
Negative Thinking by Incremental Problem Solving: Application to Unate Covering

Evguenii I. Goldbergt*t Luca P. Carlonit Tiziano Villas Robert K. Braytont

Albert0 L. Sangiovanni-Vincentellit

1 Department of EECS t Academy of Sciences of 5 PARADES,
University of California at Belarus, Minsk Via di S.Pantaleo,

Berkeley,Berkeley, CA 94720

Abstract
We introduce a new technique to solve exactly a discrete opti-

mization problem, based on the paradigm of “negative” thinking.
The motivation is that when searching the space of solutions, often
a good solution is reached quickly and then improved only a few
times before the optimum is found: hence most ofthe solution space
is explored to certify optimality, but it does not yield any improve-
ment of the cost function. So it is quite natural for an algorithm to
be “skeptical” about the chance to improve the current best solution.

For illustration we have applied our approach to the unate cov-
ering problem. We designed a procedure, raiser, implementing
a negative thinking search, which is incorporated into a common
branch-and-bound procedure. Raiser is invoked at a node of the
search tree which is deep enough to justify negative thinking.

Raiser tries to detect a hard core of the matrix corresponding
to the node by augmenting an independent set of rows in order to
increase incrementally the cost of the minimum solutions covering
the matrix. Eventually either raiser prunes the subtree rooted at
the node (having found a lower bound equal or greater than the
current best solution) or returns a new solution that becomes the
current best one.

Experiments show that our program, AURA, outperforms both
ESPRESSO and our enhancement of ESPRESSO using Coudert’s limit
lower bound [3]. It is always faster and in the most difficult ex-
amples either has a running time better by up to two orders of
magnitude, or the other programs fail to finish due to timeout or
spaceout. The package SCHERZO is faster on some examples and
loses on others, due to a less powerful pruning strategy of the search
space, partially mitigated by a more effective computation of the
maximal independent set.

1 Introduction

A common approach to find an exact solution to problems in combi-
natorial optimization is branch-and-bound (BAB), which improves
over exhaustive enumeration, because it avoids the exploration of
some regions of the solution space, when it can certify by means
of lower bounds that they do not contain a solution better than the
current best one.

To ground the exposition in a concrete domain, in this paper we
consider BAB applied to the solution of the Unate Covering Problem
(UCP), that is of great interest in logic synthesis and operations
research [4]. For the sake of simplicity we consider the case of
UCP where all columns have the same cost. Such version of UCP
is defined as follows. Given a Boolean mnrrir A (all entries are 0
or I) , find a minimum size subset of columns of A such that every
TOW of A is coveredby at least one column of the subset. A row i is
covered by a column j if A,, = 1. We will denote an instance of

1092-3152/97 $10.00 0 1997 IEEE
91

66,001 86 Roma

UCP with matrix A as UCPi(A).
An exact solution of UCP is typically obtained by a branch-and-

bound recursive algorithm, which has been implemented in suc-
cessful computer programs [7 , 61. Branching is done by columns,
i.e., subproblems are generated by considering whether a chosen
branching column is or is not in the solution.

A run of the algorithm, call it mincov, can be described by its
computation tree. The root omf the computation tree is the input of
the problem, an edge represents a call to mincov, an intemal node
is a reduced input. A leaf is reached when a complete solution is
found or the search is bounde:d away. From the root to any internal
node there is a unique path, which is the current path for that node.
The path leading to the node gives a partial solution and a submatrix
A N obtained from A by remciving some rows and columns. On the
path some columns are included in the partial solution; we denote
by path(&) the set of columns included in the partial solution.

Suppose that we know that any minimal cover of A N is greater
or equal to a value L (A N) . The value is called a lower bound of the
solutions of U C P (A N) . So the size of any solution of U C P (A)
including the columns in pa th(AN) is greater or equal to L (A N) +
(path(AN)I . Soifwe foundbeforeasolution best with thesameor
a smaller number of columns, i.e., Ibest) _< L (A N) + path(Aiv)
we can stop the recursion and1 backtrack to the parent node of A N .

Denote by K (A N) the value lbestl - L (A N) - J p d h (A ~) l .
The condition to stop the recursion is given by K (i l ~) 5 0. On the
other hand, if l i (A ~) has a large positive value, usually it means
that L (A N) is farfrom thesizeofaminimal solution toUCP(AN)
and so a lot of branchingis expected from A N before a leaf can be
reached.

Suppose that there is no way of improving the solution best in
the search tree rooted at A N , yet I<?(AN) is positive. Usually a
branch-and-bound algorithm must continue branching. However,
there is another way of making IC(AN) negative or zero: it is to
improve the lower bound L (A N) .

The first way is “positive”, in the sense that the algorithm tries
to construct a better solution, and branching columns are chosen in
the hope of improving the current best solution. The second way
is “negative”, in the sense that the algorithm tries to disprove that
there is a better solution in the tree rooted at A N .

To compare the role of “negative”and “positive” ways of search,
notice that at the n-th level of the computation tree we can have up
to 2” nodes, i.e., subproblems. It is an experimental fact that usually
in the first leaf a solution v e q close to the minimum one is found,
so only few improvements arc: required to get a minimum solution.
Therefore “positive” search ,will succeed and yield a new better
solution only in a few of the 2” subproblems. In the overwhelming
majority of the subproblems “negative” search is more natural.
The less frequently the best current solution is improved during
the search, the more “negative” search is justified. In tum this is

related to how much the solution spaceis “diversified’, i.e., different
solutions have different costs. Notice that BAB uses “negative
thinking” in optimization problems by finding lower bounds, and
in decision problems by checking the consistency of the partial
solution with the current subproblem.

To exploit both “positive” and “negative” search, BAB is mod-
ified as follows. We start solving the initial problem with “posi-
tive thinking” in the ordinary column branching mode, called PT-
mode. Then, when the number of subproblems generated in the
column branching mode becomes large “enough”, each subprob-
lem is solved in the “negative thinking” mode, called NT-mode. In
optimization problems modes are switched depending on the ratio
of the expected number of improvements to the number of subprob-
lems generated at this level of the search tree. The smaller the ratio,
the more appropriate is to switch to the NT-mode.

Let P be a subproblem to be solved in NT-mode and suppose that
if the cost of P is greater than a given ubound then solving P cannot
give a better solution (w.1.0.g.. assume to solve a minimization
problem). The aim of the algorithm in the NT-mode is to pove that
there is no solution of P with cost less than ubound.

We propose a new way to implement “negative thinking”: in-
cremental problem solving (IPS). When solving a problem A in-
crementally, we start with a subproblem A’ of A, such that the
solutions of A‘ can be represented compactly. Then we modify
gradually A’ by making it more complex to come closer to the full
problem A and we recompute the set of solutions of the modified
problem. When applying “negative thinking”, we try to find first
the most difficult “obstac1es”in the sequence from A’ to A with the
goal to prove that no solution of A’ can overcome the obstacles and
be extended to a solution of A.

More precisely, let P‘ be a subproblem of P such that its set
of solutions Sol(P’) can be represented in a compact form. Each
solution of P’ from Sol(P’) can be considered as a seed from which
one may grow some solutions of P. In the NT-mode, the algorithm
tries to show that no solution of P with cos t (P) < ubound can
grow from any solution S E Sol(P’). A naive approach is to
form a sequence of problems P I , . . . , P,,, where PI = P‘ and
P,, = P. At each step one recomputes Sol(P,) starting from
Sol(P,-l) and discards all solutions in Sol(P,) with a cost greater
than ubound. If, after removing the solutions costing more or as
ubound, Sol (Pi) = 0, for some P,, i 5 n, then there is no solution
of P with cost less than ubound. A direct implementation of this
approach has two drawbacks:

1. The size of the representation of Sol(P,) may grow expo-
nentially.

2. There are different ways of approaching P from P‘. Each
specific seed solution S E Sol(P’) is extended more quickly
to a solution costing more or as ubound by a specific se-
quence of augmentations, different from those appropriate
for another solution 3 E Sol(P’).

As a remedy we propose the paradigm of clusterization of solutions.
We group in a cluster the solutions that are similar, in the sense
of having the same witnesses of the fact that they cannot produce
solutions of P costing less than ubound.

In this paper we present an incremental UCP solver called raiser.
Although we demonstrate our techniqueon UCP it can be applied to
any discrete optimization problems with a monotone cost function,
i.e., for which a minimum solution of a subproblem has a smaller
cost than that of the initial problem.

The paper is organized as follows. Section 2 shows how an
incremental solver is incorporated into the standard branch-and-
bound procedure for UCP. The idea of incremental improvement of
the lower bound is sketched in Section 3, while Section 4 describes
how the solutions of UCP are represented and recomputed. The

raising procedure is explained in detail in Section 5 and experi-
mental results are discussed in Section 6 . Conclusions are given in
Section 7.

2 Incorporating an Incremental Solver into Branch-
and-Bound

The flow of a UCP solver based on branch-and-bound is shown in
Fig. 1. The parts of text in bold font refer to the incremental solver
and will be explained below. For details the reader is referred to [4].
Given a matrix A, existing UCP solvers employ column branching
to decompose the problem and use a maximal set of independent
(non-intersecting) rows (M S I R) to compute a lower bound of
U C P (A) (since no column covers two rows from M S I R) I .

branch-andbound(A, Sol. n) {
/* A = matrix of UCP, Sol = current (partial) solution */
/* n = “range” of raiser, best = best current solution */
if (A = 0)

/* Column and row dominance */

/* Lower bound evaluation */
M S I R = f ind-msir(A)
if ((lowerbound(A) + cost(Sol)) 2 “ (b e s t))

/* Is the current node within the range of raiser ? */
if ((IMSIRI + cost(So1) + n) 2 cost(best)) {
I* n’ exact amount to raise *I

n‘ = cost(6est) - (IMSIRI +cos t (So l))
retum(raiser(A, M S Z R , n’))

return(Sol) /* new best solution */

s i m p l i f y (A)

retum(0)

I
/* select a branching column */
j = selectxolumn(A)
/* Decomposition: Al(A2) for including (not including) j
in solution */

so12 = Sol
for (i = 1; i 5 2; i + +)

Sol1 = Sol U { j }

{ N e w = branch-and_bound(A,, Sol , , n)
if (cost(New) < cost(best)) {

best = New
if (cost(best) 5 (cost(So1) + IMSIRI)

return(bes t)
1

I
return(6est)

I

Figure 1 : Branch-and-Bound enhanced by incremental solver

A procedure n-raser, perfomng “negative thinking”, is In-
voked when MSZR is a lower bound not sufficient to prune the
subtree rooted at the current node, but increasing the lower bound
by n would allow such prumng. The n-raser starts from the sub-
problem U C P (M S 1 R) whose solution space is very regular and
then tnes to extend it gradually to A. The n-mser either returns a
mnimum cost solution of U C P (A) , if the lower bound cannot be
rased by n, or returns the empty solution.

‘ A lower bounding techmque based on h e a r programrmng rehXahOII, as com-
monly done in ILP, has been tested successfully for solving covenng problems and
reportedin [51

92

The parameter n is specified a-priori and is the same for all
invocations of raiser in the column branching mode. The value of
n is usually a small number in the range from 2 to 4 for two reasons:

Section 4.1 we discuss how to recalculate solutions. This “naive”
way of raising the lower bound may require too much memory. In
Sections 4.2 and 5 we introduce a technique to avoid the problem:

1 . if n is small then the node is deep enough to warrant the

2. if n is small then one can make use of the fact that

application of negative thinking,

U C P (M S I R) has a regular solution space.

Note that improving the lower bound even by a small amount may
lead to considerable runtime reductions. For example, in [I] it was
reported a new technique for pruning the search tree called limit
lower bound. Sometimes the technique allows to reduce the search
tree size by ten times. It can be shown that the limit lower bound
technique prunes no more branches of the search tree than 1-raiser.

The detailed description of the raiser is given in Sections 3, 4
and 5.

3 Incremental Improvement of the Lower Bound

Given an optimization problem such that for any subproblem the
cost of a minimum solution of the problem is greater than or equal
to that of the subproblem, the size of a minimum solution of the
subproblem gives a lower bound on the the size of a minimum
solution of the problem (called cost monotonicity assumption).
This fact is of practical interest if it is not difficult to find a minimum
solution of the subproblem.

Denote by mzn(UCP(A)) the size of a minimum solution of
UCP(A) and let A’ be a submatrix of matrix A, consistingof some
rows of A, i.e., Col(A) = Col(A’) and Row(A’) Row(A).
Any UCP(A’) where A’ is a submatrix of A satisfies the cost mono-
tonicity assumption, since m:n(UCP(A’)) 5 min(UCP(A)).
We call lower bound submatrix a submatrix A’ whose minimum
solution is used for evaluating a lower bound for UCP(A). If A’
is a M S I R then mzn(UCP(A’)) = IRow(A’)I. We are now
going to describe the idea underlying the method for an incremental
improvement of the lower bound.

Denote by A’ + A , the submatrix of A obtained by adding
to A’ a row A, E Row(A) \ Row(A’). Let S be a solution of
UCP(A). A column j E S is called redundant if S \ {j} is
also a solution of UCP(A). If a solution of UCP(A) does not
contain redundant columns then it is said to be irredundant. Denote
by Sol(A’,m) the set of solutions of UCP(A’) which includes
all the irredundant solutions consisting of m or fewer columns.
So Sol(A’, m) contains all the irredundant solutions of size from
m i n (U C P (A ’)) to m columns. So if m = min(CiCP(A’))
then Sol(A’, m) gives exactly the set of all minimum solutions of
UCP(A’).

Suppose that for a lower bound submatrix A’ of A we know a set
of solutions Sol(A’, m) . The lower bound given by A’ is equal to
m = m i n (U C P (A ’)) . Let us adda row A, of A to A’. Obviously
Sol(A’ + A,, m) C Sol(A’, m) , since in general some solutions
from Sol(A’,m) do not cover A , and so are not contained in
Sol(A‘+A,, m) . SoafterhavingaddedasetofrowsA,,, .., A,, of
A to A’, we can reacha stage when Sol(A’+A,, +..+A,, , m) = 0,
meaning that we improved the lower bound for U C P (A) by 1
taking as a lower bound the submatrix A’ + A,, + .. + A , k . If
Sol(A’ + A,, + .. + A,, , r) = 0, r 2 m we improved the lower
b o u n d b y r - m + 1.

So an attractive idea is to start from a submatrix A‘ which is

clustering solutions in cubes and branching by clusters.
To motivate the theory that will be developed, we show by an

example how to raise the lower bound incrementally. Consider the
following matrix AN that cannot be reduced by dominance.

0 1 2 3 4 . 5 6 7 8 9

. . 1 1

. . . . 1 1

. 1 1 . .
l] .
. 1 1 .
. . 1 1
. . . I]
. 1 1 . . .

9) . . . - 1 . . 1 .

Suppose that AN is the rubmatrix corresponding to the node N
of a column branching search tree, such that the cost of the best
solution found is 7 and the partial solution Sol contains 1 column.

An M S I R is made by the 4 rows Ao, A I , A2 and As. Since
cost(best) - cost(SoZ) - IMSIRl = 2, potentially the lower
bound could be raised by z!. The set of irredundant solutions of
UCP(MSIR) is equal to CO = (0 , I } x {2,3} x {4,5} x {6,7}.
Select row A4 from the rest of the matrix. The solutions of the matrix
made by the rows Ao, A I , Az, A3 and A4 are represented by the
union ofthe following two sets: CI = (0) x {2,3} x {4,5} x {6,7}
andC2 = { I } x {2,3} x {4,5} x {6,7} x (8).

Consider independently the sets CI and CZ starting with the
solutions from Cl. Select row As that is not covered by any solution
in CI . So each solution froim CI must be augmented by a.column
covering As, which transforms CI into Ci = {0}, x {2,3} x
{4,5} x {6,7} x { 1,8}. Note that all solutions in CI consist of 5
columns. Now select row A n . The solutions that haye 5 columns,
cover An, and can be obtained from the solutions in CI form the set
c:: I - - { 0) x (2) x {4,5} x {6,7} x {1,8}. But no solution in
C, covers row A7 and therefore each solution from the set must be
augmented by a column to cover also AS. It means that no solution
from CI can be “extended”’ to a set of 5 5 columns covering all
rows from A N .

Consider solutions fromi C2. If we select row An, then all the
solutions that have 5 columns:cover Ah and can beobtained from the
solutions in C2 form the set C2 = { 1 } x { 2) x {4,5} x { 6,7} x { 8).
But no solution in Ci covers row A7 and therefore each solution
from the set must be augmented by a column to cover also A7. It
means that no solution from C2 can be “extended” to a set of 5 5
columns covering all rows from A N . So the lower bound is raised
to 6 and the branch corresponding to AN can be pruned.

4 Representation amid Recomputation of the Solu-
tions

In order to present the algorithm for raising the lower bound we
must describe how the set of solutions of a matrix is represented
and updated.

an MSIR (since the solutions of an M S I R can be represented
compactly) and then to add rows to the M S Z R with the goal Io 4.1 Recomputation of the Solutions
improve the initial lower bound given by IMSIRI. The proposal
relies on the intuition that, knowing Sol(A’, m) , it is not difficult Let A‘ be a submatrix o f A and A, a row from Row(A) \ Row(A’).
to recalculate SoZ(A’ + A,, m) and, adding one row at a time, Let s be a Solution of UCP(A). Denote by ~ (A P) the set
eventually we may reach the desired lower bound improvement. In (3 I = 1, i.e.. the Of and by

93

Rec(A’ + A,, S) the set of solutions of UCP(A’ + A,) obtained
according to the following rules:

1. ifSisasolutionofUCP(A’+A,),thenRec(A’+A,, S) =

2. if S is not a solution of UCP(A’ + A,) , i.e., no column of S
coversA, thenRec(A’+A,,S) = { S U { j } l j E O(A,)}.

So Rec(A’ + A,, S) gives the solutions of UCP(A’ + AP) that
can be obtained from the solution S of UCP(A’). According to 2.,
if S is not a solution of UCP(A’ + A,), then we obtain lO(A,)I
solutions of UCP(A’ + A,) by adding to S the columns covering

{SI;

‘4,.

Theorem 4.1 For any irredundantsolution S’ E UCP(A‘ + AP)
there is an irredundantsolution S E UCP(A’) such that S’ is an
element of Rec(A’ + A,, S) .

The proof of the theorem is omitted for lack of space. There
are examples showing that Rec(A’ + A,,S) may contain also
redundant solutions.

Corollary 4.1 Let Sol be a set containing all irredundantsolutions
ofUCP(A’). Let Sol’ = USESol Rec(A’ + Ap, S) , then Sol’
contains every irredundantsolution S’ E U C P (A ‘ + Ap).

Proof. I t is a direct consequence of Theorem 4.1. 0

4.2 Cubes of Solutions
In line of principle, given the operator Rec, one could add one
row at a time to A’ and build the set of irredundant solutions of
U C P (A) from the set of irredundant solutions of UCP(A’). This
“naive” approach must be discarded because of two disadvantages:

1. The size of the set of irredundant solutions may grow expo-
nentially in the number of added rows.

2. Suppose that we want to raise the lower bound of MSZR by
small n and that S is a solution of U C P (M S I R) . It may
happen that in order to raise S by n we need to add only a
small set of rows from Row(A) \ Row(MS1R). Denote
the set R(S). Let S‘ be another solution of U C P (M S I R)
and suppose that to raise it by n we need to add a small
set of rows R(S’). The problem is that R(S) and R(S’)
are usually different. In other words, when we add rows to
MSZR we want to add a minimal number of rows which
raise all solutions of M S I R by n. But, since these small
sets R(S) are usually different for different solutions S from
U C P (M S I R) , we actually need to add almost all rows.

To solve the previous issues we propose to clusterize solutions that
can beraisedby thesamerowsfrom Row(A)\Row(MSIR). This
is achieved by the introduction of cubes ofsolurions, a data structure
inspired by multi-valued cubes. Applying the operator Rec to acube
of solutions one obtains a collection of cubes of solutions, thereby
providing a clusterization of the recomputed solutions. This will
support later the design of a raising algorithm based on branching
in clusters of solutions, each cluster being one of the recomputed
cubes of solutions.

Note however that cubes should not be considered as the only
convenient way to clusterize solutions. We believe that studying
clusterizations based on different data structures, e.g., binary deci-
sion diagrams, will yield interesting results.

As anticipated, we represent the solutions of U C P (A) by sets
with a structure of multi-valued cubes [8]. We define a cube to be the

set C = DI x . . . x Dd where D, nD, = 0, i # j and D, C Col(A),
1 5 i , j 5 d. The subsets D, are the domains of cube C. So
cube C denotes a set of sets consisting of d columns. In contrast to
standard cubesused for the representation of multi-valued functions
here cubes may have different numbers of domains. For example,
i f ICol(A)I= 10,thensetsCl = { 1 , 5 } x { 2 , 6 , 7 } x { 3 , 4 } a n d
CZ = { I } x {2,4} x {3,7} x {5,6,10} are both cubes.

Let A’ be a MSIR of A. The set of all irredundant solutions
(which are at the same time minimum) of UCP(A’) can be repre-
sented as the cube O(A, ,) x . . . x O(A,,), where A , , , . . . , A , d
are the rows forming A’.

Let A’ be a submatrix of A and A, be a row from Row(A) \
Row(A’). Let C = DI x . . . x Dd be a cube of solutions of
UCP(A’) . From the definition of the Rec operator it follows that

(1)

wherepart l (C) is the set of solutions contained in C which cover
A, and pa r t2 (C) is the set of solutions contained in C which do
not cover A,.

Rec(A‘ +A,, C) = p a r t l (C) U part2(C) x O(A,)

There are three cases:

If D, C O(A,) for some i, 1 5 i 5 d , then any solution
from C covers the row A, and so Rec(A’ + A,, C) = C.

If O(Ap) n D, = 0 for any i, 1 2 z 5 d , then no solution
from C covers A, and so Rec(A’ + A,, C) = C x O(A,) =

If 1. and 2. are not true, i.e., no D, is a subset of O(A,)
and O(A,) intersects at least one domain (without loss of
generality, we assume that A , intersects the first r domains,
i.e., D I , . . . , D,.), then cube C can be partitioned into the
following r + 1 pairwise not intersecting cubes:

DI x . . . x Dd x O(Ap).

CI = DI n O(A,) x D2 x . . . x Dd

C, = D I \ O(A,) x . . . x D,-I\ O (A p) x
xD, n O (A p) x D,+I x . . . x Dd

C,+I = DI \ O(A,) x . . . x D,-I\ O(Ap) x Dr
\O(A,) x Dr+i X . . . X Dd

It is not hard to check that the union Ci U . . . U c7+ I gives
the cube C and that for any pair C,, C, , z # j, C, n C, = 0.
Moreover, the first r cubes give the solutions of UCP(A’)
from C which cover A, and the cube C,+ I gives the solutions
of UCP(A’) from C which do not cover A,. Therefore

p a r t l (C) = CI u...uC,, part2(C) = C,+I. (3)

Equations 1-3 realize the Rec operator as defined in Section 4.1
and characterized by Theorem 4.1. Notice that here we force the
Rec operator to generate non-intersecting cubes of solutions; this
is not a consequence of the definition of Rec, but is an additional
requirement introduced now to avoid considering the same partial
solution in more than one branch.

We mentioned that in the computation of Rec some redundant
solutions may be introduced. The following revised definition of
Rec avoids the generation of obviously redundant solutions ob-
tained from the application of formula (1). Namely, any solution S’
of UCP(A’+A,) frompart2(C) x O(A,) that strictly containsa
solution S” of U C P (A ‘ + A,) from p a r t l (C) is redundant since
it contains more columns than S”.

94

Theorem 4.2 If the computation of the Rec operator is modi3ed
as follows:

R e c (A ’ + A , , C) = p a r t l (C) U par t2(C) x (4)
x [o (A p) \ (D ~ U D d)]

no irredundantsolution of A’ + A, is discarded.

The proof of the theorem is omitted for lack of space.

5 The Raising Procedure

5.1
As anticipated in Section 2, we propose an ri-raiser procedure
which is called in the column branching mode as described in
Fig. 1. Let A be the covering matrix corresponding to the node
where n-raiser is invoked and A’ be an M S I R of A. We start
with the set of imdundant solutions of UCP(A’), represented by
the cube C = O(A, ,) x . . . x O(A,,), in which A,, , . . . , A , ,
are the rows in the MSZR. Then choose a “good” row of A
from those not in A‘, say row A,. According to Equations (1-5).
Rec(M S I R (A) +A,, C) can be represented by r + I cubes where
r is the number of rows of the MSZR(A) intersecting A,. Then
perform recursively the process for each of the r + 1 cubes, i.e.,
choose a new row from those not yet selected for each of the r + 1
cubes of solutions and split each cube according to Equations (1-5).

The process can be described by a search tree, called cube
branching tree. The initial cube of solutions C corresponds to the
root node, to which we associate also a pair of matrices MSZ R(A)
andA-iMSZR(A) (i.e., matrix A withouttherowsof MSIR(A)) .
In each node a choice of an unselected row from the second matrix
of the node is made. The chosen row is removed from the second
matrix of the pair and added to the first matrix of the pair. So the
first matrix gives a “lower bound submatrix” for the node.

The number of branches leaving a node is equal to the number
of cubes in which the cube corresponding to the node is partitioned
by the Rec operation, and each child of a node gets one of the
cubes obtained after splitting. So the cube corresponding to a node
represents a set of solutions covering the first submatrix of the pair.

The flow of n-raiser is shown in Fig. 2. The recursion terminates
if one of the two following conditions hold:

1. There is a node such that there are no rows left in the second
matrix of the pair and the corresponding cube has IC domains,
where k < IMSZR/ + n. This means that the lower bound
IMSIR(cannot be improved by n and any solution from
Cube consists of fewer columns than the current best one,
since n-raiser is invoked if IMSZRl + n + cost(Sol) =
cost(best) where Sol is the partial solution found in the col-
umn branching mode before invoking the raiser. Then a so-
lution from Cube is selected as the current best and the range
of raiser is reduced to n - (cost(oldbest) - cost(best))
since the gap between the current best solution and MSZR
is reduced.

2. From all branches, nodes are reached corresponding to cubes
with a number of domains greater than I MSZRl+ n. In this
casethelowerboundhasbeenraised to IMSIRI+n,sinceno
solution S of U C P (A) exists such that (SI 5 lMSZRl+ n.

If neither pruning condition holds the procedure raisear-rrim
is invoked to address the following two cases, which let us modify
the cube of solutions without branching:

1. If a row A, exists such that no solution from Cube covers
A,, then there is no splitting of the cube, since Rec yields
only one cube C x O (A ,) . Row A , is removed from A”
and added to A’.

Overview of the Raising Algorithm

2. If there exists a row A, intersecting only one domain D,
of Cube and the number of domains in Cube is equal to
IMSZRl + n - 1 then only two cubes are generated after
splitting. The first cubeis frompartl(Cube) andis obtained
by reducing domain D, to D, n O(A,). The second cube
has one more domain and can be discarded since the total
number of domains in the cube is IMSZRl + n. Row A, is
removed from A” and added to A’.

The previous conditions are checked in raise-or-trim by iterating
through the rows of A” un,til both conditions are false for any row
from A”.

After all these special cases have been addressed, a new row
A, is selected by selectrow. The row A , is removed from A and
drives the splitting of Cube. The strategy to select the best row in
order to split the current Cube, before calling recursively raiser,
looks for the row of A which intersects the minimum number of
domains of Cube. The reason is to reduce the number of branches
from the node, i.e., the number of domains intersecting the row to
be added plus 1. In case of ties between different rows, the row
having the highest weight is chosen. The weight of a row A , is
defined as:

m

r I 8 k= I

where m is the number of domains of Cube intersecting A,, D,,
is a domain intersected by A, and D:, = D,, \ O(A,). So the
weight of A, is just the fraction of solutions from Cube that do
not cover A,, which we want to maximize when selecting a new
row. If DI, = 0, for some k, this means that A , is covered by any
solution from Cube. Such a row is simply removed from A” and
added to A’.

5.2 Correctness of la-raiser
The correctness of the n-raiser procedure, applied to matrix A
with lower bound IMSZA:(A)I, can be argued using the notions
of subsolution or partial solution and of complete set of solutions,
introduced as follows.

A set S’ of columns of A is a subsolution or partial solution of
U C P (A) if it is a solution (of a subproblemd’, but is not a solution
of UCP(A) .

Let C be the cube of subsolutions corresponding to MSZ R(A) ,
then C has the property that for any solution Sof U C P (A) there is a
subsolution from C which is contained in S . Indeed, since S covers
all the rows of A , including; those contained in M S I R (A) , then S
contains I MSZR(A) I coluinns covering the submatrix MSZ R(A)
that form a subsolution from C. A set of subsolutions is complete
if for any solution S of U C P (A) there is a subsolution from the
set which is contained in S. So the set of subsolutions contained in
the cube C is complete.

Let S’ be a solution of subproblem UCP(A’). Denote by
Gen(S’) the set of irreduntiant solutions of U C P (A) that contain
S’. Similarly, if C is a set of partial solutions, denote by Gen(C)
the set of irredundant solutions of U C P (A) , eachof which contains
a solution from C.

Lemma 5.1 Ler S’ be a solution of UCP(A’) and A , be a rowfrom
Row(A) \ Row(A’). Then! Gen(S‘) Gen(Rec(A’ + A,, S ‘))
where Rec is the recalcularion operation defined in Section 4.1.
Proof. Let S be a solution of U C P (A) containing S’, i.e.,
S E Gen(S’) . If S’ c o v m row A, then Rec(A’ + A,, S’) is
equal to {S’) and so Gen(Rec(A’ + A,, S ‘)) contains S . If S’
does not cover A,, then li!ec(A’ + A,, 5’’) contains every solu-
tion S’ U { j } , j E O(A,). Moreover, S contains S’ and, since it
covers A,, it obviously contains a column j E O(A,) . So again

95

I* n-raiser returns an empty solution if lower bound of
U C P (A) can be raised to IMSIRl + n. If not, i t returns
a current minimum solution of U C P (A) *I

razsev(A’, A”, Cuhe, n) {
I* ‘4‘ = MSIR, A‘‘ = ’4 - A’, Cube = solutions of
U C P (M S 1 R) * I
I* Cost of solutions from Cube exceeds lower bound by n * I
if (number_ofdomains(Cube) > IMSIRl + n)

return(0)
I* No rows to add ? *I
if (A” = 0) {

I* Extract new best solution *I
best = eztrnct(Cube)
/* Recalculate range of raiser * I
n’ = n - (cos t (0 ldbes t) - cost(best))
n = n’
return(best)

I
/* Process rows that do not split Cube * I
razse-or-trim(A’, ,4”, Cube)
I* Select a row to add *I
A, = selectrow(Cube, A“)

I* split Cube. Note that Cube,+ I has one more domain */
Cube = Cubel u. . . U Cube, U Cuhe,+l
/* Call raiser recursively */
f o r (i = l ; i < (r + I) ; z + +) {

A’ = A’ + A J ; A ” = A‘ - A,

N e w s o l = razser(A’, A”, Cube,, n)
if (cost(Newso1) < cost(best))

hest = N e w s o l
1
return(best)

1

Figure 2: n-raiser algorithm

Gen(Rec(A’ + A4p, S’)) contains S. 0

From Lemma 5.1 it follows that the Rec operation preserves the
completness of a set of subsolutions.

Theorem 5.1 The n-raiserprocedureJinds correctlya largerlower
bound or a smaller upper bound.
Proof. n-raiser starts with the set of solutions of U C P (M S I R) ,
which is a complete set of partial solutions of U C P (A) . Since
the Rec operation preserves completness, the set of all “boundary”
cubes, i.e., cubes corresponding to either leaf nodes of the search
tree or to the nodes not yet split, is a complete set of partial solutions.
When we apply an n-raiser to A we actually try to find a complete
set of partial solutions containing at least IMSZ R(A) I +n columns.
If such a set IS found then no solution of U C P (A) has less than
IMSZR(A)I + n columns, and so the procedure n-raiser succeeds
in increasing the lower bound by n.

Supposethat there is no complete set of partial solutions consist-
ingof at least I M S I R (A) (+ n columns. It means that n-raiser finds
a leaf node with a cube containing solutions of IMSZR(A)I + n’
columns where n’ < n. In that case we update the n-raiser into
an n’-raiser and continue the search. If the n’-raiser succeeds we
retum a solution of IMSIR(A)I + n’ columns which is minimal.

If the n’-raiser fails then there is a solution of U C P (A) con-
sisting of (MSZR(A)I + n” columns, where n’’ < n’. Then we
update the n’-raiser into an n”-raiser and continue the search. 0

6 Experimental Results

w e have implemented a program AURA to solve UCP and we
have compared it with the routine mincov available in ESPRESSO,
with MINCOVLLB, that is our implementation of some features of
SCHERZO and with the results of the real SCHERZO implemented by
0. Coudert. The program SCHERZO is the most effective solver of
UCP currently reported. Its main features have been described in
the literature [3,2, 11; they include a better heuristic selection of the
M S Z R , logarithmic lower bound, left hand side lower bound, limit
lower bound, and partition-based pruning. Of these features we
have implemented in MINCOVLLB, to the best of our understand-
ing of the original description, the following two: better heuristic
selection of the M S I R and limit lower bound. The limit lower
bound is a major novelty of SCHERZO, which accounts for strong
savings in the number of nodes of the computation tree compared
to the original mincov of ESPRESSO.

The benchmarks belong to three different classes: in Table 1
there are difficult cases from the collection of ESPRESSO (we start
from the matrix obtained by ESPRESSO after removing the essen-
tial primes), in Table 2 there are random generated matrices with
varying row/column ratios and densities, in Table 3 there are ma-
trices encoding constraints satisfaction problems from [9]. The
experiments have been performed with a 2GB 300Mhz Alpha with
timeout set to 3 days of cputime.

The tables report two types of data for comparison: the number
of nodes of the column branching computation tree and the running
time. About the number of nodes we clarify that

1. AURA has two types of nodes: those of the column branching
computation tree and those of the cube branching computa-
tion tree (called A-nodes in the tables). Indeed AURA follows
a dual strategy, i.e., it builds the column branching computa-
tion tree, but when at a node the difference between the upper
bound and the lower bound is less or equal to the raising pa-
rameter r (or mazRaiser) , AURA calls the procedure raiser
which builds a cube branching computation tree, appended
at the node where raiser was called. So we need to report
both numbers of nodes to measure a run of AURA.

Nodes of the cube branching computation tree usually take
much less computing time than those of the column branch-
ing computation tree, even though it is not known a-priori
a time ratio between the two types of nodes. The reason is
that in each node of the column branching mode expensive
procedures for finding dominance relations and the M S I R
are applied.

The raising parameter is an input to AURA. Currently we have
experimented with some values and we report in the tables
the value used in a specific run. The higher is the raising
parameter, the fewer column branching nodes compared to
cube branching nodes there will be. With a value high enough,
there will be a single column node and the rest will be all row
nodes.

We compared also with the real SCHERZO, whose author was
kind enough to run for us the examples. There is a large gap in many
cases between the results of SCHERZO and those of MINCOVLLB,
which is our implementation of a subset of sCHERZO,A major reason
may be that our reimplementation of the better heuristic selection
of the M S Z R , even though it follows the hint given by Coudert, in
practice does not mimic well enough the one in SCHERZO; moreover,
as already said, SCHERZO features additional improvements that we
did not implement. It is important to underline that:

96

1 . both AURA and MINCOVLLB exploit the same re-implementation
of Coudert’s better heuristic selection of the I\!SIR;

2. AURA could be improved noticeably by reproducing more
successfully the better heuristic selection of the M S I R or
any other feature of SCHERZO. In other words, AURA demon-
strates a dual search technique, which may benefit from other
improvements to standard branch and bound.

3. in overall SCHERZO has been implemented more efficiently,
as magnified also by the circumstance that it is comparatively
faster on a slower machine.

The experiments show that AURA outperforms ESPRESSO and
MINCOVLLB. It is always faster and in the most difficult examples
either it has a running time advantageup to two orders of magnitude
or the other programs fail due to timeout (3 days) or spaceout (2G).
Instead SCHERZO is a very tough competitor, which is faster on the
examples from Table 1, but has a less effective pruning strategy in
those of Tables 2 and 3, partially compensated by a better M S I R .
The example saucier.1 is an extreme case where the virtues of AURA
prevail. Recently 0. Couden kindly provided us with a copy of
SCHERZO, to let us analyze in depth the comparative features of the
two programs. We will report on the study as soon as done. We
expect to transfer to AURA the better computation of the M S I R
apparently implemented in SCHERZO.

We do not have a systematic comparison with the results by
BCU, a recent ILP-based covering solver [SI. However, the intuition
is that an algorithm based on linear programming is better suited
for problems with a solution space diversified in the costs, i.e.,
for problems which are “closer” to numerical ones. To test the
conjecture we asked the authors of [SI to run BCU on sauciext,
whose solution space is poorly diversified (a minimum solution
has 6 columns, while most of the irredundant solutions cost in the
range from 6 to 8). BCU ran out of memory after 20000 seconds
of computations (the information was kindly provided by S.Liao),
while AURA completed the example in less than 3 minutes.

7 Conclusions

We have introduced a new technique to solve exactly a discrete op-
timization problem, based on the paradigm of “negative” thinking.
The motivation is that when searching the space of solutions often a
good solution is reached quickly and then it is improved only a few
times before the optimum is found; so most of the solution space
is explored to certify optimality, but it does not yield any improve-
ment in the cost function. This suggests that more powerful lower
bounding would speed up the search dramatically, as shown by the
introduction of the limit lower bound [3 1. Our approach is more
radical because when we are dealing with a subspace of solutions
unlikely to improve the upper bound, we switch the search strategy
to a different one geared to raise the lower bound. To design a search
strategy which realizes negative thinking we introduced cubesof so-
lutions, a data structure inspired by multi-valued cubes. Applying
the operator Rec to a cube of solutions one obtains a collection of
cubes of solution, thereby providing a natural clustering of the re-
computed solutions. As argued in the paper, clustering is required
to design a recursive algorithm based on branching in subsets of
solutions and allows the lower bound to be raised independently
starting from different subsets of solutions.

For illustration we applied our technique to the unate covering
problem, usually solved exactly by a branch-and-bound procedure,
where one lower bounds by means of an independent set of rows,
and branches on columns. We have designed a dual search tech-
nique, called raiser, which is invoked when the difference be-
tween the upper bound and the lower bound is within a parameter
maxRaiser , that we are free to set. The procedure raiser tries to

detect a hard core of the matrix to be solved (lower bound subma-
trix), augmenting an independent set of rows in order to increase
incrementally the cardinaliity of the minimum solutions that cover it.
Eventually either this incremental raising yields a lower bound that
matches the current upper bound and so we are done, or we produce
a better solution. Raiser defines a computation tree whose nodes
have associated a lower bound submatrix and a cube of solutions.
The selection of a next row induces the recomputation of all the
solutions of the lower bound submatrix augmented by the next row,
as disjoint cubes of solutions. Each such cube together with the
augmented matrix defines a new node; operationally raiser calls
itself recursively passing as parameters each such disjoint cube of
solutions and the augmented lower bound submatrix. It would be
interesting to explore a mixed approach where one accumulates
some cubes of solutions at :he same node and fewer recursive calls
are made, trading off time vs. memory.

The reported experiments show that our program AURA, out-
performs ESPRESSO and kllNCOVLLB, which is the algorithm in
ESPRESSO enhanced by our implementation of Coudert’s limit lower
bound. The package SCHERZO is faster than AURA on the examples
from Table 1, but it has a less effective pruning strategy in those of
Tables 2 and 3, partially compensated by a better M S I R .

Future work includes a more careful study of some algorithmic
design issues, like the selection of the next row, trading-off num-
ber of nodes vs. number of cubes stored in a node, and setting
automatically and adaptively the raiser parameter.

A more basic line of research is the exploration of data struc-
tures different from cubes since the latter are just the simplest way
of representing sets of partial solutions. We believe that studying
various ways of representing implicitly sets of solutions is a promis-
ing direction of investigation to rescue branch-and-bound from its
current limits. Another important direction of future research is to
apply the negative thinking approach to other problems.

References

[I] 0. Coudert. Two-level logic minimization: an overview. Inte-
gration, 17-2:97-140, October 1994.

[2] 0. Coudert. On solving binate covering problems. In The
Proceedingsof the Design Automation Conference, pages 197-
202, June 1996.

[3] 0. Coudert and J.C. Madre. New ideas for solving covering
problems. In The Proceedings of the Design Automation Con-
ference, pages 641-6416, June 1995.

[4] T. Kam, T. Villa, R. Birayton, and A. Sangiovanni-Vincentelli.
Synthesis of FSMs: functional optimization. Kluwer Academic
Publishers, 1996.

[SI S. Liao and S . Devaclas. Solving covering problems using
LPR-based lower bounds. In The Proceedings of the Design
Automation Conference, June 1997.

[6] J.-K. Rho and F. Somenzi. Stamina. Computer Program, 1991.
[7] R. Rudell. Espresso. Computer Program, 1987.
[8] R. Rudell and A. Sarigiovanni-Vincentelli. Multiple-valued

minimization for PLA optimization. IEEE Transactions on
Computer-Aided Design, CAD-6:727-750, September 1987.

[9] Tiziano Villa. Encoding Problems in Logic Synthesis. PhD
thesis, University of Califomia, Berkeley, Electronics Research
Laboratory, May 1995. Memorandum No. UCBERL M95/41.

97

matnx I R x C (Sparsity)

nodes time
3 0.3
3 0.2

107 2.3
1061 7.1
131 0.7

2232 21.1
2193 19.2

61 3.4
3 0.6
3 2.6

163 15.8
3137 67.3
8997 139.6

175255 1255.1

exps
fout
max512
addm4
mlp4

lin.rom
ex5
prom2
max I024

PdC

nodes1A-nodes
31 1
3/1

5/32
111203
171166

9412529
311951

5/26
31 1
31 1

511 12
711030

3511 108
5043/201091

680 x 696 (I .2%)
177 x 431 (2.4%)
559 x 515 (1.3%)
832 x 1073 (0.6%)
530 x 594 (0.99%)

6904 x 19021 (0.34%)
1030 x 1076 (0.9%)
831 x 2428 (2%)

1924 x 2611 (0.31%)
1090 x 1264 (0.52%)

matrix

bban.t
dk512x.t
ex4inp.t
ex5inp.t
ex6inp.t

maincont.1
0pus.t
rickst

saucier.t

matrix

R x C (Sparsity) Sol.

45 x 26 (41%) 7
91 x 59 (45%) 6
91 x 240 (46%) 5
36 x 34 (48%) 4
28 x 96 (48%) 4
105 x 67 (35%) 7
45 x 63 (45%) 5
78 x 363 (47%) 5

171 x 6207 (47%) 6

tc.90
tc.70
tc.50
tc.30
tC.10
tr.10
tr.20
tr.30
tr.40
ts.90
ts.70
ts.50
ts.30
ts.10

MINCOVLLB
nodes I time

7) 0

195

278
245

AURA
nodes/A-nodes 1 time I r

7/2 I 0 1 3

3.6
22.6
62.7

nodes time
61 0.02

213 0.24

RZO
time

na
na
na
na

0.1
6.1
4.7

2450.5
5 149.2
9583.6

nodes time
0 0.0

55 0.0

MINCOVLLB
nodes I time

4.3

5279
64

639
504
121

AU
nodesIA-nodes

1310
18/44
19/25
1711 1

34/206
411132
611240

15511 69245
147811 097624

1240213 850628

16.81 17 0.3
0.05 4 0.0
0.54 35 0.0
0.69 68 0.0
0.1 7 0.0

time I r ij 52.9 3

1315.2 4
24071.4 3

36240 3

20
-

Table 1: Results from Espresso Benchmarks

0.37 10 0.2
mem 186927 5441.0

R x C (Soarsitv) I Sol. I ESPRESSO I SCHERZKI I M I N C O V U B I AURA . I. ,

50x 100(90%)
50 x 100 (70%)
50 x 100 (50%)
50 x 100 (30%)

100 x 50 (20%)
100 x 50 (40%)
100 x 50 (60%)
100 x 50 (80%)

100 x 100 (90%)
100 x 100 (70%)
100 x 100 (50%)
100 x 100 (30%)

50 x 99 (10%)

I nodes

12047

12466
16905

2 73

5083

l00x l o o (l O %) I 12 I 1

1823
9.5
4.3

21.2

time
0.0
0.0
0.6
0.3
0.1
4.1
3.9
0.9
0.0
0.0
5.3

20.2
8.5

187.3

- -

- -

Table 2: Results from Random Generated Matrices

ESPRESSO I SCHERZO

time
0. I
0.1
0.1
0.2
0.1
2.9
1.7
0.3
0.3

1
0.7
I .6
2.5

129.3

- -

- -

r
3
3
3
3
3
3
3
3
3
3
3
3
3
3

- -

- -

0.4 11112

8143
0.01

I on6

0.27 3

0.03 3

0.01 3
0.33 3

222.47 3

Table 3: Results from Encoding Problem Matrices

98

