How Good Can a Resolution Based SAT-Solver
Be?

Eugene Goldberg!, Yakov Novikov?

! Cadence Berkeley Labs, USA, egold@cadence.com
2 The United Institute of Informatics Problems, National Academy of Sciences,
Belarus, nov@newman.bas-net.by

Abstract. We introduce a parameterized class M(p) of unsatisfiable
formulas that specify equivalence checking of Boolean circuits. If the
parameter p is fixed, a formula of M (p) can be solved in general resolution
in a linear number of resolutions. On the other hand, even though there
is a polynomial time deterministic algorithm that solves formulas from
M (p), the order of the polynomial is a monotone increasing function
of parameter p. We give reasons why resolution based SAT-algorithms
should have poor performance on this very “easy” class of formulas and
provide experimental evidence that this is indeed the case.

1 Introduction

In the long run, studying the complexity of proofs in various proof systems
of propositional logic is aimed at establishing lower bounds on performance of
deterministic algorithms for solving SAT. The first result on complexity of res-
olution proofs was obtained by Tseitin in 1966 [12]. He proved exponential
lower bounds for proofs in a restricted version of general resolution called reg-
ular resolution. Two decades later Haken established exponential lower bounds
for general resolution [7]. Some proof systems (like extended resolution) are so
powerful that all attempts to find a class of formulas that admit only proofs of
exponential length have failed so far. For that reason, along with trying to break
non-deterministic proof systems, a new line of research has started that studies
the automatizability of proof systems [4]. A proof system P is automatizable if
there is a deterministic algorithm that for any unsatisfiable CNF formula F finds
a proof whose length is bounded by a polynomial of the length of the shortest
proof in P (that establishes the unsatisfiability of F'). In [9] it was shown that
general resolution is non-automatizable under an assumption.

In this paper, we introduce a parameterized class M(p) of CNF formulas.
This class should be very helpful in studying the complexity of finding short
resolution proofs by a deterministic algorithm, that is in studying the automa-
tizability of resolution. A formula F' of M (p) represents an instance of checking
the equivalence of two Boolean circuits N1,/N5 obtained from a common “spec-
ification” S. Here, by specification we mean a circuit consisting of multi-valued
gates and so computing a multi-valued function of multi-valued arguments. (A

multi-valued gate will be further referred to as a block). Boolean circuits Ny,Na
are obtained from S by encoding values of variables of S with binary codes.
After encoding the values of the input and output variables of a block G, the
obtained multi-output Boolean function can be implemented by a Boolean sub-
circuit. Circuits Ny,Ny are obtained from S by replacing each block G of S with
Boolean sub-circuits I; (G) and I>(G) respectively. The formula F' is satisfiable if
and only if N; and N, are not equivalent. The parameter p bounds the number
of gates in implementations of a block G of S. (L.e. each implementation of a
block has at most p gates.)

We show that the unsatisfiability of a CNF formula F' of M (p) describing
equivalence checking of circuits N1 and N2 can be proven in general resolution
in no more than d * n * 3%7 resolution steps. Here, d is a constant and n is the
number of blocks in a common specification S of N1 and N2. So, if the value of
p is fixed, the formulas of M (p) have linear size proofs in the formula length.
(We will further refer to these proofs as specification guided ones.) On the other
hand, the maximal length (number of literals) of resolvents one has to deduce
in those proofs is bounded by 6 * p. So if p is fixed, the length of resolvents is
bounded by a constant and there is a trivial deterministic algorithm that solves
all the formulas from M(p) in polynomial time. This algorithm just derives all
the possible resolvents whose length does not exceed a threshold. If no empty
clause is derived the algorithm just increases the threshold by 1 and repeats
derivation of resolvents. We show that given a value r, there is always p’ such
that in a specification guided proof of the unsatisfiability of a formula from M (p')
one has to produce a clause of length r. This means (see Section 4) that the order
of the polynomial bounding the runtime of this trivial deterministic algorithm
is a monotonic increasing function of p. So the gap between the complexity of
nondeterministic proofs and that of this trivial deterministic algorithm widens
as the value of p grows.

Since formulas of M (p) have linear complexity in general resolution and ap-
pear to be hard for deterministic algorithms they can be used to gauge the
performance of resolution based SAT-solvers. Of course, in this paper we just
show that formulas of M (p) are hard (from a practical point of view) for a trivial
deterministic algorithm. However, there is a reason to believe that these formu-
las are hard for any deterministic algorithm. Let us assume that specification
guided resolution proofs are “significantly” shorter (at least for some classes of
specifications) than any other resolution proofs. On the one hand, a specifica-
tion guided proof of the unsatisfiability of a formula F' from M (p) describing
equivalence checking of N; and N, closely follows the topology of a common
specification S of N; and N,. So knowing a short proof of unsatisfiability for F’
one could recover S from N7 and N5 . On the other hand, the problem of finding
a common specification of N1 and N> appears to be hard (most likely NP-hard).

In this paper we give some experimental evidence that the class M(p) is
indeed hard for existing SAT-solvers. Namely, we test the performance of state-
of-the-art SAT-solvers 2clseq [1], Zchaff [8], BerkMin [6] and show that their
performance quickly degrades as the size of parameter p grows.

2 Formal definition of class M (p)

In this section, we specify the class of formulas we consider in this paper.

2.1 Definition of Specification and Implementation

In this subsection, we introduce the notion of a specification and its implemen-
tation that play a key role in the following exposition.

Let S be a combinational circuit of multi-valued gates specified by a directed
acyclic graph H. The circuit S will be further referred to as a specification.
The sources and sinks of H correspond to primary inputs and outputs of
S. Each internal node of H corresponds to a multi-valued gate further referred
to as a block. A block is a device computing a multi-valued function of multi-
valued arguments (like a “regular” gate computes a Boolean function of Boolean
arguments.) Let n; and ny be nodes of H connected by an edge directed from n,
to n2. Then in the specification S the output of the block G; corresponding to
ny (or the primary input corresponding to n, if n; is a source of H) is connected
to an input of the block G2 corresponding to ns. Each node n of H is associated
with a multi-valued variable V. If n is a source (respectively a sink) of H then
the corresponding variable specifies values taken by the corresponding primary
input (respectively primary output) of S. If n is an internal node of H (i.e. it
is neither a source nor a sink) than the corresponding variable (also called an
internal variable) specifies values taken by the output of the block specified by
n. Let G be the block of S specified by a node n of H. We will use the notation
C = G(A4, B) to indicate that a) the output of the block G is associated with
a variable C; b) the function computed by the block G is G(4, B); ¢) only two
nodes of H are connected to the node n in H by edges directed to n and these
nodes are associated with variables A and B.

Denote by D(A) the domain of the variable A associated with a node of H.
The number of values taken by A i.e. the value |[D(A)| is called the multiplicity
of A. If the multiplicity of each variable A associated with a node of H is equal
to 2 then S is a Boolean circuit.

Henceforth, by a variable A of a specification S we will mean the variable
associated with a node of the graph H. Let D(A) = {ai,...,a;} be the domain
of a variable A of S. Denote by ¢(A) a Boolean encoding of the values of D(A)
that is a mapping q : D(A) — {0,1}" . Denote by length(g(A)) the number of
bits in the encoding ¢ (that is the value of m). The value ¢(a;), a; € D(A) is
called the code of a;. Given an encoding g of length m of a variable A, denote by
v(A) the set of all m coding Boolean variables that is the variables specifying
the Boolean space of codes for the values of A.

In the following exposition we make the assumptions below.

Assumption 1 Each block of a multi-valued and each gate of a Boolean circuit
has two inputs and one output.

Assumption 2 For each variable A of any specification, |D(A)| is a power of
2.

Assumption 3 For each variable A of any specification S, a minimal length
encoding is used. That is length(q(A)) = log2(|D(4)]).

Assumption 4 Any two different values of a variable A of S have different
codes. That is if a;,a; € D(A)and a; # a; then q(a;) # q(a;).

Remark 1. From Assumption 2 and Assumption 3 it follows that for each vari-
able A of any specification, any encoding g : D(A) — {0,1}™ is bijective. In
particular, any assignment to the variables of v(A) is a code of some a; € D(A).

Now we describe how a Boolean circuit NV is obtained from a specification S.

Definition 1. Denote by Inp(I) (respectively Out(I)) the set of primary input
(respectively primary output) variables of a Boolean circuit I.

Definition 2. Let X; and X2 be sets of Boolean variables and Xo C X1. Let y
be an assignment to the variables of X1. Denote by proj(y, X2) the projection
of y on X5 i.e. the part of y that consists of assignments to the variables of X5.

Definition 3. Let C = G(A, B) be a block of specification S. Let q(A),q(B),q(C)
be encodings of variables A,B, and C respectively. A Boolean circuit I is said to
implement the block G if the following three conditions hold:

1. The set Inp(I) is a subset of v(A) Uv(B).

2. The set Out(I) is equal to v(C).

3. If the set of values assigned to v(A) and v(B) form codes q(a) and q(b)
respectively where a € D(A), b € D(B), then I(2') = q(c) where ¢ = G(a,b).
Here, 2' is the projection of assignment z = q(a),q(b) on Inp(I) and I(z')
is the value taken by I at 2'.

Remark 2. If Inp(I) = v(A) U v(B), then the third condition above just says
I(g(a), q(b)) = q(c). However, in general, one can implement a block G of S with
a circuit having fewer input variables than |v(A)| + |v(B)| (because the output of
the block G may take the same value for different assignments to variables A,B).
This is why we used the notion of projection to define block implementation.

Definition 4. Let S be a specification. A Boolean circuit N is said to imple-
ment a specification S, if it is built according to the following two rules.

1. Fach block G of S is replaced with an implementation I of G.

2. Let the output of block C = G1(A,B) of S be connected to the input C
of a block G2(C, D). Then the outputs of the circuit I} implementing G
are properly connected to inputs of circuit Iy implementing Gs. Namely, the
primary output of I specified by a Boolean variable v; € v(C) is connected
to the input of Iy specified by the same variable, if v; € Inp(l2).

Let N be an implementation of a specification S. From Remark 1 it follows
that for any value assignment y to the primary input variables of N there is a
unique set of values (z1,. . .,z), where z; € D(X;) such that y=(g(z1),- .. ,q(zx))-
In other words there is one-to-one correspondence between assignments to pri-
mary inputs of S and N.

Definition 5. Let N be an implementation of S. Given a Boolean vector y of as-
signments to the primary inputs of N, the corresponding vector Y = (z1,..., k)
such that y = (q(x1),.-.,q(zx)) is called the pre-image of y.

Definition 6. The topological level of a block G in a circuit S is the length
of the longest path going from a primary input of S to G. (The length of a path
is measured in the number of blocks on it. So, the topological level of a primary
input is 0.) Denote by level(G) the topological level of G in S.

Proposition 1. Let N be a circuit implementing specification S. Let y be a
value assignment to the primary input variables of N and Y be the pre-image
of y. Then, for any variable C of S, the values assigned to variables v(C) in N
form the code q(c) where c is the value taken by variable C' when the inputs of
S take the values specified by Y.

Proof. The proposition can be proven by induction in topological levels of vari-
ables of the specification S.

Base step. The correctness of the theorem for the variables with topological
level 0 (that is primary input variables of S) follows from Remark 1.

Induction step. Let C' be a variable of S and level(C) = n, n > 1. The
induction hypothesis is that the proposition holds for all the variables of S with
topological level less than n. Let G(A, B) be the block of S whose output is
associated with C. Let I(G) be the implementation of G in N. Obviously, the
topological level of A and B is less than n. Then under the assignment y to the
primary inputs of N the variables v(A) and v(B) take values g(a) and ¢(b). Here,
a and b are the values taken by A and B under the assignment Y to primary
inputs of S. Then from Definition 3 it follows that the value taken by the outputs
of I(@G) is q(c) where c = G(a,b). O

Proposition 2. Let Ny, N2 be circuits implementing a specification S. Let each
primary input (or output) variable @ have the same encoding in N1 and Na. Then
Boolean circuits N1 and N> are functionally equivalent.

Proof. Let y be an arbitrary assignment of values to the variables of N; and
Ns. Let us prove that all the corresponding primary outputs of N; and N,
take identical values. Denote by Y; and Y; the pre-images of y with respect
to encodings of variables of S used when obtaining implementations N; and
Ns. Since N; and N> have identical encodings of corresponding primary input
variables, then Y;= Y>. Let C' be the primary output variable of S associated
with a block G. Denote by c the value taken by the output of G under the input
assignment Y7 (or Y2). From Definition 3 it follows that the value assignment
taken by the outputs of the implementation I3 (respectively I) of the block
G in the circuit Ny (respectively N2) is ¢1(c) (respectively g2(c)). Since all the
primary output variables have the same encoding, then ¢ (c)=g2(c). O

Definition 7. Let N1, Ny be two functionally equivalent Boolean circuits im-
plementing a specification S. Let for each primary input and output variable X
of S, encodings q1(X) and q2(X) (used when producing N1 and N» respectively)
be identical. Then S is called a common specification (CS) of N1 and Ns.

Definition 8. Let S be a CS of N1 and N>. Let the mazimal number of gates
in an implementation of a block from S in N1 and N2 be equal to p. Then we
will say that S is a CS of N1 and Ny of granularity p.

2.2 Equivalence checking as satisfiability problem
In this subsection, we introduce the class M (p) that is considered in this paper

Definition 9. A disjunction of literals of Boolean variables not containing more
than one literal of the same variable is called a clause. A conjunction of clauses
is called a conjunctive normal form (CNF).

Definition 10. Given a CNF F, the satisfiability problem (SAT) is to find
a value assignment to the variables of F' for which F' evaluates to 1 (also called
a satisfying assignment) or to prove that such an assignment does not exist.
A clause C of F is said to be satisfied by a value assignment if a literal of C
is set to 1 by this assignment.

The standard conversion of an equivalence checking problem into an instance
of SAT is performed in two steps. Let N1 and N2 be two Boolean circuits to be
checked for equivalence. In the first step, a circuit M called a miter [5] is formed
from N; and N,. The miter M is obtained by 1) identifying the corresponding
primary inputs of N; and N»; 2) adding d two-input XOR gates (where d is the
number of primary outputs in N7 and N»), each XOR gate being fed by the j-th
primary outputs of N; and Ny, 1 < j < d; 3) adding a d-input OR gate, inputs
of which are connected to the outputs of the d XOR gates. So the miter of N;
and N evaluates to 1 if and only if for some input assignment a primary output
of N; and the corresponding output of Ny take different values. Therefore, the
problem of checking the equivalence of N1 and N; is equivalent to testing the
satisfiability of the miter of N; and Nj.

In the second step of conversion, the satisfiability of the miter is reduced
to that of a CNF formula F'. This formula is a conjunction of CNF formulas
Fi,..., F, specifying the functionality of the gates of M and a one-literal clause
that is satisfied only if the output of M is set to 1. A CNF F; specifies a gate
g; of M if and only if each assignment satisfying F; is consistent with the func-
tionality of g; and each assignment falsifying a clause of F; is inconsistent with
the functionality of g;. For instance, the AND gate y=z122 is specified by the
following three clauses Ty VZ3 Vy, 21 VY, 2 V 7.

Definition 11. Given a constant p, a CNF formula F is a member of the class
M(p) if and only if it satisfies the following two conditions.

1. F is the CNF formula (obtained by the procedure described above) specifying
the miter of a pair of funcionally equivalent circuits N1,Ns.
2. N1,Ns have a CS of granularity p', where p' < p.

3 Solving formulas of M (p) in general resolution

In this section, we show that the unsatisfiability of formulas from M (p) can be
proven in general resolution in a linear number of resolution steps.

Definition 12. Let K and K' be clauses having opposite literals of a variable =
and there is only one such variable. The resolvent of K , K’ in x is the clause
that contains all the literals of K and K' but the positive and negative literals of
z. The operation of producing the resolvent of K and K' is called resolution.

Definition 13. General resolution is a proof system of propositional logic
that has only one inference rule. This rule is to resolve two existing clauses to
produce a new one. Given a CNF formula F, the proof of unsatisfiability of F' in
the general resolution system consists of a sequence of resolution steps resulting
in the derivation of an empty clause (i.e. a clause without literals).

Definition 14. Let F' be a set of clauses. Denote by supp(F) the support of F
i.e. the set of variables whose literals occur in F'.

The following three propositions are used in the proof of Proposition 6.

Proposition 3. Let A,B,C be Boolean functions and AANB — C. (The symbol
— means implication.) Then for any function A' such that A' — A, it is true
that A" AB — C.

Proof. The proof follows from the definition of implication.

Proposition 4. Let Xy and X» be sets of Boolean variables, F(X1,X2) and
H(Xs) be CNF formulas, and F imply H. Then one can derive a CNF for-
mula H' implying H, where supp(H') C supp(H), from clauses of F' in at most
3lsupp(F)| pesolution steps.

Proof. Let H = C1 A...ACy. We show that for any C;,1 < i < k one can derive
a clause C} (by resolving clauses of F') such that C] implies C;. Then the CNF
formula H' = C{ A ... A C}, implies H.

Since C; is a clause of H and F implies H, then F' implies C;. Then from the
completeness of resolution it follows that by resolving clauses of F' one can derive
a clause C] implying C;. Indeed, by making the assignments setting the literals
of C; to 0, we turn F into an unsatisfiable CNF formula F’'. Then an empty
clause can be derived from clauses of F'. From a derivation of an empty clause
from F', one can easily construct the derivation of a clause C] (from clauses
of F) implying C;. The total number of resolvents that can be obtained from
clauses of F' is bounded by 3!5upP(F)l, So all the clauses of H' can be obtained
in no more than in 3/5“PP(F)| resolution steps.

Definition 15. Let G be a block of S, I and Is be the implementations of G
in N1 and Ny and C be the multi-valued variable associated with the output of
G. A set of clauses R(v1(C),v2(C)) is called a restricting set for the block G
if the following two conditions hold:

1. The support of R(vi(C),v2(C)) is a subset of v1(C) Uwva(C) (here, v1(C),
v2(C) are the coding variables of encodings q1 and g for the values of C).

2. Let 21,22 be assignments to the variables of v1(C) and vy (C) respectively.
An assignment (21, z2) satisfies R(v1(C),v2(C)) if and only if 21 = q1(c) and
22 = q2(c) where ¢ € D(C)).

Proposition 5. Let S be a CS of circuits N1, N2. Let C = G(A, B) be a block of
S. Let F' be the CNF formula specifying the miter of N1, Na. Let F(I1(G)) and
F(I5(G)) be the parts of F' specifying the implementation I (G) and I2(G) respec-
tively. Then the CNF P = Restriction A Implementation implies R(v1(C), v2(C)).
Here, Restriction = R(v1(A),v2(A)) A R(vi(B),v2(B)) and Implementation =
F(I.(G)) A F(Ix(G)).

Proof. To prove that P implies R(v1(C),v2(C)) one needs to show that any as-
signment satisfying P satisfies R(v1(C),v2(C)) as well. It is not hard to see
that the support of all CNFs of the expression P — R(v1(C),v2(C)) is a
subset of supp(F(I1(G))) U supp(F(L2(GR))). Let h = (z1,22,91,Y2,21,22) be
an assignment satisfying P where 1,22,y1,y2,21,22 are assignments to v;(4),
v (A),v1 (B),v2(B),v1(C),v2(C) respectively. Since h satisfies P it has to satisfy
Restriction and Implementation. Since h satisfies Restriction, then z1 = ¢ (a),
z2 = g2(a) and y; = q1(b), y2 = ¢q2(b) where a € D(A) and b € D(B). So h can be
represented as (g1(a), g2(a),q1 (b), g2(b),21, 22). Since h satisfies Implementation
then z; has to be equal to g1(c), ¢ = G(a,b) and 2, has to be equal to g2(c).
Hence h satisfies R(v1(C),v2(C)). O

Proposition 6. Let F be a formula of M(p) specifying the miter of circuits
N1, N> obtained from a CS S of granularity p' where p' < p. The unsatisfiability
of F' can be proven by a resolution proof of no more than d x n x 3P resolution
steps where n is the number of blocks in S and d is a constant. (These proofs
will be further referred to as specification guided proofs).

Proof. From Proposition 5 it follows that one can deduce a restricting set of
clauses for each variable of S in topological order starting with blocks of topo-
logical level 1 and proceeding to outputs. Indeed, if a variable A is a primary
input variable of S, then R(v1(A),v2(A)) is empty. (The latter is true because,
since S is a CS of N; and N3, then ¢;(A) and ¢2(A) are identical and, besides,
variables v; (A) and v2(A) in a miter are identified.) Let C = G(4, B) be a block
of topological level 1. Then A and B are primary input variables and restricting
sets of clauses for them are known (namely, they are empty). From Proposition 5
it follows that R(vy(C),v2(C)) is implied by F(I1(G)) U F(I5(G)). From Propo-
sition 4 it follows that a CNF R’ formula implying R(v;(C),v2(C)) such that
supp(R') C supp(R) can be derived by resolving clauses of F(I1(G))UF (I, (Q)).
From Proposition 3 it follows that replacing CNF formula R(v1(C), v2(C)) with
a CNF R' that implies R does not break the inductive scheme of deducing re-
stricting sets in topological order. After restricting CNFs are computed for the
variables of topological level 1, the same procedure can be applied to variables
of topological level 2 and so on.

The complexity of the derivation of a restricting set R(vi(A),v2(A)) is 3°P.
Indeed, the support of all CNF's forming the expression of Proposition 5 is a
subset of supp(F (I1(G))) U supp(F(I2(G))) where G is the block whose output
is associated with the variable A. The number of gates in each implementation
is bounded by p. Besides, each gate has two inputs and one output. So, the
total number of variables in the clauses used when deriving R(v;(A),v2(A4)) is
at most 6 * p. Hence the complexity of derivation is bounded by 3%7. Since the
total number of blocks in S in n, then the complexity of deriving restricting sets
for all the variables of S is bounded by n * 367,

Now we show that after restricting sets are deduced for all the primary out-
put variables of S, an empty clause can be derived in the number of resolution
steps that is linear in n x p. Let G be a block of S whose output (associated with
variable C') is a primary output of S. From the definition of the class M (p) it fol-
lows that the encodings ¢; (C') and ¢2(C) are identical and have minimal length.
According to Remark 1 any assignment to the variables of v1 (C) (or v2(C)) is a
code of a value ¢ € D(C). Then any assignment h satisfying R(v1(C),v2(C)) has
to assign the same values to corresponding variables of v1(C) and v2(C). This
means that R(v1(C),v2(C)) implies 2-literal clauses specifying the equivalence
of corresponding variables of v;(C) and v2(C). Then these 2-literal equivalence
clauses can be deduced from R(v;(C),v2(C)) in the number of resolution steps
bounded by 3%P. (These steps are already counted in the expression n * 357).
Having deduced these equivalence clauses one can derive |v1(C))| single literal
clauses (each variable representing the output of a gate XORing a pair of corre-
sponding outputs of I; and I») that can be satisfied only by setting outputs of
XOR gates to 0. The number of such clauses is bounded by n * p and the com-
plexity of the derivation of such a clause is bounded by a constant. Finally, in
the number of resolution steps bounded by n * p we can derive the empty clause.
It is deduced from the single-literal clause that requires setting the output of the
miter to 1, the clauses specifying the last OR gate, and the single-literal clauses
that require setting the outputs of the XOR gates to 0. O

Remark 3. If the value of p is fixed, then the expression 3% is just a constant
and so the formulas of M (p) can be proven to be unsatisfiable in a linear number
of resolution steps.

Proposition 7. Given a number r, there is always p such that in a specification
driven resolution proof of unsatisfiability of a formula F € M(p) one has to
produce a clause of at least r literals.

Proof. Let C = G(A, B) be a block of a specification S and N; and Ny be
circuits with a CS S. Let ¢; (C), g2(C) be the binary encodings of the variable C'
used when obtaining N; and N,. Let F' be the formula specifying the miter of
N; and N,. The key feature of a specification guided resolution proof is that it
deduces restricting sets of clauses. To prove the required proposition it suffices
to show that for any r there are always binary encodings g1 (C), g2(C') such that
any restricting set of clauses R(v1(C), v2(C)) has to contain a clause of at least r
literals. Then in any specification guided resolution proof of the unsatisfiability

of F' one has to produce a clause of at least r literals. Since S is finite, there
exists p such that F is in M (p).

Let C=G(A,B) be a block of a specification S and level(C') = 1. Assume
that the multiplicity of variables A,B and C is 2". Let I (G) and I>(G) be two
implementations of G where q;(A) = g2(A) and ¢;(B) = g2(B) and the variable
C is encoded with two different r-bit encodings. Now we show that there is
a pair of encodings ¢;(C) and g»(C) such that any restricting set of clauses
R(v1(C),v2(C)) has to include a clause of at least r literals

Denote by Z the vector whose all 7 components are equal to 0. Denote by
B; the vector of r components i-th component of which is equal to 1 and the
rest of the components are equal to 0. Let cg,..., ¢, be the values of C' where
m = 2" —1. Let ¢:(C) and ¢2(C) be picked in such a way that the following
two conditions hold:

1) The codes for ci,...,c, are chosen as follows: ¢i(c1)=g2(¢1)=Bi, ...,
a1(ci)=q2(ci)=Bi, - .., q(cr)=q2(cr)=Br.

2) Encodings ¢; and g» assign the code Z to different values of C. In other
words, there are c;,c, € D(C), where j,p > r such that ¢1(¢;) = Z, g2(c;) # Z
and g2(cp) = Z, q1(cp) # Z and j # p.

Let us show that among the clauses of R(v1(C),v2(C)) there has to be a
clause of at least r literals. When the output of I (G) is equal to Z the output of
I,(G) cannot be equal to Z. So in any restricting set R(v1(C), v2(C)) there must
be a clause K falsified by the vector Z,Z (obtained by the concatenation of two
vectors Z.) Let us show that any clause of R(v1(C), v2(C)) that is falsified by Z,Z
has to contain at least r literals. The idea is that if a clause K contains less than r
literals, then it falsifies one of the allowed combinations B;,B; wherei =1,...,k.
Indeed, to be falsified by Z,Z the clause should contain only positive literals of
variables ¢1(C), ¢2(C). Let z be a positive literal contained in K. Any two
allowed combinations B;,B; and B;,B; where i # j have different components
that are equal to 1. Hence only one of the allowed combinations B;,B; can set
the literal z to 1. So if the clause C' contains less than r literals than there exists
an allowed combination B;,B; that falsifies K. O

4 Class M(p) and non-automatizability of general
resolution

It is not hard to show that if p is fixed, the unsatisfiability of a formula F' from
M (p) can be proven by a polynomial time deterministic algorithm. Indeed, from
the proof of Proposition 6 it follows that the maximal length of a resolvent one
needs to derive when producing an empty clause is bounded by 6xp. So an empty
clause can be obtained by the following trivial algorithm. This algorithm derives
all the resolvents whose length does not exceed a threshold value. (Initially, this
value is equal to 1.) If an empty clause is not derived, the algorithm increases
the threshold value by 1 and derives all the resolvents whose length does not
exceed the new threshold value. As soon as the threshold value reaches 6 * p,
the algorithm deduces an empty clause, and since the value of p is fixed, the

algorithm completes in polynomial time (in formula length). From Proposition 7
it follows that the order of the polynomial bounding the performance of the
described algorithm is a monotonic increasing function of p. (Indeed, according
to Definition 11 if p’ < p"', then M (p') C M (p"). Denote by L(p) the length of the
longest clause one has to deduce in a specification guided proof of a formula from
M (p). Then L(p') < L(p"). From Proposition 7 it follows that the value of L(p)
actually increases as p grows.) So even though the class M(p) is polynomially
tractable for every fixed p, the complexity of the described algorithm increases
as p grows, which makes it impractical.

Due to polynomial tractability, formulas from M (p) cannot be used for prov-
ing general resolution to be non-automatizable. (Recall that a proof system is
non-automatizable if there is no algorithm for finding proofs whose length is a
polynomial of the length of the shortest proof.) However, one can form harder
classes of formulas by letting the parameter p be a function of formula length
L. Denote by M(co) the union of classes M(p) for all p. Let M (p < t xlog2(L))
be a class of formulas from M(oo) for which the value of p is bounded by the
value of t * loga(L) where ¢t is a constant. (So the value of p “slowly” grows as
the length of the formula increases.) Since for a formula from M (p) there is a
resolution proof whose length is bounded by d*n x3%P, then the size of resolution
proofs for the formulas from M (p < txlog2(L)) is bounded by L'?!. That is these
formulas have polynomial size resolution proofs of unsatisfiability. On the other
hand, since the value of p is not fixed, the length of resolvents one has to derive
for the formulas of M(p < t *xloga(L)) is not bounded any more. So there is no
trivial polynomial time deterministic algorithm like the one described above for
solving formulas from M (p < t * loga(L)).

A natural question is whether there is a better deterministic algorithm for
solving formulas from a class M (p) or harder classes that can be derived from
M (o). We believe that the answer is negative unless at least one of the following
two assumptions does not hold. The first assumption is that, given circuits Ny, N
having a CS S, finding S is hard. (In particular, the problem of testing if a
pair of circuits has a CS of granularity less or equal to p is most probably
NP-complete.) The second assumption is that specification guided proofs are
the only short resolution proofs for a class of formulas from M(p). Then, for a
formula of this class, the only way to find a short resolution proof is to construct
a specification guided proof. But knowing such a proof one could recover the
underlying specification. On the other hand, according to our first assumption
finding a CS should be hard. So, for this class of formulas there should not be
an efficient algorithm for finding short resolution proofs.

5 Experimental results

The goal of experiments was to prove that formulas of M (p) are hard for existing
SAT-solvers and that the hardness of formulas increases as p grows. Namely,
we would like to test for satisfiability formulas from classes M (p') and M (p")
where p' < p'" and show that formulas from M (p") are much harder. The main

problem here is to guarantee that the formulas of M (p") we build are not in
M(p'). (That is one needs to make sure that circuits with a CS of granularity
p < p" whose equivalence checking a formula from M (p"') describes, do not have
a “finer” CS whose granularity is less or equal to p'.) We solve this problem
by constructing formulas of classes M (1) and M(p),p > 1 and using the fact
that proving that a formula of M (p),p > 1 is not in M (1) is easy. (Of course,
generating formulas with a greater variety of values of p will make experimental
results more convincing. We hope that such experiments will be carried out in
the near future.)

To construct formulas of M (1) we just form the miter of two identical copies
Ni,N; of a Boolean circuit N. These two copies can be considered as obtained
from the “specification” N where each two-valued variable X was encoded using
the trivial encoding ¢(0) = 0, g(1) = 1. Since each block G of specification is
replaced with a “sub-circuit” consisting of one gate (identical to G), then the
formula F' specifying the miter is in M (1).

To construct formulas from a class M(p'), p' > 1 that are not in M(1)
we used the following observation. The fact that a formula F' is in M (1) means
that F' specifies equivalence checking of circuits N;,N» that are identical modulo
negation of some gate pins. That is if g is a gate of N; then its counterpart in No
is identical to g modulo negation of an input (or both inputs) and/or the output.
This means that each internal point y; of N; has a corresponding point y» of Ny
that is functionally equivalent to y; (modulo negation) in terms of primary input
variables. So one can obtain a formula F' that is in M(p'), p’ > 1 and not in
M (1) by producing two circuits from a specification S that have no functionally
equivalent internal points (modulo negation). This can be achieved by taking a
specification S and picking two sets of “substantially different” encodings of the
internal multi-valued variables of S

In the experiments we tested the performance of 2clseq (downloaded from [15],
Zchaff (downloaded from [13]), BerkMin (version 561 that can be downloaded
from [3]). BerkMin and Zchaff are the best representatives of the conflict driven
learning approach. The program 2clseq was used in experiments because it em-
ploys preprocessing to learn short clauses and uses a special form of resolution
called hyperresolution. The experiments were run on a SUNW Ultra-80 system
with clock frequency 450MHz. In all the experiments the time limit was set to
60,000 sec. (16.6 hours). The best result is shown in bold.

In Table 1 we test the performance of the three SAT-solvers on formulas
from M (1). Each formula describes equivalence checking of two copies of an
industrial circuit from the LGSynth-91 benchmark suite [16]. First, a circuit N
of LGSynth-91 was transformed by a logic optimization system SIS [10] into
a circuit N’ consisting only of two-input AND gates and invertors. Then the
formula specifying the miter of two copies of N' was tested for satisfiability.
BerkMin has the best performance on almost all the instances except four. On
the other hand, 2clseq is the only program to have finished all the instances
within the time limit. In particular, it is able to solve the C6288 instance (a
16-bit multiplier) in about one second while BerkMin and Zchaff fail to solve it

Table 1. Equivalence checking of circuits from M (1)

Name of|Number of(Number of|2clseq |Zchaff |BerkMin
specifica- |var. clauses (sec.) (sec.) (sec.)
tion

9symml 480 1,410 0.2 0.1 0.04
C880 806 2,237 0.1 5.4 0.5
tt62 1,385 4,069 13 03 0.1
frgl 1,615 4,759 13 0.6 0.3
term1 1,752 5,157 2.0 2.0 0.6
x4 2,083 5,929 1.5 1.1 0.3
alud 2,368 7,057 209 2.0 0.5
i9 2,477 7,105 14.3 1.0 0.3
¢3540 2,624 7,723 3.0 71.0 134
rot 2,990 8,497 21 6.1 0.9
x1 4,380 12,955 27.8 3.8 0.9
dalu 4,713 13,899 36.8 5.7 1.9
c6288 4,770 14,245 1.2 * *
frg2 5,158 14,967 17.5 6.5 1.3
c7552 5,781 16,621 4.6 327.5 83.6
k2 5,848 17,369 |406.8 |2.1 1.1
i10 6,499 18,653 31.2 2374 244
i8 7,262 21,307 207.7 8.1 2.7
t481 9,621 28,512 3,250.4 |13.1 8.7
des 14,451 [42,343 |1642 [271.7 |15.1
toolarge 29,027 86,965 8,838.9 |384.47 |162.6

“* means that the program was aborted after 60,000 seconds

in 60,000 seconds. This should be attributed to successful formula preprocessing
that results in deducing many short clauses describing equivalences of variables.

In Table 2 we test the performance of 2clseq, Zchaff, BerkMin on formulas
that are in a class M (p'),p' > 1 and not in M (1). These circuits were obtained
by the following technique. First, we formed multi-valued specifications. Each
specification S was obtained from a circuit N of the LGSynth-91 benchmark
suite by replacing each binary gate of N with a four-valued gate. (In other
words, the obtained specification S had different functionality while inheriting
the “topology” of N.) Then two functionally equivalent Boolean circuits Ny,
N> were produced from S using two “substantially different” sets of two-bit
encodings of four-valued values. This guaranteed that the internal points of Ny
had no (or had very few) functionally equivalent (modulo negation) counterparts
in Ny and vice versa. So each produced formula was not in M (1).

Tt is not hard to see that the performance of all three SAT-solvers is much
worse regardless of the fact that each formula of Table 2 is only a few times
larger than its counterpart from Table 1. Namely, the number of variables in
each formula of Table 2 is only two times and the number of clauses is only four

times that of its counterpart from Table 1. Such kind of performance degradation
is not unusual for formulas having exponential complexity in general resolution.
However, all the formulas we used in experiments are in M(p') (class M(1)
is a subset of any class M(p'), p' > 1) that has linear complexity in general
resolution.

2clseq is able to solve only three instances, which indicates that preprocessing
that helped for the instances of M (1) does not work for M(p'),p' > 1. The
probable cause is that “useful” clauses are longer than for formulas of M (1).
BerkMin shows best performance on the instances of Table 2. Nevertheless it fails
to solve five instances and is much slower on instances that it is able to complete.
For example, BerkMin solves the instance dalu from M (1) in 1.6 seconds while
testing the satisfiability of its counterpart from M (p'),p’ > 1 takes more than
20,000 seconds. These results suggest that indeed formulas M (p) are hard for
existing SAT-solvers and the “hardness” of formulas increases as p grows.

Table 2. Equivalence checking of circuits from M(p'),p’ > 1

Name of|Number |Number of|2clseq Zchaff BerkMin
specifica- |of var. clauses (sec.) (sec.) (sec.)
tion
9symml 960 6,105 206.3 210.6 58.2
C880 1,612 9,373 * * 200.1
ttt2 2,770 17,337 * 799.4 77.2
frgl 3,230 20575 | * 3,602.4
terml 3,504 22,229 * * 1,183.6
x4 4,166 24,733 * 769.5 139.0
alu4 4,736 30,465 45,653.5 |25,503.6 |2,372.6
i9 4,954 29,861 2,215.5 23.5 11.5
3540 5,248 33,199 * * 4,172.0
rot 5,980 35,229 * * 1,346.9
x1 8,760 55,571 * * *
dalu 9,426 59,991 * * 20,234.4
c6288 9,540 61,421 * * *
frg2 10,316 62,943 * 7,711.0 1,552.9
c7552 11,282 69,529 * 803.5 74.5
k2 11,680 74,581 * * *
i10 12,998 77,941 * * 38,244.6
i8 14,524 [91,139 |* 35,721.5 |4,039.7
t481 19,042 123,547 * * *
des 28,902 179,895 |* 1,390.3 331.1
too_large |58,054 376,801 |out of |* *
memory

“* means that the program was aborted after 60,000 seconds

6

Conclusions

We introduced a class M(p) of formulas specifying equivalence checking of Boo-
lean circuits obtained from the same specification. If the value of p is fixed,
the formulas of M(p) can be proven to be unsatisfiable in a linear number of
resolution steps. On the other hand, the formulas of M (p) can be solved in a
polynomial time by a trivial deterministic algorithm but the order of the polyno-
mial increases as the value of p grows. We give reasons why formulas from M (p)
should be hard for any deterministic algorithm. We show that formulas of M (p)
are indeed hard for the state-of-the-art SAT-solvers we used in experiments.

References

1.

w

10.

11.

12.

13.

14.

15.
16.

F.Bacchus. Ezploring the computational tradeoff of more reasoning and less search-
ing. Fifth International Symposium on Theory and Applications of Satisfiability
Testing, pages 7-16, 2002.

E.Ben-Sasson, R. Impagliazzo, A.Wigderson. Near optimal separation of Treelike
and General resolution SAT-2000: Third Workshop on the Satisfiability Problem.
- May 2000.

BerkMin web page. http://eigold.tripod.com/BerkMin.html

M.Bonet, T.Pitassi, R.Raz. On interpolation and automatization for Frege Sys-
tems. SIAM Journal on Computing, 29(6),pp 1939-1967,2000.

D. Brand. Verification of large synthesized designs. Proceedings of ICCAD-1993,pp
534-537.

E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. Design, Au-
tomation, and Test in Europe (DATE ’02), pages 142-149, March 2002.

A. Haken. The intractability of resolution. Theor. Comput. Sci. 39 (1985),297-308.
M. Moskewicz, C. Madigan, Y. Zhao, L.Zhang, and S.Malik.Chaff: Engineering an
efficient SAT-solver. Proceedings of DAC-2001.

M. Alekhnovich, A.Razborov. Resolution is not automatizable unless W[p] is
tractable. Proceedings of FOCS,2001.

Sentovich, E. e.a. Sequential circuit design using synthesis and optimization. Pro-
ceedings of ICCAD, pp 328-333, October 1992.

J.P.M.Silva, K.A .Sakallah. GRASP: A Search Algorithm for Propositional Satisfi-
ability . IEEE Transactions of Computers. -1999. -V. 48. -P. 506-521.

G.S.Tseitin. On the complexity of derivations in propositional calculus. Stud-
ies in Mathematics and Mathematical Logic. Part II (Consultants Bureau, New
York/London, 1970) 115-125.

Zchaff web page. http://ee.princeton.edu/~chaff/zchaff.php

H.Zhang. SATO: An efficient propositional prover. Proceedings of the International
Conference on Automated Deduction. -July 1997. -P.272-275.

2clseq web page. http://www.cs.toronto.edu/~fbacchus/ 2clseq.html.
http://www.cbl.ncsu.edu/CBL_Docs/lgs91.html

