
Complete Test Sets And Their Approximations
Eugene Goldberg

eu.goldberg@gmail.com

Abstract—We use testing to check if a combinational circuit
N always evaluates to 0 (written as N ≡ 0). We call a set of
tests proving N ≡ 0 a complete test set (CTS). The conventional
point of view is that to prove N ≡ 0 one has to generate a trivial
CTS. It consists of all 2|X| input assignments where X is the
set of input variables of N . We use the notion of a Stable Set
of Assignments (SSA) to show that one can build a non-trivial
CTS consisting of less than 2|X| tests. Given an unsatisfiable
CNF formula H(W), an SSA of H is a set of assignments to W
that proves unsatisfiability of H . A trivial SSA is the set of all
2|W | assignments to W . Importantly, real-life formulas can have
non-trivial SSAs that are much smaller than 2|W |. In general,
construction of even non-trivial CTSs is inefficient. We describe
a much more efficient approach where tests are extracted from
an SSA built for a projection of N on a subset of its variables.
These tests can be viewed as an approximation of a CTS for
N . We describe potential applications of our approach. We show
experimentally that it can be used to facilitate hitting corner
cases and expose bugs in sequential circuits overlooked due to
checking “misdefined” properties.

I. INTRODUCTION

Testing is an important part of verification flows. For that
reason, any progress in understanding testing and improving
its quality is of great importance. In this paper, we consider
the following problem. Given a single-output combinational
circuit N , find a set of input assignments (tests) proving that
N evaluates to 0 for every test (written as N ≡ 0) or find
a counterexample. We will call a set of input assignments
proving N ≡ 0 a complete test set (CTS)1. We will call the
set of all possible tests a trivial CTS. Typically, one assumes
that proving N ≡ 0 involves derivation of the trivial CTS,
which is infeasible in practice. Thus, testing is used only for
finding an input assignment refuting N ≡ 0. We present an
approach for building a non-trivial CTS consisting only of a
subset of all possible tests2. In general, finding even a non-
trivial CTS for a large circuit is impractical. We describe a
much more efficient approach where an approximation of a
CTS is generated.

The circuit N above usually describes a property ξ of a
multi-output combinational circuit M , the latter being the real
object of testing. For instance, ξ may state that M never
produces some output assignments. To differentiate CTSs and
their approximations from conventional test sets verifying M
“as a whole”, we will refer to the former as property-checking
test sets. Let Ξ := {ξ1, . . . , ξk} be the set of properties of M

1Term CTS is sometimes used to say that a test set invokes every event
specified by a coverage metric. Our application of this term is quite different.

2In the case of black-box testing, i.e. when only the number of input
variables of N is known, to prove N ≡ 0 one indeed has to enumerate
all possible input assignments. In this paper, we consider white-box testing.

formulated by a designer. Assume that every property of Ξ
holds and Ti is a test set generated to check property ξi ∈ Ξ.
There are at least two reasons why applying Ti to M makes
sense. First, if Ξ is incomplete3, a test of Ti can expose a
bug breaking a property of M that is not in Ξ. Second, if
property ξi is defined incorrectly, a test of Ti may expose a
bug breaking the correct version of ξi. On the other hand, if M
produces proper output assignments for all tests of T1∪· · ·∪Tk,
one gets extra guarantee that M is correct. In Section VI, we
list some other applications of property-checking test sets such
as increasing the probability of hitting corner cases and testing
properties of sequential circuits.

Let N(X,Y, z) be a single-output combinational circuit
where X and Y specify the sets of input and internal variables
of N respectively and z specifies the output variable of N . Let
FN (X,Y, z) be a formula defining the functionality of N (see
Section III). We will denote the set of variables of circuit N
(respectively formula H) as Vars(N) (respectively Vars(H)).
Every assignment4 to Vars(FN) satisfying FN corresponds to
a consistent assignment5 to Vars(N) and vice versa. Then the
problem of proving N ≡ 0 reduces to showing that formula
FN ∧ z is unsatisfiable. From now on, we assume that all
formulas mentioned in this paper are propositional. Besides,
we will assume that every formula is represented in CNF i.e.
as a conjunction of disjunctions of literals.

Our approach is based on the notion of a Stable Set of
Assignments (SSA) introduced in [9]. Given formula H(W),
an SSA of H is a set P of assignments to variables of W
that have two properties. First, every assignment of P falsifies
H . Second, P is a transitive closure of some neighborhood
relation between assignments (see Section II). The fact that H
has an SSA means that the former is unsatisfiable. Otherwise,
an assignment satisfying H is generated when building its
SSA. If H is unsatisfiable, the set of all 2|W | assignments is
always an SSA of H . We will refer to it as trivial. Importantly,
a real-life formula H can have a lot of SSAs whose size is
much less than 2|W |. We will refer to them as non-trivial. As
we show in Section II, the fact that P is an SSA of H is a
structural property of the latter. That is this property cannot
be expressed in terms of the truth table of H (as opposed to
a semantic property of H). For that reason, if P is an SSA

3That is M can be incorrect even if all properties of Ξ hold.
4By an assignment to a set of variables V , we mean a full assignment

where every variable of V is assigned a value.
5An assignment to a gate G of N is called consistent if the value assigned to

the output variable of G is implied by values assigned to its input variables.
An assignment to variables of N is called consistent if it is consistent for
every gate of N .

for H , it may not be an SSA for another formula H ′ logically
equivalent to H . So, a structural property is formula-specific.

We show that a CTS for N can be easily extracted from
an SSA of formula FN ∧ z. This makes a non-trivial CTS
a structural property of circuit N that cannot be expressed in
terms of its truth table. Building an SSA for a large formula is
inefficient. So, we present a procedure constructing a simpler
formula H(V) implied by FN∧z (where V ⊂ Vars(FN ∧ z))
and building an SSA of H . The existence of such an SSA
means that H (and hence FN ∧ z) is unsatisfiable. So, N ≡ 0
holds. Formula H is obtained from FN ∧ z by a resolution-
based procedure where no resolutions on variables of V are
allowed. So H preserves some structure of FN ∧ z. A test set
extracted from an SSA of H can be viewed as a way to verify
a “projection” of N on variables of V . On the other hand, one
can consider this set as an approximation of a CTS for N . We
will refer to the procedure above as SeSt (“Se-mantics and St-
ructure”). SeSt combines semantic and structural derivations,
hence the name. The semantic part of SeSt is6 to derive H .
Its structural part consists of constructing an SSA of H thus
proving H unsatisfiable.

The contribution of this paper is as follows. First, we
introduce the notion of non-trivial CTSs (Section III). Second,
we present a method for efficient construction of property-
checking tests that are approximations of CTSs (Sections IV
and V). Third, we describe applications of such tests (Sec-
tion VI). Fourth, we experimentally show the efficiency and
effectiveness of property-checking tests (Section VII).

II. STABLE SET OF ASSIGNMENTS

A. Definitions

We will refer to a disjunction of literals as a clause. Let
~p be an assignment to a set of variables V . Let ~p falsify
a clause C. Denote by Nbhd(~p, C) the set of assignments
to V satisfying C that are at Hamming distance 1 from ~p.
(Here Nbhd stands for “Neighborhood”). Thus, the number of
assignments in Nbhd(~p, C) is equal to that of literals in C. Let
~q be another assignment to V (that may be equal to ~p). Denote
by Nbhd(~q, ~p, C) the subset of Nbhd(~p, C) consisting only
of assignments that are farther from ~q than ~p is (in terms of
the Hamming distance).

Example 1: Let V = {v1, v2, v3, v4} and ~p=0110. We
assume that the values are listed in ~p in the order the cor-
responding variables are numbered i.e. v1 = 0, v2 = 1, v3 =
1, v4 = 0. Let C = v1 ∨ v3. (Note that ~p falsifies C.)
Then Nbhd(~p, C)={~p1, ~p2} where ~p1 = 1110 and ~p2=0100.
Let ~q = 0000. Note that ~p2 is closer to ~q than ~p is. So
Nbhd(~q, ~p, C)={~p1}.

Definition 1: Let H be a formula7 specified by a set of
clauses {C1, . . . , Ck}. Let P = {~p1, . . . , ~pm} be a set of
assignments to Vars(H) such that every ~pi ∈ P falsifies H .

6Implication FN ∧ z → H is a semantic property of FN ∧ z. To verify
this property it suffices to know the truth table of FN ∧ z.

7We use the set of clauses {C1, . . . , Ck} as an alternative representation
of a CNF formula C1 ∧ · · · ∧ Ck .

Let Φ denote a mapping P → H where Φ(~pi) is a clause C
of H falsified by ~pi. We will call Φ an AC-mapping where
“AC” stands for “Assignment-to-Clause”.

Definition 2: Let H be a formula specified by a set of
clauses {C1, . . . , Ck}. Let P = {~p1, . . . , ~pm} be a set of
assignments to Vars(H). P is called a Stable Set of Assign-
ments8 (SSA) of H with center ~pinit ∈ P if there is an AC-
mapping Φ such that for every ~pi ∈ P , Nbhd(~pinit , ~pi, C) ⊆
P holds where C = Φ(~pi).

Example 2: Let H consist of four clauses: C1 = v1∨v2∨v3,
C2 = v1, C3 = v2, C4 = v3. Let P = {~p1, ~p2, ~p3, ~p4} where
~p1 = 000, ~p2 = 100, ~p3 = 010, ~p4 = 001. Let Φ be an
AC-mapping specified as Φ(~pi) = Ci, i = 1, . . . , 4. Since
~pi falsifies Ci, i = 1, . . . , 4, Φ is a correct AC-mapping.
P is an SSA of H with respect to Φ and center ~pinit=~p1.
Indeed, Nbhd(~pinit , ~p1, C1)={~p2, ~p3, ~p4} where C1 = Φ(~p1)
and Nbhd(~pinit , ~pi, Ci) = ∅, where Ci = Φ(~pi), i = 2, 3, 4.
Thus, Nbhd(~pinit , ~pi,Φ(~pi)) ⊆ P , i = 1, . . . , 4.

B. SSAs and satisfiability of a formula

Proposition 1: Formula H is unsatisfiable iff it has an SSA.
The proof is given in [11]. A similar proposition is proved

in [9] for “uncentered” SSAs (see Footnote 8).

BuildPath(H,Φ, ~pinit , ~s){
1 Path := nil
2 ~p1 := ~pinit
3 i := 1
4 while (~pi 6= ~s) {
5 Path := Extend(Path, ~pi)
6 C := Φ(~pi)
7 v := FindVar(C, ~pi, ~s)
8 ~pi+1 := FlipVar(~pi, v)
9 i := i + 1 }
10 return(Path) }
Fig. 1. BuildPath procedure

The set of all assignments
to Vars(H) forms the trivial
uncentered SSA of H . Ex-
ample 2 shows a non-trivial
SSA. The fact that formula H
has a non-trivial SSA P is
its structural property. That is
one cannot check whether P
is an SSA of H if only the
truth table of H is known. In
particular, P may not be an
SSA of a formula H ′ logically

equivalent to H .
The relation between SSAs and satisfiability can be ex-

plained as follows. Suppose that formula H is satisfiable.
Let ~pinit be an arbitrary assignment to Vars(H) and ~s be
a satisfying assignment that is the closest to ~pinit in terms of
the Hamming distance. Let P be the set of all assignments to
Vars(H) that falsify H and Φ be an AC-mapping from P to
H . Then ~s can be reached from ~pinit by procedure BuildPath
shown in Figure 1. It generates a sequence of assignments
~p1, . . . , ~pi where ~p1 = ~pinit and ~pi=~s. First, BuildPath checks
if current assignment ~pi equals ~s. If so, then ~s has been
reached. Otherwise, BuildPath uses clause C = Φ(~pi) to
generate next assignment. Since ~s satisfies C, there is a
variable v ∈ Vars(C) that is assigned differently in ~pi and
~s. BuildPath generates a new assignment ~pi+1 obtained from
~pi by flipping the value of v.

8In [9], the notion of “uncentered” SSAs was introduced. The definition
of an uncentered SSA is similar to Definition 2. The only difference is that
one requires that for every pi ∈ P , Nbhd(~pi, C) ⊆ P holds instead of
Nbhd(~pinit , ~pi, C) ⊆ P . The advantage of centered SSAs is that they are
usually much smaller than uncentered SSAs.

BuildSSA(H){
1 E = ∅; Φ := ∅
2 ~pinit := PickInitAssgn(H)
3 Q := {~pinit}
4 while (Q 6= ∅) {
5 ~p := PickAssgn(Q)
6 Q := Q \ {~p}
7 if (SatAssgn(~p,H))
8 return(~p,nil ,nil ,nil)
9 C := PickFlsCls(H, ~p)
10 R := Nbhd(~pinit , ~p, C) \ E
11 Q := Q ∪R
12 E := E ∪ {~p}
13 Φ := Φ ∪ {(~p, C)}}
14 return(nil , E, ~pinit ,Φ) }

Fig. 2. BuildSSA procedure

BuildPath reaches ~s in k
steps where k is the Ham-
ming distance between ~pinit
and ~s. Importantly, Build-
Path reaches ~s for any AC-
mapping. Let P be an SSA
of H with respect to cen-
ter ~pinit and AC-mapping Φ.
Then if BuildPath starts with
~pinit and uses Φ as an AC-
mapping, it can reach only
assignments of P . Since ev-
ery assignment of P falsifies
H , no satisfying assignment
can be reached.

A procedure for generation of SSAs called BuildSSA is
shown in Figure 2. It accepts formula H and outputs either
a satisfying assignment or an SSA of H , center ~pinit and
AC-mapping Φ. BuildSSA maintains two sets of assignments
denoted as E and Q. Set E contains the examined assignments
i.e. those whose neighborhood is already explored. Set Q
specifies assignments that are queued to be examined. Q is
initialized with an assignment ~pinit and E is originally empty.
BuildSSA updates E and Q in a while loop. First, BuildSSA
picks an assignment ~p of Q and checks if it satisfies H . If so,
~p is returned as a satisfying assignment. Otherwise, BuildSSA
removes ~p from Q and picks a clause C of H falsified by
~p. The assignments of Nbhd(~pinit , ~p, C) that are not in E
are added to Q. After that, ~p is added to E as an examined
assignment, pair (~p, C) is added to Φ and a new iteration
begins. If Q is empty, E is an SSA with center ~pinit and
AC-mapping Φ.

III. COMPLETE TEST SETS

Fig. 3. Example of circuit
N(X,Y, z)

Let N(X,Y, z) be a
single-output combinational
circuit where X and Y
specify the input and internal
variables of N respectively
and z specifies the output
variable of N . Let N consist
of gates G1, . . . , Gk. Then
N can be represented as
FN = FG1 ∧ · · · ∧ FGk

where FGi
, i = 1, . . . , k is a

CNF formula specifying the
consistent assignments
of gate Gi. Proving
N ≡ 0 reduces to showing
that formula FN ∧ z is
unsatisfiable.

Example 3: Circuit N shown in Figure 3 represents equiv-
alence checking of expressions (x1 ∨ x2) ∧ x3 and (x1 ∧
x3) ∨ (x2 ∧ x3) specified by gates G1, G2 and G3, G4, G5

respectively. Formula FN is equal to FG1 ∧ · · · ∧ FG6 where,
for instance, FG1 = C1 ∧ C2 ∧ C3, C1 = x1 ∨ x2 ∨ y1,

C2 = x1 ∨ y1, C3 = x2 ∨ y1. Every assignment satisfying
FG1 corresponds to a consistent assignment to gate G1 and
vice versa. For instance, (x1 = 0, x2 = 0, y1 = 0) sat-
isfies FG1

and is a consistent assignment to G1 since the
latter is an OR gate. Formula FN ∧ z is unsatisfiable since
(x1 ∨ x2) ∧ x3 ≡ (x1 ∧ x3) ∨ (x2 ∧ x3). Thus, N ≡ 0.

Let ~x be a test i.e. an assignment to X . The set of
assignments to Vars(N) sharing the same assignment ~x to X
forms a cube of 2|Y |+1 assignments. (Recall that Vars(N) =
X∪Y ∪{z}). Denote this set as Cube(~x). Only one assignment
of Cube(~x) specifies the correct execution trace produced
by N under ~x. All other assignments can be viewed as
“erroneous” traces under test ~x.

Definition 3: Let T be a set of tests {~x1, . . . , ~xk} where
k ≤ 2|X|. We will say that T is a Complete Test Set (CTS)
for N if Cube(~x1) ∪ · · · ∪ Cube(~xk) contains an SSA for
formula FN ∧ z.

SeSt(G,V){
1 H := ∅
2 foreach (C ∈ G)
3 if (Vars(C) ⊆ V)
4 H := H ∪ {C}
5 while (true) {
6 (~v,P) :=BuildSSA(H)
7 if (P 6= nil)
8 return(nil , H, P)
9 (C,~s) := GenCls(G,V,~v)
10 if (~s 6= nil)
11 return(~s,nil ,nil)
12 H := H ∪ {C} }

Fig. 4. SeSt procedure

If T satisfies Definition 3,
set Cube(~x1)∪· · ·∪Cube(~xk)
“contains” a proof that N ≡ 0
and so T can be viewed as
complete. If k = 2|X|, T is
the trivial CTS. In this case,
Cube(~x1) ∪ · · · ∪ Cube(~xk)
contains the trivial SSA con-
sisting of all assignments to
Vars(FN ∧ z). Given an SSA
P of FN ∧ z, one can easily
generate a CTS by extracting
all different assignments to X

that are present in the assignments of P .
Example 4: Formula FN∧z of Example 3 has an SSA of 21

assignments to Vars(FN∧z). They have only 5 different as-
signments to X={x1,x2,x3}. The set {101,100,011,010,000}
of those assignments is a CTS for N .

Definition 3 is meant for circuits that are not “too redun-
dant”. Highly-redundant circuits are discussed in [12], [11].

IV. SeSt PROCEDURE

A. Motivation

Building an SSA for a large formula is inefficient. So,
constructing a CTS of N from an SSA of FN∧z is impractical.
To address this problem, we introduce a procedure called SeSt
(a short for “Semantics and Structure”). Given formula FN ∧z
and a set of variables V ⊆ Vars(FN ∧ z), SeSt generates a
simpler formula H(V) implied by FN ∧ z at the same time
trying to build an SSA for H . If SeSt succeeds in constructing
such an SSA, formula H is unsatisfiable and so is FN∧z. Then
a set of tests T is extracted from this SSA. As we show in
Subsection V-A, one can view T as an approximation of a CTS
for N (if X ⊆ V) or an “approximation of approximation” of
a CTS (if X 6⊆ V).

Example 5: Consider the circuit N of Figure 3 where X =
{x1, x2, x3}. Assume that V = X . Application of SeSt to
FN∧z produces H(X) = (x1∨x3)∧(x2∨x3)∧(x1∨x2)∧x3.
SeSt also generates an SSA of H of four assignments to X:

{000, 001, 011, 101} with center ~pinit=000. (We omit the AC-
mapping here.) These assignments form an approximation of
a CTS for N .

B. Description of SeSt

GenCls(G,V,~v){
1 G~v := GenForm(F,~v)
2 (~s,R) := ChkSat(G~v)
3 if (~s 6= nil)
4 return(nil , ~s ∪ ~v)
5 V ′ := Analyze(R,G~v, G)
6 C := FormCls(V ′, ~v)
7 return(C,nil)

Fig. 5. GenCls procedure

The pseudocode of SeSt is
shown in Figure 4. SeSt accepts
formula G (in our case, G :=
FN ∧ z) and a set of variables
V ⊆ Vars(G). SeSt outputs an
assignment satisfying G or for-
mula H(V) implied by G and an
SSA of H . Initially, H consists
of the clauses of G depending
only on variables of V (if any).

Then a while loop is performed. First, SeSt tries to build an
SSA for the current formula H by calling BuildSSA (line 6). If
H is unsatisfiable, BuildSSA computes an SSA P returned by
SeSt along with H (line 8). Otherwise, BuildSSA returns an
assignment ~v satisfying H . In this case, SeSt calls procedure
GenCls to build a clause C falsified by ~v. Clause C is obtained
by resolving clauses of G on variables of Vars(G)\V . (Hence
C is implied by G.) If ~v can be extended to an assignment ~s
satisfying G, SeSt terminates (lines 10-11). Otherwise, C is
added to H and a new iteration begins.

Procedure GenCls is shown in Figure 5. First, GenCls
generates formula G~v obtained from G by discarding clauses
satisfied by ~v and removing literals falsified by ~v. Then GenCls
checks if there is an assignment ~s satisfying G~v . If so, ~s ∪ ~v
is returned as an assignment satisfying G. Otherwise, a proof
R of unsatisfiability of G~v is produced. Then GenCls forms a
set V ′ ⊆ V . A variable w is in V ′ iff a clause of G~v is used
in proof R and its parent clause from G has a literal of w
falsified by ~v. Finally, clause C is generated as a disjunction
of literals of V ′ falsified by ~v. By construction, clause C is
implied by G and falsified by ~v.

V. BUILDING APPROXIMATIONS OF CTS

A. Two kinds of approximations of CTSs

As before, let H(V) denote a formula implied by FN∧z that
is generated by SeSt and P denote an SSA for H . Projections
of N can be of two kinds depending on whether X ⊆ V
holds. Let X ⊆ V be true and T be the test set consisting of
all different assignments to X present in the assignments of
P . Using the reasoning of Section III one can show that T is
a CTS for projection of N on V . Since H(V) is essentially
an abstraction of FN ∧z, one can view T an approximation of
a CTS for N . For that reason, we will refer to T as a CTSa

of N where superscript “a” stands for “approximation”.
Now assume X ⊆ V is not true. Generation of a test

set T from P for this case is described in the next section.
Let us relate this case to that of X ⊆ V . Assume for
the sake of simplicity that V ∩ X = ∅. Let us consider
computing a test set T ′ for a projection of N on set V ′ where
V ′ = X∪V . Let P ′ be an SSA for formula H ′(V ′) generated
by SeSt . Every assignment of P ′ can be represented as (~x,~v)

where ~x and ~v are assignments to X and V respectively.
The assignments (~x1, ~v), (~x2, ~v), . . . of P ′ sharing the same
~v specify all tests of T ′ corresponding to ~v. On the other
hand, since V ∩ X = ∅, to generate T one has to a) use
some heuristic for generating a test corresponding to ~v and b)
guess how many tests corresponding to ~v one should generate.
Thus, T is an approximation of T ′ that is itself a CTSa i.e. an
approximation of a CTS. So, we will refer to T as CTSaa.

B. Construction of CTSaa

GenTests(FN ,X,P,tr1,tr2){
1 T := ∅
2 for each ~v ∈ P {
3 ~s := SatAssgn(FN , ~v)
4 if (~s 6= nil) {
5 AddTest(T,~s,X)
6 for (i = 1;i < tr1;i++){
7 ~s :=SatAssgn(FN , ~v)
8 AddTest(T,~s,X)}
9 else
10 for (i = 0;i < tr2;i++){
11 F ∗N := Relax (FN)
12 ~s := SatAssgn(F ∗N , ~v)
13 if (~s = nil) continue
14 AddTest(T,~s,X)}}
15 return(T)}

Fig. 6. GenTests procedure

Consider extraction of a
test set T from SSA P of
formula H(V) when X 6⊆
V . Since V , in general, con-
tains internal variables9 of N ,
translation of P to a test set
T needs a special procedure
GenTests shown in Figure 6.
As we mentioned in Subsec-
tion V-A, building a test ~x
corresponding to an assign-
ment ~v of P requires some
heuristic. In GenTests, we use
the following idea. One can
view building an SSA (see
Fig. 2) as a try to reach a

satisfying assignment, if any. So, intuitively, every assignment
of a good SSA falsifies a very small number of clauses of G.
For that reason, when building a test ~x corresponding to ~v, we
look for an assignment to Vars(FN ∧ z) that contains ~x and
~v and falsifies as few clauses of FN ∧ z as possible.

Parameters tr1 and tr2 control the number of tests generated
for one assignment of P (tr here stands for “tries”). For every
~v ∈ P , GenTests checks if formula FN is satisfiable under
assignment ~v i.e. if there exists a test under which N assigns
~v to V . If so, GenTests calls procedure AddTest that forms a
new test by extracting the values assigned to X in ~s and adds
it to T . (Note that the only clause of FN ∧ z falsified by ~s is
the unit clause z.) Then GenTests runs a for loop (lines 6-8)
to generate tr1−1 more tests producing the same assignment
~v. We assume that the SAT-solver invoked in line 7 generates
different satisfying assignments in different calls.

If FN is unsatisfiable under ~v, GenTests runs another for
loop of tr2 iterations (lines 10-14). In every iteration, GenTests
relaxes FN by removing the clauses specifying a small random
subset of gates. If the relaxed version of FN has a satisfying
assignment ~s (line 12), a test is extracted from ~s and added
to T . Note that ~s falsifies only a small number of clauses of
FN ∧ z, namely, a subset of clauses removed to relax FN and
possibly the unit clause z.

C. Finding a set of variables to project on

9If the special case V ⊂ X holds, every assignment of P can be easily
turned into a test by assigning values to variables of X \ V (e.g. randomly).

GenCut(N,Size){
1 Gout := OutGate(N)
2 Gts := {Gout}
3 Dpth(Gout) := 0
4 Inps := ∅
5 while (|Gts∪Inps|<Size) {
6 G :=MinDepth(Gts,Dpth)
7 Gts := Gts \ {G}
8 Seen(G) := true
9 foreach G′ ∈ FanIn(G){
10 if (Seen(G′)) continue
11 if (G′ ∈ Inputs(N)) {
12 Inps = Inps ∪ {G′}
13 continue }
14 Dpth(G′) :=Dpth(G)+1
15 Gts := Gts ∪ {G′}}}
16 return(Gts ∪ Inps)}

Fig. 7. GenCut procedure

Intuitively, a good choice
of the set V to project N on
is a (small) coherent subset
of variables of N reflecting
its structure and/or seman-
tics. One obvious choice of
V is the set X of input vari-
ables of N . In this section,
we describe generation of a
set V whose variables form
an internal cut of N denoted
as Cut. Procedure GenCut for
generation of set Cut consist-
ing of Size gates is shown
in Figure 7. Set V is formed
from output variables of the
cut gates.

The current cut is specified by Gts ∪ Inps . Set Gts is
initialized with the output gate Gout of circuit N and Inps
is originally empty. GenCut computes the depth of every gate
of Gts. The depth of Gout is set to 0. Set Gts is processed
in a while loop (lines 5-15). In every iteration, a gate of the
smallest depth is picked from Gts. Then GenCut removes gate
G from Gts and examines the fan-in gates of G (lines 9-15).
Let G′ be a fan-in gate of G that has not been seen yet and is
not a primary input of N . Then the depth of G′ is set to that
of G plus 1 and G′ is added to Gts. If G′ is a primary input
of N it is added to Inps.

VI. APPLICATIONS OF PROPERTY-CHECKING TESTS

Given a multi-output circuit M , traditional testing is used to
verify M “as a whole”. In this paper, we describe generation
of a test set meant for checking a particular property of M
specified by a single-output circuit N . In this section, we
present some applications of property-checking test sets.

A. Verification of corner cases

Fig. 8. Subcircuit K of
circuit M

Let K be a single-output subcircuit
of circuit M as shown in Figure 8.
For the sake of simplicity, here, we
consider the case where the set XK

of input variables of K is a subset
of the set X of input variables of
M . (The technique below can also be
applied when input variables of K are
internal variables of M .) Suppose K
evaluates, say, to value 0 much more
frequently then to 1. Then one can
view an input assignment of M for

which K evaluates to 1 as specifying a “corner case” i.e. a
rare event. Hitting such a corner case by a random test can be
very hard. This issue can be addressed by using a coverage
metric that requires setting the value of K to both 0 and 1.
(The task of finding a test for which K evaluates to 1 can be
solved, for instance, by a SAT-solver.) The problem however
is that hitting a corner case only once may be insufficient.

One can increase the frequency of hitting the corner case
above as follows. Let N be a miter of circuits K ′ and K ′′

(see Figure 9) i.e. a circuit that evaluates to 1 iff K ′ and K ′′

are functionally inequivalent. Let K ′ and K ′′ be two copies of
circuit K. So N ≡ 0 holds. Let test set TK be extracted from
an SSA built for a projection of N on a set V ⊂ Vars(N). Set
TK can be viewed as a result of “squeezing” the truth table of
K. Since this truth table is dominated by input assignments
for which K evaluates to 0, this part of the truth table is
reduced the most. So, one can expect that the ratio of tests
of TK for which K evaluates to 1 is higher than in the truth
table of K. In Subsection VII-B, we substantiate this intuition
experimentally. One can easily extend an assignment ~xK of
TK to an assignment ~x to X e.g. by randomly assigning values
to the variables of X \XK .

B. Testing sequential circuits

There are a few ways to apply property-checking tests meant
for combinational circuits to verification of sequential circuits.
Here is one of them based on bounded model checking [2].
Let M be a sequential circuit and ξ be a property of M . Let
Nk(X,Y, z) be a circuit such that Nk ≡ 0 holds iff ξ is true
for k time frames. Circuit Nk is obtained by unrolling M k
times and adding logic specifying property ξ. Set X consists
of the subset X ′ specifying the state variables of M in the
first time frame and subset X ′′ specifying the combinational
input variables of M in k time frames.

Fig. 9. The miter of circuits K′
and K′′

Having constructed Nk, one
can build CTSs, CTSas and
CTSaas for testing property ξ of
M . The only difference here from
the problem we have considered
so far is as follows. Circuit M
starts in a state satisfying some
formula I(X ′) that specifies the
initial states. So, one needs to
check if Nk ≡ 0 holds only for
the assignments to X satisfying
I(X ′). A test here is an assign-
ment (~x′1, ~x′′1, . . . , ~x′′k) where

~x′1 is an initial state and ~x′′i, 1 ≤ i ≤ k is an assignment
to the combinational input variables of i-th time frame. Given
a test, one can easily compute the corresponding sequence
of states (~x′1, . . . , ~x′k) of M . In Subsection VII-C, we give
examples of building CTSaas for testing sequential circuits.

C. Exposing bugs overlooked due to misdefining properties

One can use property-checking tests to mitigate the problem
of incomplete specifications. By running tests generated for
an incomplete set of properties of M , one can expose bugs
overlooked due to missing some properties. An important
special case of this problem is as follows. Let ξ be a property
of M that holds. Assume that the correctness of M requires
proving a slightly different property ξ′ that does not hold. By
running a test set T built for property ξ, one may expose a bug
overlooked in formal verification due to proving ξ instead of

ξ′. In Subsection VII-C, we illustrate this idea experimentally.
Note that the problem above has nothing to do with the
complexity of proving ξ′ false. The designer simply does not
know that there is a problem and so can overlook a bug even
if proving ξ′ false is very easy.

VII. EXPERIMENTS

In this section, we describe experiments with property-
checking tests (PCT) generated by procedure GenPCT shown
in Figure 10. GenPCT accepts a single-output circuit N
and outputs a set of tests T . (For the sake of simplicity,
we assume here that N ≡ 0 holds.) GenPCT starts with
generating formula FN ∧ z. Then it builds a set of variables
V ⊆ Vars(FN ∧ z). Parameter type specifies whether Gen-
PCT is supposed to generate a CTS, CTSa or CTSaa. After
that, GenPCT calls SeSt (see Fig. 4) to compute a formula
H(V) implied by FN ∧ z and its SSA.

GenPCT (N,X, type, tr1, tr2){
1 FN ∧ z := GenForm(N)
2 V := GenVars(FN ∧ z, type)
3 (H,P) :=SeSt(FN ∧ z, V)
4 if (X ⊆ V)
5 T := ExtrTests(X,P)
6 else {
7 RedVars := V \Vars(H)
8 P := Drop(P,RedV ars)
9 T :=GenTests(FN ,X,P,tr1,tr2)}
10 return(T)}
Fig. 10. GenPCT procedure

If X ⊆ V holds
(where X is the set of
input variables of N),
GenPCT computes T as
the set of all differ-
ent assignments to X
present in assignments
of P (line 5). Otherwise,
GenPCT calls procedure
GenTests (see Fig. 6).
Every variable w ∈ V \
Vars(H) is redundant in

the sense that its value is the same in all assignments of P . So
the values assigned to V \Vars(H) are dropped by GenTests
(lines 7-8). If V = Vars(FN ∧ z), then H(V) is FN ∧z itself
and GenPCT produces a CTS of N . Otherwise, according to
definitions of Subsection V-A, GenPCT generates a CTSa (if
X ⊆ V) or CTSaa (if X 6⊆ V).

In the following subsections, we describe results of three
experiments. In the first two experiments we used circuits
specifying next state functions of latches of HWMCC-10
benchmarks. (The motivation was to employ realistic circuits.)
In the third experiment, we used combinational circuits ob-
tained by unfolding HWMCC-10 benchmarks. In our imple-
mentation of SeSt , as a SAT-solver, we used Minisat 2.0 [6],
[17]. We also employed Minisat to run simulation. To compute
the output value of N under test ~x, we added unit clauses
specifying ~x to formula FN ∧ z and checked its satisfiability.

A. Comparing CTSs, CTSas and CTSaas

The objective of the first experiment was to give examples
of circuits with non-trivial CTSs and compare the efficiency
of computing CTSs, CTSas and CTSaas. In this experiment,
N was a miter specifying equivalence checking of circuits
M ′ and M ′′ (see Figure 9). M ′′ was obtained from M ′ by
optimizing the latter with ABC [15].

The results of the first experiment are shown in Table I. The
first two columns specify an HWMCC-10 benchmark and its
latch whose next state function was used as M ′. The next

TABLE I
Computing CTSs, CTSas and CTSaas

name la- #inp #ga- CTS CTSa or CTSaa

tch vars tes |SSA| time test |SSA| time
(#tests) (s.) set |V | (#tests) (s.)
×103 type ×103

bob3 L26 14 41 46 (2.0) 0.1 CTSa 14 0.6 (0.6) 0.01
eijks258 L10 16 45 259 (8.2) 0.5 CTSa 16 0.1 (0.1) 0.02
cmudme1 L230 19 50 2,184 (63) 5.4 CTSa 19 13 (13) 0.1
mutexp0 L60 29 199 memout ∗ CTSa 29 659 (659) 26
pdtpmsmiim L118 31 136 memout ∗ CTSa 31 936 (936) 4.2
abp4pold L270 129 1,178 memout ∗ CTSaa 22 0.9 (0.5) 0.6
pj2009 L1318 366 25,160 memout ∗ CTSaa 22 0.6 (0.3) 51
mentorb..00 L8670 626 3,156 memout ∗ CTSaa 22 1.2 (0.6) 11
139454p0 L1676 791 19,843 memout ∗ CTSaa 22 0.1 (0.1) 99

two columns give the number of input variables and that of
gates in the miter N . The following pair of columns describe
computing a CTS for N . The first column of this pair gives
the size of the SSA P found by GenPCT in thousands. The
number of tests in the set T extracted from P is shown in
the parentheses in thousands. The second column of this pair
gives the run time of GenPCT in seconds.

The last four columns of Table I describe results of com-
puting test sets for a projection of N on a set of variables V .
The first column of this group shows if CTSa or CTSaa was
computed whereas the next column gives the size of V . The
third column of this group provides the size of SSA P and
the test set T extracted from P (in parentheses). Both sizes
are given in thousands. The last column shows the run time
of GenPCT. For the first five examples, we used a projection
of N on X , thus constructing a CTSa of N . For the last four
examples we computed a projection of N on an internal cut
(see Subsection V-C) thus generating a CTSaa of N . GenPCT
was called with tr1 = 1, tr2 = 5 (see Fig. 6 and 10).

For the first three examples, GenPCT managed to build non-
trivial CTSs that are smaller than 2|X|. For instance, the trivial
CTS for example bob3 consists of 214=16,384 tests, whereas
GenPCT found a CTS of 2,004 tests. (So, to prove M ′ and
M ′′ equivalent it suffices to run 2,004 out of 16,384 tests.) For
the other examples, GenPCT failed to build a non-trivial CTS
due to exceeding the memory limit (1.5 Gbytes). On the other
hand, GenPCT built a CTSa or CTSaa for all nine examples
of Table I. Note, however, that CTSas give only a moderate
improvement over CTSs. For the last four examples GenPCT
failed to compute a CTSa of N due to memory overflow
whereas it had no problem computing an CTSaa of N . So
CTSaas can be computed efficiently even for large circuits.
Further, we show that CTSaas are also very effective.

B. Testing corner cases

In the second experiment, we generated CTSas and CTSaas
to test corner cases (see Subsection VI-A). First, we formed a
circuit K that evaluates to 0 for almost all input assignments.
So, the assignments for which K evaluates to 1 are corner
cases10. We compared the frequency of hitting corner cases
by random tests and by tests of a set T built by GenPCT as

10We assume here that K is a subcircuit of some circuit M . The input
assignments for which K evaluates to 1 are corner cases for M .

follows. Let N be a miter of copies K ′ and K ′′ (see Figure 9).
The set T was generated using a projection of N either on the
set X of input variables or an internal cut of N .

TABLE II
Testing corner cases

name la- #inp #and #ga- random testing by
tch vars vars tes testing CTSa and CTSaa

#te- #hits test #te- #hits time
sts % set |V | sts % (s.)

pd..gigamax5 L46 43 10 512 105 0.02 CTSa 43 547 7.1 0.2

pd..gigamax5 L46 63 30 512 108 0 CTSa 63 1,243 3.0 0.2

pdtvisbpb1 L48 46 10 108 105 0.04 CTSa 46 398 9.0 0.01

pdtvisbpb1 L48 66 30 108 108 0 CTSa 66 736 3.1 0.03

abp4pold L270 139 10 637 105 0.02 CTSaa 35 2,047 8.5 0.9

abp4pold L270 159 30 637 108 0 CTSaa 55 5,256 3.3 2.1

mentorbm1p00 L8670 636 10 1,630 105 0.1 CTSaa 35 594 11 3.7

mentorbm1p00 L8670 656 30 1,630 108 0 CTSaa 55 2,009 4.7 8.7

To build circuit K, we extracted the circuit R specifying the
next state function of a latch of a HWMCC-10 benchmark and
composed it with an n-input AND gate as shown in Figure 11.
The circuit K outputs 1 only if R evaluates to 1 and the first
n−1 inputs variables of the AND gate are set to 1 too. So
the input assignments for which K evaluates to 1 are “corner
cases”.

Fig. 11. Circuit K
whose output value is
biased to 0

The results of the experiment are given
in Table II. The first two columns name
the benchmark and latch whose next state
function was used as circuit R. The next
three columns give the total number of
input variables of K, the value of n in
the n-input AND gate fed by R and
the number of gates in circuit K. The
following pair of columns describes the
performance of random testing. The first
column of this pair gives the total num-
ber of tests. The next column shows the
percentage of times circuit K evaluated

to 1 (and so a corner case was hit). The last five columns of
Table II describe the results of GenPCT . The first column of
the five indicates whether a CTSa or CTSaa was generated. The
second column gives the size of set V on which a projection
of N was computed. CTSas were generated with V = X .
When computing CTSaas, the set V formed an internal cut of
N and parameters tr1 and tr2 were both set to 1. The next
column shows the size of the test set. The fourth column gives
the percentage of times a corner case was hit. The last column
shows the total run time.

The examples of Table II were generated in pairs that shared
the same circuit R and were different only in the size of the
AND gate fed by R. For instance, in the first and second entry
of Table II, circuit K was obtained by composing the same
circuit R extracted from benchmark pdtvisgigamax5 with 10-
input and 30-input AND gates respectively. Table II shows
that for circuits with a 10-input AND gate, random testing
hit corner cases but the percentage of those events was much
lower than for CTSas and CTSaas. On the other hand, even

100 millions of random tests failed to hit a single corner case
for examples with a 30-input AND gate in sharp contrast to
CTSas and CTSaas.

C. Testing properties defined incorrectly

TABLE III
Testing “misdefined” properties. CTSaas were computed for |V | = 20. Test

sets with a counterexample are shown in bold.

name #ti- #inp #ga- cov. met. random testing by
me vars tes tests tests CTSaa

fra- ×103 #tests time #tests time #iter #tests time
mes (s.) (s.) (s.)

bobcount 19 38 1.6 740 0.4 1.0∗107 294 1 3,339 1.1

boblivea 5 65 8.0 3,778 7.2 9.7∗103 2.1 100˙ 9,982 74

p..gigamax0 4 88 4.3 2,150 6.3 1.4∗106 158 20 923 3.7

kenflashp01 2 108 2.5 1,076 0.8 108 1,625 48 6,027 1.7

pdtpmsudc8 10 110 3.7 2,066 2.5 6.8∗107 5,000 100 51,123 283

eijks526 39 117 18 8,976 70 4.5∗106 5,000 1 183 31

kenopp1 3 129 1.7 1,202 0.5 108 695 13 1,344 0.4

vis..cellp01 5 135 14 4,581 16 8∗107 5,000 13 1,354 4.4

cmugigamax 5 159 3.1 1,826 2.3 108 2,671 100 8,985 13

eijks5378 6 209 17 8,318 56 3.4∗104 58 1 387 3.6

eijks208o 25 250 4.0 1,506 3.6 1.9∗107 2,207 3 1,811 4.9

eijks420 18 324 6.6 1,115 3.7 4.1∗106 1,140 86 26,199 82

n..guidancep1 6 504 10 7,922 27 2.1∗107 5,000 6 378 2.3

pdt..feistel 12 816 115 68,006 4,066 3.9∗106 5,000 5 804 49

nusmvtcasp2 7 1,029 19 11,510 82 4.5∗107 5,000 38 3,549 53

cmuperiodic 34 1,220 51 30,999 760 9.5∗106 5,000 85 5,611 240

pj2002 4 4,054 137 61,113 3.868 0.6∗106 5,000 2 161 7.9

The objective of the third experiment was to expose bugs
overlooked due to incorrect definition of properties (see Sub-
section VI-C). In contrast to the previous two experiments,
here we employed “complete” HWMCC-10 benchmarks, each
benchmark specifying a safety property ξ of a sequential
circuit M . In our experiment, we used benchmarks with
true properties. We assumed that ξ was defined incorrectly
and formed a new property ξ′ of M that failed. Property
ξ′ served as the “real” property to check. It was obtained
by changing the functionality of a gate of M involved in
specifying property ξ. The fact that ξ′ indeed failed was
established by running IC3 [3]. Let k denote the length of the
counterexample found by IC3 for ξ′. We unrolled the transition
relation of M k times to generate single-output circuits Nk

and N ′k. These circuits evaluated to 1 iff no counterexample
of length k existed for ξ and ξ′ respectively. By construction,
Nk ≡ 0 held whereas N ′k ≡ 0 did not.

In our experiment, we compared three different methods
of breaking property ξ′. In the first method, we used testing
driven by a coverage metric. Namely, we generated a test set
T aimed at setting the output11 of every gate G of Nk both to
0 and 1. Then we applied T to N ′k to disprove N ′k ≡ 0. Note
that a single test sets the output of every gate of Nk to 0 or
1. To make T stronger, when processing a gate G of Nk we
tried to find a new test setting the output of G to b ∈ {0, 1},
even if this goal was “inadvertently” achieved earlier. In the

11In [11], we give results for the coverage metric based on stuck-at faults.

second method, we simply applied random tests12 to N ′k until
a counterexample was generated or a resource was exceeded.
In the third method, we applied GenPCT to circuit Nk to
generate a CTSaa T . Then we used T to break N ′k ≡ 0.

A sample of 17 benchmarks is shown in Table III. When
compiling this sample we dropped the easy examples solved
by all three methods. The first column of Table III lists names
of benchmarks. The second column specifies the value of k
in Nk and N ′k. The third column gives the number of input
variables in Nk (and N ′k) minus13 the number of latches in
M . The fourth column of Table III shows the number of gates
in Nk and N ′k (in thousands). The following pair of columns
describes the performance of testing driven by the coverage
metric above (the number of tests and the run time required
to generate and run them). The next two columns provide the
results of random testing limited to 100 million tests and the
runtime of 5,000 secs.

The final three columns describe the results of CTSaas. The
first column of the three gives the number of iterations we
tried when building a CTSaa. Each iteration was a separate
run of GenPCT generating a different set of tests due to
randomization of internal procedures14. CTSaas were built for
a projection of Nk on a set of variables V forming an internal
cut of Nk. GenPCT was run with tr1 =20 and tr2 =5. Iterating
GenPCT went on until N ′k ≡ 0 was broken or the number of
iterations reached 100. The final two columns describe the
total number of tests and run time (over all iterations).

The results of Table III show the high efficiency and effec-
tiveness of CTSaas on the examples we tried. In particular, for
four examples (kenflashp01, kenopp1, nusmvguidancep1 and
nusmvtcasp2) a CTSaa was the only test set to break N ′k ≡ 0.
Our experiment suggests that one can run the procedure below
to check if a bug is overlooked due to misdefining a true
property ξ of circuit M . (This procedure does not require
knowledge of the “right” property ξ′.) 1) Pick a number k
(by an educated guess) to form circuit Nk. 2) Pick a number
p of tests to build when proving Nk ≡ 0. Run GenPCT in a
loop until a set T of p tests is generated. 3) Make sure that M
correctly behaves on tests of T “as a whole” e.g. by checking
that the properties of M related to ξ hold for T .

VIII. BACKGROUND

As we mentioned earlier, traditional testing checks if a
circuit M is correct as a whole. This notion of correctness
means satisfying a conjunction of many properties of M . For
this reason, one tries to spray tests uniformly in the space of
all input assignments. To improve the effectiveness of testing,
one can try to run many tests at once as it is done in symbolic

12Even in a random test, the values assigned to the input variables of
Nk and N ′k corresponding to state variables of circuit M had to satisfy the
predicate specifying the initial states of M (see Subsection VI-B).

13The HWMCC-10 benchmarks have only one initial state. So in every test
generated in our experiment, the input variables of Nk and N ′k corresponding
to the state variables of M were simply set to a constant value.

14In particular, a different center was used for the SSA of formula H
implied by FNk

∧ z. Formula H was also different in every run of GenPCT
due to randomization of SAT-calls invoked in GenCls (line 2 of Fig. 5).

simulation [4]. To avoid generation of tests that for some
reason should be or can be excluded, a set of constraints can be
used [13]. Another method of making testing more reliable is
to generate tests exciting a particular set of events specified by
a coverage metric [16]. Our approach is different from those
above in that it is aimed at testing a particular property of M .

The method of testing introduced in [10] is based on the
idea that tests should be treated as a “proof encoding” rather
than a sample of the search space. (The relation between tests
and proofs have been also studied in software verification, e.g.
in [7], [8], [1]). In this paper, we take a different point of view
where testing becomes a part of a formal proof namely the
part that performs structural derivations.

Reasoning about SAT in terms of random walks was pio-
neered in [14]. The centered SSAs we introduce in this paper
bear some similarity to sets of assignments generated in de-
randomization of Schöning’s algorithm [5].

The first version of SeSt procedure is presented in re-
port [12]. It has a much tighter integration between the struc-
tural part (computation of SSAs) and semantic part (derivation
of formula H implied by the original formula). The advantage
of the new version of SeSt described in this paper is twofold.
First, it is much simpler than SeSt of [12]. In particular, any
resolution based SAT-solver that generates proofs can be used
to implement the new SeSt . Second, the simplicity of the new
version makes it much easier to achieve the level of scalability
where SeSt becomes practical.

IX. CONCLUSION

We consider the problem of finding a Complete Test Set
(CTS) for a combinational circuit N that is a test set proving
N ≡ 0. We use the machinery of stable sets of assignments
to derive non-trivial CTSs i.e. those that do not include all
possible input assignments. Computing a CTS for a large
circuit N is inefficient. So, we present a procedure that
generates a test set for a “projection” of N on a subset V of
variables of N . Depending on the choice of V, this procedure
generates a test set CTSa that is an approximation of an CTS
or a test set CTSaa that is an approximation of CTSa. We give
experimental results showing that CTSaas can be efficiently
computed even for large circuits and are effective in solving
verification problems.

X. ACKNOWLEDGMENT

This research was supported in part by NSF grants CCF-
1117184 and CCF-1319580.

REFERENCES

[1] N. Beckman, A. Nori, S. Rajamani, R. Simmons, S. Tetali, and
A. Thakur. Proofs from tests. IEEE Transactions on Software Engi-
neering, 36(4):495–508, July 2010.

[2] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In DAC, pages 317–320,
1999.

[3] A. R. Bradley. Sat-based model checking without unrolling. In VMCAI,
pages 70–87, 2011.

[4] R. Bryant. Symbolic simulation—techniques and applications. In DAC-
90, pages 517–521, 1990.

[5] E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg, C. Pa-
padimitriou, P. Raghavan, and U. Schöning. A deterministic (22/(k+1))n
algorithm for k-sat based on local search. Theoretical Computer Science,
289(1):69 – 83, 2002.

[6] N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages
502–518, Santa Margherita Ligure, Italy, 2003.

[7] C. Engel and R. Hähnle. Generating unit tests from formal proofs. In
TAP, pages 169–188, 2007.

[8] P. Godefroid and N. Klarlund. Software model checking: Searching
for computations in the abstract or the concrete. In Integrated Formal
Methods, pages 20–32, 2005.

[9] E. Goldberg. Testing satisfiability of cnf formulas by computing a stable
set of points. In Proc. of CADE-02, pages 161–180, 2002.

[10] E. Goldberg. On bridging simulation and formal verification. In VMCAI-
08, pages 127–141, 2008.

[11] E. Goldberg. Complete test sets and their approximations. Technical
Report arXiv:1808.05750 [cs.LO], 2018.

[12] E. Goldberg. Generation of complete test sets. Technical Report
arXiv:1804.00073 [cs.LO], 2018.

[13] N. Kitchen and A.Kuehlmann. Stimulus generation for constrained
random simulation. In ICCAD-07, pages 258–265, 2007.

[14] C. H. Papadimitriou. On selecting a satisfying truth assignment. In
32nd Annual Symposium of Foundations of Computer Science, pages
163–169, Oct 1991.

[15] Berkeley Logic Synthesis and Verification Group. ABC:
A system for sequential synthesis and verification, 2017.
http://www.eecs.berkeley.edu/∼alanmi/abc.

[16] S. Tasiran and K. Keutzer. Coverage metrics for functional validation
of hardware designs. IEEE Design Test of Computers, 18(4):36–45, Jul
2001.

[17] Minisat2.0. http://minisat.se/MiniSat.html.

