
A Fast and Robust Exact Algorithm for Face Embedding 

Evguenii I. Goldbergti$ Tiziano Villa! Robert K. Braytont 

Albert0 L. Sangiovanni-V incentellit 

t Department of EECS 

Berkeley,Berkeley, CA 94720 

t Academy of Sciences of 5 PARADES, 
University of California at Belarus, Minsk Via di S.Pantaleo, 

66,001 86 Roma 

Abstract 
We present a new matrix formulation of the face hypercube 

embedding problem that motivates the design of an efficient search 
strategy to find an encoding that satisfies all faces of minimum 
length. Increasing dimensions of the Boolean space are explored; 
for a given dimension constraints are satisfied one at a time. The 
following features help to reduce the nodes of the solution space that 
must be cxplored: candidate cubes instead of candidate codes are 
generated, cubes yielding symmetric solutions are not generated, 
a smaller sufficient set of solutions (producing basic sections) is 
explored, necessary conditions help discard unsuitable candidate 
cubes, early detection that a partial solution cannot be extended to 
be a global solution prunes infeasible portions of the search tree. 

We have implemented a prototype package MINSK based on the 
previous ideas and run experiments to evaluate it. The experiments 
show that MINSK is faster and solves more problems than any avail- 
able algorithm. Moreover, MINSK is a robust algorithm, while most 
of the proposed alternatives are not. Besides most problems of 
the complete MCNC benchmark suite, other solved examples in- 
clude an important set of decoder PLAs coming from the design of 
microprocessor instruction sets. 

1 Introduction 

Consider a set of symbols S and an encoding function e : S -+ Bk, 
for a given k, that assigns to each symbol s E S a code e(s), 
i.e., a binary vector of length IC. Usually the only requirement 
is that e is injective, i.e., that different symbols are mapped to 
different binary vectors. In various applications it is important to 
satisfy other encoding constraints, in order to obtain a code that is 
correct or desirable to meet a certain objective. Either the encoding 
length IC is part of the problem instance or it is an unknown to be 
found (usually minimized) by the procedure that satisfies the given 
encoding constraints [ 151. 

Given a set of symbols S, a face constraint c f  is a subset 
S' C S specifying that the symbols in S' are to be assigned to 
oneface (or subcube) of a binary k-dimensional cube, without any 
other symbol sharing the same face. Face constraints are gener- 
ated by multiple-valued (input) literals in two-level and multi-level 
multi-valued minimization [15]. As an example, given symbols 
a, b, c,  d ,  e, an input constraint involving symbols a, b, c is denoted 
by (a, b, c) .  An encoding satisfying (a, b, c )  is given by a = 11 1, 
b = 011, c = 001, d = OOO and e = 100 and the face spanned by 
(a, b, c )  is - - 1. Notice that the vertex 101 is not and should not 
be assigned to any other symbol. 

Given a set of face constraints C,, it is always possible to find an 
encoding that satisfies it, as long as one is free to choose a suitable 
code length. It is a well-known fact that for IC = I S I any set Cf 
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is satisfied by choosing as e the I-hot encoding function (which 
assigns to a state s, the binary vector that is always 0 except for 
a position to 1, the latter denoting state s,). It is an important 
combinatorial optimization problem, sometimes called [ 161 face 
hypercube embedding, to find the minimum k and a related e : 
S + Bk such that Cf is satisfied. The decision version of this 
problem is NP-complete [ 1 11. 

An exact solution based on a branch-and-bound strategy to 
search the partially ordered set of faces of hypercubes was de- 
scribed first in [16], but it is not computationally practical. An 
exact solution by reduction to the problem of satisfaction of encod- 
ing dichotomies ' was proposed in [17]. It uses a reduction by J .  
Tracey [I41 of the exact satisfaction of encoding dichotomies to a 
unate covering problem. This approach was made more efficient 
in [l 11, by improving the step of generating maximal compati- 
bles of encoding dichotomies. Recently the problem of satisfac- 
tion of encoding dichotomies has been revisited in [3], adapting 
techniques to find primes and solving unate covering with binary 
decision diagrams that have been so successful in two level logic 
minimization [2]. From the experimental point-of-view none of 
the previous algorithms has performed up to expectations, being 
unable to solve exactly various instances of moderate size and prac- 
tical interest. Moreover, algorithms reducing encoding dichotomies 
to unate covering have a dismal behavior when the problem instance 
consists mostly of uniqueness encoding dichotomies (i.e., encod- 
ing dichotomies with only one state in each block), because they 
generate most of the encodingcolumns, which are 2k for k = I S 1. 

Heuristic solutions to the face embedding problem have been 
reported in many papers [lo, 4, 12, 5, 17, 131. A heuristic solution 
satisfies all face constraints, but does not guarantee that the code- 
length is minimum. A related problem, that is not of interest in this 
paper, is the one of fixing the code-length and maximizing a gain 
function of the constraints that can be satisfied in the given code- 
length. We refer to [15] for background material on satisfaction of 
encoding constraints and their sources in logic synthesis. 

In this paper we present a new matrix formulation of the face 
hypercube embedding problem that inspires the design of an effi- 
cient exact search strategy. This algorithm satisfies the constraints 
one by one by assigning to them intersecting cubes in the encod- 
ing Boolean space. The problem of finding a set of cubes with 
a minimum number of coordinates satisfying a given intersection 
matrix was first formulated in [ 181 without any relation to encoding 
problems. No algorithm to solve the problem was described. The 
relation between the face embedding problem and the construction 
of intersecting cubes was employed in an heuristic algorithm de- 
scribed in [12, 51. The first formulation of a simple criterion of 
when a set of cubes satisfies a set of constraints was given in [6]. 
We use some theoretical notions, e.g., basic sections, introduced 

'An encoding dichotomyoa S is a bipaniticn (SI, si) such that SI U 52 C S. 
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first in [7, 81. The following features speed up the search of our 
algorithm: candidate cubes instead of candidate codes are gener- 
ated, symmetric cubes are not generated, a smaller sufficient set of 
solutions (producing basic sections) is explored, necessary condi- 
tions help discard unsuitable candidate cubes, early detection that 
a partial solution cannot be extended to be a global solution prunes 
infeasible portions of the search tree. The experiments with a pro- 
totype implementation in a package called MINSK show that our 
algorithm is faster, solves more problems than any available alter- 
native and is robust. All problems of the MCNC benchmark suite 
were solved successfully, except four of them unsolved or untried 
by any other tool. Other collections of examples were solved or 
reported for the first time, including an important set of decoder 
PLAs coming from the design of microprocessor instruction sets. 

In Section 2 we present a theoretical formulation based on matrix 
notation. How to avoid the generation of symmetrical solutions is 
explained in Section 3. In Section 4 we describe a new algorithm 
to satisfy face constraints. Experimental results are provided in 
Section 5.  Section 6 concludes the paper with remarks on what has 
been achieved and future work. 

c= 

2 Matrix Formulation of the Face Embedding Prob- 

- 81 s2 3 3  8 4  35 3 6  3 7  3 8  SY 310 311 812 
0 0 1 1 0 1 0 0 1  0 0 0 
0 0 1 0 1 0 0 0 0 0 0 0  
1 0 0 1 0 0 1 0 0 0 0 0  
0 1 1 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 1  1 0 0  0 0 

~ 0 0 0 0 0 0 0 0 0 1  1 0  

lem 

Given a matrix M, denote by R o w ( M )  its rows and C o l ( M )  its 
columns. M,. denotes the i-th row of M and M., denotes the j-th 
column of M. The multiplicity of a column C,3 of M ,  mult( j )  
is the number of times that C., occurs in M. We use the term 
vector to indicate a one dimensional matrix, when there is no need 
to specify whether it is regarded as a row or a column. Vectors are 
called binary or two-valued if their entries are 0 or 1 and 3-valued 
if their entries are 0 or 1 or -. A singleton vector has a unique 1. 

Given two 2-valued vectors 0 1  and w2 of the same length, their 
disjunction V I  U w2 is the vector U whose i-th entry is the disjunction 
of the i-th entries of 0 1  and w2.  Similar definition holds for the 
conjunction of V I  and w 2 .  A vector VI covers a vector w2 if, 
whenever the z-th entry of w2 is 1, the z-th entry of V I  is 1. A vector 
0 1  intersects a vector w2 if for at least an index z, the i-th entry of 
VI and v2 is 1. 

2.1 Constraint and Solution Matrices 
Given a set of symbols S and a set of face constraints Cf on S, the 
constraint matrix is a matrix with as many rows as constraints and 
columns as symbols. Entry (2, j )  is 1 iff the i-th constraint contains 
symbol j, otherwise it is 0. For don't care face constraints, the don't 
care states have a - in the corresponding position of the constraint 
matrix. 

(318437) ,  (328386) ,  ( 8 7 s ~ ) ~  (811312)). Then the related constraint 
matrix i s :  
Example 2.1 

Consider the set of constraints Cf = { ( s ~ s ~ s ~ s ~ ) ,  ( s ~ s s ) ,  

In the sequel we will refer usually to a set of face constraints C, by its 
encoding matrix C and we will not distinguish the two. Notice that 
there is no need to add singleton constraints, because we guarantee 
that different codes are assigned to different states, including the 
states whose columns in Cf are equal. 

Given an encoding e tlhat satisfies a constraint matrix C, e 
defines a face for each constraint of C, i.e., the minimum subcube 
that contains the codes of the states in the constraint. 

For a given constraint matrix C and integer n, consider a face 
matrix S with Row(C) rows (faces or cubes) and n columns 
(sections), whose entries may be 0 or 1 or -. Each row may be 
regarded as a subcube in the n-dimensional Boolean space. If there 
exists an encoding e such thiat, for each i E Row(S), the i-th row 
of S is the face that e defines for the i-constraint of C, then we say 
that S is a solution face matrix of C or that S satisfies C and that 
the i-th row of S is a solution cube of the i-th constraint. 

One verifies that S is a solution face matrix of C, by constructing 
an intersection matrix TS whose rows are the cubes of S and whose 
columns are the minterms of B", where entry (1, j) is 1 iff minterm 
j is in cube a. Then S satisfies C if for any column C,3, the matrix 
TS contains no less than mult(C.,) columns equal to C,. In other 
words, we require that each minterm (code of a state) belongs only 
to those faces to which it is restricted by the constraints; moreover, 
if there are equal columns in the constraint matrix, for each of them 
there must be a different minterm. In this way, there is at least one 
injective function f c + . ~ ~  that associates to each column of C one 
column of Ts. 

Given a matrix S satisfying C, an encoding e s  that satisfies C 
can be extracted with the following rule: select an injective function 
~ c + T ~ ,  whose existence is guaranteed because S satisfies C, then 
encode state i (i.e., column i of C) with the minterm of the column 
fc-+r, (i) in Ts. Such an encoding satisfies C because each code 
lies only in the faces corresponding to the constraints to which the 
state belongs. 

Example 2.2 Given rhe previous C and n = 4, consider 

- 0 1 -  
1 0 - 0  

0 0  

S satisfies C as it is shown by building the matrix 

1001 0110 inin I O I I  1" r a i n  1101 0101 W I I  n i m  mn 0111  mi I I ~  1 1 1 1  1110  
o n I  I o I  n I )  I  o n II n n n 

I  n n I n o I  n n n n I )  n n I  o 
n ~ i n n i n n n o n n n n n i  
n n n n n n 1 1 n n n n n n n n  
o n n n n n n n n ~ ~ n o n n n  

An encoding eS  that satisfies C can be extractedfrom S, with the 
following injecrionfrom columns of C to columns of Ts: e(sl )  = 
1001, e(s2) = 0110, e(33) == 1010, e(34) = 1011, e(s5) = IOOO, 
e(s6) = 0010, e(37) = 1101, e(s8) = 0101, e(sy) = 0011, 
e(sl0) = 0100, e(sll) = W m ,  e(s12) = 01 11. 

Notice rhat columns ofTs corresponding to the following groups 
ofcodes (0100, OOOO), (01 11,OOOl,l loo}, { 1001,1111). 
{ 01 10,1110) are equal, which givesfreedom in selecting an encod- 
ing satisfying C. For example, if we permute codes 01 00 and 0000 
in rhe previous encoding e s  or assign to e(sl2) code 0001 instead 
of 01 11 we still ger an encoding satisfving C. So many digerent 
encodings satisfying C specify the same set offaces. 

2.2 Basic Sections 
Given a constraint matrix C and an encoding e, the set of the 
minimal cubes such that each of them contains the codes of the 
symbols in a corresponding constraint of C defines the rows of a 
face matrix S. If e satisfies C then S is a solution face matrix 
of C. The operation of a finding the minimal cube that contains 
the codes of the states that appear in a given constraint is captured 
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exactly by the notion of basic section that we are going to define 
next. Informally, given a constraint matrix C ,  the columns of a 
face matrix S such that there is an encodinge (that may or may not 
satisfy C) for which the rows of S are the minimal cubes containing 
the codes of the constraints of C are basic sections. 

Consider a vector d (whose elements are 0 or 1) with ICol(C)I 
entries. We can regard d as an encodingcolumn, i.e., an assignment 
of 0 or 1 to each symbol. An encoding function e : S -+ B k  
defines a set of k encoding columns el ,  . . . , ek (i.e., the columns 
of e), where the i-th entry of e, is 1 (is 0) if and only if the j-th 
coordinate of e(s , )  is 1 (is 0). 

Let us compare the set of columns that have a 1 in C,. (i-th row 
of C) with the set of columns that have a 1 in d.  There are the 
following cases: 

1. d covers C,., i.e., all columns that have a 1 in C,. have a 1 in 
d. Say that the comparison returns a I .  

has a 1 in d. Say that the comparison retums a 0. 

3. d intersects but does not cover C,,, i.e., a proper subset of 
the columns that have a 1 in C,, have a 1 in d. Say that the 
comparison retums a -. 

Sogivenad, letusdenotebybs(d) acolumnvectorwith IRow(C)I 
entries of value I ,  0, or -, where the i-th entry is I ,  0 or -, according 
to whether the previous comparison of d and C,. returns a I ,  0 or 

2. d does not intersect C,,,  i.e., no column that has a 1 in C,. 

- 

Definition 2.1 A 3-valued column B is called a basic section for 
C ifthere is a vectord such that B = bs(d). 

Example 2 3  Consider 

1 1 0 0 1 1 0  

1 1 0 0 0  
0 1 1 0 0  C =  

1 0  0 0 1 1 J  

The encoding e(sI) = 000, e(s2) = 100. e(s3) = 110, e(s4) = 
11 1, e(s5)  = 101 satisfies C. The minimal cubes containing the 
codes assigned by e to the symbols in each constraint of C define a 
face matrix S: 

r -  o 0 1  

which satisfies C as seen by building the intersection matrix 

1 r - 0 0 i 1  0 0 0 1 0  0 0 
OOO 001 010 011 loo 101 110 111 

0 0 0 0 0 1 0 1  

Ts= 1 - 0  0 0 0 0 1 0 1 
0 0 0 0 0 0 1  1 ;!--1 I 

The encoding columns of the encoding are el = 01 11 1, e2 = 
001 10, e3 = OOO11, and they yield the basic sections bs(el) = 
- 1  11, bs(e2) = 0 - I-, bs(e3) = 00 - 1. The rows of the marrix 
of the basic sections are the minimal cubes spanned by the codes of 
the states in the constraints of C. 

Theorem 2.1 Given a constraint matrix C and an encoding e with 
encodingcolumnse~, . . . , ek. the basicsectionsbs(el), . . . , bs(ek) 
define the set of minimal cubes such that each of them contains the 
codes of the symboh in a corresponding constraint of C (even $e 
does not satis& C). Moreovel; if e satisjes C the basic sections 
bs(el), ..., bs(ek) dejneafacematrixthatsatisjesC. 

It is worthwhile to clarify that a matrix S that satisfies a constraint 
matrix does not consist necessarily (only) of basic sections. A triv- 
ial case comes from "redundant" solutions, obtained by adding to 
a solution matrix S an arbitrary column (so not necessarily a basic 
section). A more interesting case comes from a solution matrix S 
whose faces are not minimal subcubes yielded by a corresponding 
encoding e. However, the following theorem shows that it is suffi- 
cient to consider only basic sections to find a minimum solution to 
face hypercube embedding. 

Theorem2.2 Given a solution face matrix S' of the constraint 
matrix C there is always a solution face matrix S of C with the 
same number of columns that consists only of basic sections. 

Proofs of the theorems are omitted for lack of space. 

3 Characterization of Symmetric Solutions 

A crucial feature of an efficient algorithm to solve face embedding 
constraints is the ability to avoid the consideration of symmetric 
solutions, i.e., solutions that differ only by permutations and inver- 
sions of variables of the encoding space. We will refer to permu- 
tations and inversions of variables as symmetric transformations or 
symmetries. 

If a matrix S is a solution of C then any matrix S' obtained 
from S by permutations and (bit-wise) inversions of columns is a 
solution of C. So if for example, in matrix S there are no columns 
that are equal or equal after inversion then there exist n !  2" (n! 
for permutations and 2" for inversions) different solutions obtained 
by symmetries of S .  For example for n = 6 (n = 7) n! 2" is 
equal to 46080 (645 120). Generation of such solutions is useless 
because they all have the same cost as S. All solutions produced 
by symmetries of S form an equivalence class of which it suffices 
to consider a representative to solve the problem. 

In Section 4 we will present a procedure searchbooleanspace 
that finds a solution face matrix S in an n-dimensional boolean 
space, if such a solution exists. Let us write s(') for a solution face 
matrix satisfying the matrix di), which stands for the matrix C 
restricted to the first i rows. 

The procedure builds incrementally a matrix S by finding first 
a solution S(I) for the first constraint CI, then augmenting it to a 
solution S(*) for constraints CI ,122 and so on, until all constraints 
are considered. More precisely, when handling the i-th constraint, 
one generates the set Sat(C,) of all cubes satisfying it and selects 
a cube F E Sat(C,). Then one verifies whether S( ' )  formed by 
appending cube F to ,$'-I) satisfies di). If not, another cube 
of Sat(C,) is tried and, if none works, one backtracks further to 
a different choice of a cube F' E Sat(C,-l) such that C('-') is 
satisfied by S('-') augmented by F'. 

Now we show how to avoid the generation of symmetrical so- 
lutions. Let S('- ')  be a face matrix satisfying d'-'). Let A be a 
set of column numbers and suppose that all columns of S('-') from 
A are equal. Let F',F'' be n-component cubes which differ only 
in the columns from A.  Denote by S'(i) and Sf'(') the solutions 
obtained by augmenting S('-') by cubes F' and F" respectively. 
If there is a permutation of columns from A transforming F' to F" 
then the same permutation transforms S'(') into SI'('), i.e., solutions 
S'(,) and SI'(') are symmetrical. It is not hard to show that cube 
F' can be transformed into cube F" by a permutation of columns 
from A if and only if both cubes have the same numbers of 0 and 1 
entries in the columns from A.  

Assume that the columns of C('-') from A are not only equal, 
but also they do not contain 0 and 1 entries. Suppose that there is a 
permutation and inversion of columns from A transforming F' into 
F". Then the same permutation and inversion iransform S'(,) into 
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Sf'( ' ) .  It is not hard to show that cube F' can be transformed to F" 
by a permutation and inversion of columns from A if and only if 
both cubes have the same number of - entries in the columns from 
A. 

Example 3.1 Consider C given in Example 2.1 for n = 4. When 
generating the solutions of d'), i.e., cubes satisjjing CI we need 
to generate only cubes having di'erent number of - entries since 
matrix do) is empty, which can be interpreted as the case of all 
columns of do) equal and not containing 0 and 1 entries. So 
the candidate cubes to satisfy thefirst constraint are: - - -- (4 
dashes), 1 - -- (3 dashes), 11 - - (2 dashes), 1 1 1  - (1  dash), 
1 11 1 (0 dashes). None of them can be obtained by a symmetric 
transformation of another and any other cube of 4 components can 
be obtained from one of the cubes above by a permutation and 
inversion of components . Note that there is freedom in selecting 
cubes representing an equivalence class. So instead of 1 1 - - we 
could select any cube having WO dashes, for example 0 - - 1. 

Suppose that we have already chosen cube 1 1 - - to solve C( I), 
i.e., to satisfy thefirst constraint. So S( ' )  consisting of cube 1 1 - - 
has WO groups of equal columns: { 1,2} and { 3,4}. Note that the 
columns of the secondgroup do not contain 0 and 1 entries. Gener- 
ating cubes satisfying C2 we want to avoid considering symmetrical 
solutions S('). To do so we must skip the generation of cubes that 
have the same number of 0 and 1 entries in the columns of the first 
group and the same number of - in the columns of the second group. 
There are six patterns of two components having different number 
of 0 and 1 entries : -- (0 zeroes, 0 ones), 1 - (0 zeroes. 1 ones), 
0- (1 zeroes, 0 ones), 11 (0 zeroes, 2 ones), 00 (2 zeroes, 0 ones), 
0 1 (1 zeroes, 1 ones). These patterns give 6 possible combinations 
of the values of thefirst and second components of candidate cubes. 
There are 3 patterns of WO components having di'erent number 
of dashes: -- (2 dashes), 1- (1  dash), 11 (0 dashes). These 
patterns give 3 possible combinations of the values of the third and 
fourth components of candidate cubes. 

All together we obtain 6 x 3 = 18 combinations: - - --, 
- - 1 - , - - 1 1 , l - - - , I - 1 - , I - 1 1 , 1 1 - - , I l l - , 1 1 1 1 ,  
0 -  --, 0-  1-, 0 -  11,Ol--, 011-, 0111,00-  -, 001-, 
001 1. Augmenting S ( ' )  by a cubefrom the previous set we obtain 
18 diyirent matrices none of which can be obtained by symmetrical 
transformation from another: 

4 An Exact Algorithm to Find a Minimum Solu- 
tion 

In Fig. 1 we present the flow of an algorithm findsolution that 
finds a minimum solution of a constraint matrix C. It starts with 
the minimum dimension (log of the number of constraints) and it 
increases it until a solution is found. It is guaranteed to terminate 
because every constraint matrix can be satisfied by an encoding of 
length k, if k is the number of symbols; more precisely by an 1-hot 
encoding. Usually a much shorter encoding length suffices. 

4.1 The Search Strategy 
The key feature of the proposed algorithm is that it searches sets of 
cubes, instead of sets of codes. Since a set of cubes may correspond 
to many sets of codes (see Example 2.1), the algorithm explores 
simultaneously many encodings. Once a satisfactory set of cubes is 
found, it is straighforward to extract from it a satisfying encoding. 

For a given dimension. the search of a satisfying encoding is 
carried through by the routine searchspace, that retums a solution 
face matrix S that satisfies C. Once S is known, it is easy, as shown 
in Example 2.2, to find an encoding of the symbols that satisfies C. 

Before calling searchspace the constraints are ordered as men- 
tioned in Section 4.5 and then processed in that order. Each call of 
searchspace processes a new constraint. Seachspace keeps a cur- 
rent partial solution C u r r J o l  that satisfies all the constraints from 
the first to the last constrairit that has been processed. It satisfies a 
constraint by generating a cube that encodes the constraint (a row 
of S). A constraint is satisfied if there is a cube such that, by adding 
it to the current solution, WI: satisfy the constraint matrix restricted 
to the constraints from the lirst to the one currently processed. 

Once the current constraint has been satisfied the current so- 
lution is updated and searchspace calls itself recursively with a 
new constraint. If the current solution cannot be extended to satisfy 
the current constraint, searchspace backtracks and tries a different 
cube for the last constraint that was satisfied by C u r r S o l  and it 
continues to backtrack unt:il it finds a partial solution CurrSol  
which can be extended to satisfy the constraint currently processed. 
The procedurefoundsolud4n tests whether a face matrix is a solu- 
tion of a set of constraints, by constructing the intersection matrix 
TS as shown in Section 2.1. 

The following enhancements reduce the nodes of the search tree 
that searchspace has to explore to find a minimum solution: 

1. Candidate cubes are generated by a procedure generaterandrubes 
that avoids the generation of symmetric solutions, based on 
the theory presented in Section 3. 

2. The procedure generaterandrubes eliminates also the cubes 
that would yield a matrix S with sections which are not basic, 
as allowed by Theorem 2.2 and explained in Section 4.2. 

3. Cubes that do not satisfy the necessary conditions of Sec- 
tion 4.3 to be valid extensions of the current solution are 
discarded by a procedure discardrandrubes. 

4. When trying to extend the current solution, the procedure 
unsatronstr checks lirst whether any of the constraints not 
yet processed is unsatisfiable by an extension of the current 
solution; if so, searchspace backtracks to modify the current 
solution. See Section 4.4 for more discussion. 

4.2 Restriction to Basic Sections 
In Section 2 we highlighted the fact that not all solution face matrices 
S consist entirely of basic sections, but we argued in Theorem 2.2 
that basic sections are sufficient to find a minimum solution. There- 
fore when generating cubes that are candidate solutions of face 
constraints it is profitable to reject those that would produce an S 
with some sections which axe not basic. The rejection is performed 
in the following way. 

Suppose that the algorithm is processing constraint C,. At this 
time a solution S('-') satisfying C(1-I) is known. Suppose that all 
3-valued columns of .$'-I) are basic sections. Adding to S(i- ' )  a 
cube F we extend each column of S('- ')  by one entry. The j-th 
column of S(i- ' )  can be ex.tended in three ways according to the 
j-th component of F being equal to 0.1 or -. E.g., suppose that if 
the j-th component of F is equal to 0 then the j-th column of S(1) 
is not a basic section. Then when constructing cubes satisfying Ci 
we need to avoid the genexation of those that have 0 in the j-th 
component. 

So to guarantee that all produced solutions S(')  consist only of 
basic sections we need to generate cubes which correspond to "cor- 
rect" extensions of columns of S ( i - l ) .  According to Definition 2.1, 
a 3-valued column is a basic section if there is a boolean vector d 
such that bs(d)  is equal to the column. We use a branch-and-bound 
algorithm that, given a column, checks whether the column is a 
basic section. We do not report here the details of the algorithm. 
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f ind-solut ion(C) { 
/* order the constraints *I 
C = sor t xons t ra in t s (C)  
for (cube-szre = lg[l C 11; TRUE ;cubes i ze  + +) { 
cur-constr = 1 /* curxons t r  is the index of the current constraint to satisfy *I 
Sol = searchspace(C, cube-size, 0 ,  currons t r ,  { (1,. . . , c u b e s i z e ) ) }  
if Sol = 0 

else 
continue 

retum Sol 

search-space(C, cubesize ,  C u r r S o l ,  cur sons t r ,  Classes)  { 
/* Curr-Sol satisfies all constraints * I  
if curxons t  >I C I 

/* early detection of unsatisfiable constraints given C u r r S o l  */ 
if unsa txons t r (C ,  C u r r S o l ,  cur-constr) 

/* generate candidate cubes CCubes excluding symmetric solutions 
and enforcing that all solutions consist only of basic sections */ 
CCubes = generatexand-cubes(C, cubeszze,  curxons t r ,  Curr-sol, Classes)  
/* sort candidate cubes in order of increasing size *I 
CCubes = sortrandsubes(CCubes)  
I* eliminate candidate cubes that cannot satisfy constraints */ 
CCubes = discard-candxubes(C, curxons t r ,  Curr-sol, CCubes) 
I* find a cube extending Curr-Sol to satisfy also current constraint */ 
for ( curzube  = 1; i <I CCubes I ;cur-cube + +) { 

retum C u r r S o l  

retum 0 

New-CurrSo l  = Curr-Sol U cur-cube 
I* test if New-Curr-Sol satisfies constraints from 1 to curl-onstr *I 
if not f oundso lu t ion (C ,  curxonstr, N e w C u r r S o l )  

/* solution found: recompute equivalence relation on columns */ 
/* try to extend current solution to satisfy also next constraint */ 
Sol = searchspace(C, cube-size, N e w C u r r S o l ,  curxons t r  + 1, N e w C l a s s e s )  
if Sol # 0 

continue I* not a solution: try another cube */ 

return Sol 

retum 0 /* current solution cannot be extended to satisfy also current constraint */ 
1 

1 

Figure 1: Algorithm to find a minimum solution. 

4.3 Removal of Unsuitable Cubes 
Let .S('-') be a partial solution and Cand(C,) be a set of candidate 
cubes for satisfying C, that do not contain symmetric cubes nor 
cubes leading to sections that are not basic. Before checking if 
$'-I) together with a cube F E Cand(C,) is a solution of di ) ,  
it is worthy to test whether F satisfies some necessary conditions. 
Precisely we discard a cube F E Cand(C,)  it at least one of three 
conditions holds: 

1. The number of Is in C, is greater than 2" where n is the 

2. There is a k such that cube F covers the cube specified by 
the k-th row of s( i - l ) ,  i.e., F satisfies ck, but row C,. does 
not cover (dominate) row ck,. In this case there is a column 
C.,,, of C such that e,, = 0 and C k m  = 1, that does not 
appear in the intersection matrix of the set of cubes obtained 
by adding cube F to S('- ') .  

number of -s in F.  

3. There is a k such that c k .  intersects C,. , but the number of 1s 
in their intersection is greater than 2" where n is the number 
of -s in the cube obtained by the intersection of F and the 
cube specified by the k-th row of S('- ' ) .  

4.4 Early Detection of Unsatisfied Constraints 
Constraints are processedone by one in a predefined order. Suppose 
that on the path leading to the current node of the search tree we 
have already chosen 4 cubes satisfying the first 4 constraints and 
that now we are trying to satisfy the 5-th constraint. Suppose also 
that all constraints from the 5 4  to the 19-th are satisfiable, but 
that the 20-th is unsatisfiable, given the current choice of the first 4 
cubes. So checking the satisfiability of one constraint at a time, we 
would discover that the 2041 constraint is unsatisfiable only after 
having processed all constraints up to the 19-th one; then we would 
start backtracking to another cube satisfying the 19-th constraint 
and we would try again to satisfy the 20-th one, and SO on for all 
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the cubes that satisfy the 19-th constraint. We would repeat this 
time-consuming process for all constraints from to the 19-th to the 
5 t h  one, before discovering that we must modify the solution to 
the first 4 constraints, in order to extend it to a solution that satisfies 
the constraints up to the 20-th one. 

To prevent such unrobust behaviour and lessen the dependency 
on how the constraints are sorted initially, we employ early detection 
of unsatisfied constraints. At each node of the search tree with 
i satisfied constraints, the algorithm checks first that any of the 
remaining unprocessed constraints is satisfiable, given the current 
choice of cubes which satisfy the first i constraints. Although this 
checks requires some extra calculations at each node of the search 
trec, it is fully justified by the drastic reduction of the search tree 
size. 

4.5 Sorting of Constraints 
Constraints are sorted with the goal to prune branches of the search 
tree at the earliest possible stages. We have two sorting criteria. The 
first one selects as next constraint the one that intersects the highest 
number of already selected constraints. Ties are broken selecting 
the constraint with the highest number of Is. The second criterion 
selects according to the highest number of Is and breaks ties with 
the highest number of intersected rows. 

5 Results 

We implemented the algorithm described in Section 4 in a prototype 
package in C called MINSK (Minimum INput Satisfaction Kemel) 
and we applied it to a set of benchmarks available in the literature. 
The benchmarks are partitioned into three sets: FSMs from the 
MCNC collection, reported in Table 2; FSMs collected from various 
other sources, reported in the upper part of Table 4; decode PLAs 
of the VLSI-BAM project, provided by Bruce Holmer [9], reported 
in the lower part of Table 4. In all cases, face constraints were 
generated with ESPRESSO [I]. In the tables we report: the name 
of the example, the number of symbols to encode (“#states”), the 
logarithm of the number of symbols (“min. len.”) together with the 
minimum code length to satisfy all input constraints known so far 
(“best known”), and the minimum code length to satisfy all input 
constraints found by MINSK (“min. sol.”). Besides, the tables show 
the number of calls of the routinefoundsolurion (“#checks”), the 
number of recursive calls of the routine searchspace (“#calls”), 
and the CPU time for a 300 Mhz DEC ALPHA workstation. We 
did not report data on examples where the constraints were few and 
MINSK found a solution in no time. We found an exact solution for 
all the examples, except the FSMs tbk, ~1488, ~1494,  s298 none 
of which has been solved before. For some examples, like donjile, 
SCJ dk16 exact solutions were never found automatically before; 
for others, like ex2 an exact solution was found automatically by 
NOVA [I61 with the option -e ie, but at the cost of an unreasonable 
CPU time (60172.6 s. on 6OMhz DEC RISC workstation) *. 

Up to now four exact algorithms have been tried to solve face 
hypercube embedding. The first is available as an option in NOVA 
-e ie, the second is based on a reduction to satisfaction of encoding 
dichotomies by means of unate covering [17, 111, the third is an 
implicit implementation with ZBDDs of the latter [3], and the last is 
a simplification of the third, where instead of prime dichotomies one 
uses all possible encodingdichotomies [3]. In Table 3 we compare 
the performance of MINSK with the last three previous algorithms, 
based on the data recently reported in [3]. We are aware that the 
experiments presented in [3] were run with a 75 Mhz SuperSparc 
workstation with 96 MB memory and a timeout of 2 hours. The 

’An soluuon of 7 was erroneously reported as exact in [ 161 for dk16. whereas the 
minimum solution has 6 bits. 

purposeof the comparison is to evaluate the behaviors of the various 
algorithms, not to discuss specific running times. We included in 
Table 3 all the interesting exaimples, leaving out “easy’lcases where 
all algorithms behaved similarly. 

The experiments warrant the following practical conclusions: 

MINSK is a robust algorithm, that solves in no time problems 
with few constraints and requires more time when the set of 
constraints is larger and more difficult. 

MINSK is also superior in running times to the other programs 
in the more difficult cases, showing that the key ingredi- 
ents of its search strategy, such as generating cubes and not 
codes, avoiding symmetric solutions and sections which are 
not basic, prune away large suboptimal portions of the search 
space. The exact option of NOVA instead is hopelessly slow 
in the more difficult cases, because it enumerates codes and 
not cubes and does not avoid the generation of symmetric 
encodings. 

The implicit algorithms of [3] rely on a very sophisticated 
unate covering package that represents the table with ZBDDs. 
MINSK instead is a siimple-minded implementation, whose 
strength lies only in the underlying theory. The running times 
Of MINSK can be improved a lot by making more efficient some 
critical routines such as foundsolurion. 

6 Conclusions 

We have presented a new matrix fomulation of the face hypercube 
embedding problem that motivates the design of an efficient search 
strategy to find an encoding that satisfies all faces of minimum 
length. Increasing dimensions of the Boolean space are explored; 
for a given dimension constraints are satisfied one at a time. The 
following features help to reduce the nodes of the solution space 
that must be explored: candidate cubes instead of candidate codes 
are generated, symmetric solutions are not generated, a smaller 
sufficient set of solutions (producing basic sections) is explored, 
necessary conditions help discard unsuitable candidate cubes, early 
detection that a partial solution cannot be extended to be a global 
solution prunes infeasible portions of the search tree. 

We have implemented a prototype package MINSK based on the 
previous ideas and run experiments to evaluate it. The experiments 
show that MINSK is faster and1 solves more problems than any avail- 
able algorithm. Moreover, MINSK is a robust algorithm, while most 
of the proposed altematives are not. All problems of the MCNC 
benchmark suite were solvedl successfully, except four of them un- 
solved or untried by any other tool. Other collections of examples 
were solved or reported for the first time, including an important 
set of decoder PLAs coming from the design of microprocessor 
instruction sets. 

We know that the current implementation of MINSK is simple- 
minded and leaves room for improvements to speed-up more the 
program. For instance, the satisfaction check with the intersection 
matrix TS is expensive and currently not optimized. Other areas of 
improvement to cope with difficult examples lie in the computation 
of a lower bound on the Bloolean space dimension tighter than 
In states; and in a dynamic choice of the next cube and its size, 
based on a tighter analysis of the cube occupancy requirements of 
the existing constraints. 

Moreover, we want to generalize the existing theory and algo- 
rithm in the following directions: 

1. Solving face constraints with don’t cares, that is an important 

2. Solving mixed problems that include constraints in the form 

practical problem. 

of encoding dichotomies. 
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Name 

bbsse 
beecount 
cse 
dk14 
dk15 
dk16 
dk17 
dk27 
dk512 
donfile 
ex 1 
ex2 
ex3 
ex5 
ex6 
ex7 
keyb 
kirkman 
lion9 
mark I 
planet 
Pma 
s l  
si488 
si494 
s208 
s27 
s298 
s386 
s420 
s820 
s832 
sand 
scf 
sse 
styr 
tbk 
tma 
train1 1 

#states 

16 
7 

16 
7 
4 

27 
8 
7 

15 
24 
20 
19 
10 
9 
8 

10 
19 
16 
9 

15 
48 
24 
20 
48 
48 
18 
6 

218 
13 
18 
25 
25 
32 

121 
16 
30 
32 
20 
11 

#cons. 

5 
6 
9 
9 
6 

24 
7 
4 
9 

24 
8 
8 
6 
7 
9 
6 

18 
6 

10 
4 

10 
13 
5 

24 
24 

5 
6 

47 
5 
5 

10 
10 
5 

14 
5 

16 
73 
9 

11 

min. len. / 
best known 

4 1 6  
3 1 4  
4 1 5  
3 1 4  
2 1 4  

3 1 4  
3 1 3  
4 1 5  

515 6 
5 1 7  
5 1 6  
4 1 5  
4 1 5  
3 f 4  
4 1 5  
5 1 7  

4 1 1  6 
4 1 4  
4 1 5  
6 1 6  
5 I na 
5 1 5  
6 l n a  
6 l n a  
5 l n a  
3 I n a  
9 I na 
4 l n a  
5 l n a  
5 I na 
5 l n a  
5 1 6  

7 1 1  8 
4 1 6  
5 1 6  

5 I na 
4 1 5  

s t <  8 

515 18 

min. sol. 

6 
4 
5 
4 
4 
6 
4 
3 
5 
6 
7 
6 
5 
5 
4 
5 
7 
6 
4 
5 
6 
7 
5 

6 
4 

6 
6 
6 
6 
6 
7 
6 
6 

6 
5 

#checks 

127 
75 

219 
137 
66 

622653 
162 
42 

569 
245476 

1522 
666 
195 
99 
87 
71 

3676 
52 

194 
1 2  

2044 
37339 

334 

162 
80 

124 
162 

1832 
1848 

131 
6239 

127 
973 

2086 
8534 

#calls 

9 
9 

11 
16 
12 

8686 
9 
5 

12 
1722 

15 
13 
11 
13 
11 
12 

184 
10 
11 
8 

11 
687 

6 

- 

8 
9 

9 
8 

13 
13 
7 

17 
9 

18 

71 
256 

Figure 2: Experiments with FSMs from MCNC Benchmark Set. 

From some preliminary analysis, both extensions are amenable to 
the current frame, with some apprnpriate modifications to the test 
when a candidate matrix is a solution and the introduction of the 
equivalent of a face for an encoding dichotomy. 

Notice that the reduction of face hypercube embedding to satis- 
faction of encoding dichotomies [l  1, 31 has shown experimentally 
that face hypercube embedding in a sense contains the hardest in- 
stances of the problem to satisfy encoding dichotomies. This fact 
justifies our strategy to solve the former first and extend it later to 
the latter. 
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Figure 3: Comparison with Other Approaches. 

time 
(secs) 

0.45 
0.01 
0.02 
0.28 
I .22 
1.07 

95424.37 
0.0 1 
0.2 1 
0.62 

512.10 
6.00 

20.43 
13.89 
0.32 

Figure 4: Experiments with FSMs from Other Sources (upper part of the table) and Decode PLAs of the VLSI-BAM (lower part). 

of Engineering Cybernetics, Academy of Sciences of Belarus, 
1993. 

[8] 5.1. Goldberg. Face embedding by componentwise construc- 
tion of intersecting cubes. Preprint No. I ,  Institute of Engi- 
neering Cybernetics, Academy of Sciences of Belarus, 1995. 

191 B. Holmer. A tool for processorinstruction set design. In The 
Proceedings of the European Design Automation Conference, 
pages 150-155, September 1994. 

[IO] 6. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. 
Optimal state assignment for finite state machines. IEEE 
Transactions on Computer-Aided Design, pages 269-285, 
July 1985. 

[ I l l  A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni- 
Vincentelli. Satisfaction of input and output encoding con- 
straints. IEEE Transactions on Computer-Aided Design, 
13(5):589-602, May 1994. 

[I21 G. Saucier, C. Duff, and E Poirot. State assignment using a 
new embedding method based on an intersecting cube theory. 
In The Proceedings of the Design Automation Conference, 
pages 321-326, June 1989. 

[I31 C.-J. Shi and J. Brzozowski. An efficient algorithm for con- 
strained encoding and its applications. IEEE Transactions on 
Computer-Aided Design, pages 181 3-1 826, December 1993. 

[I41 J. Tracey. Internal state assignment for asynchronous sequen- 
tial machines. IRE Transactions on Electronic Computers, 
pages 551-560, August 1966. 

[I51 T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli. 
Synthesis of FSMs: logic optimization. Kluwer Academic 
Publishers, 1997. 

[16] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State 
assignment for optimal two-level logic implementations. 
IEEE Transactions on Computer-Aided Design, 9(9):905- 
924, September 1990. 

[I71 S .  Yang and M. Ciesiekki. Optimum and suboptimum algo- 
rithms for input encoding and its relationship to logic min- 
imization. IEEE Transactions on Computer-Aided Design, 
10(1):4-12, January 1991. 

[18] A.D. Zilltrevskii. Logicheskiisinfez kaskudnykhskhem (Logic 
synthesis of cascadedcircuits). Nauka, 1981. (in Russian). 

303 


