
Partial Quantifier Elimination

Eugene Goldberg, Panagiotis Manolios

Northeastern University, USA {eigold,pete}@ccs.neu.edu

Abstract. We consider the problem of Partial Quantifier Elimination
(PQE). Given formula ∃X[F (X,Y) ∧G(X,Y)], where F,G are in con-
junctive normal form, the PQE problem is to find a formula F ∗(Y) such
that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G]. We solve the PQE problem by generat-
ing and adding to F clauses over the free variables that make the clauses
of F with quantified variables redundant in ∃X[F ∧G]. The traditional
Quantifier Elimination problem (QE) can be viewed as a degenerate case
of PQE where G is empty so all clauses of the input formula with quan-
tified variables need to be made redundant. The importance of PQE is
threefold. First, in non-degenerate cases, PQE can be solved more effi-
ciently than QE. Second, many problems are more naturally formulated
in terms of PQE rather than QE. Third, an efficient PQE-algorithm will
enable new methods of model checking and SAT-solving. We describe a
PQE algorithm based on the machinery of dependency sequents and give
experimental results showing the promise of PQE.

1 Introduction

The elimination of existential quantifiers is an important problem arising in many
practical applications. We will refer to this problem as the Quantifier Elimination
problem, or QE. Given a formula ∃X[G] where G is a propositional formula, the
QE problem is to find a quantifier free formula G∗ such that G∗ ≡ ∃X[G]. In this
paper, we assume that all propositional formulas are represented in conjunctive
normal form (CNF).

Unfortunately, the efficiency of current QE algorithms still leaves much to
be desired. This is why many successful theorem proving methods such as inter-
polation and IC3 avoid QE and use SAT-based approaches instead. The lack of
efficient QE solvers can be addressed by looking for variations of QE that are eas-
ier to solve. In this paper, we consider such a variation called Partial QE (PQE).
Given formula ∃X[F (X,Y) ∧G(X,Y)], the PQE problem is to find a quantifier
free formula F ∗(Y) such that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G]. We will say that F ∗ is
obtained by taking F out of the scope of the quantifiers. QE can be viewed
as a degenerate case of PQE where G is empty and so the entire formula is taken
out of the scope of quantifiers. In the following exposition, when contrasting PQE
and QE we mean non-degenerate instances of PQE.

An important advantage of PQE over QE is that the former is “structurally
sound”. A prototypical QE problem is to compute the range of a circuit. Let
formula G(X,Y, Z) specify a combinational circuit N where X,Y, Z are sets of
input, internal and output variables respectively. Then a formula G∗(Z) such that

G∗ ≡ ∃W [G] where W = X ∪ Y specifies the range of N . The very definition of
QE forces one to build formula G∗ by destroying the structure of G inherited from
circuit N . A prototypical PQE problem [8] is to compute reduction of range of
N when one excludes the inputs of N falsifying a formula F (X). Let F ∗(Z) be a
formula such that F ∗ ∧ ∃W [G] ≡ ∃W [F ∧G]. One can view the assignments fal-
sifying F ∗ as the outputs excluded from the range of N after the inputs falsifying
F are removed from consideration. So F ∗ describes the reduction in the range
of N caused by constraining its inputs by F . Note that computation of formula
F ∗ leaves formula G intact. Moreover, an intelligent PQE-solver will exploit the
structure of G to find F ∗ more efficiently.

Besides our interest in PQE as being “structurally sound”, our motivation for
studying PQE is twofold. First, in addition to traditional QE applications, PQE
brings in many new ones. In Subsection 2.1, we show that PQE can be used to
compute states reachable only from a specified set of states, which enables a new
class of model checkers. Subsection 2.3 gives an example of using PQE for SAT-
solving. Second, in some cases, even if the original problem is formulated in terms
of QE, it can sometimes be reduced to PQE. In Subsection 2.2, we show that this
is the case for pre-image computation in backward model checking.

The relation between efficiency of solving PQE and QE can be better under-
stood in terms of clause redundancy [7]. The PQE problem of taking F out of
the scope of quantifiers in ∃X[F ∧G] reduces to finding a set of clauses F ∗ that
makes all X-clauses of F redundant in ∃X[F ∧G]. (An X-clause is a clause that
contains a variable from X.) Then every clause of F can be either dropped as
redundant or removed from the scope of the quantifiers as it contains only free
variables.

One can view the process of building F ∗ as follows. X-clauses of F are made
redundant in ∃X[F ∧G] by adding to F resolvent clauses derived from F ∧ G.
Notice that no clause obtained by resolving only clauses of G needs to be made
redundant. Adding resolvents to F goes on until all X-clauses of the current
formula F are redundant. At this point, theX-clauses of F can be dropped and the
remaining clauses of F form F ∗. If F is much smaller than G, the process of solving
PQE looks like wave propagation where F is the original “perturbation” and G is
the “media” where this wave propagates. Such propagation can be efficient even
if G is large. By contrast, when solving the QE problem for ∃X[F ∧G] one needs
to make redundant the X-clauses of both F and G and all resolvent X-clauses
including the ones obtained by resolving only clauses of G.

In this paper, we describe a PQE-algorithm called DS-PQE that is based on
the machinery of D-Sequents [6, 7]. One needs this machinery for PQE for the
same reason as for QE [6]. Every clause of F ∗(Y) can be obtained by resolving
clauses of F ∧G. However, the number of clauses that are implied by F ∧G and
depend only on Y is, in general, exponential in |Y |. So it is crucial to identify
the moment when the set of clauses derived so far that depend only on Y is
sufficient to make the X-clauses of F redundant in ∃X[F ∧G]. The machinery of
D-sequents is used by DS-PQE to perform such identification.

The following exposition is structured as follows. In Section 2, we discuss some
problems that can benefit from an efficient PQE-algorithm. A run of DS-PQE on

a simple formula is described in Section 3. Sections 4 and 5 give basic definitions
and recall the notion of D-Sequents. In Section 6, algorithm DS-PQE is described.
Some background is given in Section 7. In Section 8, we experimentally compare
DS-PQE with our QE algorithm from [7] in the context of model checking. We
make conclusions in Section 9.

2 Some Applications of PQE

In this section, we describe some applications where using an efficient PQE solver
can be very beneficial. More applications of PQE can be found in [8–10]. Sec-
tion 2.1 shows that PQE can be used to compute the set of states reachable only
from a specified set of states, which enables a new type of model checkers [8].
In Subsection 2.2, we describe application of PQE to the traditional method of
backward model checking. Application of PQE to SAT-solving is presented in
Subsection 2.3.

2.1 Enabling a new type of model checkers

The basic operation of forward model checking is to compute the set of states
reachable from another set of states or to find its over-approximation. In this
subsection, we show that one can use PQE to compute the set of states reachable
only from a specified set of states. This enables a new type of model checkers [8]
that iteratively eliminate traces of reachable states. This elimination goes on until
a counterexample is found or the set of possible behaviors is reduced to one trace
consisting of good states. These new model checkers have a great potential in
verification of sequential circuits e.g. they can be used to find very deep bugs.

Let T (S, S′) be a transition relation where S and S′ specify the current and
next state variables respectively. We will refer to complete assignments s and s′ to
variables S and S′ as present and next states respectively. Let Cs be the longest
clause of variables of S that is falsified by s. The set of states reachable from s in
one transition is specified by formula Rs(S′) logically equivalent to ∃S[Cs ∧ T].
That is for every state s′ satisfying Rs there is a transition from state s.

Let formula H(S) specify a set of states. Let s be one of states specified by
H i.e. H(s) = 1. Now we show how to compute the subset of states specified by
Rs that consists of states reachable in one transition only from s. More precisely,
we want to exclude from Rs every state that is reachable in one transition from a
state r satisfying H and different from s. Let Qs(S′) be a CNF formula such that
Qs ∧ ∃S[H ∧ T] ≡ ∃S[Cs ∧H ∧ T]. It is not hard to show that Qs(s′) = 0 iff a)
s′ is reachable in one transition only from state s or b) s′ is not reachable from a
state specified by H in one transition. The states of item b) are just “noise” i.e.
Qs remains a solution to the PQE problem above even if it is not falsified by any
of such states. So, complete assignments falsifying Qs specify the states reachable
only from s modulo some noise. The set of states reachable only from s can be
very small even when the set of states reachable from s is huge. This important
fact is what enables the new type of model checkers mentioned above.

2.2 Computing pre-image in backward model checking

Let formula F (S′) specify a set of next-states and H(S) specify the pre-image of
F (S′). That is, a present state s satisfies H iff there exists a next state s′ such
that F (s′) ∧ T (s, s′) = 1. Here T is a transition relation.

Finding H comes down to building a formula logically equivalent to ∃S′[F ∧ T]
i.e. reduces to QE. However, one can construct the pre-image of F by PQE as
follows. Let F ∗ be a formula such that F ∗ ∧ ∃S′[T] ≡ ∃S′[F ∧ T] i.e., F ∗ is a
solution to the PQE problem. Notice that ∃S′[T] ≡ 1 and hence can be dropped.
Indeed, for every present state s there always exists some next state s′ such that
T (s, s′) = 1. So F ∗ ≡ ∃S′[F ∧ T] and therefore F ∗ specifies the pre-image of F .
In other words, here QE reduces to PQE.

2.3 SAT-solving by PQE

In this subsection, we give a method of using PQE for SAT-solving. Other methods
of applying PQE to SAT-solving can be found in [9, 10].

Testing the satisfiability of a CNF formula G(X) is equivalent to checking if
formula ∃X[G] is true. The latter problem can be viewed as a special instance
of QE where all variables are quantified. In this case, every non-empty clause of
G is an X-clause and needs to be proved redundant to solve the QE problem. If
the clauses of G are proved redundant in ∃X[G] without derivation of an empty
clause, then G is satisfiable. Otherwise, it is unsatisfiable.

Let x be a complete assignment to variables of X that falsifies G. Let F be
the set of clauses of G that are falsified by x. Formula ∃X[G] can be represented
as ∃X[F ∧G′] where G′ = G \ F . Let us consider the PQE problem of finding
formula F ∗ such that F ∗ ∧ ∃X[G′] ≡ ∃X[F ∧G′]. Since ∃X[F ∧G′] has no free
variables, F ∗ is a constant. If F ∗ ≡ 1, then the clauses of F are redundant in
∃X[F ∧G′]. In other words, G is satisfiable iff G′ is. Since x satisfies G′, the
original formula G is satisfiable as well. If F ∗ ≡ 0, then, to take F out of the
scope of quantifiers, one needs to derive an empty clause from F ∧G′ i.e. from G.
In this case, G is obviously unsatisfiable. So, to check the satisfiability of G, PQE
needs to prove only redundancy of clauses of F as opposed to proving redundancy
of all clauses of G in QE.

The PQE algorithm we present in this paper is not powerful enough to compete
with SAT-solvers yet. (One of the problems here is that D-sequents are not re-
used. A brief discussion of this topic is given in Section 8). However, this may
change soon.

3 Example

In this section, we describe a run of a PQE algorithm called DS-PQE that is
described in Section 6. DS-PQE is based on the machinery of Dependency se-
quents. The latter will be formally defined in Section 5. Recall that an X-clause
is a clause that contains at least one variable from a set X of Boolean variables.

Let F = C1∧C2 where C1 = y∨x1, C2 = y∨x3 Let G = C3∧C4∧C5∧C6 where
C3 = x1∨x2, C4 = x1∨x2, C5 = x3∨x4, C6 = y∨x4. Let X = {x1, x2, x3, x4} be
the set of variables quantified in formula ∃X[F ∧G]. So y is the only free variable
of ∃X[F ∧G].

Problem formulation. Suppose one needs to solve the PQE problem of taking
F out of the scope of the quantifiers in ∃X[F ∧G]. That is one needs to find F ∗(y)
such that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G]. Below, we describe a run of DS-PQE when
solving this problem.

Fig. 1. The search tree built
by DS-PQE

Search tree. DS-PQE is a branching algorithm.
It first proves redundancy of X-clauses of F in sub-
spaces and then merges results of different branches.
When DS-PQE returns to the root of the search
tree, all the X-clauses of F are proved redundant
in ∃X[F ∧G]. The search tree built by DS-PQE is
given in Figure 1. It also shows the nodes where new
clauses C7 and C8 were derived. DS-PQE assigns free
variables before quantified. So, variable y is assigned
first. At every node of the search tree specified by as-
signment q, DS-PQE maintains a set of clauses de-
noted as PR(q). Here PR stands for “clauses to Prove
Redundant”. We will refer to a clause of PR(q) as a
PR-clause. Adding a clause to PR(q) is an obliga-
tion to prove redundancy of this clause in subspace

q. PR(q) includes all X-clauses of F plus some X-clauses of G. The latter are
proved redundant to make proving redundancy of X-clauses of F easier. Sets
PR(q) are shown in Figure 3. For every non-leaf node of the search tree, two
sets of PR-clauses are shown. The set on the left side (respectively right side) of
node q gives PR(q) when visiting node q for the first time (respectively when
backtracking to the right branch of node q).

Fig. 2. Derived D-sequents

Using D-sequents. The main concern of DS-PQE is
to prove redundancy of PR-clauses. Branching is used
to reach subspaces where proving redundancy is easy.
The redundancy of a PR-clause C is expressed by a
Dependency Sequent (D-sequent). In short notation,
a D-sequent is a record s → {C} saying that clause
C is redundant in formula ∃X[F ∧G] in any subspace
where assignment s is made. We will refer to s as the
conditional part of the D-sequent. The D-sequents
S1, . . . , S7 derived by DS-PQE are shown in Figure 2.
They are numbered in the order they were gener-
ated. So-called atomic D-sequents record trivial cases
of redundancy. More complex D-sequents are derived
by a resolution-like operation called join. When DS-
PQE returns to the root, it derives D-sequents stating
the unconditional redundancy of the X-clauses of F .

Merging results of different branches. Let v be the current branching variable
and v = 0 be the first branch explored by DS-PQE. After completing this branch,
DS-PQE proves redundancy of all clauses that currently have the PR-status. (The
only exception is the case when a PR-clause gets falsified in branch v = 0. We
discuss this exception below.) Then DS-PQE explores branch v = 1 and derives D-
sequents stating redundancy of clauses in this branch. Before backtracking from
node v, DS-PQE uses operation join to produce D-sequents whose conditional
part does not depend on v. For example, in branch y = 0, D-sequent S1 equal
to (y = 0) → {C2} was derived. In branch y = 1, D-sequent S5 equal to (y =
1) → {C2} was derived. By joining S1 and S5 at variable y, D-sequent S7 equal
to ∅ → {C2} was produced where the conditional part did not depend on y.

Derivation of new clauses. Proving redundancy of PR-clauses in subspace y =
0 required derivation of clauses C7 = x1 and C8 = y. For instance, clause C7

was generated at node (y = 0, x1 = 1) by resolving C3 and C4. Clause C7 was
temporarily added to F to make PR-clauses C3 and C4 redundant at the node
above. However, C7 was removed from formula F after derivation of clause C8

because the former is subsumed by the latter in subspace y = 0. This is similar
to conflict clause generation in SAT-solvers where the intermediate resolvents are
discarded.

Fig. 3. Dynamics of the
PR(q) set

Derivation of atomic D-sequents. S1, . . . , S5 are
the atomic D-sequents derived by DS-PQE. They
record trivial cases of redundancy. (Due to the sim-
plicity of this example, the conditional part of all
atomic D-sequents has only assignment to y i.e., the
free variable. In general, however, the conditional
part of a D-sequent also contains assignments to
quantified variables.) There are three kinds of atomic
D-sequents. D-sequents of the first kind state redun-
dancy of clauses satisfied in a subspace. For instance,
D-sequent S1 states redundancy of clause C2 satisfied
by assignment y = 0. D-sequents of the second kind

record the fact that a clause is redundant because some other clause is falsified
in the current subspace. For instance, D-sequent S2 states that C1 is redundant
because clause C8 = y is falsified in subspace y = 0. D-sequents of the third kind
record the fact that a clause is redundant in a subspace because it is blocked [15]
at a variable v. That is this clause cannot be resolved on v. For example, D-
sequent S4 states redundancy of C5 that cannot be resolved on x4 in subspace
(y = 1, x3 = 1). Clause C5 is resolvable on x4 only with C6 but C6 is satisfied by
assignment y = 1. Atomic D-sequents are further discussed in Subsection 6.3.

Computation of the set of PR-clauses. The original set of PR-clauses is equal
to the the initial set of X-clauses of F . Denote this set as PRinit . In our example,
PRinit = {C1, C2}. There are two situations where PR(q) is extended. The first
situation occurs when a parent clause of a new resolvent is in PR(q) and this
resolvent is an X-clause. Then this resolvent is added to PR(q). An example of
that is clause C7 = x1 obtained by resolving PR-clauses C3 and C4.

The second situation occurs when a PR-clause becomes unit. Suppose a PR-
clause C is unit at node q and v is the unassigned variable of C where v ∈ X.
DS-PQE first makes the assignment falsifying C. Suppose that this is assignment
v = 0. Note that all PR-clauses but C itself are obviously redundant at node
q ∪ (v = 0). DS-PQE backtracks and explores the branch v = 1 where clause
C is satisfied. At this point DS-PQE extends the set PR(q ∪ (v = 1)) by adding
every clause of F ∧G that a) has literal v; b) is not satisfied; c) is not already in
PR(q). The extension of the set of PR-clauses in the second situation is done to
guarantee that clause C will be proved redundant when backtracking off the node
q. Depending on whether formula F ∧ G is satisfiable or unsatisfiable in branch
v = 1, the second situation splits into two cases considered below.

The first case is that formula F ∧ G is unsatisfiable in branch v = 1. Then
extension of the set of PR-clauses above guarantees that a clause falsified by
q ∪ (v = 1) will be derived to make the new PR-clauses redundant. Most
importantly, this clause will be resolved with C on v to produce a clause rendering
C redundant in subspace q. In our example, the first case occurs at node y =
0 where PR-clause C1 becomes unit. DS-PQE falsifies C1 in branch x1 = 0,
backtracks and explores branch x1 = 1. In this branch, clauses C3, C4 of G are
made PR-clauses. This branch is unsatisfiable. Making C3,C4 PR-clauses forces
DS-PQE to derive C7 = x1 that makes C3, C4 redundant. But the real goal of
obtaining C7 is to resolve it with C1 to produce clause C8 = y that makes C1

redundant.

The second case is that formula F ∧G is satisfiable in branch v = 1. Making
the clauses with literal v PR-clauses forces DS-PQE to prove their redundancy.
So when backtracking to node q, clause C will be blocked at variable v and hence
redundant. In our example, the second case occurs at node y = 1 where clause C2

becomes unit. Clause C2 gets falsified in branch x3 = 0. Then DS-PQE backtracks
and explores branch x3 = 1. In this branch, C5 of G becomes a new PR-clause
as containing literal x3. This branch is satisfiable and C5 is proved redundant
without adding new clauses. Due to redundancy of C5, clause C2 gets blocked at
node y = 1 and hence redundant.

Importantly, the extension of the set PR(q) in the first and second situations
above is temporary. Suppose that a clause C is added to PR(q) as a result of the
first situation. That is at least one of the parents of C is a PR-clause. Then C
preserves its PR-status as long as its parents (see Subsection 6.7 for more details).
In the second situation, the clauses that became PR-clauses at node q lose their
PR-status when DS-PQE backtracks off this node.

Forming a solution to the PQE problem. The D-sequents derived by DS-
PQE at a node of the search tree are composable. This means that the clauses
that are redundant individually are also redundant together. For example, on re-
turning to the root node, D-sequents S6 and S7 equal to ∅ → {C1} and ∅ → {C2}
respectively are derived. The composability of S6 and S7 means that D-sequent
∅ → {C1, C2} holds as well. The only new clause added to F is C8 = y (clause C7

was added temporarily). After dropping the X-clauses C1, C2 from F as proved
redundant one concludes that y ∧ ∃X[G] ≡ ∃X[F ∧G] and F ∗ = y is a solution
to the PQE problem.

4 Basic Definitions

In this section, we give relevant definitions.

Definition 1. An ∃CNF formula is a formula of the form ∃X[F] where F
is a Boolean CNF formula, and X is a set of Boolean variables. Let q be an
assignment, F be a CNF formula, and C be a clause. Vars(q) denotes the variables
assigned in q; Vars(F) denotes the set of variables of F ; Vars(C) denotes the
variables of C; and Vars(∃X[F]) = Vars(F) \X.

We consider true and false as a special kind of clauses.

Definition 2. Let C be a clause, H be a CNF formula, and q be an assignment
such that Vars(q) ⊆ Vars(H). Denote by Cq the clause equal to true if C is
satisfied by q; otherwise Cq is the clause obtained from C by removing all literals
falsified by q. Hq denotes the formula obtained from H by replacing every clause
C of H with Cq. In this paper, we assume that clause Cq equal to true remains
in Hq. We treat such a clause as redundant in Hq.

Let ∃X[H] be an ∃CNF and y be an assignment to Vars(H) \X. Note that
in this case, (∃X[H])y = ∃X[Hy].

Definition 3. Let S,Q be ∃CNF formulas. We say that S,Q are equivalent,
written S ≡ Q, if for all assignments, y, such that Vars(y) ⊇ (Vars(S)∪Vars(Q)),
we have Sy = Qy. Notice that Sy and Qy have no free variables, so by Sy = Qy

we mean semantic equivalence.

Definition 4. The Quantifier Elimination (QE) problem for ∃CNF formula
∃X[H] is to find a CNF formula H∗ such that H∗ ≡ ∃X[H]. The Partial QE
(PQE) problem for ∃CNF formula ∃X[F ∧G] is to find a CNF formula F ∗

such that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G].

Definition 5. Let X be a set of Boolean variables, H be a CNF formula and R
be a subset of X-clauses of H. The clauses of R are redundant in CNF formula
H if H ≡ (H \R). The clauses of R are redundant in ∃CNF formula ∃X[H] if
∃X[H] ≡ ∃X[H \R]. Note that H ≡ (H \R) implies ∃X[H] ≡ ∃X[H \R] but the
opposite is not true.

The notion of clause redundancy in a quantified formula is very powerful. For
example, if formula H(X) is satisfiable, every clause of H is redundant in ∃X[H].

5 Dependency Sequents

In this section, we recall clause Dependency sequents (D-sequents) introduced
in [7], operation join and the notion of composability. Informally, the join oper-
ation extends resolution-like reasoning to subspaces where formula is satisfiable.
For example, in Definition 7, formula H can be satisfiable in subspaces s′ and s′′.
In this paper, we will refer to clause D-sequents of [7] as just D-sequents.

Definition 6. Let ∃X[H] be an ∃CNF formula. Let s be an assignment to Vars(H)
and R be a subset of X-clauses of H. A dependency sequent (D-sequent) has the
form (∃X[H], s) → R. It states that the clauses of Rs are redundant in ∃X[Hs].
Alternatively, we will say that the clauses of R are redundant in ∃X[H] in subspace
s (and in any other subspace q such that s ⊆ q).

We will say that a D-sequent (∃X[H], s) → R holds, to tell apart a correct D-
sequent where clauses of R are indeed redundant in ∃X[H] in subspace s from a
record (∃X[H], s) → R relating an arbitrary s with some set R of X-clauses.

Definition 7. Let ∃X[H] be an ∃CNF formula. Let D-sequents (∃X[H], s′) → R
and (∃X[H], s′′) → R hold. We will refer to them as parent D-sequents. Let s′,
s′′ have precisely one variable v ∈ Vars(s′)∩Vars(s′′) that is assigned differently
in s′ and s′′. Let s be the assignment equal to s′ ∪ s′′ minus assignments to
variable v. We will say that D-sequent (∃X[H], s) → R is obtained by joining
the parent D-sequents at v. The fact that the parent D-sequents hold implies that
the D-sequent obtained by joining them at v holds too [7].

Definition 8. Let (∃X[H], s′) → R′ and (∃X[H], s′′) → R′′ be two D-sequents
such that every assignment to variables of Vars(s′) ∩ Vars(s′′) is the same in s′

and s′′. We will call these D-sequents composable if the D-sequent
(∃X[H], s′ ∪ s′′) → R′ ∪R′′ holds.

6 Algorithm

In this section, we describe a PQE algorithm called DS-PQE where DS stands for
Dependency Sequents. DS-PQE algorithm is the result of a substantial modifica-
tion of our QE algorithm DCDS described in [7]. The new features of DS-PQE are
summarized in Subsection 6.7.

DS-PQE derives D-sequents (∃X[F ∧G], s) → {C} stating the redundancy
of PR-clause C in any subspace q such that s ⊆ q. From now on, we will use a
short notation of D-sequents writing s → {C} instead of (∃X[F ∧G], s) → {C}.
We will assume that the parameter ∃X[F ∧G] missing in s → {C} is the current
∃CNF formula (with all resolvents added to F). One can omit ∃X[F ∧G] from
D-sequents because (∃X[F ∧G], s) → {C} holds no matter how many resolvent
clauses are added to F [7]. We will call D-sequent s → {C} active in subspace q
if s ⊆ q. The fact that s → {C} is active in subspace q means that C is redundant
in ∃X[F ∧G] in subspace q.

6.1 Input and output of DS-PQE

Recall that a PR-clause is an X-clause of F ∧ G whose redundancy needs to be
proved in subspace q (see Section 3). DS-PQE shown in Figure 4 accepts an
∃CNF formula ∃X[F ∧G] (denoted as Φ), an assignment q to Vars(F), the set
of PR-clauses (denoted as W) and a set Ω of D-sequents active in subspace q
stating redundancy of some PR-clauses in ∃X[F ∧G] in subspace q.

// q is an assignment to Vars(F ∧G)
// Ω is a set of active D-sequents
// Φ denotes ∃X[F ∧G]
// W denotes PR(q)
// If ds pqe returns nil (or a clause),
// (F ∧G)q is sat. (respect. unsat.)

ds pqe(Φ,W ,q,Ω){
1 if (∃C ∈ F ∪G is falsif. by q) {
2 Ω := atomic Dseqs1 (Ω, q, C);
3 return(Φ,Ω,C);}
4 Ω := atomic Dseqs2 (Φ, q, Ω);
5* if (every PR clause redund(W,Ω))
6* return(Φ,Ω,nil);

- - - - - - - - - - - -
7 v := pick variable(F ∧G, q, Ω);
8 qb := q ∪ {(v = b)};
9* (Φ,Ω,Cb) :=ds pqe(Φ,W, qb,Ω);
10 Ω− := InactiveDseqs(F,Ω, v);
11 if (Ω− = ∅) return(Φ,Ω,Cb);
12 Ω := Ω \Ω−;

13* if (impl assgn(v, b))

14* W ′ := newPRclauses(W,F∧G, b);
15* else W ′ := ∅;
16 qb := q ∪ {(v=b)}; W ′′ := W ∪W ′;
17* (Φ,Ω,C

b
) := ds pqe(Φ,W ′′,qb,Ω);

- - - - - - - - - - - - -
18 if ((Cb 6= nil) and (C

b
6= nil)){

19 C := resolve clauses(Cb, Cb
, v);

20 F := F ∧ C;
21 Ω := atomic Dseqs1 (Ω, q, C);
22* if ((Cb ∈W) or (C

b
∈W))

23* if (X clause(C))
24* W := W ∪ {C};
25 return(Φ,Ω,C);}
26 Ω := merge(Φ, q, v, Ω−, Ω,Cb, Cb

);
27 return(Φ,Ω,nil);}

Fig. 4. DS-PQE procedure

Similarly to Section 3, we will as-
sume that the resolvent clauses are added
to formula F while formula G remains
unchanged. DS-PQE returns a formula
∃X[F ∧G] modified by resolvent clauses
added to F (if any), a set Ω of D-sequents
active in subspace q that state redun-
dancy of all PR-clauses in ∃X[F ∧G]
in subspace q and a clause C or nil . If
(F ∧G)q is unsatisfiable, C is a clause
of F ∧ G falsified by q. Otherwise, DS-
PQE returns nil meaning that no clause
implied by F ∧G is falsified by q.

The active D-sequents derived by DS-
PQE are composable. That is if
s1 → {C1},. . ., sk → {Ck} are the active
D-sequents of subspace q, then the D-
sequent s∗ → {C1, . . . , Ck} holds where
s∗ = s1 ∪ . . . ∪ sk and s∗ ⊆ q. Like
DCDS , DS-PQE achieves composabil-
ity of D-sequents by proving redundancy
of PR-clauses in a particular order (that
can be different for different paths). This
guarantees that no circular reasoning is
possible and hence the D-sequents de-
rived at a node of the search tree are
composable.

A solution to the PQE problem in
subspace q is obtained by discarding the
PR-clauses of subspace q (specified by
W) from the CNF formula F returned by
DS-PQE. To solve the original problem of
taking F out of the scope of the quanti-
fiers in ∃X[F ∧G], one needs to call DS-
PQE with q = ∅, Ω = ∅,W = PRinit .
Recall that PRinit is the set of X-clauses
of the original formula F .

6.2 The big picture

DS-PQE consists of three parts separated in Figure 4 by the dotted lines. In
the first part (lines 1-6), DS-PQE builds atomic D-sequents recording trivial
cases of redundancy of PR-clauses. If all the PR-clauses are proved redundant
in ∃X[F ∧G] in subspace q, DS-PQE terminates at node q.

If some PR-clauses are not proved redundant yet, DS-PQE enters the second
part of the code (lines 7-17). First, DS-PQE picks a branching variable v (line 7).

Then it recursively calls itself (line 9) starting the left branch of v by adding to q
assignment v = b, b ∈ {0, 1}. Once the left branch is finished, DS-PQE explores
the right branch v = b (line 17).

In the third part, DS-PQE merges the left and right branches (lines 18-27).
This merging results in proving all PR-clauses redundant in ∃X[F ∧G] in sub-
space q. For every PR-clause C proved redundant in subspace q, the set Ω con-
tains precisely one active D-sequent s → {C} where s ⊆ q. As soon as C is proved
redundant, it is marked and ignored until DS-PQE enters a subspace q′ where
s 6⊆ q′ i.e., a subspace where D-sequent s → {C} becomes inactive. Then clause
C gets unmarked signaling that DS-PQE does not have a proof of redundancy of
C in subspace q′ yet1.

6.3 Building atomic D-sequents

Procedures atomic Dseqs1 and atomic Dseqs2 are called by DS-PQE to compute
D-sequents for trivial cases of clause redundancy listed in Section 3. We refer to
such D-sequents as atomic. Procedure atomic Dseqs1 is called when a clause C
of F ∧ G is falsified by q. For every PR-clause C ′q of Fq that has no active D-
sequent yet, atomic Dseq1 generates a D-sequent s → {C ′}. Here s is the shortest
assignment falsifying C.

If no clause of F ∧ G is falsified by q, procedure atomic Dseqs2 is called. It
builds D-sequents for PR-clauses that became satisfied or blocked in Fq. Let C be
a clause satisfied by q. Then D-sequent s → {C} is generated where s = (w=b),
b ∈ {0, 1} is the assignment to a variable w satisfying C.

Let clause C be blocked [15] in Fq at variable w ∈ X. Let K be the set of
clauses of F ∧G that can be resolved with C on w. The fact that C is blocked in
Fq means that every clause of K is either satisfied by q or is proved redundant in
subspace q. In this case, atomic Dseqs2 generates a D-sequent s → {C} where s is
constructed as follows. If C ′ ∈ K is satisfied by q, then s contains the assignment
to a variable of Vars(q) that satisfies C ′. If C ′ ∈ K is proved redundant in
subspace q and r → {C ′} is the active D-sequent for C ′, then s contains r.

1 This footnote is added to the paper after publication at HVC-14. The description
of the algorithm given in Figure 4 is missing a case. (The implementation tested
in experiments was correct but the pseudo-code of the algorithm given in Figure 4
lacks a few lines addressing the case in question.) The missing part of the algorithm
addresses the situation where 1) formula F ∧G is satisfiable in the left branch (v = b)
and unsatisfiable in the right branch (v = b) and 2) assignment v = b is not derived
from a clause that is currently unit in F ∧ G. In this case, DS-PQE adds clause C

b

derived in the right branch to F , removes D-sequents derived in branches v = b and
v = b, and unassigns variable v (i.e. backtracks).

After backtracking, assignment v = b can be derived from clause C
b
, and hence

branching on v will be handled by lines 13-14 of Figure 4. The early backtracking is
done to facilitate proving redundancy of new clause C

b
. In more detail, this situation

is described in Section 6 of “E.Goldberg and P.Manolios, Partial quantifier elimina-
tion, arXiv:1407.4835v2 [cs.LO], 2017”. (The latter is the second version of technical
report [9].)

6.4 Selection of a branching variable

Let q be the assignment DS-PQE is called with. Let Y = Vars(F) \ X. DS-
PQE branches on unassigned variables of X and Y . Importantly, an unassigned
variable x ∈ X \ Vars(q) is picked for branching only if a PR-clause contains x
and is not proved redundant yet.

Although Boolean Constraint Propagation (BCP) is not shown explicitly in
Figure 4, it is included into the pick variable procedure as follows: a) preference is
given to branching on variables of unit clauses of Fq (if any); b) if v is a variable
of a unit clause Cq of Fq and v is picked for branching, then the value falsifying
Cq is assigned first to cause immediate termination of this branch.

To simplify merging results of the left and right branches, DS-PQE first assigns
values to variables of Y (see Subsection 6.6). This means that pick variable never
selects a variable x ∈ X for branching, if there is an unassigned variable of Y . In
particular, BCP does not assign values to variables of X if a variable of Y is still
unassigned.

6.5 Switching from left to right branch

Let s → {C} be a D-sequent of the set Ω computed by DS-PQE in the left
branch v = b (line 9 of Figure 4). We will call this D-sequent symmetric in v,
if v is not assigned in s. Otherwise, this D-sequent is called asymmetric in v.
Notice that if s is symmetric in v, then D-sequent s → {C} is active in the right
branch v = b and so C is redundant in ∃X[F ∧G] in subspace q ∪ {(v = b)}.
Denote by Ω− the subset of active D-sequents that are asymmetric in v. It is
computed in line 10. Before exploring the right branch (line 17), the PR-clauses
of F ∧G whose redundancy is stated by D-sequents of Ω− become non-redundant
again.

6.6 Branch merging

Let qb = q ∪ {(v = b)} and qb = q ∪ {(v = b)}. The goal of branch merging is to
use solutions of the PQE problem in subspaces qb and qb to produce a solution
to the PQE problem in subspace q. If both Fqb and Fq

b
are unsatisfiable, this is

done as described in lines 19-25 of Figure 4. Let Cb, Cb be clauses returned in the
left and right branches respectively. Then, the empty clauses (Cb)qb and (Cb)qb

are solutions to the PQE in subspaces qb and qb. The empty clause Cq where C is
the resolvent of Cb and Cb added to F (line 20) is a solution to the PQE problem
in subspace q. After C is added, atomic Dseqs1 completes Ω by generation of
atomic D-sequents built due to presence of a clause falsified by q.

Suppose that Fqb and/or Fq
b

is satisfiable. In this case, to finish solving the
QE problem in subspace q, one needs to make sure that every PR-clause is proved
redundant in Fq. This means that every PR-clause should have a D-sequent active
in subspace q and hence symmetric in the branching variable v. This work is done
by procedure merge (line 26) that consists of three steps.

In the first step, merge takes care of D-sequents of “old” PR-clauses that is
the clauses that were present in F at the time the value of v was flipped from b

to b. For every such PR-clause, a D-sequent was derived in the left branch v = b.
Let Sb be a D-sequent from Ω− (that is asymmetric in v) that states redundancy
of clause C in the left branch. Let Sb be the D-sequent stating redundancy of C
in the right branch. These D-sequents are joined at variable v to produce a new
D-sequent stating redundancy of C in subspace q.

In the second step, merge processes new PR-clauses that is PR-clauses gen-
erated in the right branch v = b. No D-sequents were derived for such clauses
in the branch v = b. Let S be a D-sequent s → {C} derived in the right branch
v = b where clause C was generated. If S is symmetric in v, it simply remains in
Ω untouched. Otherwise, S is updated by removing the assignment to v from s.

In the third step, if, say, clause Cb mentioned above is not equal to nil, a
D-sequent is generated for Cb if it is a PR-clause. It can be shown [7] that due the
fact that free variables are assigned before quantified (see Subsection 6.4), clause
Cb is always blocked at the branching variable v. So, an atomic D-sequent is built
for Cb as described in Subsection 6.3.

6.7 New features of DS-PQE with respect to DCDS

In this subsection, we focus on the part of DS-PQE that is different from DCDS .
The lines of this part are marked with an asterisk inf Figure 4.

The main difference between DS-PQE and DCDS is that at every node q of
the search tree, DS-PQE maintains a set PR(q) of PR-clauses. PR(q) contains all
the X-clauses of F and some X-clauses of G (if any). DS-PQE terminates its work
at node q when all the current PR-clauses are proved redundant (lines 5-6). In
contrast to DS-PQE, DCDS terminates at node q, when all X-clauses are proved
redundant. Line 9 is marked because DS-PQE uses an additional parameter W
when recursively calling itself to start the left branch of node q. Here W specifies
the set of PR-clauses to prove redundant in the left branch.

Lines 13-15 show how PR(q) is extended. As we discussed in Section 3, this
extension takes place when assignment v = b satisfies a unit PR-clause C. In this
case, the set W ′ of new PR-clauses is computed. It consists of all the X-clauses
that a) contain the literal of v falsified by assignment v = b; b) are not PR-clauses
and c) are not satisfied. As we explained in Section 3, this is done to facilitate
proving redundancy of clause C at node q. The set W ′ is added to W before the
right branch is explored (lines 16-17). Notice that the clauses of W ′ have PR-
status only in the subtree rooted at node q. Upon return to node q from the right
branch, the clauses of W ′ lose their PR-status.

As we mentioned in Section 3, one more source of new PR-clauses are resolvents
(lines 22-24). Let v = b and v = b be unsatisfiable branches and Cb and Cb be
the clauses returned by DS-PQE . If Cb or Cb is currently a PR-clause, and the
resolvent C is an X-clause, then C becomes a new PR-clause. One can think of
a PR-clause as supplied with a tag indicating the level up to which this clause
preserves its PR-status. If only one of the clauses Cb and Cb is a PR-clause, then
C inherits the tag of this clause. If both parents have the PR-status, the resolvent
inherits the tag of the parent clause that preserves its PR-status longer.

6.8 Correctness of DS-PQE

The correctness of DS-PQE is proved similarly to that of DCDS [7]. DS-PQE is
complete because it examines a finite search tree. Here is an informal explana-
tion of why DS-PQE is sound. First, the clauses added to F are produced by
resolution and so are correct in the sense they are implied by F ∧ G. Second,
the atomic D-sequents built by DS-PQE are correct. Third, new D-sequents pro-
duced by operation join are correct. Fourth, the D-sequents of individual clauses
are composable.

So when DS-PQE returns to the root node of the search tree, it derives the
correct D-sequent (∃X[F ∧G], ∅) → FX . Here FX denotes the set of all X-
clauses of F . By removing the X-clauses from F one obtains formula F ∗ such
that ∃X[F ∗ ∧G] ≡ ∃X[F ∧G]. Since F ∗ does not depend on variables of X it
can be taken out of the scope of quantifiers.

7 Background

QE has been studied by many researchers, due to its important role in verification
e.g., in model checking. QE methods are typically based on BDDs [2, 3] or SAT [16,
11, 17, 13, 5, 12, 14]. At the same time, we do not know of research where the PQE
problem was solved or even formulated. Of course, identification and removal of
redundant clauses is often used in preprocessing procedures of QBF-algorithms
and SAT-solvers [4, 1]. However, these procedures typically exploit only situations
where clause redundancies are obvious.

One of the most important differences of PQE from QE is that a PQE-
algorithm has to have a significant degree of “structure-awareness”. This is be-
cause PQE is essentially based on the notion of redundancy of a subset of clauses
in a quantified formula. So it is not clear, for example, if a BDD-based algorithm
would benefit from replacing QE with PQE. This also applies to many SAT-based
algorithms of QE. For instance, in [6] we presented a QE algorithm called DDS
that was arguably more structure aware than its SAT-based predecessors. DDS
is based on the notion of D-sequents defined in terms of redundancy of variables
rather than clauses. DDS makes quantified variables redundant in subspaces and
merges the results of different branches. Despite its structure-awareness, it is hard
to adjust DDS to solving PQE: in PQE, one, in general, does not eliminate quan-
tified variables (only some clauses with quantified variables are eliminated).

Interestingly, there is no trivial algorithm for solving PQE like solving QE by
resolving out quantified variables one by one. For example, one cannot solve PQE
by simply resolving out X-clauses of formula F in ∃X[F ∧G] because this can
lead to looping [9].

8 Experimental Results

Fig. 5. Performance of model checkers on
282 examples solved by MC-QE or MC-
PQE

Since we are not aware of another tool
performing PQE, in the experiments we
focused on contrasting PQE and QE.
Namely, we compared DS-PQE with our
QE algorithm called DCDS [7]. The fact
that DS-PQE and DCDS are close in
terms of implementation techniques is
beneficial: any difference in performance
should be attributed to difference in al-
gorithms rather than implementations.

In the experiments, we used DS-
PQE and DCDS for backward model
checking. It is important to emphasize
that, in the long run, we plan to use PQE
in new types of model checkers like the
ones mentioned in Section 2. However,
since these model checkers are not avail-

able yet we experimented with DS-PQE in the context of a traditional model
checker. We will refer to the two algorithms for backward model checking based
on DS-PQE and DCDS as MC-PQE and MC-QE respectively. The difference
between MC-PQE and MC-QE is as follows. Let F (S′) and T (S, S′) specify a set
of next-states and transition relation respectively. The basic operation here is to
find the pre-image H(S) of F where H ≡ ∃S′[F ∧ T]. So H is a solution to the
QE problem. As we showed in Subsection 2.2, one can also find H just by taking
F out of the scope of the quantifiers in formula ∃S′[F ∧ T]. MC-QE computes H
by making redundant all S′-clauses of F ∧ T while MC-PQE finds H by making
redundant only the S′-clauses of F .

Table 1. Model checking results on some con-
crete examples

benchmark #lat- #gates #ite- bug MC- MC-

ches rati- QE PQE

ons (s.) (s.)
bj08amba3g62 32 9,825 4 no 241 38
kenflashp03 51 3,738 2 no 33 104
pdtvishuffman2 55 831 6 yes >2,000 296
pdtvisvsar05 82 2,097 4 no 1,368 7.7
pdtvisvsa16a01 188 6,162 2 no >2,000 17
texaspimainp12 239 7,987 4 no 807 580
texasparsesysp1 312 11,860 10 yes 39 25
pj2002 1,175 15,384 3 no 254 47
mentorbm1and 4,344 31,684 2 no 1.4 1.7

The current implementations of
DCDS and DS-PQE lack D-
sequent re-using: the parent D-
sequents are discarded after a join
operation. We believe that re-using
D-sequents should boost perfor-
mance like clause recording in SAT-
solving. However, when working on
a new version of DCDS we found
out that re-using D-sequents in-
discriminately may lead to circu-
lar reasoning. We have solved this
problem theoretically and resumed
our work on the new version of

DCDS. However, here we report the results of implementations that do not re-use
D-sequents.

We compared MC-PQE and MC-QE on the 758 benchmarks of HWMCC-10
competition [18]. With the time limit of 2,000s, MC-QE and MC-PQE solved
258 and 279 benchmarks respectively. On the set of 253 benchmarks solved by
both model checkers, MC-PQE was about 2 times faster (the total time is 4,652s
versus 8,528s). However, on the set of 282 benchmarks solved by at least one
model checker MC-PQE was about 6 times faster (10,652s versus 60,528s). Here
we charged 2,000s, i.e., the time limit, for every unsolved benchmark.

Figure 5 gives the performance of MC-QE and MC-PQE on the 282 bench-
marks solved by at least one model checker in terms of the number of problems
finished in a given amount of time. Model checking results on some concrete bench-
marks are given in Table 1. The column iterations show the number of backward
images computed by the algorithms before finding a bug or reaching a fixed point.

In [7], we compared MC-QE with a BDD-based model checker (MC-BDD).
This comparison showed that although MC-BDD solved more benchmarks than
MC-QE, there were 65 benchmarks solved by MC-QE that MC-BDD failed to
solve. In addition to these 65 benchmarks, MC-PQE solved 7 more benchmarks
that MC-BDD failed to solve (and that were not solved by MC-QE either).

Acknowledgment

This research was supported in part by DARPA under AFRL Cooperative Agree-
ment No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and CCF-1319580.

9 Conclusion

We introduced the Partial Quantifier Elimination problem (PQE), a generaliza-
tion of the Quantifier Elimination problem (QE). We presented a PQE-algorithm
based on the machinery of D-sequents and gave experimental results showing
that PQE can be more efficient than QE. An efficient PQE-solver will enable new
methods of solving old problems like model checking and SAT. In addition, many
verification problems can be formulated and solved in terms of PQE rather than
QE, a topic ripe for further exploration.

References

1. A.Biere, F.Lonsing, and M.Seidl. Blocked clause elimination for qbf. CADE-11,
pages 101–115, 2011.

2. R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

3. P. Chauhan, E. M. Clarke, S. Jha, J.H. Kukula, H. Veith, and D. Wang. Using
combinatorial optimization methods for quantification scheduling. CHARME-01,
pages 293–309, 2001.

4. N. Eén and A. Biere. Effective preprocessing in sat through variable and clause
elimination. In SAT, pages 61–75, 2005.

5. E.Goldberg and P. Manolios. Sat-solving based on boundary point elimination.
HVC-10, pages 93–111, 2010.

6. E.Goldberg and P.Manolios. Quantifier elimination by dependency sequents. In
FMCAD-12, pages 34–44, 2012.

7. E.Goldberg and P.Manolios. Quantifier elimination via clause redundancy. In
FMCAD-13, pages 85–92, 2013.

8. E.Goldberg and P.Manolios. Bug hunting by computing range reduction. Technical
Report arXiv:1408.7039 [cs.LO], 2014.

9. E.Goldberg and P.Manolios. Partial quantifier elimination. Technical Report
arXiv:1407.4835 [cs.LO], 2014.

10. E.Goldberg and P.Manolios. Software for quantifier elimination in propositional
logic. In ICMS-2014,Seoul, South Korea, August 5-9, pages 291–294, 2014.

11. H.Jin and F.Somenzi. Prime clauses for fast enumeration of satisfying assignments
to boolean circuits. DAC-05, pages 750–753, 2005.

12. J.Brauer, A.King, and J.Kriener. Existential quantification as incremental sat. CAV-
11, pages 191–207, 2011.

13. J.R.Jiang. Quantifier elimination via functional composition. In Proceedings of
the 21st International Conference on Computer Aided Verification, CAV-09, pages
383–397, 2009.

14. W. Klieber, M. Janota, J.Marques-Silva, and E. M. Clarke. Solving qbf with free
variables. In CP, pages 415–431, 2013.

15. O. Kullmann. New methods for 3-sat decision and worst-case analysis. Theor.
Comput. Sci., 223(1-2):1–72, 1999.

16. K. McMillan. Applying sat methods in unbounded symbolic model checking. In
Proc. of CAV-02, pages 250–264. Springer-Verlag, 2002.

17. M.K.Ganai, A.Gupta, and P.Ashar. Efficient sat-based unbounded symbolic model
checking using circuit cofactoring. ICCAD-04, pages 510–517, 2004.

18. HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html.

