
Escaping Local Minima in Logic Synthesis
(and some other problems of logic synthesis preserving specification)

Cadence Berkeley Labs

1995 University Ave.,Suite 460, Berkeley, California,94704
phone: (510)-647-2825, fax: (510)-486-0205

CDNL-TR-2007-0212

February 2007

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract. In this report, we continue studying Logic
Synthesis Preserving Specification (LSPS). Given a
combinational circuit N and its partition into subcircuits
N1,..,Nk (this partition is called a specification of N), LSPS
optimizes N by replacing each subcircuit Ni with toggle
equivalent subcircuit N*

i. As we showed before, LSPS is
scalable. In this report, we demonstrate that LSPS can be
also viewed as an elegant way to address the local minimum
entrapment problem. The latter remains a thorny issue for
the heuristic algorithms for solving hard combinatorial
problems. We also discuss finding a “good” specification of
a circuit. In particular, we show that for narrow circuits
there is a natural specification subcircuits of which form a
cascade. For a wide circuit, a good specification describes
a “narrow” change of this circuit. In this report, we only
give various “ theoretical” arguments in favor of LSPS. The
preliminary experimental results of LSPS can be found in
[6][7].

1. Introduction
When solving hard computational problems one has to

address the problem of local minima entrapment. Due to
the huge size of the search space, a typical algorithm A for
solving, say, an NP-hard problem uses heuristics specifying
small changes to be made to the current solution. In such
an algorithm, a change is accepted if it improves a cost
function. (Henceforth, we assume that one needs to
minimize a cost function.) This leads the current solution to
a local minimum that is the situation when in the set of
moves used by A no move can improve the cost of the

current solution. Unfortunately, the quintessential feature of
NP-hard problems is that a local minimum can be arbitrarily
deep. This means that to get the current solution out of a
local minimum by the moves allowed in A, one may have
to make an unbounded number of moves that make the cost
the solution higher.

Unfortunately, making moves increasing the cost
dramatically increases the search space. So an algorithm
making such moves has no chance to converge to a better
solution in reasonable time. For example, in a popular
optimization method of simulated annealing (application of
simulated annealing to logic synthesis is given in [2]), the
number of moves increasing the cost function is controlled
by the “cooling” scheduling. The smaller the temperature is,
the less likely it is that such a move is accepted in
simulated annealing. If the cooling schedule becomes
sufficiently long, simulated annealing can reach the global
minimum (and so get out of any local minimum).
Unfortunately, these schedules may take the time even
larger than that of just enumerating all possible solutions.

A typical logic synthesis procedure (being a special case
of an optimization problem) also suffers from the local
entrapment problem mentioned above. Usually, when
optimizing a circuit N, such a procedure generates a
sequence of circuits N 1, N 2,…, (where N 1=N) such that
N i+1 is functionally equivalent to N i and cost(N i+1) <
cost(N i). (For the sake of simplicity, henceforth, we
assume that cost(N i) is the number of gates in N i. We will
denote this number by |N i|.) For complexity reasons, the
transformations used by such a procedure are local and

affect only a small part of the circuit. Eventually, a circuit
N m of the sequence gets stuck in a local minimum.

In this report, we show that logic synthesis preserving
specification (LSPS) introduced in [3][4] actually suggests
an interesting approach to the local minimum entrapment
problem. (The site http://eigold.tripod.com/papers.html
contains all referenced papers co-authored by the author of
this report.) Let N be a single output circuit to be
optimized and N1,.., Nk be a partition of N into subcircuits.
(In this report we assume, unless otherwise stated, that one
needs to optimize a single-output circuit N.) This partition
is called a specification of N. The idea of the method of
[3][4] is to modify N by replacing subcircuits N

i with
toggle equivalent subcircuits N*

i that are optimized
according to the required cost function. Then the circuit N*
consisting of subcircuits N*

i is functionally equivalent to N
(modulo negation) and has the same specification as N
(because subcircuits N*

i are connected with each other in N*
exactly as subcircuits Ni in N). In this report, we show that
a single transformation performed by LSPS can be
represented as k functionally equivalent transformations of
the original circuit each of which may increase the size of
the current circuit. So LSPS can be viewed as a logic
synthesis procedure that performs equivalent
transformations going “against” the cost function. This
means that, in general, transformations of LSPS can not be
reproduced by a “ traditional” logic synthesis procedure
monotonically reducing circuit size at every step and
performing “ local” transformations.

In [6], we introduced a generalization of LSPS of [3][4].
Let N1,.., Nk be a specification of N. The generalization is to
replace each subcircuit Ni, i=1,..,k-1 with subcircuit N*

i
whose toggling is implied by that of Ni. The subcircuit Nk is
replaced with a toggle equivalent subcircuit N*

k. This
method of logic synthesis is more powerful than that of
[3][4] because toggle equivalence is just a special case of
toggle implication. For the sake of simplicity, in this
report, we will use LSPS that preservers toggle equivalence
(rather than toggle implication). Nevertheless everything
that we say here about LSPS is applicable to the more
general method of [6].

In this report, we also consider some other problems of
LSPS. Namely we show that a narrow circuit N has a
“natural” specification that is a cascade of subcircuits. On
the other hand, if N is a wide circuit, its “good”
specification can be viewed as a description of a “narrow
change” of N.

This report is structured as follows. An example of
LSPS is given in Section 2. In Section 3, we recall the basic
notions of toggle equivalence and correlation function and
describe LSPS of [4]. The recent developments in LSPS
are listed in Section 4. Section 5, describes application of
LSPS to multi-output circuits. In Section 6, we relate LSPS
to existing synthesis procedures from three different points
of view. Section 7 analyzes LSPS from the optimization

point of view and shows that LSPS offers an elegant way to
escape local minima. In Section 8 we introduce two types of
optimization performed by LSPS: vertical and horizontal.
Section 9 gives reasons for LSPS to be successful. In
Section 10, we discuss finding good specifications for
“narrow” and “wide” circuits. Finally, some conclusions are
made in Section 11.

2. Example
Suppose that one needs to optimize a single-output

circuit N implementing the arithmetic expression x2 < 100
as shown in Figure 1. Circuit N consists of subcircuits N1
and N2 connected as a cascade. (In general, LSPS can
handle the case when subcircuits Ni of N are connected
into an arbitrary directed acyclic graph.) The subcircuit N1
implements the function y=square(x) and N2 implements
the function y < 100.

It is not hard to see that the expression x2 < 100 can be
replaced with much simpler expression abs(x) < 10. Below
we show how this optimization can be done by LSPS.
(This simplification may look “ trivial” and so doable by a
high-level optimizer. However, one can easily modify this
example in such a way that high-level optimization
becomes much less trivial.)

LSPS replaces N1 with an optimized toggle equivalent
subcircuit , e.g. with the subcircuit N*

1 implementing
y* =abs(x). Then it computes relation Dout(N1, N

*
1)

specifying the bijective mapping between the output
assignments produced by subcircuits N1 and N*

1. (As it was
shown in [4], if two circuits are toggle equivalent, there is a
one-to-one mapping between output assignments these
circuits produce. Note that N1 has twice the number of
outputs of N*

1.) After that, a circuit N*
2(y

*) is constructed
that is toggle equivalent to N2(y) (implementing y < 100)
under the input constraint specified by relation Dout(y, y*)).
In the case N*

1 implements y* = abs(x), subcircuit N*
2, has

to implement y* < 10 (or its negation). For single-output
circuits, toggle equivalence means functional equivalence
(modulo negation) [4]. So N and the circuit N* composed
of N*

1 and N*
2 are functionally equivalent (modulo

negation).

Figure 1. Optimization of x2 < 100 by LSPS

3. Logic synthesis preserving common
specification

In this section, we recall definitions of toggle
equivalence and correlation function and describe the
procedure LSPS of [4].

3.1 Toggle equivalence
Definition 1. Let f:{ 0,1} n → { 0,1} m be an m-output
Boolean function. A toggle of f is a pair of two different
output vectors produced by f for two input vectors. In other
words, if y=f(x) and y′′′′ =f(x′′′′) and y ≠ y′, then (y, y′) is a
toggle.
Definition 2. Let f1 and f2 be two Boolean functions of
the same set of variables. Functions f1 and f2 are called
toggle equivalent if f1(x) ≠ f1(x′′′′) ⇔ f2(x) ≠ f2(x′′′′). (Note
that f1 and f2 may have different number of outputs.)
Circuits N1 and N2 implementing toggle equivalent
functions f1 and f2 are called toggle equivalent circuits.
Definition 3. Let f be a Boolean function. We will say that
function f * is obtained from f by existentially quantifying
away variable xi if f

 * = f(…, xi=0,…) ∨ f(…, xi=1,….).

Definition 4. Let N be a circuit. Denote by v(N) the set of
variables of N. Denote by Sat(v(N)) the Boolean function
such that Sat(h)=1 iff the assignment h to v(N) is “possible”
i.e consistent. For example, if N consists of just one AND
gate y=x1 ∧ x2, then Sat(v(N)) = (~x1∨ ~x2 ∨ y) ∧ (x1 ∨ ~y)
∧ (x2 ∨ ~y).

Proposition 1. [4] Let N1 and N2 be toggle equivalent and
Z1, Z2 be the sets of their output variables. Let function
K*(Z1, Z2) be obtained from Sat(v(N1)) ∧ Sat(v(N2)) by
existentially quantifying away the variables of N1 and N2
except those of Z1 ∪ Z2. The function K*(Z1, Z2) implicitly
specifies the one-to-one mapping K between output vectors
produced by N1 and N2. Namely, K*(z1, z2) =1 iff z1=K(z2).

3.2 Correlation function
In this section, we use the notion of correlation

function to extend definition of toggle equivalence to the
case where functions f1 and f2 have different sets of
variables.
Definition 5. Let X and Y be two disjoint sets of Boolean
variables (the number of variables in X and Y may be
different). A function Cf(X,Y) is called a correlation
function if there are subsets QX ⊆ { 0,1} |X| and QY ⊆
{ 0,1} |Y| such that Cf(X,Y) specifies a bijective mapping
M: QX → QY. Namely Cf(x, y)=1 iff x ∈∈∈∈ QX and y ∈ QY
and y = M(x).

Informally, Cf(X,Y) is a correlation function if it
specifies a bijective mapping between a subset QX of
{ 0,1} |X| and a subset QY of { 0,1} |Y|.

Let f1(X) and f2(Y) be two multi-output Boolean
functions where X={ x1,…, xk} and Y ={ y1,…, yp} are sets

of their variables. (Note, that f1 and f2 may have different
number of variables.). Let Cf(X, Y) be a correlation
function relating variables of f1 and f2. Then one can
introduce notions of toggle equivalence as follows. Boolean
functions f1 and f2 are said to be toggle equivalent, if for
any pair of pairs (x, y) and (x′′′′, y′′′′) of input vectors such
that Cf(x, y)=Cf(x′′′′, y′′′′)=1, it is true that f1(x) ≠ f1(x′′′′) ⇔
f2(y) ≠ f2(y′′′′).

The mapping between output vectors produced by
toggle equivalent circuits N1 and N2 (implementing
functions f1 and f2 respectively), can be obtained from
Sat(v(N1)) ∧ Sat(v(N2)) ∧ Cf(X,Y) by existentially
quantifying away all the variables of v(N1) ∪ v(N2) except
the output variables of N1 and N2.

3.3 Logic synthesis preserving specification
Let N be a single-output circuit. Denote by Spec(N) a

specification of N i.e. a partition of N into subcircuits
N1,…, Nk. Following [4] we assume that specification
Spec(N) is topological. Let G be a directed graph whose
nodes are subcircuits Ni and an edge of G directed from
node Ni to node Nj implies that an output of Ni is
connected to an input of Nj. Spec(N) is called topological if
G is acyclic. Since Spec(N1) is topological, one can assign
levels to subcircuits Ni. The pseudocode of LSPS of [4] is
given in Figure 2. There, we assume that the numbering of
subcircuits is topological. That is if i < j then
topological_level(Ni) ≤ topological_level(Nj). In other
words, subcircuits Ni, i=1,..,k are processed by the LSPS
procedure in topological order, from inputs to outputs.

1 LSPS(N, Spec(N),cost_function) {

2 for (i=1; i <= k ; i++) {

3 Dinp(Ni, N
*
i
)= constraint_function(N, N*,i);

4 N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function)

5 Dout(Ni, N
*
i
) = exist_quantify(Ni,N

*
i, Dinp); }

6 return(N*,Spec(N*))}

Figure 2. Pseudocode of LSPS procedure

Let us revisit the example of Section 2. LSPS starts
with subcircuit N1 (implementing square(x)) and recovers
the function Dinp(N1, N

*
1) relating the inputs of N1 and

subcircuit N*
1 to be built (line 3 of pseudocode). The inputs

of N1 are inputs of N (and so N1 has the lowest topological
level 1). In that case Dinp(N1, N

*
1)≡1. Then a subcircuit N*

1
toggle equivalent to N1 (e.g. implementing abs(x)) is
synthesized (line 4). In the end of this iteration, the function
Dout(N1, N

*
1) relating outputs of N1 and N*

1 is built (line 5)
as described in Proposition 1. (That is Dout(N1, N

*
1) is

obtained by existentially quantifying away from the
expression Sat(v(N1)) ∧ Sat(v(N*

1) all the variables but the
output variables N1 and N*

1.) Since N1 and N*
1 are toggle

equivalent, there is a one-to-one mapping between the

output vectors they produce. So Dout(N1, N
*
1) is a

correlation function.
In the next iteration, subcircuit N2 is processed

similarly to N1 with one exception. The inputs of N2 are fed
by the outputs of N1. Then the function Dinp(N2, N

*
2)

relating inputs of N2 and circuit N*
2 (synthesized in line 4)

equals Dout(N1, N
*
1). (In general, the inputs of a subcircuit

Ni of Spec(N) are fed by outputs of more than one subcircuit
Nj of Spec(N). To obtain Dinp(Ni,N

*
i) one has to take the

conjunction of Dout(Nj, N
*
j) for all subcircuits whose

outputs feed inputs of Ni and N*
i. It is not hard to show that

in this case Dinp(Ni,N
*
i) is a correlation function too.)

Let N*
2 be a subcircuit built by LSPS that is toggle

equivalent to N2. If N
*
2 is “ irredundant” it has to have one

output. (If, say a two-output circuit M' is toggle equivalent
to a single-output circuit M, then either one output of M' is
a constant or one output of M' is equal to the other output
of M' or its negation.) Then N and the resulting circuit N*
(composed of subcircuits N*

1 and N*
2) are functionally

equivalent modulo negation.

4. Recent developments in LSPS
In this section, we describe recent improvements to

LSPS made in [5] , [6], [7].

4.1 Better complexity parameter ization
In [3] and [4], the complexity of LSPS was given in the

granularity of specification of circuit N. The granular ity
of specification Spec(N)={ N1,.., Nk} is the size of the largest
subcircuit Ni of Spec(N) (in the number of gates). The
complexity of LSPS is exponential in the granularity of N
and linear in the number of subcircuits Ni of Spec(N). So, if,
for example, the size of subcircuits of Spec(N) is bounded
by a constant, the complexity of LSPS is linear.

The result above was improved in [5]. There, we
considered the equivalence checking procedure for circuits
N and N* with a common specification (this procedure
“enables” LSPS). We showed that the complexity of this
equivalence checking procedure is exponential in the width
of specifications Spec(N) and Spec(N*) and linear in the
number of subcircuits. The width of Spec(N) is
max(W1,W2). Here W1 is the maximum number of outputs
among the subcircuits Ni of Spec(N) and W2 is the
maximum circuit width among the subcircuits Ni of
Spec(N). (The first definition of circuit width was given in
[1].)

Informally, the result of [4] means that the complexity
of LSPS remains linear even if the size of subcircuits of
Spec(N) and Spec(N*) is not bounded (but the number of
outputs and width of subcircuits of Spec(N) and Spec(N*) is
bounded). So the width of Spec(N) provides a better
parameterization of LSPS than its granularity.

4.2 Logic synthesis preserving toggle
implication

In [6], we introduced a generalization of LSPS based on
the notion of toggle implication. We will refer to the
method of [4] as LS_TE and to the method of [6] as
LS_TI. Here LS stands for logic synthesis, TI for toggle
implication and TE for toggle equivalence.

Definition 6. Let f1 and f2 be two Boolean multi-output
functions with the same set of variables X={ x1,…, xn} .
Toggling of function f1 implies toggling of f2, if for any
pair of assignments x′′′′, x″″″″ to the variables of X,
f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).

Let N be a single output circuit and
Spec(N)={ N1,…,Nk} . We assume here that the numbering
of subcircuits Ni is topological (as in Subsection 3.3). The
idea of [6] is to replace the first k-1 subcircuits Ni with
subcircuits N*

i such that N*
i ≤ Ni. (Here “≤” denotes the

fact that toggling of N*
i is implied by toggling of Ni.) The

last subcircuit of Spec(N) (i.e. subcircuit Nk) is replaced
with N*

k that is toggle equivalent to Nk. Then the circuit N*
composed of subcircuits N*

1,…, N*
k is functionally

equivalent to N (modulo negation). In contrast to LS_TE, in
LS_TI, when replacing subcircuit Ni, i=1,..,k-1 with
subcircuit N*

i (such that Ni ≤ N*
i) one has to impose the

limit on the number of outputs in N*
i. Otherwise, LS_TE

just replaces Ni with an “empty” circuit N*
i consisting only

of inputs (because toggling of such circuit is implied by
toggling of Ni).

It is not hard to show (see [4]) that Boolean functions f1
and f2 are toggle equivalent iff f1 ≤ f2 and f2 ≤ f1. So toggle
implication is strictly more general relation, which makes
LS_TI more powerful than LS_TE. Methods LS_TI and
LS_TE can be viewed as two versions of LSPS. For the
sake of clarity in the following exposition we will use the
version LS_TE of LS_PS. However, one can easily extend
this exposition to LS_TI.

4.3 The TEP procedure
The key part of LSPS is the procedure that, given a

subcircuit Ni of Spec(N), builds an optimized circuit N*
i that

is toggle equivalent to Ni (under input constraints specified
by Dinp(Ni, N

*
i)). Such a procedure (called Toggle

Equivalence Preserving procedure or TEP procedure for
short) was introduced in [7]. Introduction of the TEP
procedure has made LSPS “a reality” . Given a circuit Ni,
the TEP procedure builds a sequence of circuits Ni

1, Ni
2,...

where Ni
1=Ni that converges to a circuit Ni

m = N*
i toggle

equivalent to Ni. For each circuit Ni
p of this sequence,

Ni ≤ Ni
p holds. So the TEP procedure can be also used for

LS_TI (i.e. for logic synthesis preserving toggle
implication). One just needs to stop the TEP procedure
when the number of outputs in Ni

p is below a predefined
threshold and use Ni

p as the subcircuit N*
i replacing Ni.

5. Application of LSPS to multi-output
circuits

In this section, we briefly discuss application of LSPS
to optimization of multi-output circuits. Let N be a multi-
output circuit. To generate a circuit N* that is functionally
equivalent to N we need a specification Spec(N) such that
every subcircuit Ni containing a primary output of N has
only one output. An example of such a specification for a
two-output circuit N is given in Figure 3. Spec(N) consists
of subcircuits N1, N2, N3 where N2 and N3 are single-output
subcircuits of N feeding its two primary outputs.

Suppose that circuits N2 and N3 share gates. Denote by
Gates(N) the set of gates of N. Since Gates(N2) ∩
Gates(N3) ≠ φ, sets Gates(N1), Gates(N2), Gates(N3) form a
cover of Gates(N) rather than its partition.

Figure 3. Specification of a two-output circuit

When formulating LSPS in [3] [4] [6], for the sake of
simplicity we assumed that Gates(Ni) ∩ Gates(Nj) = φ for
two different subcircuits Ni, Nj of Spec(N). However, the
requirement can be easily relaxed. To handle the case of
multi-output circuits, it is sufficient to require only that
subcircuits Ni of Spec(N) do not share “output gates” . (That
is a gate of Ni whose output is an output of Ni can not be in
another circuit Nj. However, Ni and Nj may share “ internal”
gates.) However, one can relax the definition of
“permissible” specification even more. For example, one
can have a specification Spec(N) where output gates of Ni
and Nj are shared. As long as Spec(N) satisfies the two
conditions below:

a) one can build the graph G (see Subsection 3.3)
describing connections between subcircuits of Spec(N);

b) the graph G is acyclic

one can apply LSPS. So one, for example, should avoid
partitions where an output gate of Ni is an internal node of
Nj (because it is not clear how to build G in such a case).

It is not hard to see that by replacing subcircuits Ni,
i=1,2,3 shown in Figure 3 with toggle equivalent
subcircuits N*

i, LSPS produces a circuit N* that is
functionally equivalent to N modulo negation of outputs.
(For single-output circuits N*

2 and N*
3 toggle equivalence

with N2 and N3 means functional equivalence modulo
negation.) To minimize the size of N* one should try to
make N*

2 and N*
3 share as much logic as possible.

Suppose circuit N*
2 is synthesized before N*

3. Then when
synthesizing N*

3, the logic of N*
2 may be re-used. This can

be done by slightly modifying the TEP procedure
mentioned in Subsection 4.3. However, the discussion of
this topic is beyond the scope of this report.

6. Relation of LSPS to existing synthesis
methods

In this section, we relate LSPS to other methods of
logic synthesis from three different points of view. Since we
give a very high-level comparison, we do not reference the
existing methods of logic synthesis. (A comparison of
LSPS with SPFDs [8][9] can be found in [7].)

6.1 Compar ison in terms of enabling
equivalence checking procedures

In this subsection, we consider the difference between
LSPS and existing logic synthesis procedures from the
viewpoint of enabling equivalence checking procedures.

Figure 4. A typical synthesis transformation

Any logic synthesis transformation has to have an
enabling equivalence checking procedure that is used to
certify the correctness of this transformation. In a typical
logic synthesis transformation shown in Figure 4, a multi-
output subcircuit N′ of N is replaced with an optimized and
functionally equivalent subcircuit N″. The corresponding
enabling equivalence checking procedure consists of two
parts. The “block-level” part (that is non-trivial) is to prove
that N′ and N″ are functionally equivalent. The
“compositional” part is trivial. It just says that if one
replaces subcircuit N′ with a functionally equivalent
subcircuit N″ , the resulting circuit N* is functionally
equivalent to N.

LSPS is enabled by the equivalence checking procedure
of [4] that has the non-trivial compositional part . In
terms of enabling equivalence checking procedures, LSPS
is a generalization of existing synthesis procedures. Indeed,
replacing N′ with a functionally equivalent subcircuit N″ is
a special case of LSPS. (In this case Spec(N) consists of
subcircuit N′ and one-gate subcircuits corresponding to the
gates of N that are not in N′. Since N′ is replaced with a

functionally equivalent subcircuit N″ there is no “re-
encoding debt” in the form of the correlation function
Dout(N′, N″). So one does not have to propagate this debt to
the output of N and so does not have to change the logic
fed by N′.)

Suppose, however, that a transformation of a traditional
logic synthesis procedure changes the functionality of N′
but the modified subcircuit N″ is toggle equivalent to N′.
Suppose, for example, that this transformation is to replace
a complex gate G′ of N′ with a simpler gate G″ such that
this replacement is “unobservable” at the outputs of N′ .
Since the subcircuit N″ is not functionally equivalent to N′,
the replacement of G′ with G″ is “observable” . So this
transformation will be rejected by a logic synthesis
procedure enabled by the usual equivalence checking
procedure (with the trivial compositional part). However, it
is within the power of LSPS to accept the replacement of G′
with G″ (because they are toggle equivalent) and re-
synthesize logic fed by N′ to make the entire
transformation correct.

6.2 Compar ison in terms of handling
complexity

In this subsection, we compare existing methods of
logic synthesis with LSPS from the viewpoint of complexity
handling. A typical transformation performed by a logic
synthesis procedure is shown in Figure 4. Verification of
correctness of this transformation is simplified by a)
limiting the size (or width) of subcircuit N′ ; b) making the
optimized circuit N″ functionally equivalent to N′. By
limiting the size of N′ one simplifies the “block-level part”
of verification i.e. checking that subcircuits N′ and N″ are
functionally equivalent. By making N″ functionally
equivalent to N′ one limits the scope of transformation and
so trivializes the compositional part of verification.

LSPS reduces its complexity by using Spec(N) that
consists of “narrow” subcircuits Ni with a bounded number
of outputs (Subsection 4.1). This lowers the complexity of
replacing Ni with a toggle equivalent counterpart N*

i and
the complexity of computing Dout(Ni, N

*
i). However, LSPS

remains scalable without scoping (since N*
i is not

functionally equivalent to Ni, the replacement of Ni with N*
i

affects the logic fed by Ni). So, to keep LSPS scalable, it is
sufficient to use specification Spec(N) of small width. This
improvement in complexity handling is due to the progress
in equivalence checking made in [4][5]. Previously, the
formal results on equivalence checking of circuits N and N*
performed either by BDDs or by SAT were expressed in
terms of absolute complexity of N and N*. For example, if
N and N* have small width then their equivalence can be
efficiently established by building their BDDs. The
complexity of equivalence checking of circuits with a
common specification is formulated in relative terms. If N

and N* have a “narrow” common specification then no
matter how complex (or wide) circuits N and N* are, they
can be checked for equivalence efficiently (if this common
specification is known). The fact that Spec(N) of N is
narrow means that we make a “narrow” change of N (but in
contrast to existing methods of synthesis this change may
encompass the entire circuit).

6.3 Compar ison in terms of “ fr iendliness” of
environment

LSPS introduces a new type of subcircuit/environment
interaction. Let us consider again the transformation shown
in Figure 4 where subcircuit N′ is replaced with
functionally equivalent subcircuit N″. If one considers
N \ N′ as the “environment” of subcircuit N′, then this
environment can be called “unfriendly” . Indeed, if N″ is not
functionally equivalent to N′, the environment “punishes”
this transformation by making the resulting circuit incorrect.
In LSPS, one can replace subcircuit N′ with a toggle
equivalent counterpart N″. Since toggle equivalence means
re-encoding, the logic fed by the outputs of N″ has to
change. This is done by computing correlation functions
and replacing subcircuits of N with toggle equivalent
counterparts as described before. The replacement of N′
with toggle equivalent subcircuit N″ is possible because
the “environment” N \ N′ “cooperates” with N′ by
making changes in the surrounding logic in such a way that
the replacement of N′ with N″ become “unobservable” .
Such cooperation allows one to explore a much richer space
of transformations.

7. LSPS from optimization point of view
In this section, we consider LSPS from the optimization

point of view. Namely, we show that LSPS can be
simulated by an algorithm performing small equivalent
transformations that may increase the circuit size. On the
one hand, this implies that, in general, LSPS performs
transformations that can not be reproduced by a traditional
logic synthesis procedure that a) monotonically reduces the
circuit size and b) makes “ local” transformations. On the
other hand, this means that LSPS can escape local minima
that trap solutions of traditional logic synthesis algorithms.

Intuitively, the depth of local minima LSPS can escape
depends on the width of Spec(N). The deeper a local
minimum is, the more coarse partitioning of N into
subcircuits is necessary to avoid it. In particular, if Spec(N)
consists of N itself, then LSPS can escape any local
minimum (but the complexity of such escape is exponential
in |N| and so prohibitively high).

The exposition in this section is structured as follows.
In Subsection 7.1 we recall the problem of local minima
entrapment in the context of traditional logic synthesis.

Subsection 7.2 describes a modification of LSPS called
LSPS+. Since LSPS is a special case of LSPS+, then
everything we say about LSPS+ applies to LSPS as well.
Subsection 7.3 shows that LSPS+ can escape local minima
that trap solutions of traditional synthesis methods.

7.1 Local minima entrapment
Let N be a circuit to be optimized. A typical synthesis

procedure performs a sequence of transformations shown in
Figure 4 . Each transformation reduces the value of a cost
function (as we mentioned above, in this report we assume
that cost(N)=|N|)). Then a typical synthesis procedure
builds a sequence of circuits N 1, N 2,…., such that N i+1 is
functionally equivalent to N i and |N i+1| < | N i|. Eventually a
circuit N m gets stuck in a local minimum (that can be
arbitrary far from a global minimum) and the synthesis
procedure terminates. To escape a local minimum, a
synthesis algorithm has to make a number of moves
increasing circuit size. However, currently there are no
efficient algorithms for doing this.

7.2 Modification of LSPS
In this subsection, we consider a modification of LSPS

further referred to as LSPS+. The pseudocode of LSPS+ is
shown in Figure 5. On the one hand, we use LSPS+ to
explain what LSPS is from the optimization point of view.
On the other hand, LSPS+ can be actually used in practice
as a more “ flexible” version of LSPS. As we show below,
LSPS can be viewed as a special case of LSPS+. So
everything we say about LSPS+ applies to LSPS as well.

1 LSPS+(N, Spec(N),cost_function) {

2 for (i=1; i <= k ; i++) {

3 Dinp(Ni, N
*
i
)= constraint_function(N, N*,i);

4 N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function)

5 Dout(Ni, N
*
i
) = exist_quantify(Ni,N

*
i, Dinp);

6 if (simple(Dout(Ni, N
*
i
)) R*

i=re-encoder(Dout(Ni, N
*
i
));

7 else |R*
i| = ∞

8 if (|N*
1| +..+|N*

i| +|R*
p1| + .. + |R*

pi| < |N1| + .. |Ni|)

9 return(N*,Spec(N*),R*
p1,…,R*

pi);}

10 return(N*,Spec(N*))}

Figure 5. Pseudocode of LSPS+

The main difference between LSPS+ and LSPS is that
LSPS+ tries to compute a re-encoding circuit R*

i such that
R*

i(N
*
i) is functionally equivalent to Ni. (Here N*

i is a
subcircuit toggle equivalent to subcircuit Ni of Spec(N))
That is in addition to computing the relation Dout(Ni,N

*
i),

LSPS+ also computes a circuit “ implementing” this relation.
In contrast to LSPS, LSPS+ can estimate the size of the
current circuit even before replacing all subcircuits Ni of
Spec(N). Hence, LSPS+ can stop as soon as the size of the

current circuit becomes smaller than the size of the original
circuit N.

Let us explain how LSPS+ works by the example shown
in Figure 6 where the circuit N to be optimized consists of
subcircuits N1 and N2. At the first step of LSPS+, the
subcircuit N1 is replaced with a toggle equivalent
counterpart N*

1 and the relation Dout(N1, N
*
1) is computed

as in LSPS. However, in constrast to LSPS, if the relation
Dout(N1, N

*
1) is “simple” enough, LSPS+ computes a re-

encoder R*
1 (line 6 of Figure 5) such that R*

1(N
*
1(y)) is

functionally equivalent to N1(y). (Let us assume, for the
sake of clarity, that LSPS+

 considers relation Dout(Ni, N
*
i) as

“simple” if the number of outputs in Ni and N*
i does not

exceed a threshold value.) If Dout(N1, N
*
1) is “complex” ,

then R*
1 is not generated and the size of R*

1 is set to infinity
(line 7). Suppose that R*

1 is actually built by LSPS+
 and

|N*
1|+|R*

1| < |N1| (line 8). Then LSPS+ stops here and
generates the resulting circuit as a cascade of N*

1,R
*
1 and

N2.

...

...

N 1

N 2

x 1 x k

y 1 y m

z

...

...

N *
1

N 2

x 1 x k

y *1

z

y*p

y 1 y m

R * 1

...

...

N *
1

N 2

x 1 x k

y *1

z

y*p

y 1 ym

R *1

a) firs t
 s te p

a) se co n d
s te p

...

...

N *
1

N *
2

x 1 x k

y *1

z

y*p

z *
R * 2

Figure 6. Example of LSPS+
 run

If |N*
1|+|R*

1| ≥ |N1|, then LSPS+ computes N*
2 that is

toggle equivalent to N1 under input constraint specified by
Dout(N1, N

*
1). LSPS+ also computes the re-encoder R*

2 that
just inverts the output of N* if the latter is the negation of N.
(Note that at this point circuit R*

1 “disappears” from the
circuit. For that reason, in line 8 of Figure 6 we take into
account only some of re-encoders generated by the i-th step.
LSPS+ “drops” re-encoder R*

i as soon as each subcircuit Ns
of Spec(N) fed by outputs of Ni is replaced with a toggle
equivalent subcircuit N*

s. The re-encoders R*
p1,.,R

*
pi of line

8 are the ones that have to be preserved by the i-th step.)

LSPS can be viewed as a special case of LSPS. Indeed,
suppose that LSPS+ considers the relation Dout(Ni, N

*
i) as

“complex” if the number of outputs in Ni, N
*
i is greater

than 1. Then none of the “ internal” re-encoders R*
i will be

generated and |R*
i| will be set to infinity (assuming that all

“ internal” subcircuits Ni have more than one output). Only
when LSPS+ reaches a pair of corresponding primary
outputs of N and N*, it computes a trivial re-encoder (a
buffer or an inverter). So, in this case, LSPS+ behaves
exactly as LSPS.

7.3 Escaping local minima by LSPS+
Suppose that during the run of LSPS+ shown in Figure

6, the final circuit N* consists of N*
1, N

*
2 and R*

2 (if an
inverter is necessary) and |N*| < |N|. This means that
although after the first step, LSPS+ did not stop because
|N*

1|+|R*
1| ≥ |N1|, eventually it managed to build a circuit N*

smaller than N. Inequality |N*
1|+|R*

1| ≥ |N1| may hold for
the following three reasons. First, the relation Dout(N1, N

*
1)

is too complex and R*
1 is not built by LSPS+ (so |R*

1| is set
to infinity). Second, even though there is a re-encoder R*′1
such that |N*

1|+|R*′1| < |N1|, the re-encoder R*
1 built by

LSPS+ is larger than R*′1 and so |N*
1|+|R*

1| ≥ |N1|. Third,
there is no re-encoder R*

1 such that |N*
1|+|R*

1| < |N1|. For
example, this is the case when N1 is an optimal circuit.
(Note, that even if N1 is optimal, the circuit N consisting of
N1 and N2 may be arbitrary far from a global minimum).

The third case above is particularly interesting. It means
that LSPS+ may make transformations that increase the size
of intermediate circuits. This implies that LSPS+ (and
hence LSPS) may make transformations that can not be
reproduced by traditional synthesis algorithms. To be
precise, transformations made by LSPS and LSPS+, in
general, are not reproducible by a synthesis algorithm that
a) monotonically reduces the circuit size at every step and
b) makes transformations that affect a subcircuit whose size
is limited by the granularity of Spec(N). In other words, in
general, a traditional procedure (trying to reduce circuit size
at every step) may reproduce a transformation made by
LSPS+ only by increasing the scope of transformation. In
the worst case, a transformation performed by LSPS can be
reproduced only if the entire circuit N changes in one
equivalent transformation.

8. Hor izontal and ver tical optimization
In Subsections 8.1 and 8.2 below we consider two

complementary kinds of optimization performed by LSPS+:
horizontal and vertical. We use the term horizontal
optimization to refer to the situation when optimization of N
is due to re-synthesis of subcircuits Ni, Nm of Spec(N) that
are topologically independent. (That is gates of Ni are not in
the transitive fan-out of gates of Nm and vice versa.)
Vertical optimization takes place when two topologically
dependent circuits Ni and Nm are re-synthesized by LSPS+
(For example, outputs of Ni may feed inputs of Nm.)

8.1 Hor izontal optimization
Let Spec(N) of N have topologically independent

subcircuits Ni, Nm with similar toggling behavior. Then Ni

and Nm can be replaced with subcircuits N*
i and N*

m that
share a lot of logic. (In the extreme case, when Ni and Nm
are toggle equivalent, one can pick, say, Ni as both N*

i and
N*

m, in other words, replace Nm with Ni.) We will refer to
the case of optimization achieved due to sharing of logic by
topologically independent subcircuits N*

i and N*
m as

hor izontal optimization.

An example of horizontal optimization is shown in
Figure 7. The circuit N on the left implements the
expression x2+3∗x2. Here subcircuits N1, N2, N3 of N
implement functions y=square(x), z=3∗square(x) and
sum(y,z) respectively. The circuit N* on the right is obtained
by LSPS+. Subcircuit N1 is replaced with subcircuit N*

1
that is identical to N1. Subcircuit N2 is replaced with
subcircuit N*

2 also identical to N1 (it is not hard to see that
N1 and N2 are toggle equivalent so one can replace N2 with
N1). Then LSPS+ generates re-encoder R*

1 implementing the
function z=mult(3, y). Since R*

1 is a fairly simple function,
|N*

1| + |N*
2| + |R*

1| < |N1| + |N2| where |N1|=|N2|=|N*
1| and

|N*
2| = 0 and so LSPS+ stops at this point.

Figure 7. Example of hor izontal optimization

8.2 Vertical optimization
Let us return to the example of Section 2. Application of

LSPS+ to this example is shown in Figure 8. LSPS+
performs two steps. In the first step, the subcircuit N1
implementing square(x) is replaced with circuit N*

1
implementing abs(x) and re-encoder R*

1. In the second step,
re-encoder R*

1 and circuit N2 (implementing y < 100) are
replaced with subcircuit N*

2 and re-encoder R*
2

(implementing an inverter or a buffer). Subcircuit N*
2 is

picked to be toggle equivalent to N2(R
*
1(y

*)).

Obviously, the subcircuit N*
1 implementing abs(x) is

smaller than N1 implementing square(x). Given a particular
implementation N1 of square(x), it is not clear if there is a
re-encoder R*

1 such that R*
1(N

*
1(x)) is equivalent to N1(x)

and |N*
1| + |R*

1| < |N1|. If, for example, N1 is an optimal
implementation of square(x), then obviously, there does not

exist a re-encoder R*
1 such that |N*

1| + |R*
1| < |N1|. (Note

that even if N1 is an optimal implementation of square(x),
the circuit N is very far from an optimum.) A trivial re-
encoder is the circuit N1 itself (because square(abs((x)) =
square(x)). However, in this case, obviously
|N*

1| + |R*
1| > |N1|. So LSPS+ is able to build a circuit N*

that is much smaller than N1 even though the intermediate
circuit (which is the cascade of N*

1, R*
1 and N2 is larger

than the initial circuit N). We will refer to the case of
optimization achieved due to “redistribution” of logic
between topologically dependent subcircuits as ver tical
optimization.

Figure 8. Ver tical optimization by LSPS

9. Why should it work?
In this section, we discuss the reasons for LSPS+ to

succeed in circuit optimization. In Subsection 9.1, we show
that LSPS+ provides a framework for designing efficient
algorithms that can escape local minima. In the following
subsections we give various aspects of LSPS+ that should
make it successful. In Subsection 9.2, we show that
horizontal optimization is a natural way to share logic
between “cooperating” logic blocks. Subsections 9.3 and
9.4 explain how LSPS+ can get away with transformations
increasing circuit size in vertical optimization. Namely, we
show that vertical optimization can be successful due to loss
of information in the original circuit. In case a circuit N has
many more inputs than outputs, this loss of information is
“global” (Subsection 9.3). However, even if N does not
lose information globally or loses very “ little” , it still can
have subcircuits that lose information locally (Subsection
9.4).

9.1 High-level view
LSPS+ can be viewed as just a framework for studying

and designing algorithms that that can escape local minima.
Suppose we try to optimize a circuit N using a set of small
equivalent transformations as shown in Figure 4. Suppose
there is no transformation reducing the size of N, if |N′ | < p
(i.e. if the size of the subcircuit N′ of N we replace with N″
consists of less than p gates). This essentially means that N
is stuck in a local minimum. To get N out of this minimum,
one needs to make equivalent transformations that affect a

subcircuit of N larger than p. But how does one make such
transformations in a scalable manner?

LSPS+ answers the question above. By replacing
subcircuits Ni of Spec(N) with toggle equivalent
counterparts N*

i LSPS+ makes a single equivalent
transformation that may encompass the entire circuit N (in
this case the subcircuit N′ we replace with an equivalent one
is N itself). If Spec(N) is narrow, this transformation can be
done efficiently. If there are no “small” equivalent
transformations optimizing N, some replacements of Ni of
Spec(N) with N*

i may increase the size of the intermediate
circuit (i.e. |N*

i| + |R*
i| > |Ni|). Obviously, LSPS+ can not

guarantee that after replacing subcircuits Ni with toggle
equivalent subcircuits N*

i it will always obtain a smaller
circuit N*. Nevertheless, since a circuit trapped in a local
minimum can be arbitrary far from the optimum,
developing algorithms of escaping local minima is
extremely important. LSPS+ suggests an elegant way to
cope with the problem of local minima entrapment.

9.2 Hor izontal optimization
Before, we showed a made-up example of applying

horizontal optimization successfully (Figure 7). However,
there is a good reason to believe that horizontal
optimization can be successfully used in practice. Suppose,
for example, that a high-level specification contains two
combinational blocks A and B that “cooperate” with each
other. This cooperation means that when the output of A
changes its value (in terms of multi-valued variables) B
“almost always” changes its value too. In other words, A
and B are almost toggle equivalent (in terms of multi-valued
functions). Then one can pick encodings of output variables
of A and B so that many outputs of Impl(A) and Impl(B) are
functionally equivalent and so can be shared. (Here
Impl(C) is an implementation of block C.)

In practice, however, when translating high-level
descriptions, Boolean encodings are chosen arbitrarily. In
such a case even though Impl(A) and Impl(B) are “almost”
toggle equivalent, they may not share any (or share very
little) logic. Then LSPS+ can improve the situation by
replacing Impl(A) and Impl(B) with toggle equivalent
subcircuits that share a lot of logic. This can be done by a
slightly modified TEP procedure of [7]. (A discussion of
such modification is beyond the scope of this report.)

9.3 Vertical optimization (global loss of
information)

Let N be a circuit to be optimized. Let N have many
more inputs than outputs. In this case, it inevitably loses
information. Let C1,..,Cp be a topologically ordered set of
cuts of N where C1 is the set of inputs of N and Cp is the set
of outputs of N. Let x, y be a pair of input vectors such
that x ≠ y and N(x)=N(y). Then there should be a cut

Ci, i=2,…,p such that Ci(x)=Ci(y) and for every cut Cj, j > i
it is also true that Cj(x)=Cj(y). In other words, loss of
information means that as one moves from inputs to
outputs, cuts Ci become less and less toggling.

By replacing a subcircuit Ni of Spec(N) with N*
i, LSPS+

makes a temporary “re-encoding debt” in the form of
Dout(Ni,N

*
i). Since LSPS+ replaces subcircuits of Spec(N) in

topological order, it “pushes” the debts in the direction of
cuts that toggle less and less. Then it is possible that even
though |N*

i| + |R*
i| > |Ni| (but |N*

i| < |Ni|), LSPS+ still can
succeed in optimizing N. The debt Dout(Ni,N

*
i) that is too

big to pay now, may eventually become much smaller.

Let us consider, for instance, the example of Section 2.
By replacing N1 implementing square(x) with N*

1
implementing abs(x), LSPS+ runs up a large “debt” .
However, since the circuit N (namely its subcircuit N2
implementing y < 100) loses a lot of information, LSPS
does not have to pay this debt “ in full” . By replacing N2
with a small subcircuit N*

2 (implementing y′′′′ < 10) LSPS
pays only a small fraction of this debt and nevertheless
obtains circuit N* functionally equivalent to N.

9.4 Vertical optimization (local loss of
information)

Let N be a circuit to optimized. Suppose N does not
lose (much) information globally (which implies that the
number of inputs and outputs of N are comparable). The
fact that N does not lose information “globally” does not
mean that N can not lose information locally.

Let N′ be a subcircuit N. Let inp(N′) and out(N′)
denote the set of input and output variables of N′
respectively. A variable v is in inp(N′) if it describes an
input of a gate of N′ fed by a gate that is not in N′. A
variable v is in out(N′) if it describes the output of a gate
of N′ that feeds a gate that is not in N′. Suppose the size of
out(N′) is much larger than that of inp(N′). Then one can
apply LSPS+ for optimization of N′ (by partitioning N′ into
subcircuits and replacing these subcircuits with toggle
equivalent counterparts). As we explained in Subsection
9.3, LSPS+ may succeed because N′ loses information
(from the viewpoint of N this is a local loss of information).

Suppose, for example, that we need to optimize an
implementation of a function y=f(x) specified as follows.
If x2 < 100 then y = f1(x), otherwise y = f2(x). Let the
expression x2 < 100 be implemented as shown in Figure 1
(on the left). Then even if a circuit N implementing f(x)
preserves (almost) all information, the single-output
subcircuit N′ implementing x2 < 100 loses a lot of
information and can be optimized by LSPS+ as described
above.

10. Finding specification
In this section, we consider various aspects of finding a

“good” specification of a circuit. Informally, a specification
Spec(N)={ N1,..,Nk} is good, if it reflects a natural flow of
information.. In Subsection 10.1, we discuss whether a
good specification can be found automatically and
conjecture that, in general, it is hard if not impossible.
Subsection 10.2 shows, however, that for circuits of small
width there is a very simple natural specification. This
specification is a cascade of subcircuits. So in case of
narrow circuits, finding a good specification automatically
is possible. This is an important fact because narrow
circuits are ubiquitous in real-life designs. Finally, in
Subsection 10.3, we consider the case of wide circuits. One
can not just take as a specification a “natural” partitioning
of a wide circuit N into subcircuits N1,..,Nk. The width of
such specification may be large. However, a specification
of small width can be derived from a natural specification.
Such a specification describes a narrow change of N.

10.1 Finding specification automatically
In this subsection, we discuss whether one can find a

good specification automatically. Intuitively, Spec(N) =
{ N1,..,Nk} is a good specification if, when one output of Ni
feeds an input of Nj, then all (or “almost all”) outputs of Ni
feed inputs of Nj. Otherwise, one can have the situation
shown in Figure 9. This figure depicts a fragment of a
circuit N (on the left) consisting of subcircuits N1,..,N4. Note
that only one out of three outputs of N1 feed Ni, i=2,3,4.
(For example, the output a feeds one input of N2.) The
result of application of LSPS+ is shown on the right. After
replacing subcircuits N1,..,N4 with their toggle equivalent
counterparts, all three outputs of N*

1 feed each subcircuit
N*

i, i=2,3,4. (The connections are shown only for N*
2.) So,

in this case, LSPS+ results in artificially increasing the
information flow between subcircuit N*

1 and subcircuits
N*

2,N
*
3,N

*
4.

Figure 9. An example of “ poor” specification

Finding a good specification automatically is, in
general, hard if not impossible. There are two reasons for
that. First, the number of potential subcircuits is exponential

in subcircuit size, which makes their enumeration
infeasible. Second, there is a high probability of a “ false
positive” . Suppose, for example, that all three outputs of N1
of Figure 9 feed each of the subcircuits N2,..,N4. However,
this may not be true for subcircuits N2,..,N4 themselves. So
even though the choice of N1 originally seemed to be
reasonable, later, one may discover that it was a mistake.

10.2 Finding specification for “ narrow”
circuits

In the previous subsection, we conjectured that finding a
good specification, is probably infeasible, in general.
Nevertheless, there is a very important class of circuits that
have a “ trivial” specification. These are circuits of small
width. Due to triviality of their specification, a reasonably
good specification can be found efficiently. A example of a
narrow circuit is shown in Figure 10 on the left. Primary
inputs and gates of a narrow circuit N can be ordered in a
such way (we consider here only topological orderings) that
N can be covered by a “ long” and “narrow” box. The size
of a horizontal cut C of such a box is small. This cut
consists of variables describing gate outputs and primary
input variables (in case a primary input variable is located
below C and feeds a gate above C.)

A narrow circuit N has a “natural” specification N1,.., Nk
shown in Figure 10 on the right. Each subcircuit Ni, i=2,..,k
has output variables zi

1,.., zi
di and input variables xi

1,.., xi
pi

and zi-1
1,.., zi-1

d(i-1). Here xi
1,.., xi

pi
 are primary input

variables of N. We assume that sets of input variables of Ni
and Nj, i≠j do not overlap. If an input variable xi

m of Ni
feeds two gates that are located in subcircuits Ni and Nj of
Spec(N) where j > i, then some variable zi

s of Ni is equal to
xi

m.

Figure 10. Specification of a “ nar row” circuit

Since N is a narrow circuit, there is a topological
ordering of variables of N such that the size of the number
of outputs for every Ni is bounded by a “small” constant.
Besides, since N is a narrow circuit, subcircuits Ni are also
narrow. So a natural specification of N has a small width.

Since the topology of a natural specification of a narrow
circuit is known, one has a good chance to find a high-

quality specification automatically. First, one needs to find
a good topological ordering for the variables of N. Then N
is “sliced” into a cascade of subcircuits Ni of manageable
size.

10.3 Finding specification for “ wide” circuits
Let N be a wide circuit. Such a circuit should have a

“natural” specification consisting of narrow subcircuits
N1,..,Nk. (The reason is that building a structureless wide
circuit that performs a meaningful computation is hard if
not infeasible.) However, one can not use subcircuits
N1,..,Nk as a specification of N because they may have an
unbounded number of outputs (then specification { N1,..,Nk}
has a large width even if subcircuits Ni are narrow). In such
a case, one can partition Ni further into subcircuits of small
number of outputs. This way one can build a specification
Spec(N) extracted from a natural specification { N1,..,Nk} .

Let us illustrate the said above by the example of a
multiplier that is a “classic” wide circuit. Let us consider a
trivial implementation N of a multiplier as a cascade of
regular adders. Then N has a natural specification which is
a partition of N into subcircuits Ni representing adders. (An
adder is a narrow circuit). However this partition cannot be
used by LSPS+ because each adder has a larger number of
outputs. To solve this problem, one can partition each Ni
into subcircuits Ni

p where Ni
p implements the adjacent

outputs of the adder Ni. (For example, subcircuit Ni
1

implements the s least significant output bits of the adder
Ni, subcircuit Ni

2 implements the next s bits of Ni and so
on.)

The set of subcircuits Ni
p forms a narrow specification

Spec(N) of the multiplier N that can be used by LSPS+. It is
not hard to see that Spec(N) is a good specification in terms
of Subsection 10.1. Although it is unlikely to get a smaller
multiplier by applying LSPS+ to N with specification
Spec(N), one can try to improve the performance of this
multiplier. A regular adder is a deep circuit and so it is
slow. For that reason, various schemes have been designed
to improve adder’s performance. LSPS+ can try to achieve
the same goal by replacing subcircuits Ni

p with more
shallow toggle equivalent counterparts N*

i
p.

One can say that Spec(N) above describes a “narrow
change” of the multiplier N. Importantly, Spec(N) is not
identical to a natural high-level specification of N but is
derived from it.

11. Conclusions

In this report, we consider various aspects of Logic

Synthesis Preserving Specification (LSPS). We show that
LSPS provides an elegant solution to the local minimum
entrapment problem. Since the size of a circuit trapped in a

local minimum can be arbitrarily far from the global
minimum, the importance of addressing this problem is
hard to overestimate. We also discuss the problem of
finding a good specification of a circuit. Namely, we show
that narrow circuits have a very simple natural specification
which is a cascade of subcircuits. For a wide circuit, a
good specification can be extracted from a natural
partitioning of this circuit into narrow subcircuits.

References
[1] C.L.Berman. Circuit width, register allocation, and

ordered binary decision diagrams. IEEE Trans. on
CAD. Vol 10:8, 1991, pp. 1059-1066.

[2] P. Farm, E.Dubrova and A.Kuehlmann. Logic Syn-
thesis Using Simulated Annealing. IWLS-2006, pp.
9-15.

[3] E.Goldberg. Logic synthesis preserving high-level
specification. International Workshop on Logic
Synthesis, IWLS-2004.

[4] E.Goldberg. On Equivalence Checking and Logic
Synthesis of Circuits with a Common Specification.
Proceedings of GLSVLSI, Chicago, April 17-19,
2005,pp.102-107

[5] E.Goldberg. Equivalence checking of circuits with
parameterized specifications. International Conference
on Theory and Applications of Satisfiability Testing, St
Andrews, UK, June 19-23,2005, LNCS 3569, pp.107-
121.

[6] E.Goldberg, K. Gulati. On Complexity of External and
Internal Equivalence Checking. Technical Report
CDNL-TR-2006-0105, January 2006.

[7] E.Goldberg, K.Gulati. Toggle Equivalence Preserving
Logic Synthesis. Technical Report CDNL-TR-2005-
0912, September 2005.

[8] S.Sinha, R.K.Brayton. Implementation and use of
SPFDs in optimizing Boolean networks. ICCAD-1998,
pp. 103-110.

[9] S.Yamashita,H.Sawada,A.Nagoya. A new method to
express functional permissibiities for LUT based
FPGAs and its applications.ICCAD-1996,pp.254-261.

