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Abstract.  In this paper, we continue studying Logic 
Synthesis Preserving Specification (LSPS). Given a 
combinational circuit N and its partition into subcircuits 
N1,.., Nk (this partition is called a specification of N), LSPS 
optimizes N by replacing  each subcircuit Ni with toggle 
equivalent subcircuit N*

i. As we showed before, LSPS is 
scalable. In this paper, we demonstrate that LSPS can be 
also viewed as an elegant way to address the local minimum 
entrapment problem. The latter  remains a thorny issue for 
the heuristic algorithms for solving hard combinatorial 
problems.  In this paper,  we give only theoretical 
arguments in favor of LSPS. The preliminary experimental 
results of LSPS can be found in  [6][7]. 
 

1.  Introduction 
When solving hard computational problems one has to 

address the problem of local minima entrapment. Due to the 
huge size of the search space, a typical algorithm A for 
solving, say, an NP-hard problem uses heuristics specifying 
small changes to be made to the current   solution. In such 
an algorithm, a change is accepted if it improves a cost 
function. (Henceforth, we assume that one needs to 
minimize a  cost function.) This leads the current solution to 
a local minimum. The latter  is the situation when  in the set 
of moves used by A  no move can improve the cost of the 
current solution. Unfortunately, the quintessential feature of 
NP-hard problems is that a local minimum can be arbitrarily 
deep.  This means that to get the current solution out of a  
local minimum by the moves allowed in A,  one may have 
to make an unbounded number of moves that make the cost  
the solution higher. 

Unfortunately, making moves increasing the cost 
function dramatically increases the search space. So an 
algorithm making such moves  has no chance to converge to 
a better solution in a reasonable time. For example, in the 
optimization method called simulated annealing (its 
application to logic synthesis is given in  [2]), the number 
of moves increasing the cost function is controlled by a 
“cooling”  schedule. The smaller the temperature is, the less 
likely it is  that such a move is accepted in simulated 
annealing. If the cooling schedule becomes sufficiently 
long, simulated annealing can reach the global minimum 
(and so get out of any local minimum). Unfortunately, these 
schedules may take the time even larger than that of just 
enumerating all possible solutions. 

A typical logic synthesis procedure (being a special case 
of an optimization problem) also suffers from the local 
entrapment problem mentioned above.  Usually, when 
optimizing a circuit N,  such a procedure generates a 
sequence of circuits N 1, N 2,…, (where N 1=N) such that 

N i+1 is functionally equivalent to N i and cost(N i+1) < 
cost(N i). (For the sake of simplicity, henceforth,  we 
assume that cost(N i) is the number |N i| of gates in N i.) For 
complexity reasons, the transformations used by such a 
procedure are local and affect only a small part of the 
circuit.  Eventually, a circuit N m of this sequence gets stuck 
in a local minimum. 

In this paper, we show that  logic synthesis preserving 
specification (LSPS) introduced in  [3][4] actually suggests 
an interesting approach to the local minimum entrapment 
problem. (The site http://eigold.tripod.com/papers.html 
contains all referenced  papers co-authored by the author of 
this paper.) Let N  be a single output circuit to be optimized 
and N1,.., Nk be a partition of N into subcircuits. (In this 
paper we,  assume, unless otherwise stated, that one needs 
to optimize a single-output circuit N. A discussion of 
applying LSPS to multi-output circuits can be found in [8].)  
This partition is called a specification of N. The idea of the 
method of [3][4] is to modify N by replacing subcircuits N 

i 
with toggle equivalent subcircuits N*

i  that are optimized 
according to the required cost function. Then the circuit N* 
consisting of subcircuits N*

i is functionally equivalent to N 
(modulo negation) and has the same specification as N 
(because subcircuits N*

i are connected with each other in N* 
exactly as subcircuits Ni in N). In this paper,  we show that a 
single transformation performed by LSPS can be 
represented as k functionally equivalent transformations of 
the original circuit each of which may increase the size of 
the current circuit. So LSPS can be viewed as a logic 
synthesis procedure  that performs equivalent 
transformations going “against”  the cost function. This 
means that, in general, transformations of LSPS can not be 
reproduced by a “ traditional”  logic synthesis procedure 
monotonically reducing circuit size at every step and 
performing “ local”  transformations.  

This paper is structured as follows. An example of 
LSPS is given in Section 2. In Section 3, we recall the basic 
notions of toggle equivalence and correlation function and 
describe LSPS of [4]. The recent developments in LSPS  
are given in Section 4. Section 5  relates LSPS  to existing 
synthesis procedures from the viewpoint of enabling 
equivalence checking procedures. Section 6 analyzes LSPS 
from the optimization point of view. In Section 7, we 
discuss two kinds of optimization performed by LSPS. 
Section 8 gives reasons for LSPS to be successful. Some 
conclusions are made in Section 9. 

2. Example 
Suppose one needs to optimize  a single-output circuit N 

implementing the arithmetic expression x2 < 100 as shown 



in Figure 1. Circuit N consists of subcircuits N1 and  N2  
connected as a cascade. (In general, LSPS can handle the 
case when the connections of subcircuits  Ni in N  are 
described by an arbitrary  directed acyclic graph.) The 
subcircuit N1 implements the function y=square(x) and  N2 
implements the function y < 100.  

It is not hard to see that the expression x2 < 100 can be 
replaced  with  much simpler expression abs(x) < 10. Below 
we show how this optimization can be  done by LSPS. 
(This simplification may look “ trivial”  and so doable by a 
high-level optimizer. However, one can easily modify this 
example in such a way that high-level optimization 
becomes much less trivial if not impossible.)   

LSPS replaces N1 
with an optimized 
toggle equivalent 
subcircuit , e.g.  with 
the subcircuit N*

1 
implementing 

 

Figure 1. Optimization of x2 < 100 by LSPS 

y* =abs(x). Then it computes  relation Dout(N1, N
*
1) 

specifying the bijective mapping between the output 
assignments produced by N1 and N*

1. (As we showed in [4], 
if two circuits are toggle equivalent, there is a one-to-one  
mapping between  output assignments these circuits 
produce. Note that N1 has twice the number of outputs of 
N*

1.) After that, a subcircuit  N*
2(y

* ) is constructed that is 
toggle equivalent to N2(y) (implementing  y < 100) under 
the input constraint specified by Dout(y, y*)). In the case  N*

1 
implements  y* = abs(x), subcircuit N*

2 has to implement 
y* < 10 (or its negation). For single-output circuits, toggle 
equivalence means functional equivalence (modulo 
negation) [4]. So  N and the circuit N* composed of N*

1 and 
N*

2  are functionally equivalent (modulo negation). 

3. Logic synthesis preserving common 
specification 

In this section, we recall definitions of toggle 
equivalence and correlation function and describe the 
procedure LSPS of [4]. 

3.1 Toggle equivalence 
Definition 1. Let f:{ 0,1} n  → { 0,1} m be an m-output 
Boolean function. A toggle of f  is a pair of two different 
output vectors produced by f  for two input vectors. In other 
words, if y=f(x) and y′′′′ =f(x′′′′ ) and y ≠ y′, then (y, y′ ) is a 
toggle. 
Definition 2.  Let f1 and f2 be  two  Boolean functions of 
the same set of variables.  Functions f1 and f2 are called 
toggle equivalent if  f1(x) ≠ f1(x′′′′ ) ⇔ f2(x) ≠ f2(x′′′′).  (Note 
that f1 and f2 may have different number of outputs.) 
Circuits N1 and N2 implementing toggle equivalent 
functions f1 and f2 are called toggle equivalent circuits.  

Definition 3.  Let f be a Boolean function. We will say that 
function f * is obtained from f by existentially quantifying 
away variable xi if f

 * = f(…, xi=0,…) ∨  f(…, xi=1,….). 

Definition 4. Let N be a circuit. Denote by v(N) the set of 
variables of N. Denote by Sat(v(N))  the Boolean function 
such that Sat(h)=1 iff the assignment h to v(N) is “possible”  
i.e consistent.  For example, if  N consists of just one AND 
gate y=x1 ∧ x2, then Sat(v(N)) = (~x1∨ ~x2 ∨ y) ∧(x1 ∨ ~y)∧  
(x2 ∨ ~y). 

Proposition 1. [4]  Let N1 and N2 be toggle equivalent and 
Z1, Z2 be the sets of their output variables. Let function 
K*(Z1, Z2) be obtained from Sat(v(N1)) ∧ Sat(v(N2)) by 
existentially quantifying away the variables of  N1 and N2 
except those of Z1 ∪ Z2. The function K*(Z1, Z2) implicitly 
specifies the one-to-one mapping K between output vectors 
produced by N1 and N2.  Namely, K*(z1, z2) =1 iff z1=K(z2). 

3.2 Correlation function 
In this section, we use the notion of a correlation 

function to extend definition  of  toggle equivalence to the 
case where functions f1 and f2 have different sets of  
variables. 
Definition 5. Let X and Y be two disjoint sets of Boolean 
variables (the number of variables in X and Y may be 
different).  A function Cf(X,Y) is called a correlation 
function  if there are subsets QX ⊆ { 0,1} |X| and QY ⊆ 
{ 0,1} |Y| such  that Cf(X,Y) specifies a bijective mapping 
M: QX → QY. Namely  Cf(x, y)=1 iff x ∈∈∈∈ QX and y ∈ QY 
and y = M(x). 

Informally, Cf(X,Y) is a correlation function if it 
specifies a bijective mapping between a subset QX of 
{ 0,1} |X| and a subset QY of { 0,1} |Y|.    

Let  f1(X) and f2(Y ) be two multi-output Boolean 
functions  where X={ x1,…, xk}   and Y ={ y1,…, yp}  are their 
variables. Let Cf(X, Y ) be a correlation function relating 
variables of f1 and f2. Then one can introduce notions of 
toggle equivalence as follows. Boolean functions  f1 and f2 
are said to be toggle equivalent, if for any two pairs (x, y) 
and (x′′′′, y′′′′ ) of  vectors such that Cf(x, y)=Cf(x′′′′, y′′′′ )=1,  it is 
true that  f1(x) ≠ f1(x′′′′ ) ⇔ f2(y) ≠ f2(y′′′′). 

The mapping between output vectors produced by 
toggle equivalent circuits N1 and N2 (implementing 
functions f1 and f2 respectively), can be obtained from 
Sat(v(N1)) ∧ Sat(v(N2)) ∧ Cf(X,Y) by existentially quanti-
fying away all  the variables of  v(N1) ∪ v(N2) except the 
output variables of N1 and N2. 

3.3 Logic synthesis preserving specification  
Let N be a single-output circuit. Denote by Spec(N) a 

specification of N i.e. a partition of N into subcircuits 
N1,…, Nk. Following  [4] we assume that specification 
Spec(N) is topological. Let G be a directed graph whose 
nodes are subcircuits Ni and an edge of G directed from  
node Ni to  node Nj  implies that an output of Ni is 
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connected to an input of Nj. Spec(N) is called topological if 
G is acyclic.  Since Spec(N1) is topological, one can assign 
levels to subcircuits Ni.  The pseudocode of LSPS of  [4] is 
given in Figure 2. There, we  assume that the numbering of 
subcircuits is topological. That is if i < j then 
topological_level(Ni) ≤ topological_level(Nj). In other 
words, subcircuits Ni, i=1,..,k are processed by the LSPS 
procedure in topological order, from inputs to outputs. 

Let us revisit the example of Section 2. LSPS starts with 
subcircuit  N1 (implementing square(x)) and recovers the 
function Dinp(N1, N

*
1) relating the inputs of N1 and 

subcircuit N*
1  to be built (line 3 of pseudocode). The inputs  

of N1 are inputs of N (and so N1 has the lowest topological 
level 1). In that case Dinp(N1, N

*
1)≡1. Then a  subcircuit N*

1 
toggle equivalent to N1 (e.g. implementing  abs(x))  is 
synthesized (line 4). In the end of this iteration, the function 
Dout(N1, N

*
1) relating outputs of N1 and N*

1 is built (line 5) 
as described in  Proposition 1. (That is Dout(N1, N

*
1) is 

obtained by existentially quantifying away from the 
expression Sat(v(N1)) ∧ Sat(v(N*

1)  all the variables but the 
output variables N1 and N*

1.) Since N1 and N*
1  are toggle 

equivalent, there is a one-to-one mapping between  the 
output vectors they produce. So Dout(N1, N

*
1) is a 

correlation function. 
 

1  LSPS(N, Spec(N),cost_function) {    

2     for (i=1; i <= k ; i++) {  

3          Dinp(Ni, N
*
i
 )= constraint_function(N, N*,i);  

4           N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function) 

5           Dout(Ni, N
*
i
 ) =  exist_quantify(Ni,N

*
i, Dinp);  }  

6   return(N*,Spec(N*))}  

Figure 2. Pseudocode of LSPS procedure 

In the next iteration, subcircuit N2 is processed similarly 
to N1  with one exception. The inputs of N2 are fed by the 
outputs of  N1. Then the function Dinp(N2, N

*
2) relating 

inputs of  N2  and circuit N*
2 (synthesized in line 4) equals 

Dout(N1, N
*
1). (In general, the inputs of a subcircuit Ni of 

Spec(N) are fed by outputs of more than one subcircuit Nj of 
Spec(N). To obtain Dinp(Ni, N

*
i) one has to take the 

conjunction of Dout(Nj, N
*
j) for all   subcircuits whose 

outputs feed inputs of Ni and N*
i.  It is not hard to show that 

in this case Dinp(Ni, N
*
i) is a correlation function too.) 

Let N*
2 be a  subcircuit built by LSPS that is toggle 

equivalent to  N2. If  N
*
2  does not have redundant outputs 

(i.e. outputs equal to each other modulo negation or 
implementing constants), it has only out output. Then N and 
the resulting circuit N* (composed of subcircuits N*

1 and 
N*

2)  are functionally equivalent modulo negation. 
 

4. Recent developments in LSPS  
In this section, we describe recent improvements to 

LSPS made in [5] , [6], [7] and [8]. 

4.1 Better complexity parameterization 
In [3] and [4], the complexity of LSPS was given in the 

granularity of specification  of circuit N.  The granularity 
of Spec(N)={ N1,.., Nk}  is the size |Ni| of the largest 
subcircuit Ni of Spec(N) (in the number of gates). The 
complexity of LSPS is exponential in the granularity of N 
and linear in the number of subcircuits Ni of Spec(N). So, if, 
for example, the size of subcircuits of Spec(N) is bounded 
by a constant, the complexity of LSPS is linear.  

The result above was improved in [5]. There, we 
considered  an equivalence checking procedure for circuits 
N and N* with a common specification (this procedure  
“enables”  LSPS). We showed that the complexity of this 
procedure (and hence the complexity of LSPS) is 
exponential in the width of specifications Spec(N) and 
Spec(N*) and linear in the number of subcircuits. The width 
of Spec(N) is max(W1,W2). Here W1 (respectively W2) is the 
maximum number of outputs (respectively maximum circuit 
width) among the subcircuits Ni of Spec(N).  (The first 
definition  of circuit width  was given in [1].) 

Informally, the result of [4] means that the complexity 
of LSPS remains linear even if the size of subcircuits of 
Spec(N) and Spec(N*) is not bounded but the number of 
outputs and width of subcircuits of Spec(N) and Spec(N*) is 
bounded. So the width of Spec(N) provides a better 
parameterization of LSPS than  granularity. 

4.2 Logic synthesis preserving toggle 
implication 

In [6], we introduced a generalization of LSPS based on 
the notion of toggle implication. In this subsection we will 
refer to the method of [4] as LS_TE  and to the method of 
[6] as LS_TI. Here LS stands for logic synthesis, TI for 
toggle implication and TE for toggle equivalence. 

Definition 6. Let f1 and f2 be two Boolean multi-output 
functions with the same set of variables X={ x1,…, xn} .  
Toggling of function f1 implies  toggling of  f2, if for any 
pair of assignments x′′′′, x″″″″ to the variables of  X, 
f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).  

Let N be a single output circuit and 
Spec(N)={ N1,…, Nk} . We assume here that the numbering 
of subcircuits Ni is topological (as in Subsection 3.3). The 
idea of [6] is to replace the first k-1 subcircuits Ni with 
subcircuits N*

i such  that N*
i ≤  Ni. (Here “≤”  denotes the 

fact that toggling of N*
i is implied by toggling of Ni.) The 

last subcircuit of Spec(N) (i.e. subcircuit Nk) is replaced 
with N*

k that is toggle equivalent to Nk. Then the circuit N* 
composed of subcircuits N*

1,…, N*
k is functionally 

equivalent to N (modulo negation). In contrast to LS_TE, in 
LS_TI, when replacing subcircuit Ni, i=1,..,k-1 with  
subcircuit N*

i (such that Ni ≤ N*
i) one has to impose the 

limit on the number of outputs in N*
i. Otherwise, LS_TE 

just replaces Ni with an “empty”  circuit N*
i consisting only 

of inputs (because in this case  Ni  ≤ N*
i  holds). 



In [4], we showed that Boolean functions f1 and f2 are 
toggle equivalent iff f1 ≤ f2 and f2 ≤ f1. So toggle 
implication is a more general relation than toggle 
equivalence. which makes LS_TI more powerful than 
LS_TE. Methods LS_TI and LS_TE can be viewed as two 
versions of LSPS. For the sake of clarity, in the following 
exposition we will use the version LS_TE of LS_PS. 
However, one can easily extend this exposition to LS_TI. 

4.3  TEP procedure 
The key part of LSPS is the procedure that, given a 

subcircuit Ni of Spec(N), builds an optimized circuit N*
i that 

is toggle equivalent  to Ni (under input constraints specified 
by Dinp(Ni, N

*
i)). Such a procedure (called Toggle 

Equivalence Preserving procedure or TEP procedure for 
short)  was introduced in [7].  Introduction of the TEP 
procedure has made LSPS “a reality” . Given a circuit Ni, 
the TEP procedure builds a sequence of circuits Ni

1, Ni
2,... 

where Ni
1=Ni  that converges to a  circuit Ni

m = N*
i  toggle 

equivalent to Ni. For each circuit Ni
p of this sequence, 

Ni ≤ Ni
p holds. So the TEP procedure can be also  used for  

LS_TI (i.e. for logic synthesis preserving toggle 
implication).  One just needs to stop the TEP procedure 
when the number of outputs in Ni

p is below a predefined 
threshold and use Ni

p as the subcircuit  N*
i replacing  Ni.  

4.4 Finding  good specification 
In [8], we consider the problem of  finding a “good”  

specification of a circuit N.  We conjecture that, in general, 
such specification can not be built efficiently because high-
order relations have to be discovered.  However, in the very 
important case of narrow  circuits, a good specification has 
a trivial topology: a cascade of subcircuits. So a good 
specification of a narrow circuit can be found automatically. 
We also conjecture that a good specification of a wide 
circuit N (such as a multiplier) can be extracted from a 
natural partitioning of N into subcircuits (like adders give a 
natural partitioning of a  multiplier).  

In [8], we also extend the notion of specification to the 
case where subcircuits Ni of Spec(N) may share gates. 

5. Relation of LSPS to existing synthesis 
methods 

In this section, we relate   LSPS to other methods of  
logic synthesis from the viewpoint of the enabling 
equivalence checking procedure i.e. at a very high level of 
abstraction.   (A comparison of LSPS with SPFDs [9][10] 
can be found in [7].) In [8], we also compare LSPS with 
existing methods from two other angles: complexity and 
relation subcircuit/environment. In particular, we show that 
in contrast to existing methods, LSPS is based on the notion 
of relative (rather than absolute) circuit complexity. 
Besides, LSPS operates under the “ friendly environment 
paradigm”  (as opposed to the “unfriendly environment”  
approach employed by existing synthesis methods). 

Any logic synthesis transformation has to have an 
enabling equivalence checking procedure that is used to 
certify  the correctness of this transformation. In a typical 
logic synthesis transformation shown in Figure 3, a multi-
output subcircuit N′ of N  is replaced with an optimized and  
functionally equivalent subcircuit N″. The corresponding 
enabling equivalence checking procedure consists of block-
level and compositional parts. The block-level part (that is 
non-trivial) is to prove that N′ and N″ are functionally 
equivalent. The compositional part is trivial. It just says that 
if one replaces subcircuit  N′ with a functionally equivalent 
subcircuit N″ , the resulting circuit N* is functionally 
equivalent to N. 

LSPS is enabled by 
the equivalence 
checking procedure of 
[4] that has the non-
trivial  compositional 
part.  In terms of 
enabling equivalence  

 

Figure 3. A typical synthesis transformation 

checking procedures, LSPS is a generalization of existing 
synthesis procedures.  Indeed, replacing N′  with a 
functionally equivalent subcircuit N″ is a special case of 
LSPS. (In this case Spec(N) consists of subcircuit N′ and 
one-gate subcircuits corresponding to the gates of N that are 
not in N′. Since N′ is replaced with a functionally 
equivalent subcircuit N″ there is no “re-encoding debt”  in 
the form of the correlation function Dout(N′, N″ ). So one 
does not have to propagate this debt to the output of N and 
so does not have to  change the logic fed by N′.)   

Suppose, however, that a transformation of a traditional 
logic synthesis procedure changes the functionality of N′ 
but the modified subcircuit N″ is toggle equivalent to N′. 
Suppose, for example, that  this transformation is to replace 
a complex gate G′ of N′  with a simpler gate G″ such that 
this replacement is “unobservable”  at the outputs of N′ . 
Since the subcircuit N″ is not functionally equivalent to N′, 
the replacement of G′ with G″  is “observable” . So this 
transformation will be rejected by a logic synthesis 
procedure enabled by the usual equivalence checking 
procedure (with the trivial compositional part).  However, it 
is within the power of LSPS to accept the replacement of G′ 
with G″ (because they are toggle equivalent) and re-
synthesize the logic fed by N′ to make the replacement of N′ 
with N″  a correct transformation. 

 

6. LSPS from optimization point of view 
In this section, we consider LSPS from the optimization 

point of view. Namely, we show that LSPS can be 

…. ….

N’
.. ..

N”

N N*



simulated by an algorithm performing small equivalent 
transformations that may increase  the circuit size. On the 
one hand, this implies that, in general, LSPS performs 
transformations that can not be reproduced by a traditional 
logic synthesis procedure that a) monotonically reduces the 
circuit size and b) makes “ local”  transformations.  On the 
other hand, this means that LSPS can escape local minima 
that trap solutions of traditional logic synthesis algorithms.  

Intuitively, the depth of local minima LSPS can escape 
depends on the width of Spec(N). The deeper a local 
minimum is, the more coarse partitioning of N into 
subcircuits is necessary to avoid it. In particular, if Spec(N) 
consists of N itself, LSPS can potentially escape any local 
minimum (but the complexity of such escape is exponential 
in |N| and so prohibitively high). 

The  exposition in this section is structured as follows. 
In Subsection 6.1, we recall the problem of local minima 
entrapment in the context of traditional logic synthesis. 
Subsection 6.2 describes a modification of LSPS called 
LSPS+. Since LSPS is a special case of LSPS+, everything 
we say about LSPS+ applies to LSPS as well. 
Subsection 6.3 shows that LSPS+  can escape local minima 
that trap solutions of  traditional synthesis methods.  

6.1 Local minima entrapment 
Let N be a circuit to be optimized. A typical synthesis 

procedure performs a sequence of transformations shown in 
Figure 3. Each transformation reduces the value of a  cost 
function (as we mentioned above, in this paper we assume 
that  cost(N)=|N|)).  Then a typical synthesis procedure 
builds a sequence of circuits N 1, N 2,…., such that N i+1 is 
functionally equivalent to N i and |N i+1| < | N i|.  Eventually a 
circuit N m gets stuck in a local minimum (that can be 
arbitrary far from a global minimum) and the synthesis 
procedure terminates.  To escape a local minimum, a 
synthesis algorithm has to make a number of moves 
increasing circuit size. However, currently there are no 
efficient algorithms for doing this.  

6.2 Modification of LSPS 
In this subsection, we consider a modification of LSPS 

further referred to as LSPS+. The pseudocode of  LSPS+ is 
shown in Figure 4. On the one hand, we use LSPS+ to study  
LSPS from the optimization point of view. On the other 
hand, LSPS+ can be actually used in practice as a more 
“ flexible”  version of LSPS.  As we show below, LSPS can 
be viewed as a special case of LSPS+. So everything we say 
about LSPS+ applies to LSPS as well. 

The main difference between LSPS+ and LSPS is that 
LSPS+ tries to compute a re-encoding circuit R*

i such that 
R*

i(N
*
i) is functionally equivalent to Ni. (Here N*

i is a 
subcircuit toggle equivalent to subcircuit Ni of Spec(N)) 
That is in addition to computing the relation Dout(Ni,N

*
i), 

LSPS+ also computes a circuit R*
i “ implementing”  this 

relation. In contrast to LSPS, LSPS+ can estimate the size of 
the current circuit even before replacing all subcircuits Ni of 
Spec(N). Hence, LSPS+ can stop as soon as the size of the 
current circuit becomes smaller than the size of the original 
circuit  N. 

1  LSPS+(N, Spec(N),cost_function) {    

2     for (i=1; i <= k ; i++) {  

3          Dinp(Ni, N
*
i
 )= constraint_function(N, N*,i);  

4           N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function) 

5           Dout(Ni, N
*
i
 ) =  exist_quantify(Ni,N

*
i, Dinp);  

6         if (simple(Dout(Ni, N
*
i
 ))  R*

i=re-encoder(Dout(Ni, N
*
i
 )); 

7         else |R*
i| = ∞ 

8         if (|N*
1| +..+|N*

i| +|R*
p1| + .. + |R*

pi| < |N1| + .. |Ni|) 

9                return(N*,Spec(N*),R*
p1,…,R*

pi);}  

10   return(N*,Spec(N*))}  

Figure 4. Pseudocode of LSPS+ 

Let us explain how LSPS+ works by  the example shown 
in Figure 5 where the circuit N  to be optimized consists of 
subcircuits N1  and N2.  At the first step of LSPS+, the 
subcircuit N1 is replaced with a toggle equivalent 
counterpart  N*

1 and the relation Dout(N1, N
*
1) is computed 

as in LSPS. However, in contrast to LSPS, if the relation 
Dout(N1, N

*
1) is “simple”  enough, LSPS+ computes  a re-

encoder R*
1 (line 6 of Figure 4) such that R*

1(N
*
1(y)) is 

functionally equivalent to N1(y). (Let us assume, for the 
sake of clarity, that LSPS+

 considers relation Dout(Ni, N
*
i) as 

“simple” , if the number of outputs in Ni and N*
i does not 

exceed a threshold value.)  If Dout(N1, N
*
1) is “complex” , 

then R*
1 is not generated and the size of R*

1 is set to infinity 
(line 7). Suppose that R*

1 is actually built by LSPS+
  and 

|N*
1|+|R*

1|<|N1| (line 8). Then LSPS+ stops here and 
generates the resulting circuit as a cascade of  N*

1,R
*
1, N2. 

If |N*
1|+|R*

1| ≥  |N1|, 
then LSPS+ computes 
N*

2 that is toggle 
equivalent to N1 under 
input constraint 
specified by 
Dout(N1, N

*
1). LSPS+ 

also computes the re-
encoder R*

2 that just 
inverts the output of N* 
if the latter is the  

 

Figure 5. Example of LSPS+
  run 

negation of N. (Note that at this point R*
1 “disappears”  from 

the circuit. For that reason, in line 8 of Figure 4 we take 
into account only some of re-encoders generated by the i-th 
step. LSPS+ “drops”   re-encoder R*

i as soon as each 
subcircuit Ns of Spec(N) fed by outputs of Ni is replaced 
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with a toggle equivalent subcircuit N*
s. The re-encoders 

R*
p1,.,R

*
pi of line 8 are the ones that have to be preserved by 

the i-th step.)  

LSPS  can be viewed as a special case of  LSPS. Indeed, 
suppose that LSPS+ considers the relation  Dout(Ni, N

*
i)  as 

“complex”  if the number of outputs in Ni, N
*
i  is greater 

than one. Then  none of the  “ internal”  re-encoders R*
i will 

be generated and |R*
i| will be set to infinity (assuming that 

all “ internal”  subcircuits Ni have more than one output). 
Only when LSPS+ reaches a pair of corresponding primary 
outputs of N and N*, it computes a trivial re-encoder (a 
buffer or an inverter). So, in this case, LSPS+ behaves 
exactly as LSPS. 

 

6.3 Escaping local minima by LSPS+  
Suppose that during the run of LSPS+  shown in Figure 

5, the final circuit N* consists of N*
1, N

*
2 and R*

2 (if an 
inverter is necessary)  and |N*| < |N|. This means that 
although after the first step, LSPS+ did not stop because  
|N*

1|+|R*
1| ≥ |N1|, eventually it managed to build a circuit N* 

smaller than N. Inequality  |N*
1|+|R*

1| ≥ |N1| may hold  for 
the following three reasons. First, the relation Dout(N1, N

*
1) 

is too complex and R*
1 is not built by LSPS+ (so |R*

1| is set 
to infinity). Second, even though there is a re-encoder R*′1  
such that |N*

1|+|R*′1| <  |N1|, the re-encoder R*
1 built by 

LSPS+ is larger than R*′1  and so |N*
1|+|R*

1| ≥ |N1|.  Third, 
there is no re-encoder R*

1 such that |N*
1|+|R*

1| <  |N1|. For 
example, this is the case when  N1 is an optimal circuit. 
(Note, that even if N1 is optimal, the circuit N consisting of 
N1 and N2 may be arbitrary far from a global minimum). 

The third case above is particularly interesting. It means 
that LSPS+ may make transformations that increase the size 
of  intermediate circuits. This implies that LSPS+ (and 
hence LSPS) may make transformations that can not be 
reproduced by  traditional synthesis algorithms. To be 
precise, transformations made by LSPS and LSPS+, in 
general, are not reproducible by a synthesis algorithm that 
a) monotonically reduces the circuit size at every step and 
b) makes transformations that affect a subcircuit whose size 
is limited by the granularity of Spec(N). In other words, in 
general, a traditional procedure (trying to reduce circuit size 
at every step) may reproduce a transformation made by 
LSPS+ only by increasing the scope of transformation. In 
the worst case, a transformation performed by LSPS can be 
reproduced only if the entire circuit N changes in one 
equivalent transformation.  

 

7.  Horizontal and vertical optimization 
In Subsections 7.1 and 7.2 below we consider two 

complementary kinds of optimization performed by LSPS+: 
horizontal and vertical. We use the term horizontal 
optimization to refer to the situation when optimization of N 

is due to re-synthesis of subcircuits Ni, Nm of Spec(N) that 
are topologically independent. (That is gates of Ni are not in 
the transitive fan-out of gates of Nm and vice versa.) 
Vertical optimization takes place when two topologically 
dependent circuits Ni and Nm are re-synthesized by LSPS+ 
(For example, outputs of Ni may feed inputs of Nm.)  

7.1 Horizontal  optimization 
Let Spec(N) of N have topologically independent 

subcircuits Ni, Nm with similar toggling behavior.  Then Ni 
and Nm can be replaced with subcircuits N*

i and N*
m that 

share a lot of logic. (In the extreme case, when Ni and Nm 

 
Figure 6. Example of horizontal optimization 

are toggle equivalent, one can pick, say, Ni as both N*
i and 

N*
m, in other words, replace Nm with Ni.) We will refer to 

the case of optimization achieved due to sharing of logic by 
topologically independent subcircuits N*

i and N*
m  as 

horizontal optimization. 

An example of horizontal optimization is shown in 
Figure 6. The circuit N on the left implements the 
expression x2+3∗x2. Here subcircuits N1, N2, N3 of N 
implement functions y=square(x), z=3∗square(x) and 
sum(y,z) respectively. The circuit N* on the right is obtained 
by LSPS+.  Subcircuit N1 is replaced  with subcircuit N*

1 
that is identical to N1. Subcircuit N2 is replaced with 
subcircuit N*

2 also identical to N1 (it is not hard to see that 
N1 and N2 are toggle equivalent so one can replace N2 with 
N1). Then LSPS+ generates re-encoder R*

1 implementing the 
function z=mult(3, y). Since R*

1 is a fairly simple function, 
|N*

1| + |N*
2| +  |R*

1| < |N1| + |N2| where |N1|=|N2|=|N*
1| and  

|N*
2| = 0  and so LSPS+  stops at this point. 

7.2 Vertical optimization 
Let us return to the example of Section 2. Application of  

LSPS+ to this example  is shown in Figure 7. LSPS+  
performs two steps. In the first step, the subcircuit N1 
implementing square(x) is replaced with circuit N*

1 
implementing abs(x) and re-encoder R*

1. In the second step,  
re-encoder R*

1 and circuit N2 (implementing y < 100) are 
replaced with subcircuit N*

2 and re-encoder R*
2 

(implementing an inverter or a buffer). Subcircuit N*
2 is 

picked to be toggle equivalent to N2(R
*
1(y

* )).  



Obviously, the subcircuit N*
1 implementing  abs(x) is 

smaller than N1 implementing square(x). Given a particular 
implementation N1 of square(x), it is not clear if there is a 
re-encoder  R*

1 such that  R*
1(N

*
1(x)) is equivalent to  N1(x) 

and |N*
1| + |R*

1|  <  |N1|. If, for example, N1 is an optimal 
implementation of square(x), then obviously, there does not 
exist a re-encoder R*

1 such that |N*
1| + |R*

1|  <  |N1|. (Note 
that even if N1 is an optimal implementation of square(x), 
the circuit N is very far from an optimum.) 

 

Figure 7. Vertical optimization by LSPS 

A trivial re-encoder is the circuit N1 itself  (because 
square(abs((x)) = square(x)). However, in this case, 
obviously  |N*

1| + |R*
1| > |N1|.  So LSPS+ is able to build a 

circuit N* that is much smaller than N1 even though the 
intermediate circuit (which is the cascade of N*

1, R
*
1 and N2 

is larger than the initial circuit N). We will refer to the case 
of optimization  achieved due to “redistribution”  of logic 
between topologically dependent subcircuits as vertical 
optimization. 

 

8. Why should it work? 
In this section, we discuss the reasons for LSPS+ to 

succeed in circuit optimization. In Subsection 8.1, we show 
that LSPS+ provides a  framework for designing efficient 
algorithms escaping local minima. In the following 
subsections we give various aspects of LSPS+ that should 
make it successful. In Subsection 8.2, we show that 
horizontal optimization is a natural way to share logic 
between “cooperating”  logic blocks. Subsections 8.3 and 
8.4  explain how LSPS+ can get away with transformations 
increasing circuit size in vertical optimization.  Namely,  we 
show that vertical optimization can be successful due to loss 
of information in the original circuit. In case a circuit N has 
many more inputs than outputs, this loss of information is 
“global”  (Subsection 8.3).  However, even if N does not 
lose information globally or loses very “ little” , it still can 
have subcircuits that lose information locally (Subsection 
8.4).  

8.1 High-level view 
LSPS+  can be viewed as just a framework for studying and 
designing algorithms that that can escape local minima.  

Suppose we try to optimize a circuit N using a set of small 
equivalent transformations as shown in Figure 3. Suppose 
there is no transformation reducing the size of N, if |N′ | < p 
(i.e. if the size of the subcircuit N′ of N we replace with N″ 
consists of less than p gates).  This essentially means that N 
is stuck in a local minimum. To get N out of this minimum, 
one needs to make equivalent transformations that affect a 
subcircuit of N larger than p. But how does one make such 
transformations in  a scalable manner?  

LSPS+ answers the question above. By replacing 
subcircuits Ni of Spec(N) with toggle equivalent 
counterparts N*

i  LSPS+ makes a single equivalent 
transformation that may encompass the entire circuit N (in 
this case the subcircuit N′ we replace with an equivalent one 
is N itself). If Spec(N) is narrow, this transformation can be 
done efficiently. If there are no “small”  equivalent 
transformations optimizing N, some replacements of Ni of 
Spec(N) with N*

i may increase the size of the intermediate 
circuit (i.e. |N*

i| + |R*
i| > |Ni|).   Obviously, LSPS+ can not 

guarantee that after replacing subcircuits Ni with toggle 
equivalent subcircuits N*

i it will always obtain a smaller 
circuit N*. Nevertheless, since a circuit trapped in a local 
minimum can be arbitrary far from the optimum,  
developing algorithms of escaping local minima is 
extremely important. LSPS+ suggests  an elegant way to 
cope with the problem of local minima entrapment. 

8.2 Horizontal optimization 
Before, we gave  a made-up example of applying 

horizontal optimization successfully (Figure 6). However, 
there is a good reason to believe that horizontal 
optimization can be successfully used in practice. Suppose, 
for example, that a high-level specification contains two 
combinational blocks A and B that “cooperate”  with  each 
other. This cooperation means that when the output of A 
changes its value (in terms of  multi-valued variables) B 
“almost always”  changes its value too. In other words, A 
and B are almost toggle equivalent (in terms of multi-valued 
functions). Then one can pick encodings of output variables 
of A and B so that many outputs of Impl(A) and Impl(B) are 
functionally equivalent and so can be shared.  (Here 
Impl(C) is an implementation of block C.) 

In practice, however, when translating high-level 
descriptions, Boolean encodings are chosen arbitrarily. In 
such a case even though Impl(A) and Impl(B) are “almost”  
toggle equivalent, they may not share  any  (or share very 
little) logic. Then LSPS+ can improve the situation by 
replacing  Impl(A) and Impl(B) with toggle equivalent 
subcircuits that share a lot of logic. This can be done by a 
slightly modified  TEP procedure of [7]. (A discussion of 
such modification is beyond the scope of this paper.) 



8.3 Vertical optimization (global loss of 
information) 

Let N  be a circuit to be optimized. Let N have many 
more inputs than outputs. In this case, it inevitably loses 
information.  Let C1,..,Cp be a topologically ordered set of 
cuts of N where C1 is the set of inputs of N and Cp is the set 
of outputs of N. Let x, y be a  pair of  input vectors such 
that x ≠ y and N(x)=N(y). Then there should be a cut 
Ci, i=2,…,p such that Ci(x)=Ci(y) and for every cut Cj, j > i 
it is also true that Cj(x)=Cj(y). In other words, loss of 
information means that as one moves from inputs to 
outputs, cuts Ci become less and less toggling. 

By replacing a subcircuit Ni of Spec(N) with N*
i,  LSPS+  

makes a  temporary “re-encoding debt”  in the form of 
Dout(Ni, N

*
i). Since  LSPS+ replaces subcircuits of Spec(N) 

in topological order, it “pushes”  the debts in the direction of 
cuts that toggle less and less.  Then it is possible that even 
though  |N*

i| + |R*
i| > |Ni| (but |N*

i| < |Ni|), LSPS+ still can 
succeed in optimizing N. The debt Dout(Ni, N

*
i) that is too 

big to pay now,  may eventually become much smaller. 

Let us consider, for instance, the example of  Section 2. 
By replacing  N1 implementing square(x) with N*

1 
implementing  abs(x), LSPS+ runs up a large “debt” . 
However, since the circuit N (namely its subcircuit  N2 
implementing y  < 100) loses a lot of information, LSPS 
does not have to pay  this debt “ in full” .  By replacing N2 
with a small subcircuit N*

2  (implementing y′′′′ < 10) LSPS+ 
pays only a small fraction of this debt and nevertheless 
obtains circuit N* functionally equivalent to N. 

8.4 Vertical optimization (local loss of 
information) 

Let N  be a circuit to optimized. Suppose N does not 
lose (much) information globally (which implies that the 
number of inputs and outputs of N are comparable). The 
fact that N does not lose information globally does not 
mean that N can not lose information locally.  

Let N′  be a subcircuit N. Let inp(N′ ) and out(N′ ) 
denote the set of input and output variables of N′ 
respectively. A variable v is in inp(N′ ) if it describes an 
input of a gate of  N′ fed by a gate that is not in N′.   A 
variable v is in out(N′ ) if  it describes the output of a gate 
of N′ that feeds a gate that is not in N′. Suppose the size of 
out(N′ ) is much larger than that of inp(N′ ). Then one can 
apply LSPS+ for optimization of N′  (by partitioning N′ into 
subcircuits and replacing these subcircuits with toggle 
equivalent counterparts).  As we explained in 
Subsection 8.3, LSPS+ may succeed because N′ loses 

information  (from the viewpoint of N this is a local loss of 
information). 

Suppose, for example, that we need to optimize an 
implementation of a function y=f(x) specified as follows. 
If   x2 < 100  then y = f1(x), otherwise y = f2(x).  Let the 
expression x2 < 100 be implemented as shown in Figure 1 
(on the left). Then even if a circuit N implementing f(x) 
preserves (almost) all information, the single-output 
subcircuit N′  implementing x2  < 100 loses a lot of 
information and can be optimized by LSPS+ as described 
above. 

 

9. Conclusions 
In this paper, we consider various aspects of Logic 

Synthesis Preserving Specification (LSPS).  We show that 
LSPS provides an elegant solution to the local minimum 
entrapment problem. Since the size of a circuit trapped in a 
local minimum can be arbitrarily far from the global 
minimum, the importance of addressing this problem is 
hard to overestimate.  
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