
SAT-solving Based on Boundary Point
Elimination

Eugene Goldberg, Panagiotis Manolios

Northeastern University, USA {eigold,pete}@ccs.neu.edu

Abstract. We study the problem of building structure-aware
SAT-solvers based on resolution. In this study, we use the idea of treating
a resolution proof as a process of Boundary Point Elimination (BPE).
We identify two problems of using SAT-algorithms with Conflict Driven
Clause Learning (CDCL) for structure-aware SAT-solving. We introduce
a template of resolution based SAT-solvers called BPE-SAT that is based
on a few generic implications of the BPE concept. BPE-SAT can be
viewed as a generalization of CDCL SAT-solvers and is meant for build-
ing new structure-aware SAT-algorithms. We give experimental results
substantiating the ideas of the BPE approach. In particular, to show the
importance of structural information we compare an implementation of
BPE-SAT and state-of-the-art SAT-solvers on narrow CNF formulas.

1 Introduction

In the last decade, SAT-algorithms have seen a great deal of success in solv-
ing real-life formulas. (Since the key idea of modern SAT-algorithms is Conflict
Driven Clause Learning we will refer to them as CDCL SAT-solvers.) This suc-
cess can be attributed (among other things) to using effective heuristics con-
trolling various aspects of the behavior of a CDCL SAT-solver such as decision
making, removal of obsolete conflict clauses and so on. The problem, however,
is that modern SAT-solvers are based on the resolution proof system that is
most likely non-automatizable [1]. Informally, this means that there is no effi-
cient deterministic procedure for finding short resolution proofs. So even if a
class of formulas has short proofs, a deterministic SAT algorithm may not be
able to find them and hence may have very poor performance. For example,
CDCL SAT-solvers often display abysmal performance on formulas describing
equivalence checking of two identical copies of combinational circuits despite the
existence of linear size resolution proofs for such formulas.

A natural way to cope with non-automatizability of resolution is to provide
a SAT-solver with additional information about the formula structure. In this
paper, we study the problem of building structure-aware resolution-based SAT-
solvers. We use the approach of [8] where a resolution proof is considered as a
process of Boundary Point Elimination (BPE for short). Our intent here is to
point out the problems with building structure-aware CDCL SAT-solvers and
suggest a direction for future research.

Given a CNF formula F , an l-boundary point is an unsatisfying complete
assignment p such that all clauses of F falsified by p have literal l. The elim-
ination of p as a boundary point is to add a resolvent C of clauses of F such
that p is not a boundary point of F ∧ C. Importantly, in any resolution proof,
all boundary points of F have to be eliminated. An l-boundary point (where l
is a literal of variable xi) is eliminated only by particular resolutions on xi. So
boundary points of F specify “mandatory” resolutions.

We describe a generic SAT-solver called BPE-SAT that is based on the follow-
ing four observations. First, any resolution-based SAT-algorithm has to generate
mandatory resolutions. Second, it is preferable to find such resolutions early since
they may make many non-mandatory resolutions redundant, which allows one
to find a proof faster and make it smaller. (In particular, an entire proof may
consist only of mandatory resolutions e.g. for equivalence checking formulas.)
Third, finding an l-boundary point of F is hard (it reduces to a SAT-check for
the formula F \ {the clauses of F with literal l}). Fourth, if p is an l-boundary
point of F , F ′ is a subset of clauses of F and F ′(p)=0, then p is an l-boundary
point of F ′. So by eliminating l-boundary points of F ′ one also eliminates l-
boundary points of F (and if F ′ is small, finding boundary points of F ′ is much
easier than for F).

BPE-SAT repetitively extracts a subformula F ′(X1, X2) of F (X) (where
X1,X2 are non-overlapping subsets of X) and then existentially quantifies away
the variables of X1 producing clauses depending on variables of X2. Existential
quantification of F ′ is performed by an algorithm called the BPE procedure. To
quantify away a variable xi ∈ X1, the BPE procedure adds to F ′ resolvents that
eliminate all symmetric xi-boundary and xi-boundary points. The BPE proce-
dure eliminates variables of X1 one by one and so works similarly to the DP
algorithm [6]. However, we believe that relaxing the order in which boundary
points are eliminated may lead to developing a much more powerful procedure
of existential quantification.

BPE-SAT is based on a few very general observations listed above and so,
is formulated as a template of a resolution based SAT-solver. In particular, we
do not specify in BPE-SAT how a subformula F ′ is extracted from F . This is
done for the following reason. According to the observations above, the choice of
subformula F ′ is good if the latter shares boundary points with F . Intuitively,
the complexity of identifying good subformulas F ′ is what makes resolution
non-automatizable (the choice of F ′ strongly depends on the structure of F).
So, in this paper, we rather formulate the problem of finding subformulas F ′

that share boundary points with F than solve it. Interestingly, our definition of
good subformulas gives a new meaning to the notion of the formula structure in
the context of resolution proofs. (The structure of formula F is specified by a
set of its subformulas sharing boundary points with F).

A natural question is how BPE-SAT is related to CDCL SAT-solvers. Re-
markably, despite BPE-SAT being just a theoretical construction, a CDCL SAT-
solver is one of (many) implementations of BPE-SAT. The set of clauses respon-
sible for a conflict specifies the subformula F ′ to be selected from F . Existential

2

quantification of variables of F ′ is performed by the conflict clause generation
procedure. The latter can be represented as the BPE procedure eliminating
boundary points specified by the partial assignment leading to the conflict.

Another important issue is whether BPE-SAT brings in something new with
respect to CDCL SAT-solvers. Both BPE-SAT and CDCL SAT-solvers are based
on resolution and it was recently shown that resolution proofs can be polynomi-
ally simulated by non-deterministic CDCL SAT-solvers [9]. It is tempting to use
these results for optimistic predictions about the performance of deterministic
CDCL SAT-solvers. However, there are at least two problems that dampen this
optimism. (The introduction of BPE-SAT is a way to address these problems.)
The first problem is that eager backtracking of a CDCL SAT-solver (i.e. after a
conflict occurs) may lead to generation of subformula F ′ (specified by the con-
flict) that does not share boundary points with F . This issue is addressed in
BPE-SAT by posing the problem of finding subformulas F ′ sharing boundary
points with F . The second problem is that a SAT-solver based only on conflict
driven learning cannot efficiently quantify away the variables of X1 from subfor-
mula F ′(X1, X2) (even if the resulting set of clauses depending on variables of X2

is small). This problem is totally ignored by the results of [9] because it is caused
by the difference in termination conditions of non-deterministic and determin-
istic CDCL SAT-solvers when performing existential quantification. (And [9] is
concerned only with non-deterministic CDCL SAT-solvers). In BPE-SAT, this
problem is addressed by showing the promise of performing existential quantifi-
cation using boundary point elimination.

The contributions of this paper are as follows. First, we introduce a template
SAT-solver BPE-SAT and justify this introduction in terms of BPE. Second,
we identify some problems of CDCL SAT-solvers in building structure-aware
SAT-solvers and point out directions for solving those problems. In particular,
we show that BPE can be used for existential quantification. Third, we give an
example of tuning BPE-SAT to a particular class of formulas (narrow formulas).

2 Basic Definitions

In this section, we recall some basic definitions of SAT solving.

Definition 1. A literal l(xi) of a Boolean variable xi is either xi itself or its
negation (denoted as xi). We will also denote a literal as just l in the contexts
where the identification of xi can be omitted. A clause is the disjunction of
literals where no two (or more) literals of the same variable can appear. A CNF
formula is the conjunction of clauses. We will also view a CNF formula as a
set of clauses. Denote by Vars(F) (respectively Vars(C)) the set of variables
of CNF formula F (respectively clause C).

Definition 2. Given a CNF formula F (x1, . . . , xn), a complete assignment
p (also called a point) is a mapping {x1, . . . , xn} → {0, 1}. A clause C is
satisfied (respectively falsified) by p if C(p) = 1 (respectively C(p) = 0).

3

Definition 3. Given a CNF formula F, a satisfying assignment p is a
complete assignment satisfying every clause of F. The satisfiability prob-
lem (SAT) is to find a satisfying assignment for F or to prove that such an
assignment does not exist.

Definition 4. Let clauses C ′, C ′′ have the opposite literals of variable xi (and
only of xi). The resolvent C of C ′ and C ′′ on variable xi is the clause with all
the literals of C ′ and C ′′ but those of xi. The clause C is said to be obtained by
a resolution operation on xi. C

′ and C ′′ are called the parent clauses of C.

Definition 5. ([2]) Let F be an unsatisfiable formula. Let R1, . . . , Rk be a set
of clauses such that

– each clause Ri is obtained by a resolution operation where a parent clause is
either a clause of F or Rj, j < i;

– clauses Ri are numbered in the derivation order and Rk is an empty clause.

Then the k resolutions that produced R1, . . . , Rk are called a resolution proof.

3 Boundary Points and Resolution

The objective of this section is to discuss the relation between a resolution proof
and boundary point elimination. In subsection 3.1, we define the notion of bound-
ary points and list some of their properties. In subsection 3.2, we recall the
approach of [8] that views a resolution proof as a boundary point elimination
procedure.

3.1 Boundary points and their properties

Definition 6. Denote by Fls(p,F) the set of clauses of a CNF formula F fal-
sified by a complete assignment p.

Definition 7. Given a CNF formula F , a complete assignment p is called an
l-boundary point, if Fls(p,F) 6= ∅ and every clause of Fls(p,F) contains literal l.

Example 1. Let F consist of 5 clauses: C1 = x2, C2 = x2 ∨ x3, C3 = x1 ∨ x3,
C4 = x1∨x3, C5 = x2∨x3. Complete assignment p1=(x1=0,x2=0,x3=1) falsifies
only clauses C1,C4. So Fls(p1,F)={C1,C4}. There is no literal shared by all
clauses of Fls(p1,F). Hence p1 is not a boundary point. On the other hand,
p2= (x1=0,x2=1,x3=1) falsifies only clauses C4,C5 that share literal x3. So p2

is a x3-boundary point.

Definition 8. Denote by Bnd pnts(F) the set of all boundary points of a CNF
formula F . We assume that an l-boundary point p is specified in Bnd pnts(F)
as the pair (l,p). So the same point p may be present in Bnd pnts(F) more than
once (e.g. if p is both an l(xi)-boundary point and an l(xj)-boundary point).

4

Definition 9. Let p be a complete assignment. Denote by flip(p,xi) the point
obtained from p by flipping the value of xi.

The following proposition explains why studying boundary points is important.

Proposition 1. ([8]) If F contains at least one clause and Bnd pnts(F) = ∅,
then F is unsatisfiable.

Proposition 1 implies that for a satisfiable formula F , Bnd pnts(F) 6= ∅. In par-
ticular, it is not hard to show [8] that if F (p′)=0, F (p′′)=1 and p′′= flip(p′,xi),
then p′ is an l(xi)-boundary point. (This explains the name “boundary point”.)
Another interesting fact is that if p′ is an xi-boundary point, then p′′= flip(p′,xi)
is either a satisfying assignment or a xi-boundary point [8]. So, for an unsatisfi-
able formula, all boundary points come in pairs. We will refer to such a pair of
points p′ and p′′ as symmetric xi-boundary and xi-boundary points.

3.2 Elimination of boundary points by adding resolvents

Let p′ and p′′ be symmetric xi-boundary and xi-boundary points. It is not
hard to show [8] that a clause C ′ falsified by p′ can be resolved on variable xi

with a clause C ′′ falsified by p′′. (Since points p′ and p′′ are xi-boundary and
xi-boundary respectively, C ′ and C ′′ have literals xi and xi respectively. Since
p′, p′′ are different only in the value of xi, the clauses C ′ and C ′′ cannot have
opposite literals of xj , j 6= i.)

The resolution of C ′ and C ′′ above produces a clause that is falsified by both
p′ and p′′ and does not have variable xi. Then p′ and p′′ are not l(xi)- boundary
points of F ∧C. So Bnd pnts(F ∧C) ⊂ Bnd pnts(F). (Adding a clause to F can
only eliminate some boundary points but cannot produce new ones). We will
refer to this process of removing boundary points by adding clauses implied by
F as boundary point elimination. (Note that adding C to F may also eliminate
a large number of l(xi)-boundary points different from p′ and p′′.)

Only symmetric xi-boundary and xi-boundary points can be eliminated by
adding a resolvent on xi. If formula F is satisfiable, there is always an l(xi)-
boundary point p′ such that the point p′′=flip(p′,xi) satisfies F [8]. Let C ′ be
a clause of F falsified by p′ (and so having literal l(xi)). The resolvent C of C ′

with any clause C ′′ of F having literal l(xi) is satisfied by p′′ and hence by p′

(because C does not depend on xi). So p′ cannot be eliminated by adding a
resolvent on variable xi.

Let R1, . . . , Rk be a resolution proof where Rk is an empty clause. Note
that Bnd pnts(F ∧ Rk) = ∅. (Indeed, by definition, if p is an l(xi)-boundary
point, every clause falsified by p has to have at least one literal i.e. l(xi).) This
means that every l(xi)-boundary point p of the initial formula F is eventually
eliminated. Then there is a resolvent Rm+1 such that p is an l(xi)-boundary
point for F ∧R1 ∧ . . .∧Rm but not for F ∧R1 ∧ . . .∧Rm+1. It was shown in [8]
that Rm+1 has to be obtained by a resolution on variable xi . In other words,
an l(xi)-boundary point mandates a resolution on variable xi.

5

4 BPE-SAT

In this section, we describe BPE-SAT, a template SAT-solver based on the idea
of Boundary Point Elimination (BPE for short).

4.1 Justification of BPE-SAT

BPE-SAT is based on a few very general observations we listed in the introduc-
tion. In particular, we explained why it is important to identify mandatory res-
olutions, i.e. ones eliminating boundary points of F , early. (Adding mandatory
resolutions allows the SAT-solver to avoid generating many “non-mandatory”
resolutions.) Finding a boundary point of F is hard. If p is an l-boundary point
it satisfies F \ {the clauses of F with literal l}. So finding a boundary point of
F reduces to a SAT-check for a formula that is not much smaller than F . BPE-
SAT addresses this problem by using a conservative approach where boundary
points are eliminated from subformulas F ′ of F . This approach is based on the
following simple proposition.

Proposition 2. Let p be an l-boundary of F and F ′ be a subset of clauses of F
such that F ′(p) = 0. Then p is an l-boundary point of F ′.

Proof. The set of clauses of F ′ falsified by p is a non-empty subset of the set of
clauses of F falsified by p.

The proposition above implies that by eliminating boundary points from F ′ one
may also eliminate boundary points from F . If F ′ is much smaller than F , finding
boundary points of F ′ is much easier than those of F . From the viewpoint of
BPE-SAT, a subformula F ′ of F is good if elimination of l-boundary points of
F ′ also eliminates l-boundary points of F . Intuitively, finding such subformulas
requires the knowledge of the structure of F . So, BPE-SAT does not specify how
subformulas are chosen, leaving this work to implementations aimed at particular
classes of formulas.

4.2 High-level view of BPE-SAT

BPE-SAT (F)
{while (TRUE)
{F ′(X1, X2) = pick subform(F);
F ′′(X2) = BPE (F ′, X1);
if (contains empty clause(F ′′))

return(UNSAT);
F = F ∪ F ′′; }}

Fig. 1. BPE-SAT

The pseudocode of BPE-SAT is shown in
Figure 1. BPE-SAT iteratively performs
the following three actions. First, it picks
a subformula F ′(X1, X2) of the current
formula F . Then it calls the BPE pro-
cedure that, for each variable xi ∈ X1,
eliminates all symmetric xi-boundary and
xi-boundary points from F ′. If the set of
clauses F ′′ generated to eliminate bound-
ary points from F ′ contains an empty
clause, BPE-SAT reports that F is unsat-

isfiable. Otherwise, it adds the clauses of F ′′ to F and starts a new iteration.

6

In this paper, we limit the discussion of BPE-SAT to the case of unsatisfi-
able formulas. (The satisfiability of F can be established (a) when looking for
subformula F ′, as it is done in CDCL SAT-solvers where F ′ is a set of clauses
responsible for a conflict; or (b) when eliminating boundary points of F ′, as it
is done in the implementation of BPE-SAT meant for solving narrow formulas.)

BPE (G(X1, X2), X1)
{while ((X1 6= ∅) and (G 6= ∅))
{xi = pick variable(X1);
G′ = elim bnd pnts(G, xi);
if (contains empty clause(G′))

return(G′);
G = (G \ (Gxi

∪Gxi
)) ∪G′;}

X1 = X1 \ {xi}
return(G);}}

Fig. 2. BPE procedure

We also do not discuss the convergence
of BPE-SAT (i.e. lack of looping). Typically,
the convergence of a SAT-solver with learn-
ing is achieved by avoiding the generation of
the same clause more than once. An analo-
gous approach can be used in implementa-
tions of BPE-SAT but this requires a more
detailed description of the choice of subfor-
mulas F ′. The convergence of our implemen-
tation of BPE-SAT for narrow formulas fol-
lows from the semantics of the BPE proce-
dure (that monotonically eliminates bound-
ary points) and from the way subformulas F ′

are chosen (the choice of F ′ respects a fixed variable order, see Section 7).

4.3 The BPE procedure

The BPE procedure is described in Figure 2. It accepts a CNF formula G(X1, X2)
and processes the variables of X1 in the “while” loop in a specified order. After
a variable xi of X1 is selected, elim bnd pnts procedure is called that eliminates
all symmetric xi-boundary and xi- boundary points from G. It returns the set
of clauses G′ generated to eliminate such boundary points.

On termination of elim bnd pnts, G is modified as follows. The clauses of G
with literals xi and xi (denoted as Gxi

and Gxi
respectively) are removed from

G. The clauses G′ generated by elim bnd pnts are added to G. As we show in
Subsection 5, (G \ (Gxi

∪ Gxi
)) ∪ G′ = G(. . . , xi = 0, . . .) ∨ G(. . . , xi = 1, . . .).

That is elimination of all symmetric xi-boundary and xi- boundary points from
G is equivalent to quantifying away variable xi. Finally the variable xi is removed
from the set X1 and a new iteration starts.

The BPE procedure terminates if 1) G does not have any clauses left or 2) X1

is empty or 3) an empty clause was derived by the elim bnd pnts procedure. On
termination, the BPE procedure returns the current formula G (that depends
only on variables of X2 due to X1 = ∅).

4.4 Description of elim bnd pnts procedure

Given a CNF formula G and variable xi, the elim bnd pnts procedure (shown in
Figure 3) returns a set of resolvents G′ eliminating all symmetric xi-boundary
and xi-boundary points of G for xi ∈ X1. (That is, if an l(xi)-boundary point p
is left in G∧G′, then p∗= flip(p,xi) satisfies G and so p cannot be eliminated.)

7

Boundary points are generated in the “while” loop. Every time a new l(xi)-
boundary point p is found, it is eliminated by adding a resolvent on variable xi

that is falsified by p. The procedure terminates when all symmetric xi-boundary
and xi-boundary points are eliminated. Below, we describe elim bnd pnts in more
detail.

elim bnd pnts(G, xi)
{H = (G \ (Gxi ∪Gxi

));
H = H∪ dir clauses(Gxi , Gxi

);
G′ = ∅;
while (H is satisfiable)
{(p0,p1,sat)=find bnd pnts(H);
if (sat == FALSE) return(G′);
G′xi

= find fls cls(p0,Gxi);
G′xi

= find fls cls(p1,Gxi
);

R = gen resolvent(G′xi
,G′xi

);
H = H ∪ {R};
G′ = G′ ∪ {R};}
return(G′);}

Fig. 3. elim bnd pnts procedure

Following the definition of an l(xi)-
boundary point, elim bnd pnts looks
for an assignment satisfying formula
H = G \ (Gxi

∪ Gxi
). Adding direct-

ing clauses to H (constructed by func-
tion dir clauses) is meant to avoid gen-
eration of l(xi)-boundary points that
cannot be eliminated. This is achieved
by avoiding assignments satisfying Gxi

and/or Gxi
. A more detailed descrip-

tion of generation of directing clauses is
given at the bottom of this subsection.)

The find bnd pnts procedure called
in the “while” loop is a CDCL SAT-
solver. It returns a pair of assignments
p0,p1 symmetric in xi that satisfy H
(by construction, H does not depend on

xi) or reports that H is unsatisfiable. For the sake of clarity, we assume that
xi = 0 (respectively xi = 1) in p0 (respectively p1). Then p0, p1 are xi-boundary
and xi-boundary points of G respectively.

If H is unsatisfiable, all symmetric xi-boundary and xi-boundary points have
been eliminated and elim bnd pnts terminates returning the set G′ of generated
resolvents. Otherwise, the clauses G′xi

⊆ Gxi
(respectively G′xi

⊆ Gxi
) are gen-

erated that are falsified by p0 (respectively p1). Note that due to adding to H
directing clauses, the sets G′xi

and G′xi
cannot be empty. Boundary points p0

and p1 can be eliminated by resolving any clause of G′xi
with any clause of G′xi

.

The choice of the resolvent eliminating boundary points p0 and p1 is done by
the procedure gen resolvent. The latter uses a heuristic illustrated by the follow-
ing example. Suppose boundary points p0 and p1 are found by the BPE proce-
dure when processing variable x5. Let R′ = x10∨x20 and R′′ = x20∨x35∨x40 be
the two clauses obtained by resolving clauses of G′x5

and G′x5
(and so eliminating

p0 and p1 as l(x5)-boundary points). Given a clause C, denote by min index (C)
the minimum variable index among Vars(C). Hence min index (R′) = 10 and
min index (R′′)=20. The gen resolvent procedure selects the clause with the
largest value of min index (in our case it is the clause R′′).

The reason for using the heuristic above is as follows. In our implementation
of the BPE procedure, variables xi are processed in the order they are numbered.
Let clause R′ be chosen to eliminate p0 and p1. Suppose that after elimination
of all symmetric x5-boundary and x5-boundary points and removing the clauses
with variable x5 from G (see Figure 2), R′ is the only clause of G falsified

8

by p0 and p1. Then, say, p0 is an x10-boundary point of G. This means that
when processing variable x10, the point p0 and the point flip(p0,x10) need to be
eliminated (and hence may cause an extra run of the SAT-solver used for finding
l(x10)-boundary points.) On the other hand, if R′′ is chosen to eliminate p0 and
p1, no extra work is needed until variable x20 is processed. In other words, when
eliminating l(xi)-boundary points p0 and p1, gen resolvent tries to minimize the
number of l(xj)-boundary points the points p0 and p1 turn into (where i < j)
after removing the clauses with variable xi.

Avoiding the generation of boundary points that cannot be eliminated is done
by find bnd pnts as follows. Let q be a partial assignment such that Gxi

(q)=1
and/or Gxi

(q)=1. Note that no boundary point p obtained by extension of q
can be eliminated by a resolvent of a clause of Gxi

with a clause of Gxi
(because

any such a resolvent is satisfied by p). To make find bnd pnts avoid the regions
of the search space where Gxi and/or Gxi

are satisfied, new clauses are added
to H by the dir clauses procedure.

Now we explain how avoiding the regions where Gxi
= 1 is done. (The new

clauses meant to avoid regions where Gxi
= 1 are built analogously.) First, a new

variable yc is introduced for each clause of C of Gxi
. Then the clauses describing

the equality yc ≡ C ′ are added to H where C ′ is C minus xi. To guarantee that
at least one clause of Gxi stays falsified when xi = 0, the clause consisting of
the literals yc is added to H.

5 Quantification by Boundary Point Elimination

In this section, we show that elimination of all symmetric xi-boundary and xi-
boundary points of a CNF formula G is equivalent to existentially quantifying
away variable xi from G. This means that the BPE procedure simply quantifies
away the variables of X1 (see Figure 2). This result shows that the BPE approach
can be used for existential quantification. (And as we argue in Section 6, existen-
tial quantification is one of the bottlenecks of CDCL SAT-solvers). At the same
time, we believe that the naive algorithm of the BPE procedure, where boundary
points are eliminated variable by variable, can be significantly improved.

Proposition 3. Let G(x1, . . . , xn) be a CNF formula. Let Gxi
(respectively Gxi

)
be the set of clauses of G having literal xi (respectively literal xi). Let G′ be a set
of resolvents where, for every resolvent, one parent clause is from Gxi

and the
other is from Gxi

. Let G ∧ G′ do not have any pair of symmetric xi-boundary
and xi-boundary points. Then
G(. . . , xi = 0, . . .) ∨G(. . . , xi = 1, . . .)=(G \ (Gxi ∪Gxi

)) ∪G′.

Proof. See Appendix A.

Proposition 3 implies that the BPE procedure is complete. Namely, by elimi-
nating the symmetric xi-boundary and xi-boundary points for all variables of G,
the BPE procedure existentially quantifies away all variables of G. This results
either in producing an empty set of clauses (which means that G is satisfiable)
or in generating an empty clause (G is unsatisfiable).

9

6 CDCL SAT-solvers in terms of BPE

In this section, we give a brief analysis of CDCL SAT-solvers in BPE terms.
On the one hand, a CDCL SAT-solver is a particular implementation of BPE-
SAT. (This is very interesting taking into account that BPE-SAT is a theoretical
construction based on a few general observations.) On the other hand, the BPE
approach exposes two problems of CDCL SAT-solvers that, we believe, can be
addressed in more advanced implementations of BPE-SAT. These problems are
important because their solution will enable structure-aware SAT-solvers.

A CDCL SAT-solver is an implementation of BPE-SAT. A key part of a
CDCL SAT-solver is its conflict clause generation procedure [10, 13]. Let
F ′(X1, X2) be the set of clauses responsible for a conflict. Here X1 is the set
of variables in which clauses of F ′ have literals of both polarities and X2 =
Vars(F ′)\X1. A conflict clause generation procedure is, essentially, the DP pro-
cedure [6] that resolves out the variables of X1 from F ′ one by one eventually
producing a conflict clause C (where Vars(C) = X2). So, a CDCL SAT-solver is
very similar to an implementation of BPE-SAT where subformulas F ′ are subsets
of clauses responsible for conflicts. However, the similarity goes much deeper. It
can be shown that a conflict clause generation procedure is essentially a special
case of the BPE-procedure that produces resolvents eliminating boundary points
of subformula F ′. Interestingly, all the required boundary points can be trivially
obtained from the partial assignment leading to the conflict specified by F ′. (The
details are given is Appendix B.) So, a CDCL SAT-solver is an implementation
of BPE-SAT.

Eager backtracking interferes with finding subformulas F ′ sharing boundary
points with F . Let F ′(X1, X2) be the set of clauses responsible for a conflict pro-
duced by a CDCL SAT-solver in CNF formula F . Let A and B be clauses of F ′

resolved on variable xi ∈ X1 when generating the conflict clause. Let q be an as-
signment to Vars(F ′) such that q and q∗=flip(q,xi) are symmetric xi-boundary
and xi-boundary points of F ′. (Although it is not crucial for our reasoning here,
the existence of q can actually be proved similarly to Appendix B.)

Importantly, no guarantees can be made that an l(xi)-boundary of the entire
current formula F is eliminated by adding the resolvent of A and B. For example,
it may be the case that no matter how q is extended by assignments to the
variables of Vars(F \ F ′), the extended assignment falsifies a clause of F \ F ′
that does not have variable xi (and so this extended assignment cannot be
an l(xi)-boundary point of F). As we show in Section 9, when a SAT-solver
only “accidentally” runs into conflicts that lead to generation of resolutions
eliminating boundary points of F , its performance may be very poor. One can
address this problem by allowing a SAT-solver to make decision assignments after
a conflict occurs. (This may lead to finding another conflict specifying a much
better subformula F ′.) However, it is not clear if this can be done efficiently:
eager backtracking is a cornerstone of CDCL SAT-solvers.

CDCL SAT-solvers and existential quantification. BPE-SAT works with a
more general class of subformulas F ′ (whose variables are existentially quanti-
fied away) than CDCL SAT-solvers. A natural question is if this is beneficial

10

for BPE-SAT. According to [9], given a resolution proof R that a CNF formula
F is unsatisfiable, a non-deterministic CDCL SAT-solver can build another res-
olution proof that may be larger than R only by |Vars(F)|4. Since BPE-SAT
and CDCL SAT-solvers are based on resolution it is tempting to conclude that
a deterministic CDCL SAT-solver can efficiently simulate a proof generated by
an implementation of BPE-SAT. However, this conclusion may turn out to be
wrong because the termination conditions of deterministic and non-deterministic
CDCL SAT-solvers are different when performing existential quantification.

Suppose that a non-deterministic CDCL SAT-solver performs existential
quantification of F ′(X1, X2) by generating clauses depending on X2 and proving
that they are implied by F ′. Such a SAT-solver stops as soon as a set of clauses
F ′′(X2) forming a solution is generated. On the contrary, a deterministic CDCL
SAT-solver, even if F ′′(X2) is generated has to show that any assignment to
X2 satisfying F ′′ can be extended (by assignments to variables of X1) to an
assignment satisfying F ′. (I.e. such a SAT-solver has to prove that F ′′ is indeed
a solution). This may require some extra work that can be even exponential !.
The observation above implies that developing efficient methods of existential
quantification is very important for creation of new powerful SAT-solvers.

7 Applying BPE-SAT to Solving Narrow Formulas

In this section, we describe an implementation of BPE-SAT meant for solving
narrow formulas. We picked this class of formulas for the following reasons.
First, narrow formulas occur in practical applications. Second, the choice of
good subformulas for narrow formulas is very simple.

Let F be a CNF formula. Let Vars(F) = {x1, . . . , xn}. Denote by ≺ the
order on Vars(F) specified by variable numbering (i.e. (xi ≺ xj) ≡ (i < j)).
Denote by F i the subset of clauses of F that have variable xj , j ≤ i. Denote by
F i∗ the set of clauses F \ F i. The value of | Vars(F i) ∩Vars(F i∗) | (denoted as
w(F, xi,≺)) is called the width of formula F at variable xi with respect to order
≺. The maximum value among w(F, xi,≺),i = 1, . . . , n (denoted as w(F,≺)) is
called the width of F with respect to order ≺. We assume in this section that
the order ≺ specifies a minimum (or close to minimum) width with respect to
all possible orders on X.

Informally, a CNF formula F has a small width if w(F,≺) � |Vars(F)|.
To apply BPE-SAT to F we use F i as a subformula F ′(X1, X2) of F . (Here
X1 = {x1, . . . , xi} and X2 = Vars(F) \ X1.) The advantage of such a choice
is twofold. First, since F is narrow, if i is small then F ′ is also small. (In our
experiments the value of i was set to 100). So finding boundary points of F ′ is
easy. Second, any l(xi)-boundary point of F (where xi ∈ X1) is also an l(xi)-
boundary point of F ′ (because the latter contains all clauses of F with xi). So
F ′ satisfies the criterion of good subformulas of Subsection 4.1.

After quantifying away the variables of X1 from F ′, a set of clauses F ′′(X2) is
generated. The clauses with variables of X1 are removed from F and the clauses
of F ′′ are added to F . (Note that in the pseudocode of BPE-SAT described in

11

Figure 1 we do not remove clauses with variables of X1 from F . We can do
these for narrow formulas because, initially, F ′ contains all the clauses of F with
variables of X1.) Then the same procedure is applied to F again. That is F ′ is
the set of clauses of F with a variable xj , j ≤ 2 ∗ i. (Here we take into account
the fact that variables x1, . . . , xi have been removed from F .) Eventually, either
an empty clause is derived (the original formula F is unsatisfiable) or all clauses
are removed from F (the original formula F is satisfiable).

8 Some Background

SAT-solving of real-life CNF formulas has been dominated by algorithms based
on the DPLL procedure [5] (e.g. [10, 11]). Recently, considerable effort has been
given to understanding the reasons for success of CDCL SAT-solvers. In

Table 1. Solving formulas describ-
ing equivalence checking of identical
copies of n-bit multipliers
#bits (#vars, Picosat Spec. Proof

#cls) #res. #res. size
×103 ×106 ×103 ratio

6 (0.5, 1.6) 1.2 1.9 631

7 (0.7, 2.2) 7.3 2.7 2,703

8 (1.0, 3.0) 45 3.6 12,500

9 (1.2,3.8) 249 4.7 52,978

[12] (and the follow-up papers) proper-
ties of real-life formulas have been studied.
In particular, it was conjectured that such
formulas may have very small “backdoors”
i.e. sets of variables assigning which dra-
matically reduces formula complexity. In a
number of papers (e.g. [9]), the success of
CDCL SAT-solvers has been related to the
ability of their non-deterministic counter-
parts to simulate resolution proofs.

In [8], we showed that a resolution proof
can be viewed as a process of boundary point elimination. This result allows one
to draw some conclusions about properties of deterministic SAT-solvers based
on resolution. In particular, the existence of mandatory resolutions (that require
explicitly or implicitly looking for boundary points) sheds some light on why
SAT-solvers based on the DPLL procedure dominate among the resolution based
algorithms.

9 Experimental Results

The goal of experiments was twofold. First, we wanted to relate poor perfor-
mance of CDCL SAT-solvers on some formulas with non-trivial structure to
their inability to identify (and hence eliminate) boundary points. Second, we
tested a very simple implementation of BPE-SAT tailored to narrow formulas
and compared it with CDCL SAT-solvers. Narrow formulas F (r,m) we used
in experiments can be relatively easily solved using BDDs. However, neither
BPE-SAT nor CDCL SAT-solvers use subformula hashing employed by BDDs.
Importantly, it is not clear how one could use the structure of these formulas in
a CDCL SAT-solver. For example, our implementation of BPE-SAT can success-
fully solve formulas F (4,m) for a variable ordering for which the formula width
is 92. This makes the trivial algorithm of quantifying away the variables of X1

12

from subformula F ′(X1, X2) (where one just enumerates assignments to X2) in-
efficient. In Appendix C, we also show experimentally that the DP procedure
(that is operationally similar to the BPE procedure of Figure 2) is dramati-
cally slower than BPE-SAT on formulas F (r,m). The experiments were run on
a Linux machine with Intel Core 2 Duo CPU with 3.16GHz clock frequency.

Table 2. Comparison of Picosat
proofs with specialized ones

#bits Picosat Specialized

#res. mand. #res. mand.

res. % res. %

2 215 77 77 100

3 2,958 66 409 100

4 32,117 38 957 100

5 231,270 24 1,697 100

Table 1 compares the size of resolution
proofs for CNF formulas describing equiva-
lence checking of two identical copies of n-bit
multipliers. The first column gives the value
of n for the multipliers checked for equiva-
lence. The second column shows the number
of variables and clauses (in thousands). The
next column gives the number of resolutions
in the proofs generated by the SAT-solver
Picosat [4] (in millions). (Picosat is the ver-
sion of Precosat, a winner of the SAT-2009
competition, that does not use formula pre-

processing. Since Precosat does not generate proofs, we used Picosat instead).
The size of specialized proofs that take into account the formula structure [8] (in
thousands of resolutions) is given in the fourth column. The ratio of the sizes of
Picosat proofs and specialized ones is shown in the last column.

Table 3. Solving formulas F (r,m). Time limit is
3×105 seconds. Symbol ’∗’ marks the timeouts.

(r,m) (#vars, wi- Mini- Pico- BPE ratio

#cls) dth sat sat (s.) Pico/

×103 (s.) (s.) BPE

(2,800) (10,27) 8 0.2 0.5 3.3 0.2

(2,1300) (17,44) 8 0.7 0.7 6.6 0.1

(2,3000) (39,102) 8 6.0 3.4 25.3 0.1

(3,300) (11,30) 16 18.9 2.3 6.4 0.4

(3,1000) (35,100) 16 536 69.6 30.8 2.2

(3,2000) (70,200) 16 6,456 162 88.0 1.8

(4,200) (29,86) 29 2,099 548 58.7 9.3

(4,600) (88,258) 29 ∗ 99,820 235 425

(4,1000) (147,430) 29 ∗ ∗ 955 > 302

The results of Table 1 show
that in comparison to special-
ized proofs, Picosat proofs are
very large. We also tried other
well known SAT-solvers (that do
not generate proofs) like Minisat,
Precosat and Glucose. In terms
of the number of backtracks their
performance was similar to Pi-
cosat’s.

To explain the difference in
proof quality, we computed the
value of the SMR metric [8] for
the Picosat proofs and the spe-
cialized ones. The results are
given in Table 2. Given a reso-
lution proof R that a CNF for-
mula F is unsatisfiable, the value

of SMR-metric is the Share of Mandatory Resolutions in R i.e. share of resolu-
tions eliminating boundary points not eliminated by previous resolutions. (In [8]
this metric was called Share of Boundary Resolutions).

In Table 2 we used the same kind of formulas as in Table 1 but of smaller
size (computation of SMR metric is expensive.) Table 2 shows that the value of
SMR metric for specialized proofs remains 100%. (That is these proofs consist

13

entirely of mandatory resolutions.) On the contrary, the value of SMR metric
for Picosat’s proofs sharply decreases. This can be attributed to the poor choice
of subformulas by CDCL SAT-solvers (see Section 6).

Table 4. Proofs generated by Picosat
and BPE-SAT for narrow formulas
(r,m) (#vars, Picosat BPE Proof

#cls) #res. #res. size

×103 ×103 ×103 ratio

(3,10) (0.4, 1.0) 23.4 2.6 9.0

(3,20) (0.7, 2.0) 96.6 5.3 18.2

(3,30) (1.1,3.0) 123 8.0 15.4

(3,40) (1.4,4.0) 206 10.7 19.3

(4,10) (1.4,4.0) 256 19.3 13.3

(4,20) (2.8,8.2) 856 35.4 24.2

(4,30) (4.3,12.5) 3,415 51.6 66.2

(4,40) (5.7,16.9) 3,036 67.7 44.8

Table 3 describes the experiment with
solving narrow formulas. We used a class
of unsatisfiable formulas F (r,m), r > 1,
m > 0 specifying equivalence checking of
narrow circuits [3]. (Equivalence checking
was employed here just as a simple way
to produce unsatisfiable formulas. The for-
mulas we used in experiments and their
description can be downloaded from [14]).
The two circuits N and N ′ we checked for
equivalence had the same high-level struc-
ture specified by parameters r and m. Cir-
cuits N and N ′ mimicked the structure of
an m-bit adder with r carry bits. So N and
N ′ consisted of a cascade of m blocks com-
municating with each other by r wires. N

and N ′ had m + r − 1 inputs.

For solving formulas F (r,m) we used an implementation of BPE-SAT tai-
lored to narrow formulas. Subformulas F ′ of F (r,m) were chosen as described
in Section 7. For finding boundary points we used the same version of Picosat
that was employed in other experiments of this section.

Table 5. SMR metric
for proofs generated by
Picosat and BPE-SAT
(r,m) Picosat BPE

mand. mand.

res. % res. %

(3,10) 18.4 86.5

(3,20) 10.6 90.3

(3,30) 16.5 92.1

(3,40) 13.7 92.9

(4,10) 17.2 60.7

(4,20) 12.2 75.5

(4,30) 7.5 80.6

(4,40) 7.7 83.5

In Table 3, we compare BPE-SAT with Minisat (ver-
sion 2.0) and Picosat on formulas F (r,m), r ∈ {2, 3, 4}.
The first column gives the value of parameters r and
m. The third column specifies the value w(F,≺) of the
formula width (defined in Section 7). The next three
columns give the performance of Minisat, Picosat and
BPE-SAT in seconds. The last column shows the ratio
of Picosat’s and BPE-SAT’s runtimes.

The formulas F (2,m) are easily solved by each SAT-
solver, with Picosat having the best performance. The
formulas F (3,m) of Table 3 are hard for Minisat for
m = 2000. Picosat is competitive with BPE-SAT and
scales up well. This changes for formulas F (4,m). For
example, when the formula size increases 3 times (from
F (4, 200) to F (4, 600)) the runtime of Picosat increases
182 times (from 548 to 99,820 seconds).

In Tables 4 and 5, we analyze proofs generated by
Picosat and BPE-SAT for narrow formulas. Table 4 shows the size of proofs
generated by Picosat and BPE-SAT (in thousands of resolutions). The proofs of
Picosat are up to 66 times larger than those of BPE-SAT even for small values
of m. (For greater values of m, the proofs generated by Picosat were too large to

14

process.) Table 5 sheds some light on why proof sizes are different: the value of
SMR metric for the proofs of Picosat is much lower than for those of BPE-SAT.

10 Conclusions

The fact that the resolution proof system is most likely non-automatizable im-
plies that a resolution-based SAT-solver, in general, needs to know the formula
structure to be successful. In this paper, we use the Boundary Point Elimi-
nation (BPE) concept to study the problem of building structure-aware SAT-
solvers. We show that although the behavior of CDCL SAT-solvers from the
viewpoint of BPE is quite reasonable, they have at least two flaws. First, eager
backtracking of a CDCL SAT-solver makes it hard to generate resolutions that
eliminate boundary points of the formula. Second, a CDCL SAT-solver cannot
efficiently perform existential quantification. We introduce a template of reso-
lution SAT-solvers called BPE-SAT meant for addressing these problems and
hence for building structure-aware SAT-algorithms.

References

1. M. Alekhnovich and A. Razborov. Resolution is not automatizable unless w[p] is
tractable. SIAM J. Comput., 38(4):1347–1363, 2008.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. North-Holland, 2001.

3. L. Berman. Circuit width, register allocation, and ordered binary decision dia-
grams. IEEE Trans. on CAD of Integr. Circ. and Syst., 10(8):1059–1066, 1991.

4. A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.

Communications of the ACM, 5(7):394–397, July 1962.
6. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the ACM, 7(3):201–215, July 1960.
7. R. Dechter and I. Rish. Directional resolution: The davis-putnam procedure, re-

visited. In KR, pages 134–145, 1994.
8. E. Goldberg. Boundary points and resolution. In SAT-09, pages 147–160, Berlin,

Heidelberg, 2009. Springer-Verlag.
9. K.Pipatsrisawat and A.Darwiche. On the power of clause-learning SAT solvers

with restarts. In Proceedings of CP-2009, pages 654–668, September 2009.
10. J. Marques-Silva and K. Sakallah. Grasp—a new search algorithm for satisfiability.

In ICCAD-96, pages 220–227, Washington, DC, USA, 1996.
11. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering

an efficient sat solver. In DAC-01, pages 530–535, New York, NY, USA, 2001.
12. R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complexity.

In IJCAI, pages 1173–1178, 2003.
13. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability

solver. In ICCAD, pages 442–449, 2002.
14. http://eigold.tripod.com/benchmarks/narrow formulas.tar.gz.

15

11 Appendix

A Proof of Proposition 3

Proof. Denote by Hl and Hr the left and right parts of the equality to be proved
i.e. G(. . . , xi = 0, . . .)∨G(. . . , xi = 1, . . .) and (G\(Gxi

∪Gxi
))∪G′ respectively.

1) Proving Hl = 1→ Hr = 1. Let p be an assignment to the variables of Hl

for which Hl(p)=1. By definition of Hl, there is an assignment to xi such that
by adding it to p one obtains an assignment p∗ satisfying G. Every clause of Hr

is either a clause of G or a resolvent of clauses of G. So Hr(p∗) = 1. Since Hr

does not depend on xi, Hr(p)=1 too.
2) Proving Hl = 0→ Hr = 0. Let p be an assignment to the variables of Hl

for which Hl(p)=0. Denote by p0 and p1 the assignments obtained from p by
adding assignments xi = 0 and xi = 1 respectively. By definition of Hl, G(p0)=
G(p1)=0. Let us consider the following two cases.

a) Points p0 and p1 falsify a clause C of G that does not have variable xi. Then
C is in Hr and so Hr(p)=0.

b) Points p0 and p1 falsify only clauses of G with variable xi. This means that
p0 and p1 falsify at least one clause of Gxi and Gxi

respectively. Then p0

and p1 are symmetric xi-boundary and xi-boundary points. By definition,
G∧G′ does not have such a pair of points. So G′ contains a resolvent on xi

that is falsified by p0 and p1. Since this resolvent is in Hr, Hr(p) = 0.

B CDCL SAT-solvers are a special case of BPE-SAT

In this section, we show that the conflict clause generation procedure [13] of a
CDCL-SAT-solver is a special case of the BPE procedure and hence a CDCL
SAT-solver is a special case of BPE-SAT. We assume that the reader is familiar
with the basic notions of CDCL SAT-solvers [10, 11]. First, we describe a simple
example and then give a formal description.

Example 2. Let F be a CNF formula containing clauses C1 = x1 ∨ x2, C2 =
x2 ∨x3, C3 = x2 ∨x4, C4 = x1 ∨x3 ∨x4 (and some other clauses). Suppose that
the decision assignment x1 = 0 has been made in F and the Boolean Constraint
Propagation (BCP) procedure is invoked after that. Then the assignment x2 = 1
has to be made to satisfy C1. This leads to derivation of assignments x3 = 1
and x4 = 1 required to satisfy C2 and C3 respectively. At this point, a conflict
occurs because clause C4 becomes unsatisfiable. Denote by F ′ the set of clauses
{C1, C2, C3, C4} i.e. F ′ is the subformula of F responsible for the conflict.

The conflict clause is derived from F ′ as follows [13]. The set Vars(F ′) can be
partitioned into subsets X1 = {x2, x3, x4} and X2 = {x1}. The set X1 consists
of the variables on which clauses of F ′ are resolved when producing the con-
flict clause. Variables of X1 are used in the order opposite to the one in which
these variables were assigned. First, clause C4 is resolved with C3 on variable
x4 producing resolvent R1 = x2 ∨ x1 ∨ x3. R1 is resolved with C2 on variable

16

x3 producing the resolvent R2 = x2 ∨ x1. Clauses R2 and C1 are resolved on
variable x2 producing the conflict clause x1 (consisting only of variables of X2).

Now we show that the same conflict clause is produced by the BPE procedure
when existentially quantifying away the variables of X1 from F ′. The necessary
boundary points can be trivially produced from the partial assignment q of
variables of F leading to the conflict. That is q is the assignments to the variables
of Vars(F ′) and so q is equal to (x1 = 0, x2 = 1, x3 = 1, x4 = 1). By construction,
q falsifies the unsatisfiable clause C4 = x1 ∨ x3 ∨ x4. This means, in particular,
that q is an x4-boundary point of F ′. The point q∗=flip(q,x4) falsifies only
clause C3 = x2 ∨ x4 of F ′. So q∗ is an x4-boundary point of F ′. Adding the
resolvent R1 = x2 ∨ x1 ∨ x3 of C4 and C3 to F ′ eliminates q and q∗ as l(x4)-
boundary points. Adding R1 also quantifies away the variable x4 of F ′ (no more
clauses of F ′ can be resolved on x4). Then C3 and C4 are eliminated from F ′

(as containing variable x4) and the assignment x4 = 1 is removed from q.

Now q= (x1 = 0, x2 = 1, x3 = 1) falsifies only the resolvent R1. So q is a x3-
boundary point for F ′. The point q∗=flip(q,x3) falsifies only clause C2 = x2∨x3

of F ′. So q∗ is an x3-boundary point of F ′. Adding the resolvent R2 = x2 ∨ x1

of R1 and C2 to F ′ eliminates q and q∗ as l(x3)-boundary points. Adding R2

to F ′ also quantifies away the variable x3 from F ′. The clauses R1 and C2 are
removed from F ′ and the assignment x3 = 1 is removed from q.

Points q= (x1 = 0, x2 = 1) and q∗=flip(q,x2) falsify only the resolvent R2

and clause C1 = x1 ∨ x2 respectively. Adding the resolvent x1 of R2 and C1 on
x2 to F ′ eliminates q and q∗ as l(x2)-boundary points. Adding x1 also quantifies
away the variable x2 from F ′. Then R2 and C1 are removed from F ′ making the
resolvent x1 the only clause left.

Formal description. Now we give a formal description. (Note that numbering
of clauses, variables and resolvents here is different from the example above.)
Let F be a CNF formula and F ′ = {C1, . . . , Ck+1} be the set of clauses re-
sponsible for a conflict found by the BCP procedure.. We assume that the set
F ′ is irredundant i.e. every clause Ci,1 ≤ i ≤ k + 1 contributed to the conflict.
To simplify the notation we make the following two assumptions. First, BCP
derived assignments from C1, . . . , Ck in the numbering order (i.e. first from C1,
then from C2 and so on). Ck+1 is the falsified clause (the cause of the conflict).
Second, we assume that clause Ci, i = 1, . . . , k contains the positive literal of xi

and the assignment xi = 1 was derived from Ci during BCP.

A conflict clause is obtained by resolving clauses of F ′ in the reverse order.
That is, first Ck+1 is resolved with Ck on variable xk. Denote their resolvent
as Rk. Then Rk is resolved with Ck−1 on variable xk−1 producing resolvent
Rk−1. Eventually, resolvent R2 is resolved with C1 on variable x1 producing
resolvent R1 which is a conflict clause. (Note that Ri, 1 ≤ i ≤ k, has to con-
tain literal xi. Otherwise, no clause Cj , j > i contains literal xi, which implies
that the assignment xi = 1 derived from Ci has not contributed to the conflict.
This contradicts our assumption that F ′ consists only of clauses responsible
for the conflict. Clause Ck+1 has to contain xk for the same reason.) The set
X = vars(F ′) can be partitioned into the set X1 = {x1, . . . , xk} and

17

X2 = X \ X1. That is, X1 consists of the variables on which clauses of F ′

were resolved. The conflict clause R1 consists of the variables of X2.

Let us show that the same conflict clause R1 is produced by the BPE proce-
dure by quantifying away the variables of X1 from F ′. Let q be the assignments
to the variables of X made before the conflict occurred. The main idea is to
show that the BPE procedure uses the same resolutions (as the conflict clause
generation procedure above) to eliminate boundary points obtained from q.

By construction, q falsifies only clause Ck+1 of F ′. (Clause Ci, 1 ≤ i ≤ k is
satisfied by the assignment xi = 1 derived from Ci during BCP). Then q is an
xk-boundary point of F ′. (Clause Ck+1 contains xk). The point q∗=flip(q,xk)
falsifies only the clause Ck (by construction it is the only clause that has literal
xk). So q∗ is an xk-boundary point of F ′. Adding to F ′ the resolvent Rk of
Ck+1 and Ck on xk eliminates xk-boundary point q and xk-boundary point q∗.
This concludes processing variable xk of F ′ (only clauses Ck+1 and Ck can be
resolved on xk).

After removing Ck+1 and Ck from F ′ (as the clauses depending on variable
xk) and removing the assignment to xk from q, one reproduces the same sit-
uation as above with respect to variable xk−1. Now q falsifies only the clause
Rk of F ′. Since Rk contains xk−1, q is a xk−1-boundary point of F ′. The point
q∗=flip(q,xk−1) falsifies only the clause Ck−1 of F ′ and so it is an xk−1-boundary
point of F ′. Adding to F ′ the resolvent Rk−1 of Ck−1 and Rk on xk−1 eliminates
q as a xk−1-boundary point and q∗ as an xk−1-boundary point. This concludes
processing variable xk−1. After the BPE procedure is done with all the variables
of X1, F ′ reduces to resolvent R1 that is exactly the clause generated by the
conflict clause generation procedure described above.

C BPE-SAT and DP procedure

In this subsection, we use formulas F (r,m) described in Section 9 to compare
the implementation of BPE-SAT meant for narrow formulas (see Section 7) and
the DP procedure [6].

The reason is twofold. First, the DP procedure and the BPE procedure of
BPE-SAT are very similar. The only difference is that when quantifying away
variable xi, the DP procedure adds all the resolvents on variable xi while the
BPE procedure adds only resolvents (on variable xi) that eliminate symmetric
xi-boundary and xi-boundary points. So it is interesting to see how beneficial
this reduction in the number of generated resolvents is. Second, the DP proce-
dure is exponential only in formula width [7]. So one may think that the good
performance of BPE-SAT on formulas F (r,m) for small values of r trivially
follows from the theory of [7].

1 To compute the approximate ratio for the formula F (4, 80) (with ordering width 92)
we used the percentage of variables resolved out by the time the DP procedure was
aborted (0.09%).

18

Table 6. DP procedure and BPE-SAT

(r,m) (vars, wi- DP BPE- ratio

cls.) dth (s.) SAT DP /

×1000 (s.) BPE-SAT1

(2,1000) (13,34) 8 10.3 4.5 2.3

11 122 4.0 30.5

(3,200) (7,20) 16 22.1 6.4 3.5

30 14,150 6.0 2,358

(4,80) (12,34) 29 14,408 21.6 667

92 > 3× 105 90.2 ≈3.7×106

Some experimental results
are given in Table 6. (Our imple-
mentation of the DP procedure
was reasonably efficient. In par-
ticular, no resolvent was gener-
ated if it was subsumed by an
existing clause of the formula.)
For each of the three formulas of
Table 6 we used two variable or-
derings (from inputs to outputs
and vice versa) that had differ-
ent width. The first two columns
show the value of parameters

(r,m) and the number of variables and clauses for each of the three formulas.
The values of width are shown in the third column. The next two columns give
the runtime of the DP procedure and BPE-SAT (in seconds). The last column
shows the ratio of runtimes.

One can make the following two conclusions based on the results of Table 6.
First, the DP procedure is not competitive with CDCL SAT-solvers on formulas
F (r,m) even for small values of r. For example, it took about 4 hours for the
DP procedure to complete F (4, 80) (for the most favorable variable ordering)
while Minisat and Picosat solved it in 9.8 and 13.2 seconds respectively. Second,
although both DP procedure and BPE-SAT are sensitive to the formula width,
the sensitivity of the DP procedure is dramatically higher. In particular, in
300,000 seconds it was able to process only 11 variables out of 12 thousands for
the formula F (4, 80) for the variable ordering with the width of 92.

19

