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Abstract.  In this report, we continue studying Logic 
Synthesis Preserving Specification (LSPS). Given a 
combinational circuit N and its partition into subcircuits 
N1,..,Nk (this partition is called a specification of N), LSPS 
optimizes N by replacing  each subcircuit Ni with toggle 
equivalent subcircuit N*

i. As we showed before, LSPS is 
scalable. In this report, we demonstrate that LSPS can be 
also viewed as an elegant way to address the local minimum 
entrapment problem. The latter  remains a thorny issue for 
the heuristic algorithms for solving hard combinatorial 
problems. We also discuss finding a “good”  specification of 
a circuit. In particular, we show that for narrow circuits 
there is a natural specification subcircuits of which form a 
cascade.  For a wide circuit, a good specification describes 
a “narrow”  change of this circuit. In this report,  we only 
give various “ theoretical”  arguments in favor of LSPS. The 
preliminary experimental results of LSPS can be found in  
[6][7]. 
 

1.  Introduction 
When solving hard computational problems one has to 

address the problem of local minima entrapment.  Due to 
the huge size of the search space, a typical algorithm A for 
solving, say, an NP-hard problem uses heuristics specifying 
small changes to be made to the current   solution. In such 
an algorithm, a change is accepted if it improves a cost 
function. (Henceforth, we assume that one needs to 
minimize a  cost function.) This leads the current solution to 
a local minimum that is the situation when  in the set of 
moves used by A  no move can improve the cost of the 

current solution. Unfortunately, the quintessential feature of 
NP-hard problems is that a local minimum can be arbitrarily 
deep.  This means that to get the current solution out of a  
local minimum by the moves allowed in A,  one may have 
to make an unbounded number of moves that make the cost  
the solution higher. 

Unfortunately, making moves increasing the cost 
dramatically increases the search space. So an algorithm 
making such moves  has no chance to converge to a better 
solution in reasonable time. For example, in a popular 
optimization method of simulated annealing (application of 
simulated annealing to logic synthesis is given in  [2]), the 
number of moves increasing the cost function is controlled 
by the “cooling”  scheduling. The smaller the temperature is, 
the less likely it is  that such a move is accepted in 
simulated annealing. If the cooling schedule becomes 
sufficiently long, simulated annealing can reach the global 
minimum (and so get out of any local minimum). 
Unfortunately, these schedules may take the time even 
larger than that of just enumerating all possible solutions. 

A typical logic synthesis procedure (being a special case 
of an optimization problem) also suffers from the local 
entrapment problem mentioned above.  Usually, when 
optimizing a circuit N,  such a procedure generates a 
sequence of circuits N 1, N 2,…, (where N 1=N) such that 
N i+1 is functionally equivalent to N i and cost(N i+1) < 
cost(N i). (For the sake of simplicity, henceforth,  we 
assume that cost(N i) is the number of gates in N i. We will 
denote this number by |N i|.) For complexity reasons, the 
transformations used by such a procedure are local and 



affect only a small part of the circuit.  Eventually, a circuit 
N m of the sequence gets stuck in a local minimum. 

In this report, we show that  logic synthesis preserving 
specification (LSPS) introduced in  [3][4] actually suggests 
an interesting approach to the local minimum entrapment 
problem. (The site http://eigold.tripod.com/papers.html 
contains all referenced  papers co-authored by the author of 
this report.)  Let N  be a single output circuit to be 
optimized and N1,.., Nk be a partition of N into subcircuits. 
(In this report we  assume, unless otherwise stated, that one 
needs to optimize a single-output circuit N.)  This partition 
is called a specification of N. The idea of the method of 
[3][4] is to modify N by replacing subcircuits N 

i with 
toggle equivalent subcircuits N*

i  that are optimized 
according to the required cost function. Then the circuit N* 
consisting of subcircuits N*

i is functionally equivalent to N 
(modulo negation) and has the same specification as N 
(because subcircuits N*

i are connected with each other in N* 
exactly as subcircuits Ni in N). In this report,  we show that 
a single transformation performed by LSPS can be 
represented as k functionally equivalent transformations of 
the original circuit each of which may increase the size of 
the current circuit. So LSPS can be viewed as a logic 
synthesis procedure  that performs equivalent 
transformations going “against”  the cost function. This 
means that, in general, transformations of LSPS can not be 
reproduced by a “ traditional”  logic synthesis procedure 
monotonically reducing circuit size at every step and 
performing “ local”  transformations.  

In [6], we introduced a generalization of LSPS of [3][4]. 
Let N1,.., Nk be a specification of N. The generalization is to 
replace each subcircuit Ni, i=1,..,k-1 with subcircuit N*

i  
whose toggling is implied by that of Ni. The subcircuit Nk is 
replaced with a toggle equivalent subcircuit N*

k. This 
method of logic synthesis is more powerful than that of 
[3][4] because toggle equivalence is just a special case of 
toggle implication.  For the sake of simplicity, in this 
report, we will use LSPS that preservers toggle equivalence 
(rather than toggle implication). Nevertheless everything 
that we say  here about LSPS is applicable to the more 
general method of [6]. 

In this report, we also consider some other problems of 
LSPS.  Namely we show that a narrow circuit N  has a 
“natural”  specification that is a cascade of subcircuits.  On 
the other hand, if N is a wide circuit, its “good”  
specification can be viewed as a  description of a “narrow 
change”  of N. 

This report is structured as follows. An example of 
LSPS is given in Section 2. In Section 3, we recall the basic 
notions of toggle equivalence and correlation function and 
describe LSPS of [4]. The recent developments in LSPS  
are listed in Section 4. Section 5, describes application of 
LSPS to multi-output circuits. In Section 6, we relate LSPS  
to existing synthesis procedures from three different points 
of view. Section 7 analyzes LSPS from the optimization 

point of view and shows that LSPS offers an elegant way to 
escape local minima. In Section 8 we introduce two types of 
optimization performed by LSPS: vertical and horizontal. 
Section 9 gives reasons for LSPS to be successful. In 
Section 10, we discuss finding good specifications for 
“narrow”  and “wide”  circuits. Finally, some conclusions are 
made in Section 11. 

2. Example 
Suppose that one needs to optimize  a single-output 

circuit N implementing the arithmetic expression x2 < 100 
as shown in Figure 1. Circuit N consists of subcircuits N1 
and  N2  connected as a cascade. (In general, LSPS can 
handle the case when subcircuits  Ni of N  are connected 
into an  arbitrary  directed acyclic graph.) The subcircuit N1 
implements the function y=square(x) and  N2 implements 
the function y < 100.  

It is not hard to see that the expression x2 < 100 can be 
replaced  with  much simpler expression abs(x) < 10. Below 
we show how this optimization can be  done by LSPS. 
(This simplification may look “ trivial”  and so doable by a 
high-level optimizer. However, one can easily modify this 
example in such a way that high-level optimization 
becomes much less trivial.)   

LSPS replaces N1 with an optimized toggle equivalent 
subcircuit , e.g.  with the subcircuit N*

1 implementing 
y* =abs(x). Then it computes  relation Dout(N1, N

*
1) 

specifying the bijective mapping between the output 
assignments produced by subcircuits N1 and N*

1. (As it was 
shown in [4], if two circuits are toggle equivalent, there is a 
one-to-one  mapping between  output assignments these 
circuits produce. Note that N1 has twice the number of 
outputs of N*

1.) After that, a circuit  N*
2(y

* ) is constructed 
that is toggle equivalent to N2(y) (implementing  y < 100) 
under the input constraint specified by relation Dout(y, y*)). 
In the case  N*

1 implements  y* = abs(x), subcircuit N*
2, has 

to implement y* < 10 (or its negation). For single-output 
circuits, toggle equivalence means functional equivalence 
(modulo negation) [4]. So  N and the circuit N* composed 
of N*

1 and N*
2  are functionally equivalent (modulo 

negation). 

 

Figure 1. Optimization of x2 < 100 by LSPS 

 



3. Logic synthesis preserving common 
specification 

In this section, we recall definitions of toggle 
equivalence and correlation function and describe the 
procedure LSPS of [4]. 

3.1 Toggle equivalence 
Definition 1. Let f:{ 0,1} n  → { 0,1} m be an m-output 
Boolean function. A toggle of f  is a pair of two different 
output vectors produced by f  for two input vectors. In other 
words, if y=f(x) and y′′′′ =f(x′′′′ ) and y ≠ y′, then (y, y′ ) is a 
toggle. 
Definition 2.  Let f1 and f2 be  two  Boolean functions of 
the same set of variables.  Functions f1 and f2 are called 
toggle equivalent if  f1(x) ≠ f1(x′′′′ ) ⇔ f2(x) ≠ f2(x′′′′).  (Note 
that f1 and f2 may have different number of outputs.) 
Circuits N1 and N2 implementing toggle equivalent 
functions f1 and f2 are called toggle equivalent circuits.  
Definition 3.  Let f be a Boolean function. We will say that 
function f * is obtained from f by existentially quantifying 
away variable xi if f

 * = f(…, xi=0,…) ∨  f(…, xi=1,….). 

Definition 4. Let N be a circuit. Denote by v(N) the set of 
variables of N. Denote by Sat(v(N))  the Boolean function 
such that Sat(h)=1 iff the assignment h to v(N) is “possible”  
i.e consistent.  For example, if  N consists of just one AND 
gate y=x1 ∧ x2, then Sat(v(N)) = (~x1∨ ~x2 ∨ y)  ∧ (x1 ∨ ~y) 
∧ (x2 ∨ ~y). 

Proposition 1. [4]  Let N1 and N2 be toggle equivalent and 
Z1, Z2 be the sets of their output variables. Let function 
K*(Z1, Z2) be obtained from Sat(v(N1)) ∧ Sat(v(N2)) by 
existentially quantifying away the variables of  N1 and N2 
except those of Z1 ∪ Z2. The function K*(Z1, Z2) implicitly 
specifies the one-to-one mapping K between output vectors 
produced by N1 and N2.  Namely, K*(z1, z2) =1 iff z1=K(z2). 

 

3.2 Correlation function 
In this section, we use the notion of correlation 

function to extend definition  of  toggle equivalence to the 
case where functions f1 and f2 have different sets of  
variables. 
Definition 5. Let X and Y be two disjoint sets of Boolean 
variables (the number of variables in X and Y may be 
different).  A function Cf(X,Y) is called a correlation 
function  if there are subsets QX ⊆ { 0,1} |X| and QY ⊆ 
{ 0,1} |Y| such  that Cf(X,Y) specifies a bijective mapping 
M: QX → QY. Namely  Cf(x, y)=1 iff x ∈∈∈∈ QX and y ∈ QY 
and y = M(x). 

Informally, Cf(X,Y) is a correlation function if it 
specifies a bijective mapping between a subset QX of 
{ 0,1} |X| and a subset QY of { 0,1} |Y|.    

Let  f1(X) and f2(Y ) be two multi-output Boolean 
functions  where X={ x1,…, xk}   and Y ={ y1,…, yp}  are sets 

of their variables. (Note, that f1 and f2 may have different 
number of variables.). Let Cf(X, Y ) be a correlation 
function relating variables of f1 and f2. Then one can 
introduce notions of toggle equivalence as follows. Boolean 
functions  f1 and f2 are said to be toggle equivalent, if for 
any pair of pairs (x, y) and (x′′′′, y′′′′ ) of input vectors such 
that Cf(x, y)=Cf(x′′′′, y′′′′ )=1, it is true that  f1(x) ≠ f1(x′′′′ ) ⇔ 
f2(y) ≠ f2(y′′′′).    

The mapping between output vectors produced by 
toggle equivalent circuits N1 and N2 (implementing 
functions f1 and f2 respectively), can be obtained from 
Sat(v(N1)) ∧  Sat(v(N2)) ∧ Cf(X,Y) by existentially 
quantifying away all  the variables of  v(N1) ∪ v(N2) except 
the output variables of N1 and N2. 
 

3.3 Logic synthesis preserving specification  
Let N be a single-output circuit. Denote by Spec(N) a 

specification of N i.e. a partition of N into subcircuits 
N1,…, Nk. Following  [4] we assume that specification 
Spec(N) is topological. Let G be a directed graph whose 
nodes are subcircuits Ni and an edge of G directed from  
node Ni to  node Nj  implies that an output of Ni is 
connected to an input of Nj. Spec(N) is called topological if 
G is acyclic.  Since Spec(N1) is topological, one can assign 
levels to subcircuits Ni.  The pseudocode of LSPS of  [4] is 
given in Figure 2. There, we  assume that the numbering of 
subcircuits is topological. That is if i < j then 
topological_level(Ni) ≤ topological_level(Nj). In other 
words, subcircuits Ni, i=1,..,k are processed by the LSPS 
procedure in topological order, from inputs to outputs. 

 
1  LSPS(N, Spec(N),cost_function) {    

2     for (i=1; i <= k ; i++) {  

3          Dinp(Ni, N
*
i
 )= constraint_function(N, N*,i);  

4           N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function) 

5           Dout(Ni, N
*
i
 ) =  exist_quantify(Ni,N

*
i, Dinp);  }  

6   return(N*,Spec(N*))}  

Figure 2. Pseudocode of LSPS procedure 

Let us revisit the example of Section 2. LSPS starts 
with subcircuit  N1 (implementing square(x)) and recovers 
the function Dinp(N1, N

*
1) relating the inputs of N1 and 

subcircuit N*
1  to be built (line 3 of pseudocode). The inputs  

of N1 are inputs of N (and so N1 has the lowest topological 
level 1). In that case Dinp(N1, N

*
1)≡1. Then a  subcircuit N*

1 
toggle equivalent to N1 (e.g. implementing  abs(x))  is 
synthesized (line 4). In the end of this iteration, the function 
Dout(N1, N

*
1) relating outputs of N1 and N*

1 is built (line 5) 
as described in  Proposition 1. (That is Dout(N1, N

*
1) is 

obtained by existentially quantifying away from the 
expression Sat(v(N1)) ∧ Sat(v(N*

1) all the variables but the 
output variables N1 and N*

1.) Since N1 and N*
1  are toggle 

equivalent, there is a one-to-one mapping between  the 



output vectors they produce. So Dout(N1, N
*
1) is a 

correlation function. 
In the next iteration,  subcircuit N2 is processed 

similarly to N1  with one exception. The inputs of N2 are fed 
by the outputs of  N1. Then the function Dinp(N2, N

*
2) 

relating inputs of  N2  and circuit N*
2 (synthesized in line 4) 

equals Dout(N1, N
*
1). (In general, the inputs of a subcircuit 

Ni of Spec(N) are fed by outputs of more than one subcircuit 
Nj of Spec(N). To obtain Dinp(Ni,N

*
i) one has to take the 

conjunction of Dout(Nj, N
*
j) for all   subcircuits whose 

outputs feed inputs of Ni and N*
i.  It is not hard to show that 

in this case Dinp(Ni,N
*
i) is a correlation function too.) 

Let N*
2 be a  subcircuit built by LSPS that is toggle 

equivalent to  N2. If  N
*
2 is  “ irredundant”  it has to have one 

output. (If, say a two-output circuit M' is toggle equivalent 
to a single-output circuit M, then  either one output of M' is 
a constant or  one output of M' is equal to the other output 
of  M' or its negation.) Then N and the resulting circuit N* 
(composed of subcircuits N*

1 and N*
2)  are functionally 

equivalent modulo negation. 
 

4. Recent developments in LSPS  
In this section, we describe recent improvements to 

LSPS made in [5] , [6], [7]. 

4.1 Better  complexity parameter ization 
In [3] and [4], the complexity of LSPS was given in the 

granularity of specification  of circuit N.  The granular ity 
of specification Spec(N)={ N1,.., Nk}  is the size of the largest 
subcircuit Ni of Spec(N) (in the number of gates). The 
complexity of LSPS is exponential in the granularity of N 
and linear in the number of subcircuits Ni of Spec(N). So, if, 
for example, the size of subcircuits of Spec(N) is bounded 
by a constant, the complexity of LSPS is linear.  

The result above was improved in [5]. There, we 
considered  the equivalence checking procedure for circuits 
N and N* with a common specification (this procedure  
“enables”  LSPS). We showed that the complexity of this 
equivalence checking procedure  is exponential in the width 
of specifications Spec(N) and Spec(N*) and linear in the 
number of subcircuits. The width of Spec(N) is 
max(W1,W2). Here W1 is the maximum number of outputs 
among the subcircuits Ni of Spec(N) and W2 is the 
maximum circuit width among the subcircuits Ni of 
Spec(N).  (The first definition  of circuit width  was given in  
[1]. ) 

Informally, the result of [4] means that the complexity 
of LSPS remains linear even if the size of subcircuits of 
Spec(N) and Spec(N*) is not bounded (but the number of 
outputs and width of subcircuits of Spec(N) and Spec(N*) is 
bounded). So the width of Spec(N) provides a better 
parameterization of LSPS than its granularity. 

 

4.2 Logic synthesis preserving toggle 
implication 

In [6], we introduced a generalization of LSPS based on 
the notion of toggle implication. We will refer to the 
method of [4] as LS_TE  and to the method of [6] as 
LS_TI. Here LS stands for logic synthesis, TI for toggle 
implication and TE for toggle equivalence. 

Definition 6. Let f1 and f2 be two Boolean multi-output 
functions with the same set of variables X={ x1,…, xn} .  
Toggling of function f1 implies  toggling of  f2, if for any 
pair of assignments x′′′′, x″″″″ to the variables of  X, 
f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).  

Let N be a single output circuit and 
Spec(N)={ N1,…,Nk} . We assume here that the numbering 
of subcircuits Ni is topological (as in Subsection 3.3). The 
idea of [6] is to replace the first k-1 subcircuits Ni with 
subcircuits N*

i such  that N*
i ≤  Ni. (Here “≤”  denotes the 

fact that toggling of N*
i is implied by toggling of Ni.) The 

last subcircuit of Spec(N) (i.e. subcircuit Nk) is replaced 
with N*

k that is toggle equivalent to Nk. Then the circuit N* 
composed of subcircuits N*

1,…, N*
k is functionally 

equivalent to N (modulo negation). In contrast to LS_TE, in 
LS_TI, when replacing subcircuit Ni, i=1,..,k-1 with  
subcircuit N*

i (such that Ni ≤ N*
i) one has to impose the 

limit on the number of outputs in N*
i. Otherwise, LS_TE 

just replaces Ni with an “empty”  circuit N*
i consisting only 

of inputs (because toggling of such circuit is implied by 
toggling of Ni). 

It is not hard to show (see [4]) that Boolean functions f1 
and f2 are toggle equivalent iff f1 ≤ f2 and f2 ≤ f1. So toggle 
implication is strictly more general relation, which makes 
LS_TI more powerful than LS_TE. Methods LS_TI and 
LS_TE can be viewed as two versions of LSPS. For the 
sake of clarity in the following exposition we will use the 
version LS_TE of LS_PS. However, one can easily extend 
this exposition to LS_TI. 

4.3 The TEP procedure 
The key part of LSPS is the procedure that, given a 

subcircuit Ni of Spec(N), builds an optimized circuit N*
i that 

is toggle equivalent  to Ni (under input constraints specified 
by Dinp(Ni, N

*
i)). Such a procedure (called Toggle 

Equivalence Preserving procedure or TEP procedure for 
short)  was introduced in  [7].  Introduction of the TEP 
procedure has made LSPS “a reality” . Given a circuit Ni, 
the TEP procedure builds a sequence of circuits Ni

1, Ni
2,... 

where Ni
1=Ni  that converges to a  circuit Ni

m = N*
i  toggle 

equivalent to Ni. For each circuit Ni
p of this sequence, 

Ni ≤ Ni
p holds. So the TEP procedure can be also  used for  

LS_TI (i.e. for logic synthesis preserving toggle 
implication).  One just needs to stop the TEP procedure 
when the number of outputs in Ni

p is below a predefined 
threshold and use Ni

p as the subcircuit  N*
i replacing  Ni.  



 

5. Application of  LSPS to multi-output 
circuits  

In this section, we briefly discuss  application of LSPS 
to optimization of multi-output circuits.  Let N be a multi-
output circuit.  To generate a circuit N* that is functionally 
equivalent to N we need a specification Spec(N) such that 
every subcircuit Ni containing a primary output of N has 
only one output. An example of such a specification for a 
two-output circuit N is given in Figure 3. Spec(N) consists 
of subcircuits N1, N2, N3 where N2 and N3 are single-output 
subcircuits  of N feeding its two primary outputs. 

Suppose that circuits N2 and N3  share gates. Denote by 
Gates(N) the set of gates of N. Since Gates(N2) ∩ 
Gates(N3) ≠ φ, sets Gates(N1), Gates(N2), Gates(N3) form a 
cover of Gates(N) rather than its partition. 

 
Figure 3. Specification of a two-output circuit 

When formulating LSPS in [3] [4] [6], for the sake of 
simplicity we assumed that Gates(Ni) ∩ Gates(Nj) = φ for 
two different subcircuits Ni, Nj of Spec(N). However, the 
requirement can be easily relaxed. To handle the case of 
multi-output circuits, it is sufficient to require only that 
subcircuits Ni  of Spec(N) do not share “output gates” . (That 
is a gate of Ni whose output is an output of Ni can not be in 
another circuit Nj. However, Ni and Nj may share “ internal”  
gates.)  However, one can relax the definition of 
“permissible”  specification even more. For example, one 
can have a specification Spec(N) where output gates of Ni 
and Nj are shared. As long as Spec(N) satisfies the two 
conditions below: 

a) one can build the graph G (see Subsection 3.3)  
describing connections between subcircuits of Spec(N); 

b) the graph G is acyclic 

one can apply LSPS. So one, for example, should avoid 
partitions where an output gate of Ni is an internal node of 
Nj (because it is not clear how to build G in such a case).  

It is not hard to see that by replacing  subcircuits Ni, 
i=1,2,3 shown in  Figure 3 with toggle equivalent 
subcircuits N*

i, LSPS produces a circuit N* that is 
functionally equivalent to N modulo negation of outputs. 
(For single-output circuits N*

2 and N*
3 toggle equivalence 

with N2 and N3 means functional equivalence modulo 
negation.) To minimize the size of N* one should try to 
make N*

2 and N*
3 share as much  logic as possible.  

Suppose circuit N*
2 is synthesized before N*

3. Then when 
synthesizing N*

3, the logic of N*
2 may be re-used. This can 

be done by slightly modifying the TEP procedure 
mentioned in Subsection 4.3.  However, the discussion of 
this topic is beyond the scope of this report. 

 

6. Relation of LSPS to existing synthesis 
methods 

In this section, we relate LSPS to other methods of  
logic synthesis from three different points of view. Since we 
give a very high-level comparison, we do not reference the 
existing methods of logic synthesis.  (A comparison of 
LSPS with SPFDs [8][9] can be found in [7].) 

6.1 Compar ison in terms of enabling 
equivalence checking procedures 

In this subsection, we consider the difference between 
LSPS  and existing logic synthesis procedures from the 
viewpoint of enabling equivalence checking procedures.  

 

Figure 4. A typical synthesis transformation 

Any logic synthesis transformation has to have an 
enabling equivalence checking procedure that is used to 
certify  the correctness of this transformation. In a typical 
logic synthesis transformation shown in Figure 4, a multi-
output subcircuit N′ of N  is replaced with an optimized and  
functionally equivalent subcircuit N″. The corresponding 
enabling equivalence checking procedure consists of two 
parts. The “block-level”  part (that is non-trivial) is to prove 
that N′ and N″ are functionally equivalent. The 
“compositional”  part is trivial. It just says that if one 
replaces subcircuit  N′ with a functionally equivalent 
subcircuit N″ , the resulting circuit N* is functionally 
equivalent to N. 

LSPS is enabled by the equivalence checking procedure 
of [4] that has the non-trivial  compositional part  .  In 
terms of enabling equivalence checking procedures, LSPS 
is a generalization of existing synthesis procedures.  Indeed, 
replacing N′  with a functionally equivalent subcircuit N″ is 
a special case of LSPS. (In this case Spec(N) consists of 
subcircuit N′ and one-gate subcircuits corresponding to the 
gates of N that are not in N′. Since N′ is replaced with a 



functionally equivalent subcircuit N″ there is no “re-
encoding debt”  in the form of the correlation function 
Dout(N′, N″ ). So one does not have to propagate this debt to 
the output of N and so does not have to  change the logic 
fed by N′.)   

Suppose, however, that a transformation of a traditional 
logic synthesis procedure changes the functionality of N′ 
but the modified subcircuit N″ is toggle equivalent to N′. 
Suppose, for example, that  this transformation is to replace 
a complex gate G′ of N′  with a simpler gate G″ such that 
this replacement is “unobservable”  at the outputs of N′ . 
Since the subcircuit N″ is not functionally equivalent to N′, 
the replacement of G′ with G″  is “observable” . So this 
transformation will be rejected by a logic synthesis 
procedure enabled by the usual equivalence checking 
procedure (with the trivial compositional part).  However, it 
is within the power of LSPS to accept the replacement of G′ 
with G″ (because they are toggle equivalent) and re-
synthesize  logic fed by N′ to make the entire 
transformation correct. 

6.2 Compar ison in terms of handling 
complexity 

In this subsection, we compare  existing methods of 
logic synthesis with LSPS from the viewpoint of complexity 
handling. A typical transformation performed by a logic 
synthesis procedure is shown in Figure 4. Verification  of 
correctness of this  transformation is simplified by a) 
limiting the size (or width) of subcircuit  N′ ; b) making the 
optimized circuit N″ functionally equivalent to N′.  By 
limiting the size of N′ one simplifies the “block-level part”  
of verification i.e. checking that subcircuits N′ and N″ are 
functionally equivalent. By making  N″  functionally 
equivalent to N′ one limits the scope of transformation and 
so trivializes the compositional part of verification. 

LSPS reduces its  complexity by using Spec(N) that 
consists of “narrow”  subcircuits Ni with a bounded number 
of outputs (Subsection 4.1).  This lowers the complexity of 
replacing Ni with a toggle equivalent counterpart N*

i  and 
the complexity of computing Dout(Ni, N

*
i). However,  LSPS 

remains scalable without scoping (since N*
i is not 

functionally equivalent to Ni, the replacement of Ni with N*
i 

affects the  logic fed by Ni).  So, to keep LSPS scalable, it is 
sufficient to use specification Spec(N) of small  width. This 
improvement in complexity handling is due to the progress 
in equivalence checking made in [4][5]. Previously, the 
formal results on  equivalence checking of circuits N and N* 
performed either by BDDs or by SAT were expressed in 
terms of absolute complexity of N and N*. For example,  if 
N and N* have small width then their equivalence can be 
efficiently established by building their BDDs. The 
complexity of equivalence checking of circuits with a 
common specification  is formulated in relative terms. If  N 

and N* have a  “narrow”  common specification then no 
matter how complex (or wide) circuits N and N* are, they 
can be checked for equivalence efficiently (if this common 
specification is known). The fact that Spec(N) of N is 
narrow means that we make a “narrow”  change of N (but in 
contrast to existing methods of synthesis this change may 
encompass the entire circuit). 

 

6.3 Compar ison in terms of “ fr iendliness”  of 
environment 

LSPS introduces a new type of subcircuit/environment 
interaction. Let us consider again the transformation shown 
in Figure 4 where subcircuit N′  is replaced with 
functionally equivalent subcircuit N″.   If one considers 
N \ N′ as the “environment”  of subcircuit N′, then this 
environment can be called “unfriendly” . Indeed, if N″ is not 
functionally equivalent to N′, the environment  “punishes”  
this transformation by making the resulting circuit incorrect.  
In LSPS, one can replace subcircuit N′ with a toggle 
equivalent counterpart N″. Since toggle equivalence means 
re-encoding, the logic fed by the outputs of N″ has to 
change.  This is done by computing  correlation functions 
and replacing subcircuits of N with toggle equivalent 
counterparts as described before. The replacement of N′  
with toggle equivalent subcircuit  N″  is possible because 
the “environment”   N \ N′   “cooperates”  with N′  by 
making changes in the surrounding logic in such a way that 
the replacement of N′  with N″  become “unobservable” . 
Such cooperation allows one to explore a much richer space  
of transformations.    
 

7. LSPS from optimization point of view 
In this section, we consider LSPS from the optimization 

point of view. Namely, we show that LSPS can be 
simulated by an algorithm performing small equivalent 
transformations that may increase  the circuit size. On the 
one hand, this implies that, in general, LSPS performs 
transformations that can not be reproduced by a traditional 
logic synthesis procedure that a) monotonically reduces the 
circuit size and b) makes “ local”  transformations.  On the 
other hand, this means that LSPS can escape local minima 
that trap solutions of traditional logic synthesis algorithms.  

Intuitively, the depth of local minima LSPS can escape 
depends on the width of Spec(N). The deeper a local 
minimum is, the more coarse partitioning of N into 
subcircuits is necessary to avoid it. In particular, if Spec(N) 
consists of N itself, then LSPS can escape any local 
minimum (but the complexity of such escape is exponential 
in |N| and so prohibitively high). 

The  exposition in this section is structured as follows. 
In Subsection 7.1 we recall the problem of local minima 
entrapment in the context of traditional logic synthesis. 



Subsection 7.2 describes a modification of LSPS called 
LSPS+. Since LSPS is a special case of LSPS+, then 
everything we say about LSPS+ applies to LSPS as well. 
Subsection 7.3 shows that LSPS+  can escape local minima 
that trap solutions of  traditional synthesis methods.  

7.1 Local minima entrapment 
Let N be a circuit to be optimized. A typical synthesis 

procedure performs a sequence of transformations shown in 
Figure 4 . Each transformation reduces the value of a  cost 
function (as we mentioned above, in this report we assume 
that  cost(N)=|N|)).  Then a typical synthesis procedure 
builds a sequence of circuits N 1, N 2,…., such that N i+1 is 
functionally equivalent to N i and |N i+1| < | N i|.  Eventually a 
circuit N m gets stuck in a local minimum (that can be 
arbitrary far from a global minimum) and the synthesis 
procedure terminates.  To escape a local minimum, a 
synthesis algorithm has to make a number of moves 
increasing circuit size. However, currently there are no 
efficient algorithms for doing this.  

7.2 Modification of LSPS 
In this subsection, we consider a modification of LSPS 

further referred to as LSPS+. The pseudocode of  LSPS+ is 
shown in Figure 5. On the one hand, we use LSPS+ to 
explain what LSPS is from the optimization point of view. 
On the other hand, LSPS+ can be actually used in practice 
as a more “ flexible”  version of LSPS.  As we show below, 
LSPS can be viewed as a special case of LSPS+. So 
everything we say about LSPS+ applies to LSPS as well. 

 

1  LSPS+(N, Spec(N),cost_function) {    

2     for (i=1; i <= k ; i++) {  

3          Dinp(Ni, N
*
i
 )= constraint_function(N, N*,i);  

4           N*
i = synth_toggle_equivalent(Ni, Dinp,cost_function) 

5           Dout(Ni, N
*
i
 ) =  exist_quantify(Ni,N

*
i, Dinp);  

6         if (simple(Dout(Ni, N
*
i
 ))  R*

i=re-encoder(Dout(Ni, N
*
i
 )); 

7         else |R*
i| = ∞ 

8         if (|N*
1| +..+|N*

i| +|R*
p1| + .. + |R*

pi| < |N1| + .. |Ni|) 

9                return(N*,Spec(N*),R*
p1,…,R*

pi);}  

10   return(N*,Spec(N*))}  

Figure 5. Pseudocode of LSPS+ 

The main difference between LSPS+ and LSPS is that 
LSPS+ tries to compute a re-encoding circuit R*

i such that 
R*

i(N
*
i) is functionally equivalent to Ni. (Here N*

i is a 
subcircuit toggle equivalent to subcircuit Ni of Spec(N)) 
That is in addition to computing the relation Dout(Ni,N

*
i), 

LSPS+ also computes a circuit “ implementing”  this relation. 
In contrast to LSPS, LSPS+ can estimate the size of the 
current circuit even before replacing all subcircuits Ni of 
Spec(N). Hence, LSPS+ can stop as soon as the size of the 

current circuit becomes smaller than the size of the original 
circuit  N. 

Let us explain how LSPS+ works by  the example shown 
in  Figure 6 where the circuit N  to be optimized consists of 
subcircuits N1  and N2.  At the first step of LSPS+, the 
subcircuit N1 is replaced with a toggle equivalent 
counterpart  N*

1 and the relation Dout(N1, N
*
1) is computed 

as in LSPS. However, in constrast to LSPS, if the relation 
Dout(N1, N

*
1) is “simple”  enough, LSPS+ computes  a re-

encoder R*
1 (line 6 of Figure 5) such that R*

1(N
*
1(y)) is 

functionally equivalent to N1(y). (Let us assume, for the 
sake of clarity, that LSPS+

 considers relation Dout(Ni, N
*
i) as 

“simple”  if the number of outputs in Ni and N*
i does not 

exceed a threshold value.)  If Dout(N1, N
*
1) is “complex” , 

then R*
1 is not generated and the size of R*

1 is set to infinity 
(line 7). Suppose that R*

1 is actually built by LSPS+
  and 

|N*
1|+|R*

1| < |N1| (line 8). Then LSPS+ stops here and 
generates the resulting circuit as a cascade of   N*

1,R
*
1 and 

N2. 

...

...
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N 2

x 1 x k

y 1 y m

z

...

...

N *
1
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z
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R * 2

 

Figure 6. Example of LSPS+
  run 

If |N*
1|+|R*

1| ≥  |N1|, then LSPS+ computes N*
2 that is 

toggle equivalent to N1 under input constraint specified by 
Dout(N1, N

*
1). LSPS+ also computes the re-encoder R*

2 that 
just inverts the output of N* if the latter is the negation of N. 
(Note that at this point circuit R*

1 “disappears”  from the 
circuit. For that reason, in line 8 of Figure 6 we take into 
account only some of re-encoders generated by the i-th step. 
LSPS+ “drops”   re-encoder R*

i as soon as each subcircuit Ns 
of Spec(N) fed by outputs of Ni is replaced with a toggle 
equivalent subcircuit N*

s. The re-encoders R*
p1,.,R

*
pi of line 

8 are the ones that have to be preserved by the i-th step.)  

LSPS  can be viewed as a special case of  LSPS. Indeed, 
suppose that LSPS+ considers the relation  Dout(Ni, N

*
i)  as 

“complex”  if the number of outputs in Ni, N
*
i  is greater 

than 1. Then  none of the  “ internal”  re-encoders R*
i will be 



generated and |R*
i| will be set to infinity (assuming that all 

“ internal”  subcircuits Ni have more than one output). Only 
when LSPS+ reaches a pair of corresponding primary 
outputs of N and N*, it computes a trivial re-encoder (a 
buffer or an inverter). So, in this case, LSPS+ behaves 
exactly as LSPS. 

7.3 Escaping local minima by LSPS+  
Suppose that during the run of LSPS+  shown in Figure 

6, the final circuit N* consists of N*
1, N

*
2 and R*

2 (if an 
inverter is necessary)  and |N*| < |N|. This means that 
although after the first step, LSPS+ did not stop because  
|N*

1|+|R*
1| ≥ |N1|, eventually it managed to build a circuit N* 

smaller than N. Inequality  |N*
1|+|R*

1| ≥ |N1| may hold  for 
the following three reasons. First, the relation Dout(N1, N

*
1) 

is too complex and R*
1 is not built by LSPS+ (so |R*

1| is set 
to infinity). Second, even though there is a re-encoder R*′1  
such that |N*

1|+|R*′1| <  |N1|, the re-encoder R*
1 built by 

LSPS+ is larger than R*′1  and so |N*
1|+|R*

1| ≥ |N1|.  Third, 
there is no re-encoder R*

1 such that |N*
1|+|R*

1| < |N1|. For 
example, this is the case when N1 is an optimal circuit. 
(Note, that even if N1 is optimal, the circuit N consisting of 
N1 and N2 may be arbitrary far from a global minimum). 

The third case above is particularly interesting. It means 
that LSPS+ may make transformations that increase the size 
of  intermediate circuits. This implies that LSPS+ (and 
hence LSPS) may make transformations that can not be 
reproduced by  traditional synthesis algorithms. To be 
precise, transformations made by LSPS and LSPS+, in 
general, are not reproducible by a synthesis algorithm that 
a) monotonically reduces the circuit size at every step and 
b) makes transformations that affect a subcircuit whose size 
is limited by the granularity of Spec(N). In other words, in 
general, a traditional procedure (trying to reduce circuit size 
at every step) may reproduce a transformation made by 
LSPS+ only by increasing the scope of transformation. In 
the worst case, a transformation performed by LSPS can be 
reproduced only if the entire circuit N changes in one 
equivalent transformation.  

8. Hor izontal and ver tical optimization 
In Subsections 8.1 and 8.2 below we consider two 

complementary kinds of optimization performed by LSPS+: 
horizontal and vertical. We use the term horizontal 
optimization to refer to the situation when optimization of N 
is due to re-synthesis of  subcircuits Ni, Nm of Spec(N) that 
are topologically independent. (That is gates of Ni are not in 
the transitive fan-out of gates of Nm and vice versa.) 
Vertical optimization takes place when two topologically 
dependent circuits Ni and Nm are re-synthesized by LSPS+ 
(For example, outputs of Ni may feed inputs of Nm.)  

8.1 Hor izontal  optimization 
Let Spec(N) of N have topologically independent 

subcircuits Ni, Nm with similar toggling behavior.  Then Ni 

and Nm can be replaced with subcircuits N*
i and N*

m that 
share a lot of logic. (In the extreme case, when Ni and Nm 
are toggle equivalent, one can pick, say, Ni as both N*

i and 
N*

m, in other words, replace Nm with Ni.) We will refer to 
the case of optimization achieved due to sharing of logic by 
topologically independent subcircuits N*

i and N*
m  as 

hor izontal optimization. 

An example of horizontal optimization is shown in 
Figure 7. The circuit N on the left implements the 
expression x2+3∗x2. Here subcircuits N1, N2, N3 of N 
implement functions y=square(x), z=3∗square(x) and 
sum(y,z) respectively. The circuit N* on the right is obtained 
by LSPS+.  Subcircuit N1 is replaced  with subcircuit N*

1 
that is identical to N1. Subcircuit N2 is replaced with 
subcircuit N*

2 also identical to N1 (it is not hard to see that 
N1 and N2 are toggle equivalent so one can replace N2 with 
N1). Then LSPS+ generates re-encoder R*

1 implementing the 
function z=mult(3, y). Since R*

1 is a fairly simple function, 
|N*

1| + |N*
2| +  |R*

1| < |N1| + |N2| where |N1|=|N2|=|N*
1| and  

|N*
2| = 0  and so LSPS+  stops at this point. 

 
Figure 7. Example of hor izontal optimization 

 

8.2 Vertical optimization 
Let us return to the example of Section 2. Application of  

LSPS+ to this example  is shown in Figure 8. LSPS+  
performs two steps. In the first step, the subcircuit N1 
implementing square(x) is replaced with circuit N*

1 
implementing abs(x) and re-encoder R*

1. In the second step,  
re-encoder R*

1 and circuit N2 (implementing y < 100) are 
replaced with subcircuit N*

2 and re-encoder R*
2 

(implementing an inverter or a buffer). Subcircuit N*
2 is 

picked to be toggle equivalent to N2(R
*
1(y

*)).  

Obviously, the subcircuit N*
1 implementing  abs(x) is 

smaller than N1 implementing square(x). Given a particular 
implementation N1 of square(x), it is not clear if there is a 
re-encoder  R*

1 such that  R*
1(N

*
1(x)) is equivalent to  N1(x) 

and |N*
1| + |R*

1|  <  |N1|. If, for example, N1 is an optimal 
implementation of square(x), then obviously, there does not 



exist a re-encoder R*
1 such that |N*

1| + |R*
1|  <  |N1|. (Note 

that even if N1 is an optimal implementation of square(x), 
the circuit N is very far from an optimum.) A trivial re-
encoder is the circuit N1 itself  (because square(abs((x)) = 
square(x)). However, in this case, obviously  
|N*

1| + |R*
1| > |N1|.  So LSPS+ is able to build a circuit N* 

that is much smaller than N1 even though the intermediate 
circuit (which is the cascade of N*

1, R*
1 and N2 is larger 

than the initial circuit N). We will refer to the case of 
optimization  achieved due to “redistribution”  of logic 
between topologically dependent subcircuits as ver tical 
optimization. 

 

Figure 8. Ver tical optimization by LSPS 

 

9. Why should it work? 
In this section, we discuss the reasons for LSPS+ to 

succeed in circuit optimization. In Subsection 9.1, we show 
that LSPS+ provides a  framework for designing efficient 
algorithms that can escape local minima. In the following 
subsections we give various aspects of LSPS+ that should 
make it successful. In Subsection 9.2, we show that 
horizontal optimization is a natural way to share logic 
between “cooperating”  logic blocks. Subsections 9.3 and 
9.4  explain how LSPS+ can get away with transformations 
increasing circuit size in vertical optimization.  Namely,  we 
show that vertical optimization can be successful due to loss 
of information in the original circuit. In case a circuit N has 
many more inputs than outputs, this loss of information is 
“global”  (Subsection 9.3).  However, even if N does not 
lose information globally or loses very “ little” , it still can 
have subcircuits that lose information locally (Subsection 
9.4).  

9.1 High-level view 
LSPS+  can be viewed as just a framework for studying 

and designing algorithms that that can escape local minima.  
Suppose we try to optimize a circuit N using a set of small 
equivalent transformations as shown in Figure 4. Suppose 
there is no transformation reducing the size of N, if |N′ | < p 
(i.e. if the size of the subcircuit N′ of N we replace with N″ 
consists of less than p gates).  This essentially means that N 
is stuck in a local minimum. To get N out of this minimum, 
one needs to make equivalent transformations that affect a 

subcircuit of N larger than p. But how does one make such 
transformations in  a scalable manner?  

LSPS+ answers the question above. By replacing 
subcircuits Ni of Spec(N) with toggle equivalent 
counterparts N*

i  LSPS+ makes a single equivalent 
transformation that may encompass the entire circuit N (in 
this case the subcircuit N′ we replace with an equivalent one 
is N itself). If Spec(N) is narrow, this transformation can be 
done efficiently. If there are no “small”  equivalent 
transformations optimizing N, some replacements of Ni of 
Spec(N) with N*

i may increase the size of the intermediate 
circuit (i.e. |N*

i| + |R*
i| > |Ni|).   Obviously, LSPS+ can not 

guarantee that after replacing subcircuits Ni with toggle 
equivalent subcircuits N*

i it will always obtain a smaller 
circuit N*. Nevertheless, since a circuit trapped in a local 
minimum can be arbitrary far from the optimum,  
developing algorithms of escaping local minima is 
extremely important. LSPS+ suggests  an elegant way to 
cope with the problem of local minima entrapment. 

9.2 Hor izontal optimization 
Before, we showed  a made-up example of applying 

horizontal optimization successfully (Figure 7). However, 
there is a good reason to believe that horizontal 
optimization can be successfully used in practice. Suppose, 
for example, that a high-level specification contains two 
combinational blocks A and B that “cooperate”  with  each 
other. This cooperation means that when the output of A 
changes its value (in terms of  multi-valued variables) B 
“almost always”  changes its value too. In other words, A 
and B are almost toggle equivalent (in terms of multi-valued 
functions). Then one can pick encodings of output variables 
of A and B so that many outputs of Impl(A) and Impl(B) are 
functionally equivalent and so can be shared.  (Here 
Impl(C) is an implementation of block C.) 

In practice, however, when translating high-level 
descriptions, Boolean encodings are chosen arbitrarily. In 
such a case even though Impl(A) and Impl(B) are “almost”  
toggle equivalent, they may not share  any  (or share very 
little) logic. Then LSPS+ can improve the situation by 
replacing  Impl(A) and Impl(B) with toggle equivalent 
subcircuits that share a lot of logic. This can be done by a 
slightly modified  TEP procedure of [7]. (A discussion of 
such modification is beyond the scope of this report.) 

 

9.3 Vertical optimization (global loss of 
information) 

Let N  be a circuit to be optimized. Let N have many 
more inputs than outputs. In this case, it inevitably loses 
information.  Let C1,..,Cp be a topologically ordered set of 
cuts of N where C1 is the set of inputs of N and Cp is the set 
of outputs of N. Let x, y be a  pair of  input vectors such 
that x ≠ y and N(x)=N(y). Then there should be a cut 



Ci, i=2,…,p such that Ci(x)=Ci(y) and for every cut Cj, j > i 
it is also true that Cj(x)=Cj(y). In other words, loss of 
information means that as one moves from inputs to 
outputs, cuts Ci become less and less toggling. 

By replacing a subcircuit Ni of Spec(N) with N*
i,  LSPS+  

makes a  temporary “re-encoding debt”  in the form of 
Dout(Ni,N

*
i). Since  LSPS+ replaces subcircuits of Spec(N) in 

topological order, it “pushes”  the debts in the direction of 
cuts that toggle less and less.  Then it is possible that even 
though  |N*

i| + |R*
i| > |Ni| (but |N*

i| < |Ni|), LSPS+ still can 
succeed in optimizing N. The debt Dout(Ni,N

*
i) that is too 

big to pay now,  may eventually become much smaller. 

Let us consider, for instance, the example of  Section 2. 
By replacing  N1 implementing square(x) with N*

1 
implementing  abs(x), LSPS+ runs up a large “debt” . 
However, since the circuit N (namely its subcircuit  N2 
implementing y  < 100) loses a lot of information, LSPS 
does not have to pay  this debt “ in full” .  By replacing N2 
with a small subcircuit N*

2  (implementing y′′′′ < 10) LSPS 
pays only a small fraction of this debt and nevertheless 
obtains circuit N* functionally equivalent to N. 

 

9.4 Vertical optimization (local loss of 
information) 

Let N  be a circuit to optimized. Suppose N does not 
lose (much) information globally (which implies that the 
number of inputs and outputs of N are comparable). The 
fact that N does not lose information “globally”  does not 
mean that N can not lose information locally.  

Let N′  be a subcircuit N. Let inp(N′ ) and out(N′ ) 
denote the set of input and output variables of N′ 
respectively. A variable v is in inp(N′ ) if it describes an 
input of a gate of  N′ fed by a gate that is not in N′.   A 
variable v is in out(N′ ) if  it describes the output of a gate 
of N′  that feeds a gate that is not in N′. Suppose the size of 
out(N′ ) is much larger than that of inp(N′ ). Then one can 
apply LSPS+ for optimization of N′ (by partitioning N′ into 
subcircuits and replacing these subcircuits with toggle 
equivalent counterparts).  As we explained in Subsection 
9.3, LSPS+ may succeed because N′ loses information  
(from the viewpoint of N this is a local loss of information). 

Suppose, for example, that we need to optimize an 
implementation of a function y=f(x) specified as follows. 
If  x2 < 100 then y = f1(x), otherwise y = f2(x).  Let the 
expression x2 < 100 be implemented as shown in Figure 1 
(on the left). Then even if a circuit N implementing f(x) 
preserves (almost) all information, the single-output 
subcircuit N′  implementing x2  < 100 loses a lot of 
information and can be optimized by LSPS+ as described 
above. 

 

10. Finding specification 
In this section, we consider various aspects of finding a 

“good”  specification of a circuit. Informally, a specification 
Spec(N)={ N1,..,Nk}  is good, if  it reflects a natural flow of 
information.. In Subsection 10.1, we discuss whether a 
good specification can be found automatically and 
conjecture that, in general, it is hard if not impossible. 
Subsection 10.2 shows, however, that for circuits of small 
width there is a very simple natural specification. This 
specification is a cascade of subcircuits. So in case of 
narrow circuits, finding a good specification automatically 
is possible. This is an important fact because narrow 
circuits are ubiquitous in real-life designs. Finally, in 
Subsection 10.3, we consider the case  of wide circuits. One 
can not just take as a specification  a “natural”  partitioning  
of a wide circuit N into subcircuits N1,..,Nk. The width of 
such specification may be large. However, a specification 
of small width can be derived from a natural specification. 
Such a specification describes a narrow change of N. 

 

10.1 Finding specification automatically 
In this subsection, we discuss whether one can find a 

good specification automatically. Intuitively,  Spec(N) = 
{ N1,..,Nk}   is a good specification if, when one output of Ni 
feeds  an input of Nj, then all (or “almost all” ) outputs of Ni 
feed inputs of Nj. Otherwise, one can have the situation 
shown in Figure 9. This figure depicts a fragment of a 
circuit N (on the left) consisting of subcircuits N1,..,N4. Note 
that only one out of three outputs of N1 feed Ni, i=2,3,4. 
(For example, the output a feeds one input of N2.) The 
result of application of LSPS+ is shown on the right. After 
replacing subcircuits N1,..,N4 with their toggle equivalent 
counterparts, all three outputs of N*

1 feed each subcircuit  
N*

i, i=2,3,4. (The connections are shown only for N*
2.)  So, 

in this case, LSPS+  results in artificially increasing the 
information flow between subcircuit N*

1 and subcircuits 
N*

2,N
*
3,N

*
4. 

 

Figure 9. An example of “ poor”  specification 

Finding a good specification automatically is, in 
general,  hard if not impossible.  There are two reasons for 
that. First, the number of potential subcircuits is exponential 



in subcircuit size, which makes their enumeration 
infeasible. Second, there is a high probability of a “ false 
positive” . Suppose, for example, that all three outputs of N1 
of  Figure 9 feed each of the subcircuits N2,..,N4. However, 
this may not be true for subcircuits N2,..,N4 themselves. So 
even though the choice of N1 originally seemed to be 
reasonable, later, one  may discover that it  was a mistake. 

 

10.2 Finding specification for  “ narrow”  
circuits 

In the previous subsection, we conjectured that finding a 
good specification, is probably infeasible, in general. 
Nevertheless, there is a very important class of circuits that 
have a “ trivial”  specification.  These are circuits of small 
width. Due to triviality of their specification, a reasonably 
good specification can be found efficiently. A example  of a 
narrow circuit is shown in Figure 10 on the left. Primary 
inputs and gates of a narrow circuit N can be ordered in a 
such way (we consider here only topological orderings) that 
N can be covered by a “ long”  and “narrow”  box. The size 
of a horizontal cut C of such a box is small. This cut 
consists of  variables describing gate outputs and primary 
input variables (in case a primary input variable is located 
below C and feeds  a gate  above C.) 

A narrow circuit N has a “natural”  specification N1,.., Nk 
shown in Figure 10 on the right. Each subcircuit Ni, i=2,..,k 
has output variables zi

1,.., zi
di  and input variables xi

1,.., xi
pi  

and zi-1
1,.., zi-1

d(i-1). Here xi
1,.., xi

pi
  are primary input 

variables of N. We assume that sets of input variables of Ni 
and Nj, i≠j do not overlap. If an input variable xi

m of Ni  
feeds two  gates that are located in subcircuits Ni and Nj of 
Spec(N) where j > i, then some variable zi 

s  of Ni is equal to 
xi

m.   

 

 
Figure 10. Specification of a “ nar row”  circuit 

Since N is a narrow circuit, there is a topological 
ordering of variables of N such that the size of the number 
of outputs for every Ni is bounded by a “small”  constant. 
Besides, since N is a narrow circuit, subcircuits Ni are also 
narrow. So a natural specification of N  has a small width.  

Since the topology of a natural specification of a narrow 
circuit is known, one has a good chance to find a  high-

quality specification automatically. First, one needs to find 
a good topological ordering for the variables of N. Then N 
is “sliced”  into a cascade of subcircuits Ni of  manageable 
size. 

 

10.3 Finding specification for  “ wide”  circuits 
Let N be a wide circuit.  Such a circuit should have a 

“natural”  specification consisting of  narrow subcircuits 
N1,..,Nk. (The reason is that building a structureless wide 
circuit that performs a meaningful computation is hard if 
not infeasible.)  However, one can not use subcircuits 
N1,..,Nk as a specification of N because they may have an 
unbounded number of outputs (then specification { N1,..,Nk}  
has a large width even if subcircuits Ni are narrow). In such 
a case, one can partition Ni further into subcircuits of small 
number of outputs. This way one can build a specification 
Spec(N) extracted from a  natural specification { N1,..,Nk} . 

Let us illustrate the said above by the example of  a 
multiplier  that is a “classic”  wide circuit. Let us consider a 
trivial implementation N of a multiplier as a cascade of 
regular adders. Then N has a natural specification which is 
a partition of N into subcircuits Ni representing adders. (An 
adder is a narrow circuit). However this partition cannot be 
used by LSPS+ because each adder has  a larger number of 
outputs. To solve this problem, one can partition each Ni 
into subcircuits Ni

p where Ni
p implements the adjacent 

outputs of the adder Ni. (For example, subcircuit Ni
1 

implements the  s least significant output bits of the adder 
Ni, subcircuit Ni

2 implements the next s bits of Ni and so 
on.)   

The set of subcircuits Ni
p forms a narrow specification 

Spec(N) of the multiplier N that can be used by LSPS+. It is 
not hard to see that Spec(N) is a good specification in terms 
of Subsection 10.1.  Although it is unlikely to get a smaller 
multiplier by applying LSPS+ to N with specification 
Spec(N), one can try to improve the performance of this 
multiplier. A regular adder is a deep circuit and so it is 
slow. For that reason, various schemes have been designed 
to improve adder’s performance. LSPS+ can try to achieve 
the same goal by replacing subcircuits Ni

p with more 
shallow toggle equivalent counterparts N*

i
p.  

One can say that Spec(N) above describes a “narrow 
change”  of the multiplier N.  Importantly, Spec(N) is not 
identical to a natural high-level specification of N but is  
derived from it. 

 

11. Conclusions 
 
In this report, we consider various aspects of Logic 

Synthesis Preserving Specification (LSPS).  We show that 
LSPS provides an elegant solution to the local minimum 
entrapment problem. Since the size of a circuit trapped in a 



local minimum can be arbitrarily far from the global 
minimum, the importance of addressing this problem is 
hard to overestimate. We also discuss the problem of 
finding a good specification of a circuit. Namely, we show 
that narrow circuits have a very simple natural specification 
which is a cascade of subcircuits.  For a wide circuit, a 
good specification can be extracted from a natural 
partitioning of this circuit into narrow subcircuits. 
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