Proving unsatisfiability of CNFs locally

Eugene Goldberg
Cadence Berkeley Labs, 2001 Addison,Berkeley,94704,USA
egold@cadence.com

Abstract

We introduce a new method for checking satisfiability of Con-
junctive Normal Forms (CNFs). The method is based on the fact
that if no clause of a CNF contains a satisfying assignment in its 1-
neighborhood, then this CNF is unsatisfiable. (The 1-neighborhood of
a clause is the set of all assignments satisfying only one literal of this
clause). The idea of 1-neighborhood exploration allows one to prove
unsatisfiability without generating an empty clause. The reason for
avoiding the generation of an empty clause is that we believe that no
deterministic algorithm can efficiently reach a global goal (deducing
an empty clause) using an inherently local operation (resolution). At
the same time when using 1-neighborhood exploration a global goal is
replaced with a set of local subgoals, which makes it possible to opti-
mize steps of the proof. We introduce two proof systems formalizing
1-neighborhood exploration. An interesting open question is if there
exists a class of CNFs for which the introduced systems have proofs
that are exponentially shorter than the ones that can be obtained by
general resolution.

1 Introduction

Almost all existing deterministic algorithms for solving the satisfiability prob-
lem can be described in terms of general resolution [11]. The Davis-Putnam
procedure [5], the Davis-Putnam-Logemann-Loveland algorithm [4], meth-
ods of search tree exploration enhanced by clause recording (e.g. [10]), and
methods using non-trivial schemes of backtracking like those described in [7],

are examples of algorithms that are special cases of general resolution. Since
general resolution is a generic method for solving the satisfiability problem,
considerable effort has been expended to find lower bounds on the com-
plexity of resolution proofs. (Henceforth under general resolution we mean
non-deterministic general resolution.) In 1985 Haken [8] showed that any
resolution proof for pigeon-hole CNFs has exponential length. Afterwards,
exponential lower bounds on resolution proofs were proven for graph based
CNFs [15] and random CNFs [3].

However, little attention has been given to the following issue that is
very important from a practical point of view. Suppose that for a class
of CNFs general resolution can always find a proof of polynomial length.
Does it mean that there is a “practical” deterministic resolution algorithm
that can find such a proof? In [1, 2] it was shown that for some classes of
CNFs all the proofs in tree-like resolution have exponential length while in
general resolution there are proofs of polynomial size. This suggests that
the performance of all practical algorithms based on tree-like resolution is
far from the performance of general resolution. A bounded resolution was
suggested as an alternative to tree-like resolution in [6]. Various methods
employing bounded resolution have been used in practice for a long time. A
common feature of these methods is that an empty clause is deduced in a set
of iterations of increasing complexity. In each iteration every resolvent whose
size (number of literals) exceeds a threshold value is immediately thrown
away. If an empty clause cannot be deduced in the current iteration, a
new iteration begins with the threshold value incremented by 1. In many
cases bounded resolution works much better than tree-like resolution. For
example, it has been shown in [1] that for so-called graph pebbling CNFs
general resolution has linear complexity, tree-like resolution is exponential,
and bounded resolution has fourth order complexity. However, bounded
resolution can hardly be called a satisfactory solution. Algorithms whose
complexity is bounded by high-order polynomials are impractical. Besides, it
has not been proven yet that any class of CNFs that has polynomial proofs in
general resolution also has proofs of polynomial length in bounded resolution.

The time is ripe to ask whether bridging the gap between non-deterministic
and deterministic resolution algorithms is just a matter of time or there is a
flaw in the very idea of looking for “good” deterministic algorithms based on
general resolution. We believe that the latter is true. Namely, the reason for
poor performance of the existing deterministic algorithms is in the following

hidden contradiction: a global objective (the deduction of an empty clause)
has to be achieved by using an inherently local operation (resolution). This
contradiction by no means affects general resolution because it has an oracle
at hand to point to the next pair of clauses to resolve. On the other hand,
a resolution based deterministic algorithm has to solve this contradiction
somehow. It is not hard to see that in the current deterministic resolution
algorithms the contradiction is solved by “globalizing” the resolution oper-
ation that is by restricting resolution so that it loses its flexibility. In the
algorithms based on the Davis-Putnam-Logemann-Loveland procedure, vari-
able splitting can be considered as a way of planning empty clause deduction
by resolving the two clauses deduced in the left and right branches of the
search tree. In the Davis-Putnam procedure one has to resolve all the clauses
containing the variable to be eliminated at the current step. An algorithm
using bounded resolution has to keep all the resolvents whose size is below
a threshold, i.e. it also sacrifices the flexibility of resolution.

It is natural to ask the following question. “Is there a deterministic
algorithm such that at each step it manages to make an optimal or sub-
optimal (from the viewpoint of deducing an empty clause) choice of the pair
of clauses to resolve?” Since currently there is no theory that could answer
this question we accept the answer no as a postulate. In this paper, we
try to resolve the contradiction mentioned above in a different way. Instead
of globalizing resolution, we make the objective local. Such an objective
is to explore the 1-neighborhood of the clauses of the initial CNF (the 1-
neighborhood of a clause C' is the set of all assignments satisfying only one
literal of C'). It is not hard to show (see Section 3) that if a CNF F is
satisfiable then the 1-neighborhood of at least one clause of F' has to contain
a solution. So if no solution is found in the 1-neighborhood of the clauses of
a CNF, the latter is unsatisfiable.

We introduce two proof systems formalizing 1-neighborhood exploration.
The key idea is to specify l-neighborhood by marking literals of clauses.
(Marking a literal z of a clause C' means that 1-neighborhood of clause C
in direction z is yet to be explored.) A proof in the proposed system is per-
formed by applying a set of operations correctly transforming literal marking.
The proof terminates when either all clauses become unmarked (the original
CNF is unsatisfiable) or there appear a clause with a marked literal that can-
not be unmarked (the original CNF is satisfiable). So in contrast to general
resolution, instead of pursuing the global goal of deducing an empty clause

3

the proof is performed by achieving local subgoals of literal unmarking.

The paper is organized in the following way. In Section 2, we give basic
definitions. The main idea of 1-neighborhood exploration is described in Sec-
tion 3. In Section 4, a proof system formalizing 1-neighborhood exploration
is introduced. This proof system is modified in Section 5 to incorporate the
resolution operation. The relationship of our approach to local search algo-
rithms is considered in Section 6. Finally, in Section 7 we discuss directions
for future research.

2 Main definitions

Definition 1 A literal of a Boolean variable x is one of the two single ar-
gument Boolean functions of x. The identity function is called the positive
literal of x and is denoted by x. The complement function is called the
negative literal of x and is denoted by .

Definition 2 A disjunction of literals of Boolean variables not containing
opposite literals of the same variable is called a clause. A conjunction of
clauses is called a Conjunctive Normal Form (CNF).

Definition 3 Given a CNF F', the satisfiability problem is to find an
assignment to the variables of F' (called a solution to the satisfiability prob-
lem) for which F evaluates to 1 or to prove that such an assignment does not
exist. A clause C of F is said to be satisfied by assigning value w € {0,1}
to a variable x if a literal of x s in C and the assignment of value w sets this
literal to 1. We will say that this literal of x is satisfied by the assignment of
value w.

Definition 4 Let C and C' be clauses having the opposite literals of a vari-
able (say variable x) and there is only one such a variable. The resolvent
of C,C" in variable x is the clause that contains all the literals of C and C'
but literals x and T. The operation of producing the resolvent of C and C' is
called resolution.

Definition 5 The set of points of the Boolean space for which a clause C
evaluates to 0 is called the unsatisfiability cube of C. (By a point of
the Boolean n-space we mean a set of assignments to all n variables.) The

4

unsatisfiability cube of C is denoted by Unsat(C). We will say that a point s
is covered by a clause C if s € Unsat(C). A clause C is said to subsume
a clause C' if Unsat(C) O Unsat(C")

Definition 6 Given a CNF F, general resolution is a method of check-
ing the satisfiability of F by successively applying the resolution operation
and adding resolvents to the current CNF. If this procedure results in pro-
ducing an empty resolvent then F' is unsatisfiable. If at some point any new
resolvent (that can be produced by resolving two clauses of the current CNF)
1s subsumed by a clause of the current CNF, then F is satisfiable.

Definition 7 The set of n different points of the Boolean n-space s said to
be the 1-neighborhood of a point s if each point of the set is obtained
by changing the value of exactly one variable of s. Denote by Nbhd(s) the
1-neighborhood of point s. The 1-neighborhood of a subset S of the
Boolean n-space is the set of points p such that p € Nbhd(s) , s € S ,p ¢
S. In other words, a point p is in the 1-neighborhood of S if p is not in S
and it is in the 1-neighborhood of a point from S.

Definition 8 The I-neighborhood of the unsatisfiability cube Unsat(C) of
clause C is called the 1-neighborhood of clause C (written Nbhd(C)).

Remark. 1t is not hard to see that the 1-neighborhood of C consists of all
the points of the Boolean space that satisfy (i.e. set to 1) exactly one literal

of C.

Definition 9 The set of assignments satisfying only one literal of clause C,
say a literal of variable x, is called the 1-netghborhood of C in direction

x (written Nbhd(C, z)).
Definition 10 Clause C' is said to be symmetric to clause C in variable

z if C and C' contain the opposite literals of x and the other literals are
tdentical in both clauses.

3 Main idea of the method

The idea of 1-neighborhood exploration is based on the following proposition.

5

Proposition 1 Let F' be a satisfiable CNF consisting of at least one clause.
Then there is a solution s (i.e. a point of the Boolean space satisfying all the
clauses of F') that lies in the 1-neighborhood of a clause of F.

Proofs of the propositions are given in the Appendix.

From Proposition 1 it follows that to prove that a CNF F' is unsatisfiable
one just needs to make sure that there is no solution in the 1-neighborhood
of the clauses of F'. This means that there is no need to produce an empty
clause as the proof of search completeness. At first glance, exploring the
1-neighborhood of all the clauses of F' is an appalling task. Suppose, for ex-
ample, that C=a VbV c is one of the clauses of F'. The 1-neighborhood of C'is
specified by set Unsat(C1) U Unsat(Cs) U Unsat(Cs) where C; =aVvbVe,
Cy = aVbVe, C3 = aVvbVve. That is, 1-neighborhood of just one clause occu-
pies 3/8 of the Boolean space. This means that exploring the 1-neighborhood
of each clause separately is extremely inefficient. The remarkable fact how-
ever is that the use of 1-neighborhood inheritance machinery can potentially
make 1-neighborhood exploration very efficient.

Proposition 2 If S; and Ss are subsets of the Boolean space and S; C S
then Nbhd(S1) \ Sa C Nbhd(Ss).

Definition 11 Let C be a clause and C; = CVd, Cy = C V d be the clauses
obtained from C' by branching on variable d. Clauses C; and Cs are said to
be obtained by the expansion of clause C in direction d.

The inheritance of the 1-neighborhood of a clause C' of CNF F' means
generating a set Ci,...,C, of new implicates of F' such that Unsat(C) C
Unsat(Cy)U...UUnsat(Cp). Then according to Proposition 2 the union of 1-
neighborhoods of Ci,...,C, covers the 1-neighborhood of C minus
Unsat(Cy) U...UUnsat(Cp). That is, the part of the 1-neighborhood of C
that may contain a solution is inherited by clauses Ci, ..., C,. With respect
to 1-neighborhood exploration, C is “replaced” with these new clauses. The
simplest example of clause replacement is the expansion of a clause in some
direction. Suppose that C' is equal to a VbV ¢ and clauses C; = aVbVeVd
and C, = a VbV cVd are obtained from C by branching on variable d.
Since Unsat(C) = Unsat(Cy) U Unsat(Cs), then Nbhd(C) = (Nbhd(C;) U
Nbhd(Cs)) \ Unsat(C).

The replacement operation is used for modifying clauses of the current
CNF so that 1-neighborhoods of the new clauses are easier to explore. The
notion of “easier to explore” has at least two meanings. First, one can try
to replace a clause with new ones whose 1-neighborhood in some direction
can be trivially checked. Suppose, for example, that clause C = aV bV ¢ has
been replaced with C; =aVbVeVvd, Co=aVbVcVd as described above.
Suppose that in the current CNF there is clause C3 = @V ¢V d. Then we
can immediately conclude that Nbhd(C1,a) (i.e. the 1-neighborhood of C; in
direction a) does not have a solution because no assignment from Nbohd(C1, a)
satisfies C3. Second, using clause replacement one can try to generate a new
smaller set of clauses that inherit the 1-neighborhood of the original set of
clauses.

If the initial CNF is unsatisfiable then by applying the operations of clause
replacement and 1-neighborhood exploration for “easy-to-check” clauses, we
will eventually reach the point that the 1-neighborhood of each clause of the
current CNF has been explored and no solution found. Since the clauses
of the current CNF have inherited the 1-neighborhood of the clauses of the
initial CNF, this means that according to Proposition 1 the latter is unsat-
isfiable.

4 A proof system for 1-neighborhood explo-
ration

In this section we introduce a system for checking satisfiability of CNFs that
formalizes the idea of 1-neighborhood exploration. We will call it System NE
(System for 1-Neighborhood Exploration). Let F' be a CNF to be checked
for satisfiability. To keep track of the unexplored part of 1-neighborhood we
use the notion of clause marking. Marking a clause C' is to mark literals
of C corresponding to the directions in which the 1-neighborhood of C' has
not been explored yet. For example, if literals b and d are marked in clause
C =aVbVwvVdthen Nbhd(C,b) and Nbhd(C,d) are yet to be explored.
It should be noted that the fact that literals a,v are not marked does not
necessarily imply that there is no solution in Nbhd(C,a) U Nbhd(C,v). It
may just mean that this part of Nbhd(C') has been “inherited” by some other
clauses.

Definition 12 Let C be a clause with marked literals. The union of the sets
Nbhd(C, x) where z is a marked literal of C' is called the marked 1-neigh-
borhood of clause C' (written Mrkd_Nbhd(C)).

Definition 13 The marked 1-neighborhood of CNF F is the union of
the marked 1-neighborhoods of the clauses of F'.

Definition 14 Clause C is called unmarked (respectively marked) if it
does not have (respectively has) a marked literal.

Definition 15 Clause C is called inextinguishable in F in direction x (or
Just inextinguishable for short) if the following two conditions hold:

e In clause C there is a literal of variable x and any clause C' of F
containing the opposite literal of x also contains a literal of a variable
y such that C' contains the opposite literal of y.

e Any clause C' of F not containing a literal of x (of either polarity)
contains a literal of a variable z such that C' contains the opposite
literal of z.

Proposition 3 If clause C is inextinguishable in CNF F' in direction x then
any assignment from Nbhd(C,x) satisfies all the clauses of CNF F.

Proposition 4 Let C be a clause of a CNF F and let Nbhd(C,x) contain
a solution s. Then there is a clause subsumed by C that is inextinguishable
in direction x.

Definition 16 Given a CNF F', a clause C' is called complete if it contains
literals of all variables appearing in the clauses of F'.

The main idea of checking satisfiability in system NE is as follows. Let
F be the CNF to be checked for satisfiability. Initially all the literals of F
are marked. So according to Proposition 1 if F' is satisfiable, the marked
1-neighborhood of F' has to contain a solution. At each step of the proof,
a marked clause C of the current CNF is picked and one of the following
two kinds of operations is performed on C. Operation of the first kind is
to unmark a marked literal of C| say literal . The unmarking means that
either Nbhd(C,z) C Unsat(C') , C' € F (and so there is no solution in

8

Nbhd(C,x)) or Nbhd(C,z) is contained in the marked 1-neighborhood of
some other clause of the current CNF. (The latter case of unmarking is done
to avoid work duplication). Operation of the second kind is to unmark clause
C by generating two new clauses C; and C5 obtained by the expansion of C
in some direction. These new clauses are marked so that Mrkd _Nbhd(C) =
Mrkd_Nbhd(Cy) U Mrkd_Nbhd(Cs). Then clauses C; and C» are added to
the current CNF and all the literals of clause C' are unmarked, which makes
it an unmarked clause. Clause C' remains in the current CNF unless it is
subsumed by a clause of the current CNF. Suppose, for example, that C is
one of the two clauses produced by expansion of C' and C; becomes unmarked
later. Then it can be removed from the current CNF as being subsumed by
an existing clause of the current CNF namely, clause C.

After applying an operation, the marked 1-neighborhood of the current
CNF either remains unchanged or is correctly decreased. By correct decreas-
ing we mean removing from the 1-neighborhood of the current CNF points
that are proven not to contain a solution. If the initial CNF is unsatisfiable
then at some point all the clauses of the current CNF will become unmarked,
which means that the 1-neighborhood of the initial CNF does not contain a
solution. If the initial CNF is satisfiable then an inextinguishable clause will
be produced.

Another way to look at a proof of unsatisfiability produced in System NE
is as follows. Let C,...,C, be the set of clauses of a CNF F. By using
clause expansion we eventually produce a set of clauses F' = {Cj,...,C,,}
p > n such that

e ONF F' is equivalent to CNF F.
e Each clause C] is subsumed by a clause Cj of F'.

e For each clause C] it can be trivially proven that Nbhd(C}) is solution-
free. Namely, if a literal of a variable z is in C] , there exists a clause
Cy of F subsuming the clause symmetric to Cj in z.

The 1-neighborhood of the clauses of F” is solution-free and so F” (and hence
F') is unsatisfiable.
System NE is specified by the following rules.

1. All literals of the clauses of the initial CNF F' are marked.

. At each step of the proof a marked clause C' is picked and one of the
Rules 3, 4, 5, 6 is applied. These rules can be applied in an arbitrary
order.

. Clause C is expanded in direction x such that clause C' does not have
a literal of x. This expansion results in generating clauses C' = C V x
and C" = C vz. If a literal of C is marked (not marked) it is marked
(respectively not marked) in C’' and C”. Literals of the branching
variable (i.e. variable) are not marked. All literals of C' get unmarked
and so C' becomes an unmarked clause.

. If a literal of a variable y is in C' and this literal is marked and there is
a clause in the current CNF that subsumes the clause symmetric to C'
in y , then this literal gets unmarked in C.

. If a literal of a variable y is in C and this literal is marked and in
the current CNF there is a clause C' such that Mrkd_Nbhd(C') D
Nbhd(C,y) then this literal gets unmarked in C.

. If an unmarked clause C' is subsumed by some other clause of the
current CNF, the former is removed from the current CNF.

. If all the clauses in the current CNF are unmarked, then the initial
CNF is unsatisfiable (see Proposition 5). Proof terminates.

. If in the current CNF F' there is a complete clause C’ such that a lit-
eral of a variable y is marked in C and this literal cannot be unmarked
by applying Rules 4, 5, then C’ is inextinguishable in direction y (see
the proof of Proposition 6). This means that the initial CNF is satisfi-
able and so proof terminates. The point specified by Nbhd(C',y) is a
solution.

Proposition 5 If all the clauses of the current CNF become unmarked after
completing a step of a proof in System NE, then the initial CNF is unsatis-

Proposition 6 System NFE is sound, that is any conclusion made about the
satisfiability of the initial CNF F' 1is correct.

10

Proposition 7 Let C' be a complete marked clause obtained by applying rules
of System NE to CNF F. If F 1is unsatisfiable, then one can unmark any
marked literal of C, say a literal of variable x, by applying Rule 4. If this
literal cannot be unmarked, then clause C is inextinguishable in direction x
and so Nbhd(C,x) contains a solution.

Proposition 8 System NE is complete. That is, for any CNF F, after a
finite number of applications of rules, the correct termination condition is
encountered.

5 Enhancing System NE with resolution

In this section we introduce System NER (System for 1-Neighborhood Ex-
ploration enhanced by Resolution). In this system, in contrast to System
NE, we use two different kinds of unmarking: unconditional and conditional.
The notions of unconditional and conditional unmarking distinguish the un-
marking done by applying Rules 4 and 5. The reason for such distinction is
that we introduce two kinds of resolution: marked and unmarked. Unmarked
resolution is applied only to clauses that are unconditionally unmarked and
so their 1-neighborhood is solution-free (see Definition 18). The objective
of unmarked resolution is to produce new clauses whose 1-neighborhood is
solution-free. Marked resolution is applied to clauses that may contain con-
ditionally unmarked literals. The objective of marked resolution is to reduce
the number of marked clauses.

Definition 17 The unmarking of a literal (say literal z) of a clause C is

called conditional if x is unmarked by applying Rule 5 in the description of
System NE.

This kind of unmarking does not imply that clause C' has no solution
in Nbhd(C,z). It just means that Nbhd(C,z) is covered by the marked 1-
neighborhood of some clause C’. So one can claim that there is no solution in
Nbhd(C, z) under the condition that there is no solution in Mrkd_Nbhd(C").

Definition 18 The unmarking of a literal (say literal z) of a clause C is
called unconditional if © is unmarked by applying Rule 4 in the description
of System NE. Clause C is called unmarked unconditionally if all literals
of C are unmarked unconditionally.

11

The unconditional unmarking of a literal in C' means that there is no
solution in Nbhd(C,z). If a clause is unconditionally unmarked it means
that Nbhd(C) does not have solutions.

Let us now consider how System NER benefits from using resolution.
Suppose that C' is a marked clause and C' is an unconditionally unmarked
clause (and so its 1-neighborhood is solution-free) and C' subsumes C'. Since
Nbhd(C') D Nbhd(C)\ Unsat(C"), then Nbhd(C) is solution-free as well. In
System NE we do not have a special unmarking rule covering the described
situation because the latter is taken care of by Rule 4. Indeed, since clause
C' is unconditionally unmarked, then for each literal of C' (say literal y)
there is a clause C* subsuming the clause symmetric to C in y. Since C’
subsumes C' then the latter contains literal y as well. It is not hard to see
that literal y can be unconditionally unmarked in C' by using C*. Indeed,
the clause symmetric to C in y is subsumed by the clause symmetric to C’
in y and so is subsumed by C*. In other words, the set of clauses used
for the unconditional unmarking of the literals of C' can be used for the
unconditional unmarking of the literals of C'. However, if one is allowed to
resolve clauses, the situation changes.

Definition 19 Let C; and Cy be unconditionally unmarked clauses that can
be resolved in a variable x. Then their resolvent C' is said to be produced by
unmarked resolution.

Proposition 9 Let C; and Cs be unconditionally unmarked clauses (and so
Nbhd(Ci) and Nbhd(Cs) are solution-free) that can be resolved in a variable
z. Then Nbhd(C) is solution-free as well.

By using unmarked resolution one can produce clauses with fewer liter-
als whose 1-neighborhood is solution-free. Then it is beneficial to have the
following special rule. Whenever a marked clause C' is subsumed by a clause
whose 1-neighborhood is solution-free, C' can be unconditionally unmarked.
Since resolution “reshapes” clauses, this new rule is not subsumed by Rule 4
of System NE.

One more possible application of the resolution operation is to reduce
the number of marked clauses (the clause expansion operation tends to pro-
duce a large number of marked clauses). For example, by using resolution
one can produce a clause whose marked 1-neighborhood covers marked 1-
neighborhoods of a few clauses. For this purpose we need to introduce a

12

“marked” version of resolution that can be incorporated into the 1-neighborhood
inheritance paradigm.

Definition 20 Let C and Cy be two clauses that can be resolved in a variable
x. Clause C 1s said to be produced from C; and Cy by marked resolution
with respect to Cy if the following conditions hold:

o (Clause Cy 1s marked.
e Resolvent C' subsumes clause C.

o All marked literals of Cy (except the literal of x) get marked in C as
well.

Definition 20 gives a very restricted version of resolution. The reason is
that under this restriction all literals of C; can be unmarked (see Propo-
sition 10) because the resolvent inherits the marked 1-neighborhood of C;.
In a general case, when resolving a marked clause C; with a clause C, the
1-neighborhood of the resolvent does not subsume Mrkd _Nbhd(Ci). So we
restrict marked resolution to make 1l-neighborhood inheritance machinery
work.

Proposition 10 Let clause C be obtained by the marked resolution of C; and
C> with respect to Cy. Then Mrkd_Nbhd(Cy)\Unsat(C) C Mrkd_Nbhd(C).

Now we formulate the rules of System NER. It inherits all the rules of
System NE listed in Section 4 with a slight modification due to distinguish-
ing conditional and unconditional marking. We just mention here how a rule
of System NE is modified in System NER. In Rule 3 (expansion of a clause
(), clause C' becomes conditionally unmarked. In Rule 4, literal y becomes
unconditionally unmarked. In Rule 5, literal y becomes conditionally un-
marked. Rule 6 is applicable to any clause C whose all literals are unmarked
conditionally. (For removing clauses with unconditionally unmarked literals
System NER has a new rule described below.) The termination condition
described in Rule 7 does not distinguish whether the clauses of the current
CNF are unmarked conditionally or not. Finally, the termination condition
in Rule 8 says about a clause having a literal that cannot be unmarked both
conditionally and unconditionally.

System NER has the following four extra rules:

13

e If a marked clause C is subsumed by a clause C' whose literals are
unconditionally unmarked, then all the marked literals of C are uncon-
ditionally unmarked.

e If an unconditionally unmarked clause C' is subsumed by some other
unconditionally unmarked clause C’, clause C' is removed from the cur-
rent CNF.

e Unmarked resolution rule. If C; and C5 can be resolved in a variable x
and all their literals are unconditionally unmarked, then the resolvent
C of C; and Cy is produced. The literals of C' are unconditionally
unmarked. This rule is applied only if C' is not subsumed by an existing
clause of the current CNF.

e Marked resolution rule. If C; and Cy are two clauses of the current CNF
that can be resolved by using marked resolution with respect to Cf,
then the resolvent C' is produced whose literals are marked according
to Definition 20. The marked literals of C'; are conditionally unmarked.
The rule is applied only if C' is not subsumed by an existing clause of
the current CNF.

New rules can be used in combination with Rules 3, 4, 5, 6 of System NE in
an arbitrary order. Proposition 6 (that System NE is sound) is applicable to
System NER as well and can be proven in the same way. However, one should
revise the proof of completeness because combining the clause expansion
operation with resolution may potentially lead to looping.

Proposition 11 System NER is complete. That is for any CNF F, after
a finite number of applications of rules, the correct termination condition is
encountered.

Looping is avoided in System NER by imposing the requirement that no
resolvent produced by either resolution rule is subsumed by a clause of the
current CNF. Checking for subsumption is quite expensive from a practical
point of view. However, a cheaper way to avoid looping can be used in prac-
tice (for example, by imposing partial variable ordering). System NER just
gives a general framework for using resolution in 1-neighborhood exploration.

We would like to emphasize the difference in using resolution in System
NER and in general resolution. In general resolution all resolvents have to

14

eventually contribute into deducing an empty clause. So no two resolvents
produced in a general resolution proof are independent. As we already men-
tioned in the introduction, this suggests that general resolution cannot be
efficiently implemented by a local deterministic algorithm. In System NER
we use two kinds of resolutions. Unmarked resolution is local because we can
produce resolvents that are independent of each other. Suppose, for example,
that by unmarked resolution we have replaced two sets of unconditionally un-
marked clauses M; and M, with smaller sets of unconditionally unmarked
resolvents M’y and Mj. Since we do not have to deduce an empty clause
there is no relation between clauses of M'; and M, (unless we want to keep
resolving these clauses to reduce the number of unconditionally unmarked
resolvents even more). Marked resolution is local for a similar reason. Sup-
pose that we have two sets of marked clauses M; and M,. Suppose that by
marked resolution we have replaced them with smaller sets of resolvents M';
and M; that inherit the marked 1-neighborhood of clauses of M; and M,
respectively. Resolvents from M'; and M) are independent in the sense that
one can try to unconditionally unmark them independently of each other
(unless we want to reduce the set of marked clauses even more).

It is worth mentioning that by being persistent in reducing the number
of marked clauses in System NER we can actually deduce an empty clause.
For example, we can reduce the set of marked clauses to only two single
literal marked clauses: C' = w and C” = w. At this point C' and C” can
be resolved by using the marked resolution rule, which leads to producing an
empty clause. Then proof terminates because according to Definition 20 both
C', C" and the resolvent become unmarked and so no marked clause is left.
(Of course, if even after deducing an empty clause still there are some marked
clauses in the current CNF, they can be all unmarked by applying Rule 4).
In contrast to general resolution, the steps of the proof in System NER,
in which an empty clause is deduced, can be potentially optimized. This
becomes possible because an empty clause is deduced as a “by-product” of
1-neighborhood examination: instead of striving to deduce an empty clause,
we just try to reduce the number of marked clauses.

15

6 1-neighborhood exploration and stochastic
local search

One of significant achievements of the last decade in solving the satisfiability
problem has been the development of stochastic local search algorithms like
Gsat [14] and Walksat [12]. (Further on by local search we mean stochastic
local search). For some classes of CNFs these methods considerably increase
the size of satisfiable CNF's for which a solution can be found in a reasonable
time. Inspired by this success, Selman et. al. posed the problem of designing
“a practical stochastic local search procedure for proving unsatisfiability”.
This problem was listed under number 5 in the set of ten challenge problems
formulated in [13]. These problems were suggested to be the focus of atten-
tion for the satisfiability problem community in the near future. Judging by
the time frame allotted for solving Challenge 5 (which is 5-10 years) it is one
of the two most difficult challenges. In [13] a way of solving this problem was
also outlined. Namely, it was suggested that the satisfiability problem should
be reformulated in the space of resolution proofs so that a CNF unsatisfiable
in the space of value assignments can be replaced with a satisfiable CNF. In
the space of proofs a satisfying assignment is just an encoding of a resolution
proof that the original CNF is unsatisfiable.

It is interesting to analyze this challenge, the way it was proposed to
be solved, and local search algorithms in general from the viewpoint of the
introduced proof systems. Challenge 5 and the suggested way of solving it
were formulated under the assumption that there was no way of proving
unsatisfiability locally in the space of value assignments. However, the proof
systems we introduced imply that this is not so. In a sense these systems are
a (partial) solution to Challenge 5. However, it is an unexpected solution.
Instead of proving satisfiability in an artificial space by local search, it is
proposed to use a deterministic local algorithm proving unsatisfiability in
the original space of value assignments. Moreover, the following assumption
looks very plausible. On the basis of the proposed systems (especially System
NER) an algorithm can be constructed that will target satisfiable CNFs and
be more successful for real life CNF's than the existing local search algorithms.
In other words, in a sense, the success of the local search algorithms can be
explained by the fact that they are a simple version of a generic algorithm
that is applicable to both satisfiable and unsatisfiable CNFs.

16

It is not hard to see that a local search algorithm also examines the
1-neighborhood of the clauses. Indeed, suppose that the algorithm stops
immediately after finding a solution s. The previous assignment s' (from
which s was obtained by flipping the value assigned to a variable) was not
a solution. So s’ does not satisfy a clause and hence s is a point in the
1-neighborhood of this clause. However, a major flaw of the existing local
search algorithms is that they explore only the 1-neighborhood of the clauses
of the initial CNF. The problem is that there are many implicates of the initial
CNF (i.e. clauses that can be deduced from clauses of the initial CNF) that
are not in this CNF. Then the number of unsatisfied clauses is not a good
measure of how close the current assignment is to a solution because one
does not know how many missing clauses are unsatisfied by the current set
of assignments. The absence of short implicates may be especially damaging
because the shorter a missing clause is the easier it is for the algorithm to
“inadvertently” make it unsatisfied. If the number of missing short clauses
is large and these clauses are “hard” to deduce (in terms of the number of
resolution operations) there is only a very slim chance to find a solution by
local search. It seems that the described situation is typical for many real
life CNFs. On the other hand, if the share of short implicates among the
missing clauses is small or the deduction of missing short clauses is “simple”
then local search algorithms may work well.

In contrast to local search algorithms, in System NER the 1-neighborhood
of both clauses of the initial CNF and clauses generated by resolution is
explored. So, if some important implicates are missing in the initial CNF,
an algorithm based on System NER can try to deduce them and so avoid
repeatedly making them unsatisfied. In other words, an algorithm based
on System NER “naturally” combines 1-neighborhood exploration (which is
also the key idea of local search) and generation of new implicates (a feature
missing in local search algorithms).

7 Directions for future research

An interesting question is the relationship between general resolution and
Systems NE and NER. In particular, an open question is the existence of a
class of CNF's for which there is a polynomial length proof in these systems
(or at least in System NER) while all the proofs in general resolution are

17

exponential. The reason why such a class may exist is that in System NE
and NER the unsatisfiability of a CNF can be proven without deducing an
empty clause. For each partial assignment, an algorithm deducing an empty
clause eventually produces a resolvent that this assignment does not satisfy.
(This idea is the basis for finding lower bounds on the length of resolution
proofs [3, 8, 15]). On the other hand, in the proposed systems, proofs can be
performed without deducing an empty clause and so one cannot claim that for
each partial assignment a clause unsatisfied by this assignment is produced.
A promising candidate to examine is the class of random CNFs [9]. It was
shown in [3] that general resolution has exponential complexity for random
CNFs. However, it may be the case that proving unsatisfiability for such
CNF's is much easier than generating an empty clause because these CNF's
are inherently “local”. If this conjecture is true then general resolution just
makes random CNF's “appear” to be hard not being able to make use of their
natural locality.

From a practical point of view an important direction for research is to try
to design an algorithm based on Systems NE and/or NER that is competitive
with current solvers, at least for some classes of CNFs (like random CNFs
mentioned above).

A Proofs

Proof of Proposition 1. Let s be a satisfying assignment. We need to
show that if s itself is not in the 1-neighborhood of a clause we can always
construct such a solution by modifying s. Let C' be a clause of F'. If s is
not in the 1-neighborhood of a clause of F, it satisfies at least two literals
of C (and any other clause of F'). Then by flipping any value assigned to a
variable in s we still get a solution. Let M be the set of the variables whose
literals in C are set to 0 by s. Let s’ be the vector obtained from s by flipping
the value assigned to a variable y € M. If s’ is still not in the 1-neighborhood
of a clause of F' we flip the value of a variable from M \ {y}. After m flips
where 1 < m < |M| — 1 we will either transform s into a solution s* that
is in the 1-neighborhood of C or s* will reach the 1-neighborhood of some
other clause of F'.

Proof of Proposition 2. Let s be a point of S;. Then a point of
Nbhd(s) that is not contained in S» has to be in Nbhd(S2). Indeed, since s

18

is in S; it is also in Sy. By definition, any point of Nbhd(s) (where s € S»)
that is not in Sy is in Nbhd(Ss).

Proof of Proposition 3. Let s be a point from Nbhd(C,z). Assume
for the sake of clarity that C contains the positive literal of . Then value
1 is assigned to x in s. Let us show that s satisfies all the clauses of F'
The clauses of F' can be divided into the following tree subsets : clauses
containing literal z, clauses containing # and clauses not containing a literal
of z. Let us consider the three subsets separately.

e Clauses containing z. Assignment z=1 in s satisfies any clause con-
taining the positive literal of z including clause C' .

e Clauses containing Z. By definition of an inextinguishable clause if
a clause C' contains T then C and C' contain opposite literals of a
variable y different from x. Then C' is satisfied by the value assigned
to y in s.

e Clauses not containing a literal of . By definition of an inextinguish-
able clause, if a clause C” does not contain a literal of z then C” and C
must contain the opposite literals of a variable z. Then C” is satisfied
by the value assigned to z in s.

Proof of Proposition 4. Assume for the sake of clarity that C' contains
the positive literal of . Then value 0 is assigned to = in s. Denote by C’
the clause whose unsatisfiability cube consists of the point s’ obtained from
s by flipping the value of z. It is not hard to see that C’ is subsumed by C.
Besides, C' is inextinguishable in direction z. Indeed, since s is a solution
then each clause C' of F' containing T must have a literal of a variable y,
different from x, such that C’ contains the opposite literal of y. (If we assume
that a clause C containing T does not contain such a literal of a variable y
then s does not satisfy C' and so cannot be a solution.) For the same reason,
any clause not containing a literal of x must contain a literal of a variable z
such that C’ contains the opposite literal of z. So according to Definition 15,
(' is an inextinguishable clause.

Proof of Proposition 5. Assume the contrary i.e. the initial CNF
F' is satisfiable and at some step of the proof all the clauses of the cur-
rent CNF become unmarked, which leads to the wrong conclusion that F
is unsatisfiable. Since F' is satisfiable and in System NE we mark all the

19

clauses of the initial CNF, then according to Proposition 1 a solution s is in
Mrkd_Nbhd(F). Since by our assumption all clauses become unmarked at
some point, then a mistake is made at a step of the proof. That is before
making this step s € Mrkd_Nbhd(C) where C is a clause of the current CNF,
while after making this step there is no clause C’ of the current CNF such
that s € Mrkd_Nbhd(C"). This can happen only if at this step we apply an
operation leading to the unmarking of a literal of C. Then this operation is
an application of Rule 3, 4, 5. Consider each of the three possibilities.

e Rule 3. The expansion of clause C' in direction d that results in gen-
erating clauses C; and C5 cannot lead to “losing” solution s. Indeed,
Mrkd_Nbhd(C) = Mrkd_Nbhd(Cy) U Mrkd_Nbhd(Cs) and so s is in
the marked 1-neighborhood of C; or Cs.

e Rule 4. Suppose that a literal of variable z is in C' and it is unmarked
because the clause symmetric to C' in z is subsumed by a clause C* of
the current CNF. If s is “lost” in this unmarking then it cannot be a
solution because s does not satisfy C*.

e Rule 5. Suppose that a literal of variable z is in C' and it is unmarked
because Nbhd(C, z) is subsumed by Mrkd_Nbhd(C') where C’ is some
other clause of the current CNF. This cannot lead to the loss of solution
s. If s € Nbhd(C,), then after unmarking the literal of z in C, solution
s is still in Mrkd_Nbhd(C') and so it is in the marked 1-neighborhood
of the current CNF.

So in all three cases our assumption leads to a contradiction.
Proof of Proposition 6. In System NE there are only two termination
conditions specified by Rule 7 and Rule 8.

e If Rule 7 is applicable we conclude that F' is unsatisfiable. According
to Proposition 5 this is the correct conclusion.

e If Rule 8 is applicable, we conclude that F' is satisfiable. Let us show
that this is the correct conclusion. Let C be a complete clause and a
literal of a variable z cannot be unmarked in C' (assume for the sake
of clarity that C contains the positive literal of z) . Let us show that
C is indeed inextinguishable in direction . Since Rule 4 cannot be
used for unmarking literal z in C', then each clause of the current CNF

20

containing literal T must have a literal of a variable z (different from
x) that is the opposite to the literal of z contained in C'. Besides, each
clause of the current CNF that does not have a literal of must have
a literal of a variable y that is the opposite to the literal of ¥ contained
in C. This means that clause C is inextinguishable in direction z in
the current (and initial) CNF. Then according to Proposition 3 our
conclusion that F' is satisfiable is correct.

Proof of Proposition 7. The unsatisfiability cube of C' contains only
one point of the Boolean space, say point s. Let s’ be the point obtained
from s by flipping the value assigned to a variable z such that a literal of z
is in C and this literal is marked.

e If s is not a solution then there must be a clause C’ of the current (and
initial) CNF that is unsatisfied by z. This clause subsumes the clause
symmetric to C' in z. Then after applying Rule 4 this literal of x gets
unmarked in C.

e If s is a solution then as it was shown in the proof of Proposition 4
clause C' in inextinguishable in direction x.

Proof of Proposition 8. According to Proposition 6 System NE is
sound. So to prove the proposition it is sufficient to show that after perform-
ing a finite number of steps one of the two possible termination conditions
will be reached. Let us show first that there cannot be any deadlock in Sys-
tem NE i.e. we cannot get into the situation when none of the Rules 3, 4, 5, 6
can be applied and a termination condition has not been reached yet. If in
the current CNF there is a marked clause C that is not complete then it can
be always expanded in the direction of a variable whose literal is not in C
yet. If all marked clauses are complete then according to Proposition 7 each
marked clause can be either unmarked or proven to be inextinguishable.

Now let us show that the number of steps in a proof in System NE is
finite. A clause of F' cannot be expanded into more than 2" clauses where
n is the number of variables in F. Then the number of clause expansion
operations is finite (and bounded by m x 2™ where m is the number of clauses
in F'). Let us show now that after a clause expansion operation only a finite
number of operations specified by Rules 4, 5, 6 can be performed. Indeed,
after a clause expansion operation, the number of clauses in the obtained

21

CNF is finite. The literal unmarking operations specified by Rules 4, 5
monotonically reduce the number of marked literals in the current CNF. The
operation of removing subsumed unmarked clauses (Rule 6) monotonically
reduces the number of unmarked clauses of the current CNF.

Proof of Proposition 9. From Definition 4 it follows that if C is
obtained by resolving C; and Cy then Unsat(C) C Unsat(C1) U Unsat(Cs).
Then from Proposition 2 it follows that Nbhd(C)\(Unsat(C1)UUnsat(Cs)) C
Nbhd(C1) U Nbhd(Cs).

Proof of Proposition 10. Let z be the variable in which C; and C; are
resolved. Let z be a marked literal in C;. We need to show that Nbhd(C1, z)\
Unsat(C) is covered by Mrkd_Nbhd(C). Suppose that z is different from z.
Then z is in C and it is marked. Since C subsumes Cy, then Nbhd(Cy,z) \
Unsat(C) C Nbhd(C, z) and so Nbhd(C1, z) \ Unsat(C) C Mrkd_Nbhd(C).
Let z be z. Then Nbhd(Ci,z) C Unsat(C), and so again Nbhd(C1,z) \
Unsat(C) C Mrkd_Nbhd(C).

Proof of Proposition 11. The proof of the proposition is similar to that
of Proposition 8. Using the same arguments we can show that there cannot
be a deadlock situation in System NER. Now we need to show that a proof
in NER consists of a finite number of steps. First we prove that the number
of applications of the two resolution rules and the clause expansion rule is
finite. Indeed, the total number of clauses generated by the two resolution
rules is bounded by 3" where n is the number of variables in the initial CNF.
This is true because neither resolution rule is applied when the resolvent is
subsumed by an existing clause of the current CNF. So these two rules do not
generate duplicates and the number of generated resolvents is bounded by
the total number of possible implicates of an unsatisfiable CNF of n variables.
Then the number of clauses produced by applying the clause expansion rule
is bounded by 3™ % 2" Indeed, each of the clauses of the original CNF and
each of the resolvents produced by the two resolution rules (the total number
of these clauses is bounded by 3") can be expanded into at most 2" clauses.

After applying one the two resolution rules or the clause expansion rule
only a finite number of operations specified by Rules 4, 5, 6 of system NE
and the new rule about removing an unconditionally unmarked clauses can
be performed. Indeed, after applying a resolution rule or the clause expan-
sion rule, the number of clauses in the obtained CNF is finite. The literal
unmarking operations specified by Rules 4, 5 of System NE monotonically
reduce the number of marked literals in the current CNF. The operation of

22

removing subsumed unmarked clauses (Rule 6) monotonically reduces the
number of unmarked clauses of the current CNF. The operation of removing
unconditionally unmarked clauses monotonically reduces the number of such
clauses in the current CNF.

References

[1] E. Ben-Sasson, R. Impagliazzo, A. Wigderson. Near optimal separation
of Treelike and General resolution. Presented as SAT-2000,Third Work-
shop on the Satisfiability Problem, May 14-18, Renesse,the Netherlands.
The paper can be downloaded from web page www.cs.huji.ac.il/~elli/

[2] M. Bonet, C. Domingo, N. Galesi, J. Johannsen. Exponential separations
between restricted resolutions and cutting planes proof systems. FOCS-
1998,638-647.

[3] V. Chvatal, E. Szmeredi. Many hard examples for resolution. J. of the
ACM,vol. 35, No 4, pp.759-568.

[4] M. Davis, G. Logemann, D. Loveland. A Machine program for theorem
proving. In Communications of the ACM,5:394-397,1962.

[6] M. Davis, H. Putnam. A computing procedure for quantification theory.
Journal of the ACM,7,1960,pp.201-215.

[6] Z.Galil. On the complexity and validity of bounded resolution.
Proceedings of seventh annual ACM symposium on theory of
computing,May,1975,pp.72-82.

[7] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25-46,1993.

[8] A. Haken. The intractability of resolution. Theoretical Computer Sci-
ence. 39:297-308,1995.

[9] D. Mitchell, B. Selman, H. Levesque. Hard and easy distribution of sat
problems. Proceedings of AAAI-92, San Jose,CA, 459-465.

23

[10] J. Marques-Silva, K. Sakallah. Grasp - A new search algorithm for sat-
isfiability. Proceedings of International Conference on Computer-Aided
Design, November 1996.

[11] J. Robinson. A machine-oriented logic based on resolution principle.
Journal of the ACM,12,1965,N 1,23-41.

[12] B. Selman, H. Kautz, B. Cohen. Noise strategies for local search. Proc.
of AAAI-94, Seattle, WA, 1994, pp. 337-343.

[13] B. Selman, H. Kautz, D. McAllister. Ten challenges in propositional
reasoning and search. Proceedings of IJCAI-97.

[14] B. Selman, H. Levesque, D. Mitchell. A new method for solving hard
satisfiability problems. Proc. of AAAI-92, San Jose,CA,1992,440-446.

[15] A. Urquhart. Hard examples for resolution. JACM 34(1):209-219.

24

