #tries);

14.5

if (Cex # nil) return(Cex);}}

Fig. 7. Another modification of the algorithm of Figure [3]
adding new clauses reduces the search space and hence
increases the probability of generating a counterexample.

VII. BACKGROUND

The existing methods for checking equivalence of combina-
tional circuits N’ and N can be roughly partitioned into two
groups. The first group consists of methods that do not try to
exploit the structural similarity of N’ and N”. An example of
an equivalence checker of this group is an algorithm that builds
separate BDDs [[1] of N/ and N” and then checks that these
BDDs are identical. One more example, is an equivalence
checker constructing a CNF formula that is satisfiable only
if N/ and N” are not equivalent. (In Subsection we
explained how such a formula is generated.) This equivalence
checker runs a SAT-solver [10]], [I1] to test the satisfiability
of this formula. Unfortunately, the algorithms of this group do
not scale well with the size of N/, N”.

Methods of the other group try to take into account the
similarity of N’, N” [9], [7]. These methods work well
even for quite large circuits N’, N” if they are very similar
structurally. A flaw of such methods is that they do not scale
well as N', N” become more dissimilar. As we mentioned
earlier, the method based on CRR that we introduced in this
paper can be arguably used to design an equivalence checker
that take the best of both worlds. That is it scales better than
the methods of the first group in terms of circuit size and
improves on the scalability of the methods of the second group
in terms of circuit dissimilarity.

Simulation is still the main workhorse of verification. So
a lot of research has been done to improve its efficiency and
effectiveness. For example, symbolic simulation [2] is used
to run many tests at once. Constrained random simulation
generates tests aimed at achieving a particular goal e.g.
better coverage with respect to a metric [8]. However, all
these methods are based on the paradigm of decreasing the
complexity of range computation by reducing the number of
inputs to be considered at once. To the best of our knowledge
none of existing methods exploits the idea of computing
range reduction introduced in [5]. There we explored this idea
in the context of model checking. In the current paper, we

contrast simulation based on computing range reduction with
traditional simulation.

VIII. CONCLUSIONS

We described new methods of equivalence checking and
simulation based on Computing Range Reduction (CRR). Our
interest in these methods is twofold. First, they allow one to
take into account subtle structural properties of the design.
For instance, equivalence checking based on CRR allows can
employ a “cut advancement” strategy. A limited version of
this strategy has been very successful in equivalence checking
of industrial designs. Second, one can argue that CRR can be
efficiently performed using a technique called partial quantifier
elimination that we are working on.

ACKNOWLEDGMENT

This research was supported in part by NSF grants CCF-
1117184 and CCF-1319580.

REFERENCES

[1] R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, August 1986.

[2] R. Bryant. Symbolic simulation—techniques and applications. In DAC-
90, pages 517-521, 1990.

[3] E.Goldberg and P.Manolios. Quantifier elimination by dependency
sequents. In FMCAD-12, pages 34—44, 2012.

[4] E.Goldberg and P.Manolios. Quantifier elimination via clause redun-
dancy. In FMCAD-13, pages 85-92, 2013.

[5] E.Goldberg and P.Manolios. Bug hunting by computing range reduction.
Technical Report arXiv:1408.7039 [cs.LO], 2014.

[6] E. Goldberg and P. Manolios. Partial quantifier elimination. In Proc. of
HVC-14, pages 148-164. Springer-Verlag, 2014.

[7]1 E. Goldberg, M. Prasad, and R. Brayton. Using SAT for combinational
equivalence checking. In DATE, pages 114-121, 2001.

[8] O. Guzey and L.C. Wang. Coverage-directed test generation through
automatic constraint extraction. In HLDVT.

[9] A. Kuehlmann and F. Krohm. Equivalence Checking Using Cuts And

Heaps. DAC, pages 263-268, 1997.

J. Marques-Silva and K. Sakallah. Grasp — a new search algorithm for

satisfiability. In ICCAD-96, pages 220-227, 1996.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

engineering an efficient sat solver. In DAC-01, pages 530-535, New

York, NY, USA, 2001.

(10]

(11]

	I Introduction
	I-A The CRR problem
	I-B Equivalence checking by CRR
	I-C Simulation by CRR
	I-D CRR by partial quantifier elimination
	I-E Difference in CRR for equivalence checking and simulation
	I-F Structure of the paper

	II Problem Of Computing Range Reduction
	III Computing Range Reduction By Partial Quantifier Elimination
	III-A Complete and partial quantifier elimination
	III-B Computing range by QE and range reduction by PQE
	III-C Complexity of computing range and range reduction
	III-D Quality of PQE-solving

	IV Equivalence Checking By Computing Range Reduction
	IV-A Main proposition
	IV-B Equivalence checking by regular SAT-solving and CRR

	V Two Ways To Handle Complexity Of Range Computation
	V-A title
	V-B Simulation-by-exclusion
	V-C Simulation-by-exclusion versus regular simulation

	VI A Few Algorithms Implementing Simulation-By-Exclusion
	VI-A Algorithm description
	VI-B Completeness and soundness of SimByExcl
	VI-C Two modifications of the algorithm

	VII Background
	VIII Conclusions
	References

