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Abstract—We introduce a new framework for Equivalence
Checking (EC) of Boolean circuits based on a general technique
called Logic Relaxation (LoR). LoR is meant for checking if a
propositional formula G has only ”good” satisfying assignments
specified by a design property. The essence of LoR is to relax
G into a formula Grlx and compute a set S that contains all
assignments that satisfy Grlx but do not satisfy G. If all bad
satisfying assignments are in S, formula G can have only good
ones and the design property in question holds. Set S is built by
a procedure called partial quantifier elimination.

The appeal of EC by LoR is twofold. First, it facilitates
generation of powerful inductive proofs. Second, proving inequiv-
alence comes down to checking the existence of some assignments
satisfying Grlx i.e. a simpler version of the original formula. We
give experimental evidence that supports our approach.

1. INTRODUCTION

A. Motivation

Our motivation for this work is threefold. First, Equivalence
Checking (EC) is a crucial part of hardware verification.
Second, more efficient EC enables more powerful logic syn-
thesis transformations and so strongly impacts design quality.
Third, intuitively, there should exist robust and efficient EC
methods meant for combinational circuits computing values
in a “similar manner”. Once discovered, these methods can be
extended to EC of sequential circuits and even software.

B. Proving equivalence by induction

Fig. 1. Equivalence checking of
N ′ and N ′′

Let N ′(X ′, Y ′, z′) and
N ′′(X ′′, Y ′′, z′′) be single-
output circuits to be checked
for equivalence. Here X ′ and
Y ′ specify the sets of input
and internal variables of N ′

respectively and z′ specifies
the output variable of N ′. The
same applies to X ′′, Y ′′, z′′ of
circuit N ′′. A traditional way
to verify the equivalence of N ′

and N ′′ is to form a two-output circuit shown in Fig. 1 and
check if z′ 6= z′′ for some input assignment (x′,x′′) where
x′=x′′. Here x′ and x′′ are assignments to variables of X ′

and X ′′ respectively. (By saying that p is an assignment to
a set of variables V , we will assume that p is a complete
assignment unless otherwise stated. That is every variable of
V is assigned a value in p.)

Formula EQ(X ′, X ′′) relating inputs of N ′ and N ′′ in
Fig. 1 evaluates to 1 for assignments x′ and x′′ to X ′ and
X ′′ iff x′=x′′. Usually, N ′ and N ′′ are just assumed to share
the same set of input variables. In this paper, for the sake of

convenience, we separate input variables of N ′ and N ′′ but
assume that N ′ and N ′′ must be equivalent only for input
assignments satisfying EQ(X ′, X ′′).

Fig. 2. An inductive proof of equiv-
alence

A natural way to prove
equivalence of N ′ and N ′′ is
to build a sequence of cuts as
shown in Fig. 2 and compute
relations between cut points
of N ′ and N ′′ [3], [11], [17].
A straightforward method of
computing relations between
cut points is to build for-
mulas Img i specifying cut
images. The image of i-th

cut is the set of all assignments to Cut i that can be produced
in N ′, N ′′ by input assignments satisfying EQ(X ′, X ′′). Here
Cut0 = X ′∪X ′′, Img0 = EQ(X ′, X ′′) and Cutk = {z′, z′′}.
Circuits N ′ and N ′′ are equivalent iff Imgk(z

′, z′′) →
(z′ ≡ z′′). Formula Img i+1 can be derived from formula Img i
and formula specifying the gates located between i-th and
(i+ 1)-th cuts. For that reason we will refer to the proofs
employing a sequence of cuts as proofs by induction.

EC based on computing cut images is inefficient because
the size of formulas Img i is, in general, prohibitively large. In
EC by logic relaxation, cut image formulas are replaced with
formulas that, for structurally similar circuits, are dramatically
simpler than the former.

C. EC by logic relaxation

Fig. 3. A cut in N ′ and N ′′

Let Imgcut be a cut image
formula built for the cut shown
in Fig. 3. A cut assignment can
be represented as (q′,q′′) where
q′ and q′′ are assignments to cut
variables of N ′ and N ′′ respec-
tively. We will say that formula
Imgcut excludes cut assignment
(q′,q′′) if the latter falsifies the

former. The set of all cut assignments excluded by Imgcut

can be represented as a union of sets S cut
N ′ , S cut

N ′′ and Srlx .
Assignment (q′, q′′) is in
• set S cut

N ′ if no input x′ of N ′ can produce q′

• set S cut
N ′′ if no input x′′ of N ′′ can produce q′′

• set Srlx if there is an input (x′,x′′), x′ 6= x′′ for which
(q′,q′′) is produced but the latter cannot be produced if
inputs are constrained by EQ(X ′, X ′′).

Informally, set Srlx specifies the cut assignments that can be
produced only when inputs are relaxed i.e. are not constrained



by formula EQ(X ′, X ′′).
The essence of EC by Logic Relaxation (LoR) is to replace

computation of cut image formulas with that of so-called
boundary formulas. A boundary formula Hcut is implied by
Imgcut and excludes only a small subset of cut assignments
excluded by Imgcut . Namely, only exclusion of assignments of
Srlx is mandatory for Hcut . If (q′, q′′) ∈ S cut

N ′ ∪S cut
N ′′ , the value

of Hcut can be arbitrary. This means that Hcut depends on the
relation between N ′ and N ′′ (specified by Srlx ) rather than
their individual functionality (specified by S cut

N ′ and S cut
N ′′ .) We

call formula Hcut boundary because it describes the difference
i.e. a “boundary” between original and relaxed EC problems.

Computing a boundary formula Hcut for the cut {z′, z′′}
either immediately solves EC of N ′ and N ′′ or requires
a few simple SAT-checks to finish it. Suppose Hcut(z

′, z′′)
evaluates to 0 for assignment z1 = (z′ = 0, z′′ = 1) and
assignment z2 = (z′ = 1, z′′ = 0). Then z1 and z2 cannot
be produced when inputs are constrained by EQ(X ′, X ′′)
because Imgcut → Hcut entails H cut → Imgcut . So N ′ and
N ′′ are equivalent. If Hcut(z

′, z′′) evaluates to 1, say, for z1
above, one needs to check if (z′ = 0, z′′ = 1) can be produced
when inputs are relaxed. This comes down to checking that
N ′ is not constant 1 and N ′′ is not constant 0. If this is the
case, i.e. N ′ and N ′′ can produce outputs 0 and 1 respectively,
then assignment z1 can also be produced when inputs are
constrained by EQ(X ′, X ′′). (Otherwise, Hcut would evaluate
to 0 under z1.) So N ′ and N ′′ are inequivalent.

D. The appeal of EC by LoR

The appeal of EC by LoR is threefold. First, boundary for-
mulas are much smaller and easier to compute than cut image
formulas. Generation of Imgcut requires solving the quantifier
elimination problem whereas boundary formula Hcut can be
found by partial quantifier elimination (PQE). In PQE, only
a part of the formula is taken out of the scope of quantifiers.
So PQE can be much more efficient than complete quantifier
elimination.

Second, similarly to cut image formulas, boundary formulas
can be computed by induction for a sequence of cuts starting
with cut X ′∪X ′′ and ending with cut {z′, z′′}. So EC by LoR
facilitates generation of inductive proofs. These proofs do not
require the existence of particular relations like equivalence
between internal points of N ′ and N ′′. So they are much more
robust than inductive proofs generated in existing approaches
(see, for example, [11], [12], [17]).

Third, the machinery of boundary formulas facilitates prov-
ing inequivalence. Let FN ′(X

′, Y ′, z′) and FN ′′(X
′′, Y ′′, z′′)

be formulas specifying N ′ and N ′′ respectively. We will say
that a Boolean formula FN specifies circuit N if every assign-
ment satisfying FN is a consistent assignment to variables
of N and vice versa. (An assignment to variables of N is
called consistent if, for every gate g of N , the value assigned
to the output of g is implied by the values assigned to its
input variables.) We will assume that all formulas mentioned
in this paper are Boolean formulas in Conjunctive Normal
Form (CNF) unless otherwise stated.

Fig. 4. Using a boundary formula for
bug hunting

Circuits N ′ and N ′′ are
inequivalent iff formula
EQ(X ′, X ′′)∧FN ′ ∧FN ′′ ∧
(z′ 6≡ z′′) is satisfiable.
Denote this formula as
α. As we show in this
paper, α is equisatisfiable
with formula β equal to
Hcut∧FN ′∧FN ′′∧(z′ 6≡ z′′).
Here Hcut is a boundary
formula computed with

respect to a cut (see Fig. 4.) In general, formula β is easier to
satisfy than α for the following reason. Let p be an assignment
satisfying formula β . Let x′ and x′′ be the assignments to
variables of X ′ and X ′′ respectively specified by p. Since
variables of X ′ and X ′′ are not constrained by EQ(X ′, X ′′)
in formula β, in general, x′ 6= x′′ and so p does not satisfy
α. Hence, neither x′ nor x′′ are a counterexample. They are
just inputs producing cut assignments q′ and q′′ (see Fig. 4)
such that a) Hcut(q

′, q′′) = 1 and b) N ′ and N ′′ produce
different outputs under cut assignment (q′,q′′). To turn p into
an assignment satisfying α one has to do extra work. Namely,
one has to find assignments x′ and x′′ to X ′ and X ′′ that
are equal to each other and under which N ′ and N ′′ produce
cut assignments q′ and q′′ above. Then x′ and x′′ specify a
counterexample. So the equisatisfiability of α and β allows
one to prove N ′ and N ′′ inequivalent (by showing that β is
satisfiable) without providing a counterexample.

E. Contributions and structure of the paper
Our contributions are as follows. First, we present a generic

method of EC based on LoR. This method is formulated in
terms of a new technique called PQE that is a “light” version
of quantifier elimination. Showing the potential of PQE for
building new verification algorithms is our second contri-
bution. Third, we provide a theoretical proof that boundary
formulas computed in EC by LoR are small for a broad class
of structurally similar circuits. Fourth, we give experimental
evidence in support of EC by LoR.

The structure of this paper is as follows. In Section 2, we
show the correctness of EC by LoR and relate the latter to
PQE. Boundary formulas are discussed in Section 3. Section 4
presents an algorithm of EC by LoR. Section 5 describes how
one can apply EC by LoR if the power of a PQE solver is not
sufficient to compute boundary formulas precisely. Section 6
provides experimental evidence in favor of our approach. In
Section 7, some background is given. We make conclusions
in Section 8.

2. EQUIVALENCE CHECKING BY LOR AND PQE
In this section, we prove the correctness of Equivalence

Checking (EC) by Logic Relaxation (LoR) and relate the latter
to Partial Quantifier Elimination (PQE).

A. Complete and partial quantifier elimination
In this paper, by a quantified formula we mean one

with existential quantifiers. Given a quantified formula



∃W [A(V,W )], the problem of quantifier elimination is to
find a quantifier-free formula A∗(V ) such that A∗ ≡ ∃W [A].
Given a quantified formula ∃W [A(V,W ) ∧B(V,W )], the
problem of Partial Quantifier Elimination (PQE) is to find a
quantifier-free formula A∗(V ) such that ∃W [A ∧B] ≡ A∗ ∧
∃W [B]. Note that formula B remains quantified (hence the
name partial quantifier elimination). We will say that formula
A∗ is obtained by taking A out of the scope of quantifiers
in ∃W [A ∧B]. Importantly, there is a strong relation between
PQE and the notion of redundancy of a subformula in a
quantified formula. In particular, solving the PQE problem
above comes down to finding A∗(V ) implied by A ∧ B that
makes A redundant in A∗ ∧∃W [A ∧B]. Indeed, in this case,
∃W [A ∧B] ≡ A∗ ∧ ∃W [A ∧B] ≡ A∗ ∧ ∃W [B].

Importantly, redundancy in a quantified formula is much
more powerful than that in a quantifier-free formula [9]. For
instance, if formula F (V ) is satisfiable, every clause of F
is redundant in formula ∃V [F ]. (A clause is a disjunction of
literals. We will use the notions of a CNF formula C1∧ ..∧Cp
and the set of clauses {C1, . . . , Cp} interchangeably.) On the
other hand, a clause C is redundant in a quantifier-free formula
F only if C is implied by F \ {C}.

Let G(V ) be a formula implied by B. Then ∃W [A ∧B] ≡
A∗∧G∧∃W [B] entails ∃W [A ∧B] ≡ A∗∧∃W [B]. In other
words, clauses implied by the formula that remains quantified
are noise and can be removed from a solution to the PQE
problem. So when building A∗ by resolution it is sufficient to
use only the resolvents that are descendants of clauses of A.
For that reason, in the case formula A is much smaller than
B, PQE can be dramatically faster than complete quantifier
elimination. Describing how PQE is solved is beyond the
scope of this paper. A brief discussion of a PQE algorithm and
recall of the necessary background is given in the technical
report [7] presenting a complete version of this paper. The
relevant results are described in [8], [9], [10] in more detail.

B. Proving equivalence/inequivalence by LoR

Proposition 1 below shows how one proves1 equiva-
lence/inequivalence of circuits by LoR. Let formula G de-
note EQ ∧ FN ′ ∧ FN ′′ and formula Grlx denote FN ′ ∧
FN ′′ . Recall from Subsection 1-D that FN ′(X ′, Y ′, z′) and
FN ′′(X

′′, Y ′′, z′′) specify circuits N ′ and N ′′ respectively.
Formula EQ(x′,x′′) evaluates to 1 iff x′=x′′ where x′ and
x′′ are assignments to variables of X ′ and X ′′ respectively.

Proposition 1: Let H(z′, z′′) be a formula such that
∃W [EQ ∧Grlx ] ≡ H ∧ ∃W [Grlx ] where W = X ′ ∪ X ′′ ∪
Y ′ ∪ Y ′′. Then formula G ∧ (z′ 6≡ z′′) is equisatisfiable with
H ∧Grlx ∧ (z′ 6≡ z′′).

Note that finding formula H(z′, z′′) of Proposition 1 re-
duces to taking formula EQ out of the scope of quantifiers i.e.
to solving the PQE problem. Proposition 1 implies that proving
inequivalence of N ′ and N ′′ comes down to showing that for-
mula Grlx is satisfiable under assignment (z′ = b′, z′′ = b′′)
(where b′, b′′ ∈ {0, 1}) such that b′ 6= b′′ and H(b′, b′′) = 1.

1The proofs of propositions are given in [7].

Recall that the input variables of N ′ and N ′′ are independent
of each other in formula Grlx . Hence the only situation where
Grlx is unsatisfiable under (z′ = b′, z′′ = b′′) is when N ′ is
constant b′ and/or N ′′ is constant b′′. So the corollary below
holds.

Corollary 1: If neither N ′ nor N ′′ are constants, they are
equivalent iff H(1, 0) = H(0, 1) = 0.

Reducing EC to an instance of PQE also provides valuable
information when proving equivalence of N ′ and N ′′. Formula
Grlx remains quantified in ∃W [EQ ∧Grlx ] ≡ H∧∃W [Grlx ].
This means that to obtain formula H , it suffices to generate
only resolvents that are descendants of clauses of EQ . The
clauses obtained by resolving solely clauses of Grlx are just
“noise” (see Subsection 2-A). This observation is the basis
of our algorithm for generating proofs of equivalence by
induction.

3. BOUNDARY FORMULAS

In this section, we discuss boundary formulas, a key notion
of EC by LoR. Subsection 3-A explains the semantics of
boundary formulas. Subsection 3-B discusses the size of
boundary formulas. In Subsection 3-C, we describe how
boundary formulas are built.

A. Definition and some properties of boundary formulas

Let M be the subcircuit consisting of the gates of N ′, N ′′

located below a cut as shown in Fig. 5. As usual, G denotes
EQ(X ′, X ′′) ∧ FN ′ ∧ FN ′′ and Grlx does FN ′ ∧ FN ′′ .

Definition 1: Let formula Hcut depend only on variables
of a cut. Let q be an assignment to the variables of this cut.
Formula Hcut is called boundary if2

a) G→ Hcut holds and
b) for every q that can be extended to satisfy Grlx but cannot

be extended to satisfy G, the value of Hcut (q) is 0.

Fig. 5. Building boundary formula
Hcut

A cut assignment q can be
represented as (q′,q′′) where
q′ and q′′ are assignments to
cut variables of N ′ and N ′′

respectively. Note that Defi-
nition 1 does not specify the
value of Hcut (q) if q cannot
be extended to satisfy Grlx

(and hence G). This means
that Hcut does not have to
exclude (q′,q′′) if, say, no
input x′ of N ′ produces q′.

This means that Hcut does not depend on the individual
complexity of N ′ and N ′′.

Formula EQ(X ′, X ′′) and formula H(z′, z′′) of Proposi-
tion 1 are actually boundary formulas with respect to cuts
X ′∪X ′′ and {z′, z′′} respectively. We will refer to H(z′, z′′)

2Since formula (z′ 6≡ z′′) constraining the outputs of N ′ and N ′′ is not
a part of formulas Grlx and G, a boundary formula of Definition 1 is not
“property driven”. This can be fixed by making a boundary formula specify
the difference between Grlx ∧ (z′ 6≡ z′′) and G ∧ (z′ 6≡ z′′) rather than
between Grlx and G. In this paper, we explore only boundary formulas of
Definition 1 leaving property-driven ones for future research.



as an output boundary formula. Proposition 2 below reduces
building Hcut to PQE.

Proposition 2: Let Hcut be a formula depending only on
variables of a cut. Let Hcut satisfy ∃W [EQ ∧ FM ] ≡ Hcut ∧
∃W [FM ]. Here W is the set of variables of FM minus those
of the cut. Then Hcut is a boundary formula.

Proposition 3 below extends Proposition 1 to an arbitrary
boundary formula.

Proposition 3: Let Hcut be a boundary formula with respect
to a cut. Then G ∧ (z′ 6≡ z′′) is equisatisfiable with Hcut ∧
Grlx ∧ (z′ 6≡ z′′).

B. Size of boundary formulas

The proposition below estimates the size of a boundary
formula computed for a cut if every cut variable of N ′ can be
expressed as a function of cut variables of N ′′. If the number
of arguments in the functions relating cut points of N ′ and N ′′

is small, these circuits can be viewed as structurally similar.
Proposition 4: Let circuits M ′ and M ′′ consist of the gates

of N ′ and N ′′ located below a cut as shown in Fig. 5. Let
Cut ′,Cut ′′ specify the outputs of M ′ and M ′′ respectively.
Assume that for every variable v′i of Cut ′ there is a set S(v′i) =
{v′′i1 , . . . , v

′′
ip
} of variables of Cut ′′ that have the following

property. Knowing the values of variables of S(v′i) produced
in N ′′ under input x one can determine the value of v′i of N ′

under the same input x. We assume here that S(v′i) has this
property for every possible input x. Let Max (S(v′i)) be the
size of the largest S(v′i) over variables of Cut ′. Then there
is a boundary formula Hcut where every clause has at most
Max (S(v′i)) + 1 literals.

Proposition 4 gives an example of boundary formulas whose
complexity is exponential in the value of Max (S(v′i)) + 1
rather than the cut size. This means that these boundary
formulas depend only on similarity of N ′ and N ′′ and do
not depend on how complex N ′ and N ′′ are.

Corollary 2: Let circuits M ′ and M ′′ of Fig. 5 be func-
tionally equivalent. Then for every variable v′ ∈ Cut ′ there
is a set S(v′) = {v′′} where v′′ is the variable of Cut ′′

that is functionally equivalent to v′. In this case, formula
EQ(Cut ′,Cut ′′) stating equivalence of corresponding output
variables of M ′ and M ′′ is a boundary formula for the cut
in question. Note that v′ ≡ v′′ can be represented as a CNF
formula (v′∨v′′)∧(v′∨v′′). So EQ(Cut ′,Cut ′′) can be repre-
sented by 2∗p two-literal clauses where p = |Cut′| = |Cut′′|.

C. Computing Boundary Formulas

The key part of EC by LoR is to compute an output
boundary formula H(z′, z′′). In this subsection, we show how
to build formula H inductively by constructing a sequence of
boundary formulas H0, . . . ,Hk computed with respect to cuts
Cut0, . . . ,Cutk of N ′ and N ′′ (see Fig. 2). We assume that
Cut0 = X ′ ∪ X ′′ and Cutk = {z′, z′′} (i.e. H = Hk) and
Cut i ∩ Cutj = ∅ if i 6= j.

Boundary formula H0 is set to EQ(X ′, X ′′) whereas for-
mula Hi, i > 0 is computed from Hi−1 as follows. Let Mi

be the circuit consisting of the gates of N ′ and N ′′ located

EC LoR(N ′, N ′′){
1 (N ′, N ′′) := Bufferize(N ′, N ′′);
2 Cut0 = X ′ ∪X ′′;
3 Cut1, ..,Cutk−1 :=BldIntermCuts(N ′, N ′′);
4 Cutk := {z′, z′′};
5 H0 := EQ(X ′, X ′′);
−−−−−−−−−−−−−−−−
6 for(i := 1; i ≤ k; i++) {
7 FMi := SubForm(Grlx ,Cut i);
8 Wi := Vars(FMi) \Vars(Cut i);
9 Hi :=PQE(∃Wi[Hi−1∧FMi ]); }
− −−−−−−−−−−−−−−−
10 if (Hk(0, 1) = 1)
11 if (Sat(Grlx ∧ z′ ∧ z′′)) return(No);
12 if (Hk(1, 0) = 1)
13 if (Sat(Grlx ∧ z′ ∧ z′′)) return(No);
14 return(Yes); }

Fig. 6. EC by LoR

below i-th cut. Let FMi
be the subformula of Grlx specifying

Mi. Let Wi consist of all the variables of FMi
minus those of

Cut i. Formula Hi is built to satisfy ∃Wi[Hi−1 ∧ FMi ] ≡ Hi∧
∃Wi[FMi ] and so make the previous boundary formula Hi−1
redundant in Hi∧∃Wi[Hi−1 ∧ FMi

]. The fact that H1, . . . ,Hk

are indeed boundary formulas follows from Proposition 5.
Proposition 5: Let Wi where i > 0 be the set of

variables of FMi minus those of Cut i. Let Hi−1, i > 1
satisfy ∃Wi−1[H0 ∧ FMi−1

] ≡ Hi−1 ∧ ∃Wi−1[FMi−1
]. (So

Hi−1 is a boundary formula due to Proposition 2.) Let
∃Wi[Hi−1 ∧ FMi

] ≡ Hi ∧ ∃Wi[FMi
] hold. Then ∃Wi[H0 ∧

FMi ] ≡Hi∧∃Wi[FMi ] holds and so, Hi is a boundary formula
too.

4. ALGORITHM OF EC BY LOR

In this section, we introduce an algorithm called
EC LoR that checks for equivalence two single-output circuits
N ′ and N ′′. The pseudo-code of EC LoR is given in Fig. 6.
EC LoR builds a sequence of boundary formulas H0, . . . ,Hk

as described in Subsection 3-C. Here H0 equals EQ(X ′, X ′′)
and Hk(z

′, z′′) is an output boundary formula. Then, accord-
ing to Proposition 1, EC LoR checks the satisfiability of
formula Hk ∧Grlx ∧ (z′ 6≡ z′′) where Grlx = FN ′ ∧ FN ′′ .

EC LoR consists of three parts separated by the dotted
lines in Figure 6. EC LoR starts the first part (lines 1-5) by
calling procedure Bufferize . This procedure eliminates non-
local connections of N ′ and N ′′ i.e. those that span more than
two consecutive topological levels. (The topological level of
a gate g of a circuit K is the longest path from an input
of K to g measured in the number of gates on this path.)
The presence of non-local connections makes it hard to find
cuts that do not overlap. To avoid this problem, procedure
Bufferize replaces every non-local connection spanning d
topological levels (d > 2) with a chain of d − 2 buffers.
(A more detailed discussion of this topic is given in [7].)
Then EC LoR sets the initial cut to X ′ ∪X ′′, computes the
intermediate cuts (line 3), sets the final cut to {z′, z′′} and
formula H0 to EQ(X ′, X ′′).



Fig. 7. An example of EC by LoR

Boundary formulas Hi,
1 ≤ i ≤ k are computed
in the second part (lines
6-9) that consists of a for
loop. In the third part (lines
10-14), EC LoR uses the
output boundary formula
Hk(z

′, z′′) computed in
the second part to decide

whether N ′, N ′′ are equivalent. If Hk(b
′, b′′) = 1 where

b′ 6= b′′ and Grlx is satisfiable under z′ = b′, z′′ = b′′, then
N ′, N ′′ are inequivalent. Otherwise, they are equivalent (line
14).

Boundary formulas are computed in the for loop as follows.
Formula Hi, i > 0 is obtained by taking Hi−1 out of
the scope of quantifiers in ∃Wi[Hi−1 ∧ FMi ] (line 9) i.e.
∃Wi[Hi−1 ∧ FMi

] ≡ Hi∧∃Wi[FMi
]. Here FMi

is the formula
specifying the gates of N ′ and N ′′ below i-th cut and Wi

consists of all the variables of FMi
but cut variables.

Example 1: Let us explain the operation of EC LoR by
the example of Fig. 7 showing two different implementations
of function XOR(x1, x2). EC LoR starts by executing the
first part specified by lines 1-5 of Fig. 6. Since circuits
N ′ and N ′′ do not have no-local connections, no buffers
are inserted. EC LoR sets the initial cut Cut0 to {X ′, X ′′}
where X ′ = {x′1, x′2}, X ′′ = {x′′1 , x′′2}, generates an in-
termediate cut Cut1 = {y′1, y′2, y′′1 , y′′2} and the final cut
Cut2 = {z′, z′′}. EC LoR concludes the first part by setting
H0 to EQ(X ′, X ′′) i.e. to (x′1 ≡ x′′1) ∧ (x′2 ≡ x′′2).

In the second part (lines 6-9 of Fig. 6), EC LoR computes
boundary formulas for Cut1 and Cut2. A boundary formula
for Cut1 is obtained by taking H0 out of the scope of
quantifiers in ∃W1[H0 ∧ FM1

] i.e. by finding formula H1

such that ∃W1[H0 ∧ FM1
] ≡ H1 ∧ ∃W1[FM1

]. Here FM1

specifies the gates located below cut Cut1 and so FM1 =
Fg′1 ∧Fg′2 ∧Fg′′1 ∧Fg′′2 where Fg specifies gate g. For instance,

Fg′1 = (x′1 ∨ x′2 ∨ y′′1 ) ∧ (x′1 ∨ y′1) ∧ (x′2 ∨ y′1). Set W1

consists of all variables of FM1 minus the variables of Cut1
i.e. W1 = X ′ ∪ X ′′. Formula H1 obtained by a PQE-solver
implementing the algorithm of [10] consists of five clauses:
C1 = y′1 ∨ y′2 ∨ y′′1 ∨ y′′2, C2 = y′1 ∨ y′′1, C3 = y′1 ∨ y′′2 ,
C4 = y′2 ∨ y′′2 , C5 = y′2 ∨ y′′1.

A boundary formula for cut Cut2 is obtained by taking H1

out of the scope of quantifiers in ∃W2[H1 ∧ FM2 ]. Here FM2

specifies the gates located below cut Cut2, so FM2 = FM1 ∧
Fg′3∧Fg′′3 . Set W2 consists of the variables of FM2

minus those
of Cut2 , so W2 =W1∪{y′1, y′2, y′′1 , y′′2}. Formula H2 obtained
by the PQE-solver mentioned above is equal to (z′ ∨ z′′) ∧
(z′ ∨ z′′). This means that H(0, 1) = H(1, 0) = 0. So after
executing its last part (lines 10-14 of Fig. 6), EC LoR reports
that N ′ and N ′′ are equivalent.

Let us take a closer look at formula H1. On one hand, as a
boundary formula, H1 excludes every assignment to Cut1 that
can be produced by applying an input (x′,x′′) where x′ 6= x′′

but cannot be produced if input assignments are constrained

by EQ(X ′, X ′′). For instance, input (x′1 = 0, x′2 = 0, x′′1 =
0, x′′2 = 1) produces cut assignment y′1 = 0, y′2 = 0, y′′1 =
0, y′′2 = 1) that cannot be produced by an input assignment
(x′,x′′) where x′=x′′. This cut assignment falsifies clause
C1 = y′1∨y′2∨y′′1∨y′′2 of H1. On the other hand, H1 is simpler
that formula Img1 that excludes every assignment to Cut1
that cannot be produced by an input (x′,x′′) where x′=x′′.
Formula Img1 is logically equivalent to ∃W1[H0 ∧ FM1

] i.e. it
is obtained from the latter by complete quantifier elimination.
By applying our program of [9], we obtain formula Img1 equal
to H1 ∧ C6 ∧ C7 where C6 = y′1 ∨ y′2, C7 = y′′1 ∧ y′′2 . Note
that C6, C7 do not relate variables of N ′ and N ′′. Instead,
they exclude some cut assignments that cannot be produced
in N ′ or N ′′. For instance, clause C6 excludes cut assignment
(y′1 = 1, y′2 = 1) that cannot be produced in N ′.

5. COMPUTING BOUNDARY FORMULAS BY CURRENT
PQE SOLVERS

To obtain boundary formula Hi, one needs to take Hi−1 out
of the scope of quantifiers in formula ∃Wi[Hi−1 ∧ FMi ]. The
size of the latter grows with i due to formula FMi

. So a PQE
solver that computes Hi must have good scalability. On the
other hand, the algorithm of [10] does not scale well yet. The
main problem here is that learned information is not re-used
in contrast to SAT-solvers effectively re-using learned clauses.
Fixing this problem requires some time because bookkeeping
of a PQE algorithm is more complex than that of a SAT-solver.
(In more detail, this topic is discussed in [7].) In this section,
we describe two methods of adapting EC by LoR to a PQE-
solver that is not efficient enough to compute every boundary
formula precisely. Both methods are illustrated experimentally
in Section 6.

One way to reduce the complexity of computing Hi is
to use only a subset of FMi

. For instance, one can discard
the clauses of FMi

specifying the gates located between cuts
Cut0 and Cutp, 0 < p < i. In this case, boundary formula
Hi is computed approximately. A downside of this is that
condition b) of Definition 1 does not hold anymore and so
EC by LoR becomes incomplete. Namely, if Hk(b

′, b′′) = 1
where b′ 6= b′′ and Hk is an output boundary formula, the
fact that Grlx is satisfiable under z′ = b′, z′′ = b′′ does not
mean that N ′ and N ′′ are inequivalent. Nevertheless, even EC
by LoR with approximate computation of boundary formulas
can be a powerful tool for proving N ′ and N ′′ equivalent for
the following reason. If Hk(1, 0) = Hk(0, 1) = 0, circuits N ′

and N ′′ are proved equivalent even if intermediate formulas
Hi are built approximately. Importantly, computing boundary
formulas inductively still provides a powerful way to structure
a proof of equivalence. Formula Hi (i.e. a “sufficient” set of
clauses relating variables of i-th cut) is still obtained by taking
Hi−1 out of the scope of quantifiers in ∃Wi[Hi−1 ∧ FMi

].
Only now formula FMi

is simplified by discarding some
clauses.

Another way to adapt EC by LoR to a PQE solver that
is not efficient enough to compute every boundary formula
precisely is as follows. Suppose that the power of a PQE solver



TABLE I
Computing cut image and boundary formulas. Time limit = 1 hour

#bits #quan. #free cut image for- boundary for-
vars vars mula (QE) mula (PQE)

result result
size (s.) size (s.)

8 32 84 3,142 4.0 242 0.1
9 36 104 4,937 13 273 0.2
10 40 126 7,243 51 407 0.3
11 44 150 9,272 147 532 0.5
12 48 176 14,731 497 576 0.6
13 52 206 19,261 1,299 674 0.9
14 56 234 ∗ ∗ 971 1.5
15 60 266 ∗ ∗ 1,218 2.0
16 64 300 ∗ ∗ 1,411 3.0

is sufficient to build one intermediate boundary formula Hi

precisely. From Proposition 3 it follows that formula α equal
to G ∧ (z′ 6≡ z′′) is equisatisfiable with formula β equal to
Hcut ∧ Grlx ∧ (z′ 6≡ z′′). So, to show that N ′ and N ′′ are
inequivalent it is sufficient to find an assignment satisfying β.
As we argued in Subsection 1-D, finding such an assignment
for β is easier than for α.

6. EXPERIMENTS

In the experiments, we employed the PQE algorithm pub-
lished in [10] in 2014. We will refer to this algorithm as PQE-
14. As we mentioned in Section 5, PQE-14 does not scale
well yet. So building a full-fledged equivalence checker based
on EC LoR would mean simultaneously designing a new EC
algorithm and a new PQE solver. The latter is beyond the
scope of our paper. On the other hand, PQE-14 is efficient
enough to make a few important points experimentally. In
the experiments described in this section, we used a new
implementation of PQE-14 [6].

The experiment of Subsection 6-A compares computing a
cut image formula and a boundary formula. Recall that a
cut image formula is satisfied by a cut assignment iff the
latter can be produced in N ′ and N ′′ by some input satis-
fying EQ(X ′, X ′′). This experiment also contrasts complete
quantifier elimination (employed to compute a cut image
formula) with PQE. In Subsection 6-B, we apply EC LoR to
a non-trivial instance of equivalence checking that is hard for
ABC, a high-quality synthesis and verification tool [20]. In
Subsection 6-C, we show that computing boundary formulas
is beneficial for proving inequivalence.

In the experiments, circuits N ′ and N ′′ to be checked for
equivalence were derived from a circuit computing a median
output bit of an s-bit multiplier. We will refer to this circuit as
Mlps. Our motivation here is as follows. In many cases, the
equivalence of circuits with simple topology and low fanout
values can be efficiently checked by a general-purpose SAT-
solver. This is not true for circuits involving multipliers. In all
experiments, circuits N ′ and N ′′ were bufferized to get rid of
long connections (see Section 4).

A. Image computation versus building boundary formulas

In the experiment of this subsection, we compared compu-
tation of a boundary formula Hcut and a cut image formula

Imgcut . We used two identical copies of circuit Mlps as
circuits N ′ and N ′′. As a cut of N ′, N ′′ we picked the set
of variables of the first topological level (every variable of
this level specifies the output of a gate fed by input variables
of N ′ or N ′′). Formula Imgcut is logically equivalent to
∃W [EQ(X ′, X ′′) ∧ FM ] where W = X ′ ∪ X ′′ and formula
FM specifies the gates of the first topological level of N ′

and N ′′. So, computing Imgcut comes down to solving
the quantifier elimination problem. Computing a boundary
formula reduces to finding Hcut such that ∃W [EQ ∧ FM ] ≡
Hcut ∧ ∃W [FM ] i.e. solving the PQE problem.

The results of the experiment are given in Table I. Ab-
breviation QE stands for Quantifier Elimination. The value
of s in Mlps is shown in the first column. The next two
columns give the number of quantified and free variables in
∃W [EQ ∧ FM ]. To compute formula Imgcut we used our
quantifier elimination program presented in [9]. Formula Hcut

was generated by PQE-14. When computing image formula
Imgcut and boundary formula Hcut we recorded the size of
the result (as the number of clauses) and the run time in
seconds. As Table I shows, formulas Hcut are much smaller
than Imgcut and take much less time to compute.

B. Proving equivalence by LoR

In this subsection, we ran an implementation of EC LoR in-
troduced in Section 4 on circuits N ′ and N ′′ shown in Fig. 8.
(The idea of this EC example was suggested by Vigyan
Singhal [19].) These circuits were derived from Mlps by
adding one extra input h. Either circuit produces the same
output as Mlps when h = 1 and output 0 if h = 0. So N ′

and N ′′ are logically equivalent. Note that the value of every
internal variable of N ′ depends on h whereas this is not the
case for N ′′. So N ′ and N ′′ have no functionally equivalent
internal variables. On the other hand, N ′ and N ′′ satisfy the
notion of structural similarity introduced in Subsection 3-B
to prove Proposition 4. Namely, the value of every internal
variable v′ of N ′ is specified by that of h′′ and some variable
v′′ of N ′′. (So, in this case, for every internal variable v′ of
N ′ there is a set S(v′) defined in Proposition 4 consisting of
only two variables of N ′′.) In particular, if v′ is an internal
variable of Mlp′s, then v′′ is the corresponding variable of
Mlp′′s . Indeed, if h′′ = 1, then v′ takes the same value as v′′.
If h′′ = 0, then v′ is a constant (in the implementation of Mlps
we used in the experiments). The objective of the experiment
below was to show that EC LoR can check for equivalence
structurally similar circuits that have no functionally equivalent
internal points.

Cuts Cut0, . . . ,Cutk used by EC LoR were generated
according to topological levels. That is every variable of Cut i
specified the output of a gate of i-th topological level. Since
N ′ and N ′′ were bufferized, Cut i ∩ Cutj = ∅ if i 6= j. The
version of EC LoR we used in the experiment was slightly
different from the one described in Fig. 6. We will refer to this
version as EC LoR∗. (A detailed description of EC LoR∗ is
given in [7]). The main change was that boundary formulas
were computed in EC LoR∗ approximately. That is formula



Fig. 8. Equivalence checking of N ′ and N ′′ derived from Mlps

TABLE II
EC of N ′ and N ′′ derived from Mlps. Time limit = 6 hours

#bits #vars #clauses #cuts EC LoR∗ ABC
(s.) (s.)

10 2,844 6,907 37 4.5 10
11 3,708 8,932 41 7.1 38
12 4,726 11,297 45 11 142
13 5,910 14,026 49 16 757
14 7,272 17,143 53 25 3,667
15 8,824 20,672 57 40 11,237
16 10,578 24,637 61 70 > 21,600

Hi was obtained by taking Hi−1 out of the scope of quantifiers
in formula ∃Wi[Hi−1 ∧ FMi ] where only a subset of clauses of
FMi was used. Nevertheless, EC LoR∗ was able to compute
an output boundary formula Hk(z

′, z′′) that implied (z′ ≡ z′′)
thus proving that N ′ and N ′′ were equivalent.

One more difference between EC LoR and EC LoR∗ was
that the latter built formula Hi by solving a sequence of
small PQE problems rather than one large PQE problem
(line 9 of Fig. 6). Each PQE problem of this sequence was
meant to find clauses relating the output of a gate g′ of N ′

of Cut i to its “siblings” of N ′′ that are in Cut i. A gate
g′′ of N ′′ was considered a sibling of g′ if inputs of g′

and g′′ were related by a clause of Hi−1. After solving the
sequence of small PQE problems above, EC LoR∗ checked
a cut termination condition. That is EC LoR∗ verified that
∃Wi[Hi−1 ∧ FMi

] ≡ Hi∧∃Wi[FMi
] and so the set of clauses

accumulated in Hi was indeed a boundary formula for i-th
cut.

In Table II, we compare EC LoR∗ with ABC [20]. The first
column gives the value of s of Mlps used in N ′ and N ′′. The
next two columns show the size of formulas EQ(X ′, X ′′) ∧
FN ′ ∧ FN ′′ ∧ (z′ 6≡ z′′) specifying equivalence checking of
N ′ and N ′′ to which EC LoR∗ was applied. (N ′ and N ′′

were fed into ABC as circuits in the BLIF format.) Here X =
{h, a1, . . . , as, b1, . . . , bs} denotes the set of input variables of
circuits N ′ and N ′′. The fourth column shows the number of
topological levels in circuits N ′ and N ′′ and so the number
of cuts used by EC LoR∗. The last two columns give the run
time of EC LoR∗ and ABC.

The results of Table II show that equivalence checking
of N ′ and N ′′ derived from Mlps was hard for ABC. On
the other hand, EC LoR∗ managed to solve all instances in

a reasonable time. Most of the run time of EC LoR∗ was
taken by PQE-14 when checking cut termination conditions
mentioned above. So, PQE-14 was also the reason why the run
time of EC LoR∗ grew quickly with the size of Mlps. The
performance of EC LoR∗ with a more efficient PQE-solver
should have a weaker dependency on the value of s.

C. Using boundary formulas for proving inequivalence

In the experiment of this subsection, we checked for equiva-
lence circuits N ′ and N ′′ that were correct and buggy versions
of Mlp16 respectively. Since EC LoR∗ described in the pre-
vious subsection computes boundary formulas approximately,
one cannot directly apply it to prove inequivalence of N ′ and
N ′′. In this subsection, we show that the precise computation
of even one boundary formula corresponding to an interme-
diate cut can be quite useful for proving inequivalence. Let
α and β denote formulas EQ(X ′, X ′′)∧FN ′∧FN ′′∧(z′ ≡ z′′)
and Hi ∧ FN ′ ∧ FN ′′ ∧ (z′ ≡ z′′) respectively. Here Hi is a
boundary formula precisely computed for the cut of N ′ and
N ′′ consisting of the gates with topological level equal to
i. According to Proposition 3, α and β are equisatisfiable.
Proving N ′ and N ′′ inequivalent comes down to showing that
β is satisfiable. Intuitively, checking the satisfiability of β the
easier, the larger the value of i and so the closer the cut to the
outputs of N ′ and N ′′. In the experiment below, we show that
computing boundary formula Hi makes proving inequivalence
of N ′ and N ′′ easier even for a cut with a small value of i.

TABLE III
Sat-solving of formulas α and β by

Minisat. Time limit = 600 s.

formula #solv- total median
type ed time (s.) time (s.)
α 95 > 3,490 4.2
β 100 1,030 1.0

Bugs were introduced
into circuit N ′′ above the
cut (so N ′ and N ′′ were
identical below the cut).
Let M ′i and M ′′i denote
the subcircuits of N ′ and
N ′′ consisting of the gates
located below the cut (like

circuits M ′ and M ′′ in Fig. 5). Since M ′i and M ′′i are identical
they are also functionally equivalent. Then Corollary 2 entails
that formula Hi equal to EQ(Cut ′i ,Cut ′′i ) is boundary. Here
Cut ′i and Cut ′′i specify the output variables of M ′i and
M ′′i respectively. Derivation of EQ(Cut ′i ,Cut ′′i ) for identical
circuits M ′i and M ′′i is trivial. However, proving that Hi equal
to EQ(Cut ′i ,Cut ′′i ) is indeed a boundary formula is non-
trivial even for identical circuits. (According to Proposition 2,
this requires showing that ∃Wi[EQ(X ′, X ′′) ∧ FMi

] ≡ Hi ∧
∃Wi[FMi

] where FMi
specifies the gates of M ′i and M ′′i and

Wi consists of all the variables of FMi but the cut variables.)
In the experiment, we used the cut with i = 3 i.e. the gates
located below the cut had topological level less or equal to 3.
Proving that EQ(Cut ′i ,Cut ′′i ) is a boundary formula takes a
fraction of a second for i = 3 but requires much more time
for i = 4.

We generated 100 buggy versions of Mlp16. Table III
contains results of checking the satisfiability of 100 formulas
α and β by Minisat 2.0 [5], [21]. Similar results were observed
for the other SAT-solvers we tried. The first column of Table III
shows the type of formulas (α or β ). The second column gives



the number of formulas solved in the time limit of 600 s. The
third column shows the total run time on all formulas. We
charged 600 s. to every formula α that was not solved within
the time limit. The run times of solving formulas β include
the time required to build H3. The fourth column gives the
median time. The results of this experiment show that proving
satisfiability of β is noticeably easier than that of α. As we
mentioned above, using formula β for proving inequivalence
of N ′ and N ′′ should be much more beneficial if formula Hi

is computed for a cut with a greater value of i. However, this
will require a more powerful PQE solver than PQE-14.

7. SOME BACKGROUND

The EC methods can be roughly classified into two groups.
Methods of the first group do not assume that circuits N ′

and N ′′ to be checked for equivalence are structurally similar.
Checking if N ′ and N ′′ have identical BDDs [4] is an example
of a method of this group. Another method of the first group
is to reduce EC to SAT and run a general-purpose SAT-
solver [15], [18], [5], [2]. A major flaw of these methods is
that they do not scale well with the circuit size.

Methods of the second group try to exploit the structural
similarity of N ′, N ′′. This can be done, for instance, by
making transformations that produce isomorphic subcircuits
in N ′ and N ′′ [1] or make simplifications of N ′ and N ′′ that
do not affect their range [14]. The most common approach
used by the methods of this group is to generate an inductive
proof by computing simple relations between internal points
of N ′, N ′′. Usually, these relations are equivalences [11], [12],
[17]. However, in some approaches the derived relations are
implications [13] or equivalences modulo observability [3].
The main flaw of the methods of the second group is that they
are very “fragile”. That is they work only if the equivalence
of N ′ and N ′′ can be proved by derivation of relations of a
very small class.

The machinery of boundary formulas introduced in this
paper can be related to interpolation [16]. As far as propo-
sitional logic is concerned, interpolation and an interpolant
are a special case of logic relaxation and a boundary formula
respectively [7].

8. CONCLUSIONS

We introduced a new framework for Equivalence Checking
(EC) based on Logic Relaxation (LoR). The appeal of applying
LoR to EC is twofold. First, EC by LoR provides a powerful
method for generating proofs of equivalence by induction.
Second, LoR gives a framework for proving inequivalence
without generating a counterexample. The idea of LoR is
quite general and can be applied beyond EC. LoR is enabled
by a technique called partial quantifier elimination and the
performance of the former strongly depends on that of the
latter. So building efficient algorithms of partial quantifier
elimination is of great importance.
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