
Escaping Local Minima in Logic Synthesis
Eugene Goldberg (Cadence Berkeley Labs)

Abstract. In this paper, we continue studying Logic
Synthesis Preserving Specification (LSPS). Given a
combinational circuit N and its partition into subcircuits
N1,.., Nk (this partition is called a specification of N), LSPS
optimizes N by replacing each subcircuit Ni with toggle
equivalent subcircuit N*

i. As we showed before, LSPS is
scalable. In this paper, we demonstrate that LSPS can be
also viewed as an elegant way to address the local minimum
entrapment problem. The latter remains a thorny issue for
the heuristic algorithms for solving hard combinatorial
problems. In this paper, we give only theoretical
arguments in favor of LSPS. The preliminary experimental
results of LSPS can be found in [6][7].

1. Introduction
When solving hard computational problems one has to

address the problem of local minima entrapment. Due to the
huge size of the search space, a typical algorithm A for
solving, say, an NP-hard problem uses heuristics specifying
small changes to be made to the current solution. In such
an algorithm, a change is accepted if it improves a cost
function. (Henceforth, we assume that one needs to
minimize a cost function.) This leads the current solution to
a local minimum. The latter is the situation when in the set
of moves used by A no move can improve the cost of the
current solution. Unfortunately, the quintessential feature of
NP-hard problems is that a local minimum can be arbitrarily
deep. This means that to get the current solution out of a
local minimum by the moves allowed in A, one may have
to make an unbounded number of moves that make the cost
the solution higher.

Unfortunately, making moves increasing the cost
function dramatically increases the search space. So an
algorithm making such moves has no chance to converge to
a better solution in a reasonable time. For example, in the
optimization method called simulated annealing (its
application to logic synthesis is given in [2]), the number
of moves increasing the cost function is controlled by a
“cooling” schedule. The smaller the temperature is, the less
likely it is that such a move is accepted in simulated
annealing. If the cooling schedule becomes sufficiently
long, simulated annealing can reach the global minimum
(and so get out of any local minimum). Unfortunately, these
schedules may take the time even larger than that of just
enumerating all possible solutions.

A typical logic synthesis procedure (being a special case
of an optimization problem) also suffers from the local
entrapment problem mentioned above. Usually, when
optimizing a circuit N, such a procedure generates a
sequence of circuits N 1, N 2,…, (where N 1=N) such that

N i+1 is functionally equivalent to N i and cost(N i+1) <
cost(N i). (For the sake of simplicity, henceforth, we
assume that cost(N i) is the number |N i| of gates in N i.) For
complexity reasons, the transformations used by such a
procedure are local and affect only a small part of the
circuit. Eventually, a circuit N m of this sequence gets stuck
in a local minimum.

In this paper, we show that logic synthesis preserving
specification (LSPS) introduced in [3][4] actually suggests
an interesting approach to the local minimum entrapment
problem. (The site http://eigold.tripod.com/papers.html
contains all referenced papers co-authored by the author of
this paper.) Let N be a single output circuit to be optimized
and N1,.., Nk be a partition of N into subcircuits. (In this
paper we, assume, unless otherwise stated, that one needs
to optimize a single-output circuit N. A discussion of
applying LSPS to multi-output circuits can be found in [8].)
This partition is called a specification of N. The idea of the
method of [3][4] is to modify N by replacing subcircuits N

i
with toggle equivalent subcircuits N*

i that are optimized
according to the required cost function. Then the circuit N*
consisting of subcircuits N*

i is functionally equivalent to N
(modulo negation) and has the same specification as N
(because subcircuits N*

i are connected with each other in N*
exactly as subcircuits Ni in N). In this paper, we show that a
single transformation performed by LSPS can be
represented as k functionally equivalent transformations of
the original circuit each of which may increase the size of
the current circuit. So LSPS can be viewed as a logic
synthesis procedure that performs equivalent
transformations going “against” the cost function. This
means that, in general, transformations of LSPS can not be
reproduced by a “ traditional” logic synthesis procedure
monotonically reducing circuit size at every step and
performing “ local” transformations.

This paper is structured as follows. An example of
LSPS is given in Section 2. In Section 3, we recall the basic
notions of toggle equivalence and correlation function and
describe LSPS of [4]. The recent developments in LSPS
are given in Section 4. Section 5 relates LSPS to existing
synthesis procedures from the viewpoint of enabling
equivalence checking procedures. Section 6 analyzes LSPS
from the optimization point of view. In Section 7, we
discuss two kinds of optimization performed by LSPS.
Section 8 gives reasons for LSPS to be successful. Some
conclusions are made in Section 9.

2. Example
Suppose one needs to optimize a single-output circuit N

implementing the arithmetic expression x2 < 100 as shown

in Figure 1. Circuit N consists of subcircuits N1 and N2
connected as a cascade. (In general, LSPS can handle the
case when the connections of subcircuits Ni in N are
described by an arbitrary directed acyclic graph.) The
subcircuit N1 implements the function y=square(x) and N2
implements the function y < 100.

It is not hard to see that the expression x2 < 100 can be
replaced with much simpler expression abs(x) < 10. Below
we show how this optimization can be done by LSPS.
(This simplification may look “ trivial” and so doable by a
high-level optimizer. However, one can easily modify this
example in such a way that high-level optimization
becomes much less trivial if not impossible.)

LSPS replaces N1
with an optimized
toggle equivalent
subcircuit , e.g. with
the subcircuit N*

1
implementing

Figure 1. Optimization of x2 < 100 by LSPS

y* =abs(x). Then it computes relation Dout(N1, N
*
1)

specifying the bijective mapping between the output
assignments produced by N1 and N*

1. (As we showed in [4],
if two circuits are toggle equivalent, there is a one-to-one
mapping between output assignments these circuits
produce. Note that N1 has twice the number of outputs of
N*

1.) After that, a subcircuit N*
2(y

*) is constructed that is
toggle equivalent to N2(y) (implementing y < 100) under
the input constraint specified by Dout(y, y*)). In the case N*

1
implements y* = abs(x), subcircuit N*

2 has to implement
y* < 10 (or its negation). For single-output circuits, toggle
equivalence means functional equivalence (modulo
negation) [4]. So N and the circuit N* composed of N*

1 and
N*

2 are functionally equivalent (modulo negation).

3. Logic synthesis preserving common
specification

In this section, we recall definitions of toggle
equivalence and correlation function and describe the
procedure LSPS of [4].

3.1 Toggle equivalence
Definition 1. Let f:{ 0,1} n → { 0,1} m be an m-output
Boolean function. A toggle of f is a pair of two different
output vectors produced by f for two input vectors. In other
words, if y=f(x) and y′′′′ =f(x′′′′) and y ≠ y′, then (y, y′) is a
toggle.
Definition 2. Let f1 and f2 be two Boolean functions of
the same set of variables. Functions f1 and f2 are called
toggle equivalent if f1(x) ≠ f1(x′′′′) ⇔ f2(x) ≠ f2(x′′′′). (Note
that f1 and f2 may have different number of outputs.)
Circuits N1 and N2 implementing toggle equivalent
functions f1 and f2 are called toggle equivalent circuits.

Definition 3. Let f be a Boolean function. We will say that
function f * is obtained from f by existentially quantifying
away variable xi if f

 * = f(…, xi=0,…) ∨ f(…, xi=1,….).

Definition 4. Let N be a circuit. Denote by v(N) the set of
variables of N. Denote by Sat(v(N)) the Boolean function
such that Sat(h)=1 iff the assignment h to v(N) is “possible”
i.e consistent. For example, if N consists of just one AND
gate y=x1 ∧ x2, then Sat(v(N)) = (~x1∨ ~x2 ∨ y) ∧(x1 ∨ ~y)∧
(x2 ∨ ~y).

Proposition 1. [4] Let N1 and N2 be toggle equivalent and
Z1, Z2 be the sets of their output variables. Let function
K*(Z1, Z2) be obtained from Sat(v(N1)) ∧ Sat(v(N2)) by
existentially quantifying away the variables of N1 and N2
except those of Z1 ∪ Z2. The function K*(Z1, Z2) implicitly
specifies the one-to-one mapping K between output vectors
produced by N1 and N2. Namely, K*(z1, z2) =1 iff z1=K(z2).

3.2 Correlation function
In this section, we use the notion of a correlation

function to extend definition of toggle equivalence to the
case where functions f1 and f2 have different sets of
variables.
Definition 5. Let X and Y be two disjoint sets of Boolean
variables (the number of variables in X and Y may be
different). A function Cf(X,Y) is called a correlation
function if there are subsets QX ⊆ { 0,1} |X| and QY ⊆
{ 0,1} |Y| such that Cf(X,Y) specifies a bijective mapping
M: QX → QY. Namely Cf(x, y)=1 iff x ∈∈∈∈ QX and y ∈ QY
and y = M(x).

Informally, Cf(X,Y) is a correlation function if it
specifies a bijective mapping between a subset QX of
{ 0,1} |X| and a subset QY of { 0,1} |Y|.

Let f1(X) and f2(Y) be two multi-output Boolean
functions where X={ x1,…, xk} and Y ={ y1,…, yp} are their
variables. Let Cf(X, Y) be a correlation function relating
variables of f1 and f2. Then one can introduce notions of
toggle equivalence as follows. Boolean functions f1 and f2
are said to be toggle equivalent, if for any two pairs (x, y)
and (x′′′′, y′′′′) of vectors such that Cf(x, y)=Cf(x′′′′, y′′′′)=1, it is
true that f1(x) ≠ f1(x′′′′) ⇔ f2(y) ≠ f2(y′′′′).

The mapping between output vectors produced by
toggle equivalent circuits N1 and N2 (implementing
functions f1 and f2 respectively), can be obtained from
Sat(v(N1)) ∧ Sat(v(N2)) ∧ Cf(X,Y) by existentially quanti-
fying away all the variables of v(N1) ∪ v(N2) except the
output variables of N1 and N2.

3.3 Logic synthesis preserving specification
Let N be a single-output circuit. Denote by Spec(N) a

specification of N i.e. a partition of N into subcircuits
N1,…, Nk. Following [4] we assume that specification
Spec(N) is topological. Let G be a directed graph whose
nodes are subcircuits Ni and an edge of G directed from
node Ni to node Nj implies that an output of Ni is

square(x)

...

...

x1 xn

y < 100

y1 y2n

z

abs(x)
...

...

x1 xn

y* < 10

y*1 y*n

z*

N1

N2 N*2

Circuit N*Circuit N

N*1

connected to an input of Nj. Spec(N) is called topological if
G is acyclic. Since Spec(N1) is topological, one can assign
levels to subcircuits Ni. The pseudocode of LSPS of [4] is
given in Figure 2. There, we assume that the numbering of
subcircuits is topological. That is if i < j then
topological_level(Ni) ≤ topological_level(Nj). In other
words, subcircuits Ni, i=1,..,k are processed by the LSPS
procedure in topological order, from inputs to outputs.

Let us revisit the example of Section 2. LSPS starts with
subcircuit N1 (implementing square(x)) and recovers the
function Dinp(N1, N

*
1) relating the inputs of N1 and

subcircuit N*
1 to be built (line 3 of pseudocode). The inputs

of N1 are inputs of N (and so N1 has the lowest topological
level 1). In that case Dinp(N1, N

*
1)≡1. Then a subcircuit N*

1
toggle equivalent to N1 (e.g. implementing abs(x)) is
synthesized (line 4). In the end of this iteration, the function
Dout(N1, N

*
1) relating outputs of N1 and N*

1 is built (line 5)
as described in Proposition 1. (That is Dout(N1, N

*
1) is

obtained by existentially quantifying away from the
expression Sat(v(N1)) ∧ Sat(v(N*

1) all the variables but the
output variables N1 and N*

1.) Since N1 and N*
1 are toggle

equivalent, there is a one-to-one mapping between the
output vectors they produce. So Dout(N1, N

*
1) is a

correlation function.

1 LSPS(N, Spec(N),cost_function) {

2 for (i=1; i <= k ; i++) {

3 Dinp(Ni, N
*
i
)= constraint_function(N, N*,i);

4 N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function)

5 Dout(Ni, N
*
i
) = exist_quantify(Ni,N

*
i, Dinp); }

6 return(N*,Spec(N*))}

Figure 2. Pseudocode of LSPS procedure

In the next iteration, subcircuit N2 is processed similarly
to N1 with one exception. The inputs of N2 are fed by the
outputs of N1. Then the function Dinp(N2, N

*
2) relating

inputs of N2 and circuit N*
2 (synthesized in line 4) equals

Dout(N1, N
*
1). (In general, the inputs of a subcircuit Ni of

Spec(N) are fed by outputs of more than one subcircuit Nj of
Spec(N). To obtain Dinp(Ni, N

*
i) one has to take the

conjunction of Dout(Nj, N
*
j) for all subcircuits whose

outputs feed inputs of Ni and N*
i. It is not hard to show that

in this case Dinp(Ni, N
*
i) is a correlation function too.)

Let N*
2 be a subcircuit built by LSPS that is toggle

equivalent to N2. If N
*
2 does not have redundant outputs

(i.e. outputs equal to each other modulo negation or
implementing constants), it has only out output. Then N and
the resulting circuit N* (composed of subcircuits N*

1 and
N*

2) are functionally equivalent modulo negation.

4. Recent developments in LSPS
In this section, we describe recent improvements to

LSPS made in [5] , [6], [7] and [8].

4.1 Better complexity parameterization
In [3] and [4], the complexity of LSPS was given in the

granularity of specification of circuit N. The granularity
of Spec(N)={ N1,.., Nk} is the size |Ni| of the largest
subcircuit Ni of Spec(N) (in the number of gates). The
complexity of LSPS is exponential in the granularity of N
and linear in the number of subcircuits Ni of Spec(N). So, if,
for example, the size of subcircuits of Spec(N) is bounded
by a constant, the complexity of LSPS is linear.

The result above was improved in [5]. There, we
considered an equivalence checking procedure for circuits
N and N* with a common specification (this procedure
“enables” LSPS). We showed that the complexity of this
procedure (and hence the complexity of LSPS) is
exponential in the width of specifications Spec(N) and
Spec(N*) and linear in the number of subcircuits. The width
of Spec(N) is max(W1,W2). Here W1 (respectively W2) is the
maximum number of outputs (respectively maximum circuit
width) among the subcircuits Ni of Spec(N). (The first
definition of circuit width was given in [1].)

Informally, the result of [4] means that the complexity
of LSPS remains linear even if the size of subcircuits of
Spec(N) and Spec(N*) is not bounded but the number of
outputs and width of subcircuits of Spec(N) and Spec(N*) is
bounded. So the width of Spec(N) provides a better
parameterization of LSPS than granularity.

4.2 Logic synthesis preserving toggle
implication

In [6], we introduced a generalization of LSPS based on
the notion of toggle implication. In this subsection we will
refer to the method of [4] as LS_TE and to the method of
[6] as LS_TI. Here LS stands for logic synthesis, TI for
toggle implication and TE for toggle equivalence.

Definition 6. Let f1 and f2 be two Boolean multi-output
functions with the same set of variables X={ x1,…, xn} .
Toggling of function f1 implies toggling of f2, if for any
pair of assignments x′′′′, x″″″″ to the variables of X,
f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).

Let N be a single output circuit and
Spec(N)={ N1,…, Nk} . We assume here that the numbering
of subcircuits Ni is topological (as in Subsection 3.3). The
idea of [6] is to replace the first k-1 subcircuits Ni with
subcircuits N*

i such that N*
i ≤ Ni. (Here “≤” denotes the

fact that toggling of N*
i is implied by toggling of Ni.) The

last subcircuit of Spec(N) (i.e. subcircuit Nk) is replaced
with N*

k that is toggle equivalent to Nk. Then the circuit N*
composed of subcircuits N*

1,…, N*
k is functionally

equivalent to N (modulo negation). In contrast to LS_TE, in
LS_TI, when replacing subcircuit Ni, i=1,..,k-1 with
subcircuit N*

i (such that Ni ≤ N*
i) one has to impose the

limit on the number of outputs in N*
i. Otherwise, LS_TE

just replaces Ni with an “empty” circuit N*
i consisting only

of inputs (because in this case Ni ≤ N*
i holds).

In [4], we showed that Boolean functions f1 and f2 are
toggle equivalent iff f1 ≤ f2 and f2 ≤ f1. So toggle
implication is a more general relation than toggle
equivalence. which makes LS_TI more powerful than
LS_TE. Methods LS_TI and LS_TE can be viewed as two
versions of LSPS. For the sake of clarity, in the following
exposition we will use the version LS_TE of LS_PS.
However, one can easily extend this exposition to LS_TI.

4.3 TEP procedure
The key part of LSPS is the procedure that, given a

subcircuit Ni of Spec(N), builds an optimized circuit N*
i that

is toggle equivalent to Ni (under input constraints specified
by Dinp(Ni, N

*
i)). Such a procedure (called Toggle

Equivalence Preserving procedure or TEP procedure for
short) was introduced in [7]. Introduction of the TEP
procedure has made LSPS “a reality” . Given a circuit Ni,
the TEP procedure builds a sequence of circuits Ni

1, Ni
2,...

where Ni
1=Ni that converges to a circuit Ni

m = N*
i toggle

equivalent to Ni. For each circuit Ni
p of this sequence,

Ni ≤ Ni
p holds. So the TEP procedure can be also used for

LS_TI (i.e. for logic synthesis preserving toggle
implication). One just needs to stop the TEP procedure
when the number of outputs in Ni

p is below a predefined
threshold and use Ni

p as the subcircuit N*
i replacing Ni.

4.4 Finding good specification
In [8], we consider the problem of finding a “good”

specification of a circuit N. We conjecture that, in general,
such specification can not be built efficiently because high-
order relations have to be discovered. However, in the very
important case of narrow circuits, a good specification has
a trivial topology: a cascade of subcircuits. So a good
specification of a narrow circuit can be found automatically.
We also conjecture that a good specification of a wide
circuit N (such as a multiplier) can be extracted from a
natural partitioning of N into subcircuits (like adders give a
natural partitioning of a multiplier).

In [8], we also extend the notion of specification to the
case where subcircuits Ni of Spec(N) may share gates.

5. Relation of LSPS to existing synthesis
methods

In this section, we relate LSPS to other methods of
logic synthesis from the viewpoint of the enabling
equivalence checking procedure i.e. at a very high level of
abstraction. (A comparison of LSPS with SPFDs [9][10]
can be found in [7].) In [8], we also compare LSPS with
existing methods from two other angles: complexity and
relation subcircuit/environment. In particular, we show that
in contrast to existing methods, LSPS is based on the notion
of relative (rather than absolute) circuit complexity.
Besides, LSPS operates under the “ friendly environment
paradigm” (as opposed to the “unfriendly environment”
approach employed by existing synthesis methods).

Any logic synthesis transformation has to have an
enabling equivalence checking procedure that is used to
certify the correctness of this transformation. In a typical
logic synthesis transformation shown in Figure 3, a multi-
output subcircuit N′ of N is replaced with an optimized and
functionally equivalent subcircuit N″. The corresponding
enabling equivalence checking procedure consists of block-
level and compositional parts. The block-level part (that is
non-trivial) is to prove that N′ and N″ are functionally
equivalent. The compositional part is trivial. It just says that
if one replaces subcircuit N′ with a functionally equivalent
subcircuit N″ , the resulting circuit N* is functionally
equivalent to N.

LSPS is enabled by
the equivalence
checking procedure of
[4] that has the non-
trivial compositional
part. In terms of
enabling equivalence

Figure 3. A typical synthesis transformation

checking procedures, LSPS is a generalization of existing
synthesis procedures. Indeed, replacing N′ with a
functionally equivalent subcircuit N″ is a special case of
LSPS. (In this case Spec(N) consists of subcircuit N′ and
one-gate subcircuits corresponding to the gates of N that are
not in N′. Since N′ is replaced with a functionally
equivalent subcircuit N″ there is no “re-encoding debt” in
the form of the correlation function Dout(N′, N″). So one
does not have to propagate this debt to the output of N and
so does not have to change the logic fed by N′.)

Suppose, however, that a transformation of a traditional
logic synthesis procedure changes the functionality of N′
but the modified subcircuit N″ is toggle equivalent to N′.
Suppose, for example, that this transformation is to replace
a complex gate G′ of N′ with a simpler gate G″ such that
this replacement is “unobservable” at the outputs of N′ .
Since the subcircuit N″ is not functionally equivalent to N′,
the replacement of G′ with G″ is “observable” . So this
transformation will be rejected by a logic synthesis
procedure enabled by the usual equivalence checking
procedure (with the trivial compositional part). However, it
is within the power of LSPS to accept the replacement of G′
with G″ (because they are toggle equivalent) and re-
synthesize the logic fed by N′ to make the replacement of N′
with N″ a correct transformation.

6. LSPS from optimization point of view
In this section, we consider LSPS from the optimization

point of view. Namely, we show that LSPS can be

…. ….

N’
.. ..

N”

N N*

simulated by an algorithm performing small equivalent
transformations that may increase the circuit size. On the
one hand, this implies that, in general, LSPS performs
transformations that can not be reproduced by a traditional
logic synthesis procedure that a) monotonically reduces the
circuit size and b) makes “ local” transformations. On the
other hand, this means that LSPS can escape local minima
that trap solutions of traditional logic synthesis algorithms.

Intuitively, the depth of local minima LSPS can escape
depends on the width of Spec(N). The deeper a local
minimum is, the more coarse partitioning of N into
subcircuits is necessary to avoid it. In particular, if Spec(N)
consists of N itself, LSPS can potentially escape any local
minimum (but the complexity of such escape is exponential
in |N| and so prohibitively high).

The exposition in this section is structured as follows.
In Subsection 6.1, we recall the problem of local minima
entrapment in the context of traditional logic synthesis.
Subsection 6.2 describes a modification of LSPS called
LSPS+. Since LSPS is a special case of LSPS+, everything
we say about LSPS+ applies to LSPS as well.
Subsection 6.3 shows that LSPS+ can escape local minima
that trap solutions of traditional synthesis methods.

6.1 Local minima entrapment
Let N be a circuit to be optimized. A typical synthesis

procedure performs a sequence of transformations shown in
Figure 3. Each transformation reduces the value of a cost
function (as we mentioned above, in this paper we assume
that cost(N)=|N|)). Then a typical synthesis procedure
builds a sequence of circuits N 1, N 2,…., such that N i+1 is
functionally equivalent to N i and |N i+1| < | N i|. Eventually a
circuit N m gets stuck in a local minimum (that can be
arbitrary far from a global minimum) and the synthesis
procedure terminates. To escape a local minimum, a
synthesis algorithm has to make a number of moves
increasing circuit size. However, currently there are no
efficient algorithms for doing this.

6.2 Modification of LSPS
In this subsection, we consider a modification of LSPS

further referred to as LSPS+. The pseudocode of LSPS+ is
shown in Figure 4. On the one hand, we use LSPS+ to study
LSPS from the optimization point of view. On the other
hand, LSPS+ can be actually used in practice as a more
“ flexible” version of LSPS. As we show below, LSPS can
be viewed as a special case of LSPS+. So everything we say
about LSPS+ applies to LSPS as well.

The main difference between LSPS+ and LSPS is that
LSPS+ tries to compute a re-encoding circuit R*

i such that
R*

i(N
*
i) is functionally equivalent to Ni. (Here N*

i is a
subcircuit toggle equivalent to subcircuit Ni of Spec(N))
That is in addition to computing the relation Dout(Ni,N

*
i),

LSPS+ also computes a circuit R*
i “ implementing” this

relation. In contrast to LSPS, LSPS+ can estimate the size of
the current circuit even before replacing all subcircuits Ni of
Spec(N). Hence, LSPS+ can stop as soon as the size of the
current circuit becomes smaller than the size of the original
circuit N.

1 LSPS+(N, Spec(N),cost_function) {

2 for (i=1; i <= k ; i++) {

3 Dinp(Ni, N
*
i
)= constraint_function(N, N*,i);

4 N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function)

5 Dout(Ni, N
*
i
) = exist_quantify(Ni,N

*
i, Dinp);

6 if (simple(Dout(Ni, N
*
i
)) R*

i=re-encoder(Dout(Ni, N
*
i
));

7 else |R*
i| = ∞

8 if (|N*
1| +..+|N*

i| +|R*
p1| + .. + |R*

pi| < |N1| + .. |Ni|)

9 return(N*,Spec(N*),R*
p1,…,R*

pi);}

10 return(N*,Spec(N*))}

Figure 4. Pseudocode of LSPS+

Let us explain how LSPS+ works by the example shown
in Figure 5 where the circuit N to be optimized consists of
subcircuits N1 and N2. At the first step of LSPS+, the
subcircuit N1 is replaced with a toggle equivalent
counterpart N*

1 and the relation Dout(N1, N
*
1) is computed

as in LSPS. However, in contrast to LSPS, if the relation
Dout(N1, N

*
1) is “simple” enough, LSPS+ computes a re-

encoder R*
1 (line 6 of Figure 4) such that R*

1(N
*
1(y)) is

functionally equivalent to N1(y). (Let us assume, for the
sake of clarity, that LSPS+

 considers relation Dout(Ni, N
*
i) as

“simple” , if the number of outputs in Ni and N*
i does not

exceed a threshold value.) If Dout(N1, N
*
1) is “complex” ,

then R*
1 is not generated and the size of R*

1 is set to infinity
(line 7). Suppose that R*

1 is actually built by LSPS+
 and

|N*
1|+|R*

1|<|N1| (line 8). Then LSPS+ stops here and
generates the resulting circuit as a cascade of N*

1,R
*
1, N2.

If |N*
1|+|R*

1| ≥ |N1|,
then LSPS+ computes
N*

2 that is toggle
equivalent to N1 under
input constraint
specified by
Dout(N1, N

*
1). LSPS+

also computes the re-
encoder R*

2 that just
inverts the output of N*
if the latter is the

Figure 5. Example of LSPS+
 run

negation of N. (Note that at this point R*
1 “disappears” from

the circuit. For that reason, in line 8 of Figure 4 we take
into account only some of re-encoders generated by the i-th
step. LSPS+ “drops” re-encoder R*

i as soon as each
subcircuit Ns of Spec(N) fed by outputs of Ni is replaced

...

...

N1

N2

x1 xk

y1 ym

z

...

...

N*
1

N2

x1 xk

y*1

z

y*p

y1 ym

R*1

...

...

N*
1

N2

x1 xk

y*1

z

y*p

y1 ym

R*1

a) first
 step

a) second
step

...

...

N*
1

N*
2

x1 xk

y*1

z

y*p

z*
R*2

with a toggle equivalent subcircuit N*
s. The re-encoders

R*
p1,.,R

*
pi of line 8 are the ones that have to be preserved by

the i-th step.)

LSPS can be viewed as a special case of LSPS. Indeed,
suppose that LSPS+ considers the relation Dout(Ni, N

*
i) as

“complex” if the number of outputs in Ni, N
*
i is greater

than one. Then none of the “ internal” re-encoders R*
i will

be generated and |R*
i| will be set to infinity (assuming that

all “ internal” subcircuits Ni have more than one output).
Only when LSPS+ reaches a pair of corresponding primary
outputs of N and N*, it computes a trivial re-encoder (a
buffer or an inverter). So, in this case, LSPS+ behaves
exactly as LSPS.

6.3 Escaping local minima by LSPS+
Suppose that during the run of LSPS+ shown in Figure

5, the final circuit N* consists of N*
1, N

*
2 and R*

2 (if an
inverter is necessary) and |N*| < |N|. This means that
although after the first step, LSPS+ did not stop because
|N*

1|+|R*
1| ≥ |N1|, eventually it managed to build a circuit N*

smaller than N. Inequality |N*
1|+|R*

1| ≥ |N1| may hold for
the following three reasons. First, the relation Dout(N1, N

*
1)

is too complex and R*
1 is not built by LSPS+ (so |R*

1| is set
to infinity). Second, even though there is a re-encoder R*′1
such that |N*

1|+|R*′1| < |N1|, the re-encoder R*
1 built by

LSPS+ is larger than R*′1 and so |N*
1|+|R*

1| ≥ |N1|. Third,
there is no re-encoder R*

1 such that |N*
1|+|R*

1| < |N1|. For
example, this is the case when N1 is an optimal circuit.
(Note, that even if N1 is optimal, the circuit N consisting of
N1 and N2 may be arbitrary far from a global minimum).

The third case above is particularly interesting. It means
that LSPS+ may make transformations that increase the size
of intermediate circuits. This implies that LSPS+ (and
hence LSPS) may make transformations that can not be
reproduced by traditional synthesis algorithms. To be
precise, transformations made by LSPS and LSPS+, in
general, are not reproducible by a synthesis algorithm that
a) monotonically reduces the circuit size at every step and
b) makes transformations that affect a subcircuit whose size
is limited by the granularity of Spec(N). In other words, in
general, a traditional procedure (trying to reduce circuit size
at every step) may reproduce a transformation made by
LSPS+ only by increasing the scope of transformation. In
the worst case, a transformation performed by LSPS can be
reproduced only if the entire circuit N changes in one
equivalent transformation.

7. Horizontal and vertical optimization
In Subsections 7.1 and 7.2 below we consider two

complementary kinds of optimization performed by LSPS+:
horizontal and vertical. We use the term horizontal
optimization to refer to the situation when optimization of N

is due to re-synthesis of subcircuits Ni, Nm of Spec(N) that
are topologically independent. (That is gates of Ni are not in
the transitive fan-out of gates of Nm and vice versa.)
Vertical optimization takes place when two topologically
dependent circuits Ni and Nm are re-synthesized by LSPS+
(For example, outputs of Ni may feed inputs of Nm.)

7.1 Horizontal optimization
Let Spec(N) of N have topologically independent

subcircuits Ni, Nm with similar toggling behavior. Then Ni
and Nm can be replaced with subcircuits N*

i and N*
m that

share a lot of logic. (In the extreme case, when Ni and Nm

Figure 6. Example of horizontal optimization

are toggle equivalent, one can pick, say, Ni as both N*
i and

N*
m, in other words, replace Nm with Ni.) We will refer to

the case of optimization achieved due to sharing of logic by
topologically independent subcircuits N*

i and N*
m as

horizontal optimization.

An example of horizontal optimization is shown in
Figure 6. The circuit N on the left implements the
expression x2+3∗x2. Here subcircuits N1, N2, N3 of N
implement functions y=square(x), z=3∗square(x) and
sum(y,z) respectively. The circuit N* on the right is obtained
by LSPS+. Subcircuit N1 is replaced with subcircuit N*

1
that is identical to N1. Subcircuit N2 is replaced with
subcircuit N*

2 also identical to N1 (it is not hard to see that
N1 and N2 are toggle equivalent so one can replace N2 with
N1). Then LSPS+ generates re-encoder R*

1 implementing the
function z=mult(3, y). Since R*

1 is a fairly simple function,
|N*

1| + |N*
2| + |R*

1| < |N1| + |N2| where |N1|=|N2|=|N*
1| and

|N*
2| = 0 and so LSPS+ stops at this point.

7.2 Vertical optimization
Let us return to the example of Section 2. Application of

LSPS+ to this example is shown in Figure 7. LSPS+
performs two steps. In the first step, the subcircuit N1
implementing square(x) is replaced with circuit N*

1
implementing abs(x) and re-encoder R*

1. In the second step,
re-encoder R*

1 and circuit N2 (implementing y < 100) are
replaced with subcircuit N*

2 and re-encoder R*
2

(implementing an inverter or a buffer). Subcircuit N*
2 is

picked to be toggle equivalent to N2(R
*
1(y

*)).

Obviously, the subcircuit N*
1 implementing abs(x) is

smaller than N1 implementing square(x). Given a particular
implementation N1 of square(x), it is not clear if there is a
re-encoder R*

1 such that R*
1(N

*
1(x)) is equivalent to N1(x)

and |N*
1| + |R*

1| < |N1|. If, for example, N1 is an optimal
implementation of square(x), then obviously, there does not
exist a re-encoder R*

1 such that |N*
1| + |R*

1| < |N1|. (Note
that even if N1 is an optimal implementation of square(x),
the circuit N is very far from an optimum.)

Figure 7. Vertical optimization by LSPS

A trivial re-encoder is the circuit N1 itself (because
square(abs((x)) = square(x)). However, in this case,
obviously |N*

1| + |R*
1| > |N1|. So LSPS+ is able to build a

circuit N* that is much smaller than N1 even though the
intermediate circuit (which is the cascade of N*

1, R
*
1 and N2

is larger than the initial circuit N). We will refer to the case
of optimization achieved due to “redistribution” of logic
between topologically dependent subcircuits as vertical
optimization.

8. Why should it work?
In this section, we discuss the reasons for LSPS+ to

succeed in circuit optimization. In Subsection 8.1, we show
that LSPS+ provides a framework for designing efficient
algorithms escaping local minima. In the following
subsections we give various aspects of LSPS+ that should
make it successful. In Subsection 8.2, we show that
horizontal optimization is a natural way to share logic
between “cooperating” logic blocks. Subsections 8.3 and
8.4 explain how LSPS+ can get away with transformations
increasing circuit size in vertical optimization. Namely, we
show that vertical optimization can be successful due to loss
of information in the original circuit. In case a circuit N has
many more inputs than outputs, this loss of information is
“global” (Subsection 8.3). However, even if N does not
lose information globally or loses very “ little” , it still can
have subcircuits that lose information locally (Subsection
8.4).

8.1 High-level view
LSPS+ can be viewed as just a framework for studying and
designing algorithms that that can escape local minima.

Suppose we try to optimize a circuit N using a set of small
equivalent transformations as shown in Figure 3. Suppose
there is no transformation reducing the size of N, if |N′ | < p
(i.e. if the size of the subcircuit N′ of N we replace with N″
consists of less than p gates). This essentially means that N
is stuck in a local minimum. To get N out of this minimum,
one needs to make equivalent transformations that affect a
subcircuit of N larger than p. But how does one make such
transformations in a scalable manner?

LSPS+ answers the question above. By replacing
subcircuits Ni of Spec(N) with toggle equivalent
counterparts N*

i LSPS+ makes a single equivalent
transformation that may encompass the entire circuit N (in
this case the subcircuit N′ we replace with an equivalent one
is N itself). If Spec(N) is narrow, this transformation can be
done efficiently. If there are no “small” equivalent
transformations optimizing N, some replacements of Ni of
Spec(N) with N*

i may increase the size of the intermediate
circuit (i.e. |N*

i| + |R*
i| > |Ni|). Obviously, LSPS+ can not

guarantee that after replacing subcircuits Ni with toggle
equivalent subcircuits N*

i it will always obtain a smaller
circuit N*. Nevertheless, since a circuit trapped in a local
minimum can be arbitrary far from the optimum,
developing algorithms of escaping local minima is
extremely important. LSPS+ suggests an elegant way to
cope with the problem of local minima entrapment.

8.2 Horizontal optimization
Before, we gave a made-up example of applying

horizontal optimization successfully (Figure 6). However,
there is a good reason to believe that horizontal
optimization can be successfully used in practice. Suppose,
for example, that a high-level specification contains two
combinational blocks A and B that “cooperate” with each
other. This cooperation means that when the output of A
changes its value (in terms of multi-valued variables) B
“almost always” changes its value too. In other words, A
and B are almost toggle equivalent (in terms of multi-valued
functions). Then one can pick encodings of output variables
of A and B so that many outputs of Impl(A) and Impl(B) are
functionally equivalent and so can be shared. (Here
Impl(C) is an implementation of block C.)

In practice, however, when translating high-level
descriptions, Boolean encodings are chosen arbitrarily. In
such a case even though Impl(A) and Impl(B) are “almost”
toggle equivalent, they may not share any (or share very
little) logic. Then LSPS+ can improve the situation by
replacing Impl(A) and Impl(B) with toggle equivalent
subcircuits that share a lot of logic. This can be done by a
slightly modified TEP procedure of [7]. (A discussion of
such modification is beyond the scope of this paper.)

8.3 Vertical optimization (global loss of
information)

Let N be a circuit to be optimized. Let N have many
more inputs than outputs. In this case, it inevitably loses
information. Let C1,..,Cp be a topologically ordered set of
cuts of N where C1 is the set of inputs of N and Cp is the set
of outputs of N. Let x, y be a pair of input vectors such
that x ≠ y and N(x)=N(y). Then there should be a cut
Ci, i=2,…,p such that Ci(x)=Ci(y) and for every cut Cj, j > i
it is also true that Cj(x)=Cj(y). In other words, loss of
information means that as one moves from inputs to
outputs, cuts Ci become less and less toggling.

By replacing a subcircuit Ni of Spec(N) with N*
i, LSPS+

makes a temporary “re-encoding debt” in the form of
Dout(Ni, N

*
i). Since LSPS+ replaces subcircuits of Spec(N)

in topological order, it “pushes” the debts in the direction of
cuts that toggle less and less. Then it is possible that even
though |N*

i| + |R*
i| > |Ni| (but |N*

i| < |Ni|), LSPS+ still can
succeed in optimizing N. The debt Dout(Ni, N

*
i) that is too

big to pay now, may eventually become much smaller.

Let us consider, for instance, the example of Section 2.
By replacing N1 implementing square(x) with N*

1
implementing abs(x), LSPS+ runs up a large “debt” .
However, since the circuit N (namely its subcircuit N2
implementing y < 100) loses a lot of information, LSPS
does not have to pay this debt “ in full” . By replacing N2
with a small subcircuit N*

2 (implementing y′′′′ < 10) LSPS+
pays only a small fraction of this debt and nevertheless
obtains circuit N* functionally equivalent to N.

8.4 Vertical optimization (local loss of
information)

Let N be a circuit to optimized. Suppose N does not
lose (much) information globally (which implies that the
number of inputs and outputs of N are comparable). The
fact that N does not lose information globally does not
mean that N can not lose information locally.

Let N′ be a subcircuit N. Let inp(N′) and out(N′)
denote the set of input and output variables of N′
respectively. A variable v is in inp(N′) if it describes an
input of a gate of N′ fed by a gate that is not in N′. A
variable v is in out(N′) if it describes the output of a gate
of N′ that feeds a gate that is not in N′. Suppose the size of
out(N′) is much larger than that of inp(N′). Then one can
apply LSPS+ for optimization of N′ (by partitioning N′ into
subcircuits and replacing these subcircuits with toggle
equivalent counterparts). As we explained in
Subsection 8.3, LSPS+ may succeed because N′ loses

information (from the viewpoint of N this is a local loss of
information).

Suppose, for example, that we need to optimize an
implementation of a function y=f(x) specified as follows.
If x2 < 100 then y = f1(x), otherwise y = f2(x). Let the
expression x2 < 100 be implemented as shown in Figure 1
(on the left). Then even if a circuit N implementing f(x)
preserves (almost) all information, the single-output
subcircuit N′ implementing x2 < 100 loses a lot of
information and can be optimized by LSPS+ as described
above.

9. Conclusions
In this paper, we consider various aspects of Logic

Synthesis Preserving Specification (LSPS). We show that
LSPS provides an elegant solution to the local minimum
entrapment problem. Since the size of a circuit trapped in a
local minimum can be arbitrarily far from the global
minimum, the importance of addressing this problem is
hard to overestimate.

References
[1] C.L.Berman. Circuit width, register allocation, and ordered

binary decision diagrams. IEEE Trans. on CAD. Vol 10:8,
1991, pp. 1059-1066.

[2] P. Farm, E.Dubrova and A.Kuehlmann. Logic Synthesis
Using Simulated Annealing. IWLS-2006, pp. 9-15.

[3] E.Goldberg. Logic synthesis preserving high-level
specification. International Workshop on Logic Synthesis,
IWLS-2004.

[4] E.Goldberg. On Equivalence Checking and Logic Synthesis
of Circuits with a Common Specification. Proceedings of
GLSVLSI, Chicago, April 17-19, 2005,pp.102-107

[5] E.Goldberg. Equivalence checking of circuits with
parameterized specifications. International Conference on
Theory and Applications of Satisfiability Testing, St
Andrews, UK, June 19-23,2005, LNCS 3569, pp.107-121.

[6] E.Goldberg, K. Gulati. On Complexity of External and
Internal Equivalence Checking. Technical Report CDNL-
TR-2006-0105, January 2006.

[7] E.Goldberg, K.Gulati. Toggle Equivalence Preserving Logic
Synthesis. Technical Report CDNL-TR-2005-0912,
September 2005.

[8] E.Goldberg. Escaping Local Minima in Logic Synthesis (and
some other problems of logic synthesis preserving
specification). Technical Report CDNL-TR-2007-0212,
February 2007.

[9] S.Sinha, R.K.Brayton. Implementation and use of SPFDs in
optimizing Boolean networks. ICCAD-1998, pp. 103-110.

[10] S.Yamashita,H.Sawada,A.Nagoya. A new method to express
functional permissibilities for LUT based FPGAs and its
applications.ICCAD-1996,pp.254-261.

