
Property Checking By Logic Relaxation
Eugene Goldberg

eu.goldberg@gmail.com

Abstract—We introduce a new framework for Property Check-
ing (PC) of sequential circuits. It is based on a method called
Logic Relaxation (LoR). Given a safety property, the LoR method
relaxes the transition system at hand, which leads to expanding
the set of reachable states. For j-th time frame, the LoR method
computes a superset Aj of the set of bad states reachable in j
transitions only by the relaxed system. Set Aj is constructed by
a technique called partial quantifier elimination. If Aj does not
contain a bad state and this state is reachable in j transitions
in the relaxed system, it is also reachable in the original system.
Hence the property in question does not hold.

The appeal of PC by LoR is as follows. An inductive invariant
(or a counterexample) generated by LoR is a result of com-
puting the states reachable only in the relaxed system. So, the
complexity of PC can be drastically reduced by finding a “faulty”
relaxation that is close to the original system. This is analogous
to equivalence checking whose complexity strongly depends on
how similar the designs to be compared are.

I. INTRODUCTION

A. Motivation

Property checking is an important part of the formal verifi-
cation of hardware. Recently, new powerful methods of prop-
erty checking have been developed [10], [1]. A characteristic
feature of those methods is that they use SAT-solving to avoid
operating on quantified formulas e.g. performing quantifier
elimination. This is done because of insufficient efficiency of
the current algorithms for quantified logic. On the other hand,
such algorithms have great potential because reasoning on
quantified formulas facilitates very powerful transformations
preserving equi-satisfiability rather than equivalence.

To address the problem of reasoning on quantified formulas,
we have been developing a machinery of Dependency sequents
(D-sequents) [5], [6], [9]. In particular, we have introduced a
technique called Partial Quantifier Elimination (PQE) [8] that
can boost the performance of algorithms operating on quan-
tified formulas. Our research on D-sequents and PQE is still
work in progress and we believe that catching up with SAT-
based algorithms is just a matter of time. So we try to combine
work on improving PQE algorithms with research that explains
the benefits of such algorithms for formal verification [7], [3],
[4]. In particular, in [4], we introduced a new verification
method called Logic Relaxation (LoR) enabled by PQE. We
showed that applying the LoR method to equivalence checking
of combinational circuits facilitates generation of powerful
inductive proofs. In this paper, we continue this work by
applying the LoR method to property checking of sequential
circuits.

B. Problem formulation

Let M(S,X, Y, Z, S′) be a sequential circuit where X , Y
and Z are sets of input, internal and output combinational
variables respectively, S and S′ are sets of present and next
state variables respectively. Let T (S,X, Y, S′) be a formula
representing the transition relation specified by M . All for-
mulas we consider in this paper are Boolean. We will assume
that every formula is represented in the Conjunctive Normal
Form (CNF). We will call a complete assignment s to state
variables a state. Henceforth, by an assignment v to a set of
variables V we mean a complete assignment unless otherwise
stated. Denote by ξ the transition system specified by transition
relation T and a set of initial states I(S). Let P (S) specify the
property of ξ to be verified. Given a Boolean formula A(S),
a state s is called an A-state if A(s) = 1. We will refer to
P -states and P -states as good and bad ones respectively. In
this paper, we consider checking a safety property. That is,
given a property P , one needs to prove that a) no bad state of
ξ is reachable from an I-state or b) a counterexample exists.

C. Property checking by logic relaxation

Denote by ξrlx a “relaxed” version of system ξ . Both
ξ and ξrlx have the same set of initial states but are different
in their transition relations. Let Sj , Xj , Yj denote sets of
variables of ξ in j-th time frame. Let Tj,j+1 denote formula
T (Sj , Xj , Yj , Sj+1) i.e. the transition relation of ξ in j-th
time frame. Let T rlx

j,j+1 denote formula T rlx (Sj , Xj , Yj , Sj+1)

specifying the transition relation of ξrlx in j-th time frame.
Formula Tj,j+1 implies T rlx

j,j+1, so the set of transitions allowed
in ξrlx is a superset of those in ξ.

The idea of Property Checking (PC) by Logic Relaxation
(LoR) is as follows. Since the set of valid traces of ξrlx is a
superset of that of ξ, a state reachable in j-th time frame of
ξ is also reachable in ξrlx . Suppose that one has computed a
set containing all states reachable in j-th time frame only in
ξrlx . Then the existence of a bad state s that is not in this
set and is reachable in the relaxed system ξrlx means that s
is reachable in ξ as well and property P fails.

D. Boundary formulas

A key part of PC by LoR is computing so-called boundary
formulas computing supersets of states reachable only in ξrlx .
Formula Hj(Sj) is called boundary for the pair (ξ , ξrlx) if
it
• evaluates to 0 for every state that is reachable in ξrlx but

not in ξ in j transitions
• evaluates to 1 for every state that is reachable in system
ξ (and hence in ξrlx) in j transitions

ar
X

iv
:1

60
1.

02
74

2v
1

 [
cs

.L
O

]
 1

2
Ja

n
20

16

The value of Hj is not specified for a state that is unreachable
in ξrlx (and hence in ξ) in j transitions. On the one hand, Hj

can be viewed as a “boundary” between sets of states reachable
in ξ and ξrlx in j transitions, hence the name. On the other
hand, since every Hj-state is unreachable in ξ in j transitions,
the Hj-states form an over-approximation of the set of states
reachable in ξ in j transitions.

E. Transition relation relaxation

Let us show how one can use transition relation relaxation
to build boundary formula H1. The latter gives an over-
approximation of the set of states reachable in ξ in one
transition. Suppose that no bad state is reachable from an
I-state of ξ in one transition. Let s be a bad state. Since
s is unreachable from an I-state in one transition, formula
I0 ∧ T0,1 ∧Cs is unsatisfiable. Here I0 denotes I(S0) and Cs

is the longest clause falsified by s. (A clause is a disjunction
of literals). Let us relax T0,1 to make state s reachable. This
means finding a formula T rlx

0,1 implied by T0,1 that makes
I0 ∧ T rlx

0,1 ∧ Cs satisfiable. Let R0,1 be a formula such that
T0,1 ≡ T rlx

0,1 ∧R0,1 i.e. R0,1 specifies the “difference” between
the transition relations. In the simplest case, R0,1 is just a
subset of clauses of T0,1 and so T rlx

0,1 is obtained from T0,1 by
removing the clauses of R0,1. (In this paper, we use the notion
of a CNF formula and that of a set of clauses interchangeably.)

Boundary formula H1 is built by excluding states reach-
able only by the relaxed system ξrlx , specified by T rlx

0,1 ,
in one transition. Initially, H1 is an empty set of clauses
that represents a constant 1. Let G(S1) be a formula such
that ∃W0[I0 ∧ T rlx

0,1 ∧R0,1] ≡ G ∧ ∃W0[I0 ∧ T rlx
0,1] where

W0 = X0 ∧ Y0 ∧ S0. Finding G comes down to solving the
Partial Quantifier Elimination (PQE) problem. (Only a part of
the quantified formula leaves the scope of quantifiers, hence
the name.) States falsifying G is a superset of states reachable
with transition relation T rlx

0,1 but not with T0,1. In particular,
G is falsified by state s. The clauses of G are added to H1.
If H1 → P holds, then H1 is an over-approximation of the
set of states reachable in ξ in one transition. Otherwise, there
is a bad state s for which formula I0 ∧ T rlx

0,1 ∧ H1 ∧ Cs is
unsatisfiable. Then the procedure above is applied again. That
is transition relation T rlx

0,1 is relaxed even more and a new
formula G falsified by s is derived that makes up for this new
relaxation. The set of clauses of G is added to H1. This goes
on until H1 → P holds.

F. A high-level view of PC LoR

In this paper, we formulate a an algorithm of PC by LoR
called PC LoR. To check if a property P holds, PC LoR com-
putes a sequence of boundary formulas H1, . . . ,Hj that satisfy
properties similar to those maintained in IC3 [1]. However
these formulas are derived by employing transition relation
relaxation and PQE rather than inductive clauses. Maintaining
IC3-like properties is just a convenient way to guarantee
that PC LoR converges. If P holds in ξ, then eventually
logically equivalent boundary formulas Hj and Hj+1 are

produced, meaning that Hj is an inductive invariant. Other-
wise, PC LoR fails to build a boundary formula Hj implying
property P and finds a counterexample instead.

We also describe a version of PC LoR that combines LoR
with derivation of inductive clauses [1]. In IC3, a formula Fj

over-approximating the set of states reachable in j transitions
is built by tightening P . This tightening is done by adding
to Fj inductive clauses excluding Fj-states from which a bad
state is reachable in one transition. Such an approach may
converge too slowly if an inductive invariant is “far” from
property P . The idea of combining LoR with derivation of
inductive clauses is as follows. The original boundary formula
Hi is built by relaxation. The future corrections of Hi (done
to maintain the IC3-like properties we mentioned above) are
performed by tightening Hi up by inductive clauses. Such
an approach can drastically speed up building an inductive
invariant that is far from the property.

G. Merits of PC by LoR

This paper is motivated by some nice features of PC by
LoR listed below. Since PC by LoR heavily relies on existence
of efficient PQE solvers, realization of these features requires
a boost in the performance of current PQE algorithms. We
believe that this can be achieved via implementing some
crucial techniques [4] that PQE solvers still lack. So getting
the required performance of PQE is just a matter of time.

Our interest in PC by LoR is twofold. First, PC by
LoR derives an inductive invariant (or a counterexample) by
computing the difference between the original and relaxed
transition systems. So, in a sense, the complexity of PC
becomes relative since it depends on how different the original
and relaxed systems are. This is analogous to equivalence
checking whose complexity strongly depends on how similar
the designs to be compared are. Second, by using a par-
ticular relaxation scheme one can take into account system
and property structure/semantics. Suppose, for instance, that
one needs to check a property P of a system ξ induced
by interaction of two its subsystems ξ′ and ξ′′. Intuitively,
an inductive invariant can be constructed by computing the
difference between ξ and a relaxed system obtained from ξ by
removing the interaction between ξ′ and ξ′′. If P holds, then
bad states are reachable only in the relaxed system. That is
the knowledge of problem semantics may help to generate an
inductive invariant faster. We show how this idea works for
equivalence checking (Section II).

H. Contributions and structure of the paper

The contribution of this paper is threefold. First, we in-
troduce a new framework for PC. It is based on the idea
of using transition relation relaxation and PQE to build an
over-approximation of the set of reachable states. Second, we
formulate a PC algorithm based on this idea and prove its
correctness. Third, we formulate a PC algorithm combining
transition relation relaxation with the machinery of inductive
clauses.

The remainder of the paper is structured as follows. An
example of PC by LoR is described in Section II. Basic
definitions are given in Section III. Boundary formulas are
discussed in Section IV. We describe PC LoR in Section V.
Section VI discusses two important modifications of PC LoR.
One of these modifications describes combining LoR with the
machinery of inductive clauses. Some conclusions are given
in Section VII.

II. AN EXAMPLE

In this section, we consider a special case of PC: equiva-
lence checking of two identical sequential circuits. In Sub-
section II-A, we describe the example we consider. The
problems with solving this example by interpolation and IC3
are discussed in Subsection II-B. Application of PC by LoR to
this example is described in Subsection II-C. In particular, such
application shows that by picking transition relation relaxation
one can tailor a PC algorithm to the problem at hand.

A. Example description

Let TN (XN , Y N , SN , S′N) be a formula specifying the
transition relation of a sequential circuit N . Here XN , Y N

are the sets of input and internal variables of N respectively
and SN , S′N are the sets of present and next state variables
of N respectively. Let IN be a formula specifying the initial
states of N . Let circuit K be an identical copy of N . Let
TK(XK , Y K , SK , S′K) and IK be formulas specifying the
transition relation and initial states of K. Suppose that one
needs to verify equivalence of K and N defined as follows. K
and N produce the same sequence of outputs for an identical
sequence of values of XN and XK if they start in the same
I-state.

The equivalence of N and K can be checked via building
a sequential circuit M called a miter that is composed of N
and K as shown in Figure 1. Let T (X,Y, S, S′) = TN ∧
TK ∧EQ(XN , XK) where X = XN ∪XK , Y = Y N ∪Y K ,
S = SN ∪ SK , S′ = S′N ∪ S′K . Given assignments xN and
xK to XK and XN respectively, EQ(xN ,xK) = 1 iff xN =
xK . Formula T specifies the transition relation of miter M .
Formula I(SN , SK) specify the initial states of miter M where
I(sN , sK) = 1 iff sN = sK and IN (sN) = IK(sK) = 1.
Note that the output variable z of M evaluates to 1 in j-th time
frame iff N and K produce different assignments to output
variables ZN and ZK . So proving the equivalence of N and K
comes down to showing that the output z of miter M evaluates
to 0 in every time frame. This can be done by proving that the
following property P (SN , SK) of M holds. P (sN , sK) = 1
iff N and K produce the same outputs in states sN and sK

for every assignment xN to XN and xK to XK such that
xN = xK .

Since circuits N and K are identical, the output z of M
evaluates to 0 for every state s = (sN ,sK) where sN =
sK . So EQ(SN ,SK)→ P . However, in general, the reverse
implication does not hold because N and K can produce the
same output even in a state s where sN 6= sK . Note that

Fig. 1. Miter M of sequential circuits N and K

EQ(SN , SK) ∧ T → EQ(S′N , S′K) holds. So EQ(SN , SK)
is an inductive invariant.

B. Solving example by interpolation and IC3

Our example can be trivially solved by a method that tries
to prove equivalence of corresponding state variables of N and
K. However, such a method is unrobust since it can not be
extended to the case where N and K are structurally close but
not identical (e.g. if N does not have state variables that are
functionally equivalent to variables of K.) So it is interesting
to analyze solving our example by a general method that does
not use pre-processing to identify equivalent state variables.

One can argue that checking the equivalence of two identical
circuits can be hard for an interpolation based method. The
performance of such a method strongly depends on the quality
of an interpolant extracted from a proof that P holds for a
limited number of transitions. Such a proof is produced by a
general-purpose SAT-solver based on conflict clause learning.
A known fact is that such solvers generate proofs of poor
quality on equivalence checking formulas [2], [4]. This leads
to producing interpolants of poor quality and hence slow
convergence.

IC3 builds an inductive invariant by tightening property P
via adding inductive clauses. Intuitively, the convergence rate
of such a strategy strongly depends on how “far” an inductive
invariant is from P . Consider, for instance, the inductive
invariant EQ(SN , SK). In general, EQ can be arbitrarily far
from P especially if the transition system specified by N is
deep and N can produce the same output in different states.

C. Solving example by LoR

Let us consider how our example is solved by LoR. As we
mentioned in Subsection I-C, the basic operation of PC by
LoR is to compute a superset of the set of states reachable
in j transitions only by the relaxed system. Importantly, this
superset is different from the precise set of reachable states

only by the states (bad or good) that are unreachable by the
relaxed system and hence by the original system. The objective
here is to make sure that this superset contains all the bad
states. Let us show how this is done for our example for the
initial time frame. Let ξ denote the transition system specified
by miter M and initial set of states I . Recall that transition
relation T0,1 of ξ is specified by TN

0,1 ∧ TK
0,1 ∧ EQX

0 where
EQX

0 denote EQ(XN
0 , X

K
0).

Let the relaxed transition T rlx
0,1 for the initial time frame

be obtained by dropping the clauses of EQX
0 i.e. T rlx

0,1 =
TN
0,1 ∧ TK

0,1. Let ξrlx denote the version of ξ where T0,1 is
replaced with T rlx

0,1 . In ξrlx , one can apply different input
assignments to N and K. So ξrlx can transition to states
s=(sN ,sK) where sN 6= sK and thus potentially reach bad
states in one transition. Let us compute a boundary formula
H1. As we mentioned in Subsection I-D,
• the H1-states specify a superset of the set of states

reachable in one transition only in ξrlx and
• the H1-states is an over-approximation of the set of states

reachable in ξ in one transition.
As we show in Section IV, H1 can be found as a formula for
which ∃W0[I0 ∧ T0,1] ≡ H1 ∧ ∃W0[I0 ∧ T rlx

0,1] holds where
W0 = X0 ∧ Y0 ∧ S0. From Lemma 1 proved in the appendix
it follows that formula H1 equal to EQ(SN

1 , S
K
1) satisfies

the equality above. That is EQ(SN
1 , S

K
1) can be used as a

boundary formula H1.
As we mentioned earlier, formula EQ(SK , SN) is an induc-

tive invariant. So by using a relaxed transition relation T rlx
0,1

and building a boundary formula H1 separating ξ and ξrlx one
generates an inductive invariant. Such fast convergence is
not a result of pure luck. The choice of relaxation above
has a very simple explanation. Miter M consists of circuits
N and K “interacting” with each other via combinational
input variables. Circuits N and K interact correctly if the
output of M is always 0. Intuitively, to verify that N and K
interact correctly one needs to compute the difference between
the original miter and a relaxed one where communication
between N and K is cut off. If N and K are equivalent, miter
M can produce output 1 only if N and K do not talk with
each other. In Subsection VI-B, we argue that such relaxation
can be successfully used in a general algorithm of sequential
equivalence checking.

III. BASIC DEFINITIONS

Definition 1: Let ξ be a transition system specified by
transition relation T (S,X, Y, S′) introduced in Subsection I-B.
A sequence of states (sm,. . . ,sj) is called a trace. This
trace is called valid if ∃X∃Y [T (sk, X, Y, sk+1)] = 1, k =
m, . . . ,j − 1.

Definition 2: Let I specify the initial states of system
ξ. Given a property P of ξ, a valid trace (s0,. . . ,sj) is
called a counterexample if I(s0) = 1, P (sk) = 1,k =
0, . . . ,j − 1,P (sj) = 0.

Definition 3: Let ξ and η be two transition systems
depending on the same set of variables S,X, Y, S′. We will

say that η is a relaxation of system ξ if the set of valid
traces of the former is a superset of that of the latter.

Definition 4: Let ξ be a system specified by transition
relation T and formula I specifying initial states. Denote by
ξrlxj a relaxation of ξ such that

• ξ and ξrlxj have identical sets of initial states and
• Tk,k+1 ≡ T rlx

k,k+1, k 6= j and Tj,j+1 → T rlx
j,j+1

In this paper, by a quantified formula we mean one
with existential quantifiers. Given a quantified formula
∃W [A(V,W)], the problem of quantifier elimination is to
find a quantifier-free formula A∗(V) such that A∗ ≡ ∃W [A].
Given a quantified formula ∃W [A(V,W) ∧B(V,W)], the
problem of Partial Quantifier Elimination (PQE) is to find
a quantifier-free formula A∗(V) such that A∗ ∧ ∃W [B] ≡
∃W [A ∧B]. Note that formula B remains quantified (hence
the name partial quantifier elimination). We will say that
formula A∗ is obtained by taking A out of the scope of
quantifiers in ∃W [A ∧B]. Importantly, there is a strong
relation between PQE and the notion of redundancy of a
clause in a quantified formula. For instance, solving the PQE
problem above comes down to finding a set of clauses A∗(V)
implied by A ∧ B that makes the clauses of A redundant in
A∗ ∧ ∃W [A ∧B]. That is A∗ ∧ ∃W [A ∧B] ≡ A∗ ∧ ∃W [B].

IV. BOUNDARY FORMULAS

In this section, we present boundary formulas. In Subsec-
tion IV-A we define boundary formulas and explain their
relation to PQE. Building boundary formulas inductively is
described in Subsection IV-B.

A. Definition of boundary formulas and their relation to PQE

Definition 5: Let ξrlx be a relaxation of system ξ and P be
a property of ξ. Formula Hj is called boundary for the pair
(ξ, ξrlx) if

1) Hj(s) = 0, for every state s that is reachable in ξrlx and
unreachable in ξ in j transitions

2) Hj(s) = 1, for every state s that is reachable in ξ (and
hence in ξrlx) in j transitions

Boundary formula Hj specifies the set of states reachable only
by ξrlx i.e. separates ξ and ξrlx (hence the name “boundary”).
We will say that Hj is just a boundary formula if the
corresponding relaxation is obvious from the context.

Proposition 1 below gives a sufficient condition for a for-
mula to be boundary. Let system ξrlxj be obtained by relaxing
only the transition relation of j-th time frame (see Defini-
tion 4). Let I0 denote I(S0). Let Wj−1 denote W0∪· · ·∪Wj−1
where Wi = Si ∪ Xi ∪ Yi, i = 0, . . . , j − 1. Let Tj denote
T0,1 ∧ · · · ∧ Tj−1,j . Let Trlx

j denote Tj−1 ∧ T rlx
j−1,j .

Proposition 1: Let Hj be a formula (depending only on
variables of j-th cut) such that ∃Wj−1[I0 ∧ Tj] ≡ Hj ∧
∃Wj−1[I0 ∧ Trlx

j]. Then Hj is a boundary formula for the
pair (ξ, ξrlxj).

Proofs of the propositions are given in the appendix.
Proposition 2: Let Tj−1,j = T rlx

j−1,j ∧ Rj−1,j . Let Hj be
a formula such that ∃Wj−1[I0 ∧ Trlx

j ∧Rj−1,j] ≡ Hj ∧

∃Wj−1[I0 ∧ Trlx
j]. Then Hj is a boundary formula for the

pair (ξ, ξrlxj).
One can view Rj−1,j as a formula specifying the “differ-

ence” between Tj−1,j and T rlx
j−1,j Proposition 2 suggests that

Hj can be obtained by taking Rj−1,j out of the scope of
quantifiers i.e. by PQE.

B. Building boundary formulas inductively

Proposition 1 suggests that adding a boundary formula
Hj makes up for the difference between Tj−1,j and T rlx

j−1,j .
Suppose that one relaxes transition relation in every time
frame. Let TRLX

j denote T rlx
0,1 ∧ · · · ∧ T rlx

j−1,j . Let Hj denote
H0 ∧ · · · ∧Hj where H0 = I and H1, . . . ,Hj are boundary
formulas. Then the following proposition is true.

Proposition 3: ∃Wj−1[I0 ∧ Tj] ≡ ∃Wj−1[Hj∧ TRLX
j].

Boundary formulas H0, . . . ,Hm can be built by induction
using the following procedure. Let Tj−1,j = T rlx

j−1,j ∧Rj−1,j ,
j = 1, . . . ,m. (We assume that Rj−1,j is different in
different time frames.) Formula H0 = I and formula Hj ,
0 < j ≤ m is obtained by taking Rj−1,j out of the scope of
quantifiers in formula ∃Wj−1[Hj−1 ∧ TRLX

j ∧Rj−1,j].
That is ∃Wj−1[Hj−1 ∧ TRLX

j ∧Rj−1,j] ≡ Hj ∧
∃Wj−1[Hj−1 ∧ TRLX

j]. The correctness of this procedure
follows from Proposition 4 of the appendix.

Note that the greater k, the larger the formula in which
Rk−1,k is taken out of the scope of quantifiers. This topic is
discussed in [4]. There we argue the following. In [8], we
introduced a PQE algorithm based on the machinery of D-
sequents [5], [6]. The growth of formula size mentioned above
will cripple the performance of the algorithm of [8] since the
latter lacks a few crucial techniques e.g. D-sequent re-using.
However, if a PQE solver employs D-sequent re-using, this
problem will either go away completely or at least will be
greatly mitigated.

V. AN ALGORITHM OF PC BY LOR

In this section, we describe an algorithm of PC by LoR
called PC LoR. This algorithm is meant only for systems that
have the stuttering feature. In Subsection V-A, we explain the
advantages of systems with stuttering and show how stuttering
can be introduced by a minor modification of the system at
hand if the latter does not have it. Subsections V-B, V-C,
V-D describe the properties of boundary formulas maintained
by PC LoR to guarantee its convergence. A description of the
pseudo-code of PC LoR is given in Subsections V-E and V-F.
The correctness of PC LoR is proved in Subsection V-G.

A. Stuttering

Suppose that one needs to check that a property P of a
sequential circuit M holds. Let T be the transition relation
specified by M and ξ be the transition system defined by T and
a formula I specifying the initial states (see Subsection I-B).
The PC LoR algorithm described in this section is based on the
assumption that ξ has the stuttering feature i.e. ξ can stay in a
given state arbitrarily long. This means that for every present
state s, there is an input assignment x such that the next

state produced by circuit M is also s. If ξ does not have this
feature, one can introduce stuttering by adding to circuit M a
combinational input variable v. The modified circuit M works
as before if v = 1 and copies its current state to the output state
variables if v = 0. On the one hand, introduction of stuttering
does not affect the reachability of a bad state. On the other
hand, stuttering guarantees that ξ has two nice properties. First,
∃W [T (S,X, Y, S′)] ≡ 1 holds where W = S∪X∪Y . Indeed
for every next state s′, T specifies a “stuttering transition”
from s to s′ where s = s′. Second, if a state is unreachable in
ξ after n transitions it is also unreachable after m transitions
if m < n.

B. Four properties to guarantee convergence

The essence of PC LoR is to build a boundary formula Hj

for every time frame. Boundary formulas are generated by
PC LoR one by one. We assume that H0 is set to I . Let Tj

denote T0,1 ∧ · · · ∧ Tj−1,j , j > 0 and T0 ≡ 1. We will refer
to the four conditions below as CO conditions (where CO
stands for Convergence of Over-approximations).

1) I → Hj

2) Hj → P ,
3) Hj−1 ∧ T rlx

j−1,j → Hj ,
4) Hj−1 → Hj ,
(When we write formulas like I → Hj we assume that the

sets of variables are unified for the left and right parts of the
implication. That is I → Hj actually means I(S)→ Hj(S).)
The CO conditions are similar to those imposed on formulas
Fi specifying supersets of reachable states in IC3 [1]. How-
ever, formulas Hj are built via relaxation of transition relation
and PQE i.e. quite differently from Fi of IC3. The convenience
of the CO conditions is that no matter how formulas satisfying
these conditions are built, eventually a counterexample or an
inductive invariant are generated.

C. Providing first and second CO conditions

The first CO condition of Subsection V-B is achieved as
follows. Formula Hj is built by resolving clauses of I0 ∧ Tj .
So Hj is implied by I0 ∧ Tj . Due to the stuttering feature,
this means that Hj is also implied by I alone.

The second CO condition is provided in two steps. Suppose
that all boundary formulas up to Hj−1 already satisfy the
CO conditions and PC LoR starts building formula Hj . In
the first step, PC LoR checks if Hj−1 ∧ Tj−1,j → P . If
not, then there is an Hj−1-state sj−1 that reaches a bad
state in one transition. PC LoR tries to strengthen Hj−1 by
conjoining the latter with a CNF formula G falsified by sj−1.
To derive this formula, PC LoR calls procedure RemBadSt
described in Subsection V-F. It either generates a trace leading
to sj−1 (which means that P fails) or returns formula G
above. Formula G is built by relaxing transition relations
of some previous time frames even more and strengthening
boundary formulas of those time frames to make up for such
additional relaxation.

The second step starts when Hj−1 ∧ Tj−1,j → P holds.
In this step, PC LoR calls procedure FinRlx that relaxes

PC LoR(T, I, P) {
1 H0 := I;
2 j = 1;
3 while (true) {
4 T rlx

j−1,j := Tj−1,j ;
5 Hj := 1;
6 Cex := RemBadSt(Hj ,TRLX

j , P, j);
7 if (Cex 6= nil) return(No);
8 FinRlx (Hj ,TRLX

j)
9 ThirdCOcond(Hj ,Trlx

j);
10 Inv := FinTouch(Hj ,Trlx

j) ;
11 if (Inv) return(Yes);
12 j := j + 1; }}

Fig. 2. PC LoR procedure

transition relation Tj−1,j of (j − 1)-th time frame and builds
formula Hj implying P that makes up for relaxing Tj−1,j .
Originally, Hj = 1 and T rlx

j−1,j = Tj−1,j . If there is an Hj-
state sj that falsifies P , PC LoR relaxes the current transition
relation T rlx

j−1,j to make sj reachable from an Hj−1-state.
This relaxation has the form T rlx

j−1,j = T ∗rlxj−1,j ∧ Rj−1,j
where T rlx

j−1,j is the current relaxed formula and T ∗rlxj−1,j is a
new one that makes sj reachable. PC LoR looks for a for-
mula G such that ∃Wj−1[I0 ∧Hj ∧ TRLX

j−1,j ∧Rj−1,j] ≡ G ∧
∃Wj−1[I0 ∧Hj ∧ TRLX

j−1,j]. Here TRLX
j−1,j is equal to TRLX

j−2,j−1∧
T ∗rlxj−1,j . Formula G is falsified by sj and is conjoined with Hj

to exclude this state. This goes on until Hj implies P .

D. Providing third and fourth CO conditions

After Hj is generated as described above, it satisfies the first
two CO conditions of Subsection V-B but the third condition,
in general, does not hold, i.e. Hj−1 ∧ T rlx

j−1,j 6→ Hj . This
happens if a clause of an m-th time frame where m < j − 1
is employed by procedure FinRlx above when generating Hj

that implies P . Let sj−1 be an Hj−1-state that is one tran-
sition away from a state falsifying Hj . Then PC LoR derives
a formula falsified by sj−1 and conjoins it with Hj−1. This
formula is derived by the procedure above used to eliminate
Hj−1-states that are one transition away from a bad state.
This goes on until Hj−1 ∧ T rlx

j−1,j → Hj holds. Even if the
third condition Hm−1 ∧ T rlx

m−1,m → Hm holds for m < j, it
may get broken after adding clauses to formula Hm. Then the
procedure above is used to eliminate Hm−1-states that are one
transition away from states falsifying Hm.

The fourth CO condition is very easy to maintain. Due to
the stuttering feature, ∃Wm−1[I0 ∧ Tm] → ∃Wj−1[I0 ∧ Tj],
m < j. So every clause of Hj can be added to every boundary
formula Hm, m < j.

E. Pseudo-code of PC LoR

The pseudo-code of PC LoR is given Figure 2. Boundary
formulas are derived in the while loop (lines 3-12). In every
iteration, a boundary formula Hj is derived and j is incre-
mented by one. Originally, H0 is set to I and j is set to 1.

Every iteration starts by making Hj satisfy the second
CO condition i.e. Hj → P (lines 4-8). First PC LoR calls

RemBadSt(Hj ,TRLX
j , P, j) {

1 Cex := ∅;
2 length := 0;
3 while (true) {
4 if (length = 0) {
5 (sj−1, sj) := FndBadSt(Hj−1 ∧ T rlx

j−1,j ∧ P);
6 if ((sj−1, sj) = nil) return(nil);
7 Cex := (sj−1, sj);
8 length := 2;
9 continue; }
− −−−−−−−−

10 k := j − length + 1;
11 if (k = 0) return(Cex);
12 sk := FirstState(Cex);
13 sk−1 := ExtCex (Hk−1 ∧ T rlx

k−1,k, sk);
−−−−−−−−−

14 if (sk−1 6= nil) {
15 Cex := (sk−1,Cex);
16 length := length + 1;
17 continue; }
− −−−−−−−−

18 Rk−1,k := Relax (Hk−1, T
rlx
k−1,k, sk);

19 PQE(Rk−1,k, Hk, T
rlx
k−1,k,Hk−1,TRLX

k−1);
20 RemFrstSt(Cex , sk);
21 length := length − 1;}}

Fig. 3. RemBadSt procedure

FinRlx (Hj ,TRLX
j) {

1 while (true) {
2 s := FindSat(Hj ∧ P);
3 if (s = nil) return;
4 Rk−1,k := Relax (Hj−1, T

rlx
j−1,j , s);

5 PQE(Rj−1,j , Hj , T
rlx
j−1,j ,Hj−1,TRLX

j−1);}}

Fig. 4. FinRlx procedure

procedure RemBadSt that either returns a counterexample
or strengthens formula Hj−1 to guarantee Hj−1 ∧ Tj−1,j →
P . Procedure RemBadSt is described in detail in Sub-
section V-F. If RemBadSt returns a counterexample Cex ,
PC LoR terminates reporting that property P failed. Other-
wise, PC LoR calls procedure FinRlx shown in Figure 4. Its
work was described in Subsection V-C: FinRlx relaxes the
transition relation of (j − 1)-th time frame and adds clauses
making up for this relaxation to Hj until Hj → P holds.

To make sure that Hj−1 ∧ T rlx
j → Hj holds, PC LoR calls

procedure ThirdCOcond that works as described in Subsec-
tion V-D. Finally, to guarantee that Hm−1 → Hm holds for all
1 ≤ m ≤ j, procedure FinTouch is called. First, this proce-
dure tries to push every clause C of Hj to previous boundary
formulas. If C is not implied by Hm, m < j, it is added to
Hm and FinTouch tries to push C to Hm−1. Otherwise, the
process of pushing clause C stops: if C is implied by Hm it
is also implied by every formula Hk, k < m. The process of
pushing clauses of Hj may break third CO condition for some
boundary formulas. In this case, the ThirdCOcond procedure
is called to repair this condition. Eventually, FinTouch makes
all boundary formulas Hi, i = 0, . . . , j meet third and fourth
CO conditions.

Procedure FinTouch also checks if Hm → Hm−1 holds
for some m, 0 ≤ m ≤ j. If so, then Hm−1 ≡ Hm and
Hm−1 is an inductive invariant (see the proof of Propo-
sition 6). Checking for presence of an inductive invariant
by testing logical implication is harder than by checking
syntactic equivalence performed in IC3. However, one can use
optimization to mitigate this problem. Here is an example of
such optimization. Formula Hm implies Hm−1 iff every clause
of Hm−1 is implied by Hm. If a clause of Hm−1 is implied
by Hm, it remains implied no matter what clauses are added
to Hm−1 and Hm. So when checking if Hm → Hm−1 holds,
it suffices to check for implication every clause C ∈ Hm−1
that is not marked as implied by Hm yet. If C is implied by
Hm, it is marked to avoid testing it in the future. Otherwise,
Hm → Hm−1 does not hold and no testing of other unmarked
clauses of Hm−1 is necessary.

F. Description of RemBadSt procedure

The pseudo-code of the RemBadSt procedure is given in
Figure 3. The goal of RemBadSt is to strengthen boundary
formula Hj−1 so that Hj−1 ∧ Tj,j−1 → P holds. This is
the first step of generation of formula Hj that implies P (see
Subsection V-C). If Hj−1 cannot be strengthened to guarantee
the condition above, then a counterexample of length j is
generated by RemBadSt .

All the work is done in a while loop (lines 3-21) where
RemBadSt tries to construct a counterexample. This coun-
terexample is built in reverse from a bad state reachable from
an Hj−1-state. In every iteration of the loop, RemBadSt either
extends the current trace by one more state or shows that
the last Hm-state of the trace cannot be reached from an
Hm−1-state. The latter triggers tightening up formula Hm after
additional relaxation of the current transition T rlx

m−1,m. The
length of the current trace is specified by variable length . The
body of the while loop can be partitioned into parts separated
by the dotted lines in Figure 3. If length = 0, the current
trace is empty and RemBadSt tries to initialize it (lines 5-9).
Namely, it looks for an Hj−1-state sj−1 that is one transition
away from a bad state sj . If such states sj−1 and sj are found,
counterexample Cex is initialized with (sj−1,sj). Otherwise,
RemBadSt returns nil reporting that Hj−1 ∧ Tj,j−1 → P
holds.

If length > 0, RemBadSt tries to extend the current
trace (lines 10-13). Let sk be the state added to Cex the
last. If k = 0 i.e. if sk is an I-state, the current Cex is
a counterexample and RemBadSt terminates returning Cex .
Otherwise, RemBadSt tries to find an Hk−1-state sk−1 that
is one transition away from sk. If RemBadSt succeeds, Cex
is extended by sk−1 (lines 15-16).

If RemBadSt fails to find sk−1, Cex cannot be extended
to a counterexample. Then RemBadSt does the following
(lines 18-21). The current transition relation T rlx

k−1,k is re-
laxed even more as described in Subsection V-C. Namely,
T rlx
k−1,k is represented as T ∗rlxk−1,k ∧ Rk−1,k where T ∗rlxk−1,k

is a new transition relation for (k−1)-th time frame that
makes sk reachable. RemBadSt calls a PQE-solver to build a

PC LoR(T, I, P) {
.....

4 T rlx
j−1,j := Tj−1,j ;

5* Hj := EducatGuessRlx (Hj−1,TRLX
j);

6 Cex := RemBadSt(Hj ,TRLX
j , P, j);

.....

Fig. 5. PC LoR plus relaxation by an educated guess

formula G such that ∃Wk−1[I0 ∧Hk ∧ TRLX
k−1,k ∧Rk−1,k] ≡

G ∧ ∃Wk−1[I0 ∧Hk ∧ TRLX
k−1,k]. Here TRLX

k−1,k is equal to
TRLX
k−2,k−1 ∧ T ∗rlxk−1,k. Formula G is falsified by sk and so is

conjoined with Hk to exclude this state. Then RemBadSt
removes sk from Cex and starts a new iteration.

G. Correctness of PC LoR

This subsection lists propositions proving correctness of
PC LoR.

Proposition 5: Let Hj , j = 1, . . . ,m be formulas derived
by PC LoR for m time frames where Hj → P . Then property
P holds for system ξ for at least m transitions.

Proposition 6: PC LoR is sound.
Proposition 7: PC LoR is complete.

VI. TWO IMPORTANT MODIFICATIONS OF PC LoR

In this section, we consider two modifications of the
PC LoR algorithm described in Section V. The first modi-
fication is to incorporate a “manual” relaxation that exploits
the semantics of the system. The second modification is to
combine LoR with the machinery of inductive clauses of IC3.
Sequential equivalence checking is a promising application of
the second modification.

A. Relaxation by an educated guess

In this subsection, we describe a modification of
PC LoR that starts building a boundary formula Hj by a
relaxation that is just a guess tailored to a particular class
of systems/properties. An example of such a relaxation is
given in Section II. The pseudo-code of modified PC LoR is
given in Figure 5. The only difference between the original
version shown in Fig. 2 and the modified one is in line 5
where function EducatGuessRlx is called instead of setting
Hj to 1. This function does the following. First it represents
the original transition relation Tj−1,j as T rlx

j−1,j ∧ Rj−1,j .
Here T rlx

j−1,j is the relaxed transition relation replacing Tj−1,j .
Then EducatGuessRlx calls a PQE solver to build a for-
mula Hj such that ∃Wj−1[I0 ∧Hj−1 ∧ TRLX

j−1,j ∧Rj−1,j] ≡
Hj ∧ ∃Wj−1[I0 ∧Hj−1 ∧ TRLX

j−1,j]. Here TRLX
j−1,j is equal to

TRLX
j−2,j−1 ∧ T rlx

j−1.

B. Combining LoR with machinery of inductive clauses

In this subsection, we describe an algorithm called
LoR IC (IC stands for Inductive Clauses) that combines LoR
and the machinery of inductive clauses introduced by IC3 [1].
Given a transition relation T , clause C is called inductive
with respect to formula F if F (S)∧C(S)∧T (S,X, Y, S′)→
C(S′) holds. Our interest in LoR IC is twofold. First, when

LoR IC (T, I, P) {
1 H0 := I;
2 j = 1;
3 while (true) {
4 T rlx

j−1,j := Tj−1,j ;
5 Hj := 1;
6* Cex := RemBadSt IC (Hj ,TRLX

j , P, j);
7 if (Cex 6= nil) return(No);
8 FinRlx (Hj ,TRLX

j)
9* ThirdCOcond IC (Hj ,Trlx

j);
10* Inv := FinTouchIC (Hj ,Trlx

j) ;
11 if (Inv) return(Yes);
12 j := j + 1; }}

Fig. 6. LoR IC procedure

computing a new boundary formula, PC LoR often has to
go far back to tighten boundary formulas computed earlier.
This tightening is done to make up for additional relaxation
of transition relations of previous time frames. The great
performance of IC3 suggests that tightening of boundary
formulas of previous time frames can be efficiently done by
adding inductive clauses. Second, IC3 builds an inductive
invariant by tightening property P with inductive clauses. This
may result in poor performance if an inductive invariant is
“far away” from P . Sequential equivalence checking is an
example of a PC problem where IC3 may perform poorly (see
Section II). LoR IC is meant to address this issue.

The pseudo-code of LoR IC is shown in Figure 6. The
lines where LoR IC is different from PC LoR are marked
with an asterisk. Consider how LoR IC builds formula Hj

after formulas H0, . . . ,Hj−1 satisfying the four CO conditions
have been generated. Similarly to PC LoR, LoR IC makes two
steps to guarantee that the second CO condition i.e. Hj → P
holds. In the first step, it makes sure that Hj−1 ∧T rlx

j−1,j → P
holds. However, in contrast to PC LoR, this is done by calling
procedure RemBadStIC generating inductive clauses. If there
is an Hj−1-state sj−1 that is one transition away from a
bad state, a clause C inductive with respect to Hj−1 is
generated. This clause is falsified by sj−1 and so is added
to Hj−1 to exclude this state. The second step is performed
like in PC LoR by calling procedure FinRlx . The latter relaxes
transition relation Tj−1,j and builds Hj as a set set of clauses
making up for this relaxation. This is where LoR IC is
different from IC3. In IC3, formula Hj is built by conjoining
the inductive clauses generated to exclude Hj−1-states with P .
Note that using these clauses when forming Hj is not actually
mandatory. The “why-not” argument given in [1] is that these
clauses are implied by Hj−1 ∧ Tj−1,j .

To satisfy the third CO condition, LoR IC calls function
ThirdCOcond IC . In contrast to ThirdCOcond of PC LoR,
ThirdCOcond IC does the job by generation of inductive
clauses. Suppose that one needs to eliminate an Hj−1-state
sj−1 from which a state sj falsifying Hj is reachable in one
transition. Then ThirdCOcond IC generates a clause inductive
with respect to Hj−1. This clause is falsified by sj−1 and
so is added to Hj−1 to exclude sj−1. To guarantee that the

third and fourth CO conditions hold for all formulas Hk,
k = 0, . . . , j built so far, LoR IC calls function FinTouchIC .
In contrast to FinTouch , FinTouchIC does the job via
inductive clauses.

Note that instead of initializing Hj to 1 (line 5 of
Fig. 6), one can call procedure EducatGuessRlx to apply
a transition relation relaxation tailored to a particular sys-
tem/property (see Subsection VI-A). We believe that the ver-
sion of LoR IC where EducatGuessRlx employs relaxation
described in Section II is a promising algorithm for sequential
equivalence checking. The idea here is as follows. First,
EducatGuessRlx generates formula Hj that is close to an
inductive invariant. Then some fine-tuning of Hj is done by
adding inductive clauses generated when computing boundary
formulas Hm, m > j.

VII. CONCLUSIONS

We introduced a new framework for Property Checking
(PC) based on a method called Logic Relaxation (LoR). The
appeal of PC by LoR is that an inductive invariant is the
result of comparison of the original and relaxed transition
systems. So the complexity of PC can be significantly reduced
if the relaxed system is close to the original one. A key part
of the LoR method is a technique called partial quantifier
elimination. So it is extremely important to keep improving
the performance of algorithms implementing this technique.

APPENDIX

Lemma 1: Let EQX
0 denote EQ(XN

0 , X
K
0). Let T0,1 =

TN
0,1 ∧ TK

0,1 ∧ EQX
0 be the transition relation specifying miter

M of two identical circuits N and K in terms of initial time
frame variables. Let the relaxed transition T rlx

0,1 for miter M be
equal to TN

0,1 ∧TK
0,1 i.e. T0,1 = EQX

0 ∧T rlx
0,1 . Let EQS

1 denote
EQ(SN

1 , S
K
1). Let sNj,1 denote j-th state variable of circuit N

of time frame 1. Then
a) I0 ∧ T0,1 → EQS

1

b) I0 ∧ T rlx
0,1 → (sNj,1 ≡ sKj,1) if the value of variable sNj,1

remains the same for every state reachable from an IN0 -
state in one transition.

c) ∃W0[I0 ∧ EQX
0 ∧ T rlx

0,1] ≡ EQS
1 ∧ ∃W0[I0 ∧ T rlx

0,1]

Proof:
Item a). Since N and K are identical and I0 implies EQS

1 ,
miter M reaches only states (sN ,sM) where sN = sM . This
means that I0 ∧ T0,1 → EQS

1 .
Item b). This item explains under what conditions some

clauses of EQX
0 are redundant without adding any clauses of

EQS
1 . Suppose that the assumption of item b) holds. Then the

fact that T rlx
0,1 does not impose restrictions on XN and XK

does not matter as far as variables sNj,1 and sKj,1 are concerned.
Indeed, the value of those variables remains the same for all
assignments to XN and XK . This means that I0 ∧ T rlx

0,1 →
(sNj,1 ≡ sKj,1). So when taking formula EQX

0 out of the scope
of quantifiers, adding all the clauses of EQS

1 is not necessary.
(Recall that given sets of Boolean variables A = (a1, . . . , ak)

and B = (b1, . . . , bk), EQ(A,B) = (a1 ≡ b1) ∧ · · · ∧ (ak ≡
bk)). Namely, one does not need to add the clauses of EQS

1

specifying sNj,1 ≡ sKj,1.
Item c). Assume the contrary. Taking into account that

T0,1 = EQX
0 ∧ T rlx

0,1 , this means that ∃W0[I0 ∧ T0,1] 6≡
EQS

1 ∧∃W0[I0 ∧ T rlx
0,1]. Let Left part and Right part specify

the left and right parts of the inequality above respectively.
Consider the two alternatives.
Left part = 1, Right part = 0. Then there is an assignment
t to W0 ∪ S1 that satisfies I0 ∧ T0,1 and hence I0 ∧ T rlx

0,1 .
Since Right part = 0, then EQS

1 (t) = 0, which means that
I0 ∧ T0,1 6→ EQS

1 . So we have a contradiction.
Left part = 0, Right part = 1 for an assignment s1 to S1.
Then there is an assignment t to W0∪S1 obtained by extending
s1 that satisfies EQS

1 ∧ I0 ∧ T rlx
0,1 . Since Left part = 0,

then t falsifies I0 ∧ T0,1. This means that t falsifies EQX
0

i.e. xN
0 6= xK

0 where xN
0 and xK

0 are assignments to XN
0

and XK
0 from t. Let t∗ be the assignment obtained from t by

replacing assignment to XK
0 ∪ Y K

0 specifying the execution
trace for xK

0 with that specifying the execution trace for input
xN
0 . It is not hard to see that t∗ has the same assignment to S1

as t but satisfies I0 ∧ T0,1. So Left part = 1 for assignment
s1 to S1 and we have a contradiction.

Proposition 1: Let Hj be a formula (depending only on
variables of j-th cut) such that ∃Wj−1[I0 ∧ Tj] ≡ Hj ∧
∃Wj−1[I0 ∧ Trlx

j]. Then Hj is a boundary formula for the
pair (ξ, ξrlxj).

Proof: Assume the contrary i.e. Hj is not a boundary
formula. Definition 5 suggests that then one of the two cases
below takes place.

Case 1: There is a valid trace t=(s0,. . . ,sj) of ξrlxj such
that sj is not reachable in ξ in j transitions and Hj(sj) = 1.
Since t is a valid trace in ξrlx and Hj(sj) = 1, formula Hj ∧
∃Wj−1[I0 ∧ Trlx

j] evaluates to 1 under assignment sj to Sj .
Then ∃Wj−1[I0 ∧ Tj] evaluates to 1 under sj as well, which
means that sj is reachable in ξ. So we have a contradiction.

Case 2: There is a valid trace t=(s0,. . . ,sj) of ξ and yet
Hj(sj) = 0. Then formula ∃Wj−1[I0 ∧ Tj] evaluates to 1 un-
der assignment sj . On the other hand, the fact that Hj(sj) = 0
means that ∃Wj−1[I0 ∧ Tj] 6= Hj ∧ ∃Wj−1[I0 ∧ Trlx

j] under
assignment sj . So we have a contradiction.

Proposition 2: Let Tj−1,j = T rlx
j−1,j ∧ Rj−1,j . Let Hj be

a formula such that ∃Wj−1[I0 ∧ Trlx
j ∧Rj−1,j] ≡ Hj ∧

∃Wj−1[I0 ∧ Trlx
j]. Then Hj is a boundary formula for the

pair (ξ, ξrlxj).
Proof: By definition, Tj = Trlx

j ∧ Rj−1,j . Then the
correctness of the proposition follows from Proposition 1.

Proposition 3: ∃Wj−1[I0 ∧ Tj] ≡ ∃Wj−1[Hj∧ TRLX
j].

Proof: Let us prove the proposition by induction. Propo-
sition 1 entails that the proposition at hand holds for
j = 1. Let us show that the correctness of the propo-
sition for j > 1, implies that it holds for j + 1. Let
φ denote ∃Wj [I0 ∧ Tj+1]. Formula φ can be rewritten as
∃Wj∃Wj−1[I0 ∧ Tj ∧ Tj,j+1]. Taking into account that Tj,j+1

does not depend on variables of Wj−1, formula φ can
represented as ∃Wj [Tj,j+1 ∧ ∃Wj−1[I0 ∧ Tj]]. Using the
inductive hypothesis this formula can be transformed into
∃Wj [Tj,j+1 ∧ ∃Wj−1[Hj ∧ TRLX

j]]. Taking into account that
Tj,j+1 = T rlx

j,j+1 ∧ Rj,j+1, formula φ can be represented as
∃Wj [Hj ∧ TRLX

j ∧ T rlx
j,j+1 ∧Rj,j+1]. Since Hj+1 is obtained

by taking Rj,j+1 out of the scope of quantifiers, formula
φ can be rewritten as Hj+1 ∧ ∃Wj [Hj ∧ TRLX

j ∧ T rlx
j,j+1].

So the original formula φ is logically equivalent to formula
∃Wj [Hj+1 ∧ TRLX

j+1].

Proposition 4: Let Tj−1,j = T rlx
j−1,j ∧ Rj−1,j , j > 0.

Let formulas H0, . . . ,Hj be built consecutively as fol-
lows. Formula H0 equals I and formula Hj , j > 0 is
built to satisfy ∃Wj−1[Hj−1 ∧ TRLX

j ∧Rj−1,j] ≡ Hj ∧
∃Wj−1[Hj−1 ∧ TRLX

j]. Then H0, . . . ,Hj are boundary for-
mulas.

Proof: The fact that H0 is a boundary formula follows from
Definition 5. Let us show that formulas H1, . . . ,Hj are also
boundary by induction. Assume that formulas H1, . . . ,Hj−1
are boundary and show that then Hj is a boundary formula as
well.

Proposition 3 entails that formula ∃Wj−2[Hj−1 ∧ TRLX
j−1]

can be replaced with ∃Wj−2[I0 ∧ Tj−1]. So
∃Wj−1[Hj−1 ∧ TRLX

j ∧Rj−1,j] can be rewritten
as ∃Wj−1[∃Wj−2[Hj−1 ∧ TRLX

j−1 ∧ T rlx
j−1,j ∧Rj−1,j]],

then as ∃Wj−1[∃Wj−2[I0 ∧ Tj−1 ∧ T rlx
j−1,j ∧Rj−1,j]]

and finally as ∃Wj−1[I0 ∧ Tj]. Similarly formula
Hj ∧ ∃Wj−1[Hj−1 ∧ TRLX

j] can be rewritten as
Hj ∧ ∃Wj−1[∃Wj−2[Hj−1 ∧ TRLX

j−1 ∧ T rlx
j−1,j]], then

as Hj ∧ ∃Wj−1[∃Wj−2[I0 ∧ Tj−1 ∧ T rlx
j−1,j]] and

finally as Hj ∧ ∃Wj−1[I0 ∧ Trlx
j]. So Hj satisfies

∃Wj−1[I0 ∧ Tj] ≡ Hj ∧ ∃Wj−1[I0 ∧ Trlx
j]. Then from

Proposition 1 it follows that Hj is a boundary formula.
Proposition 5: Let Hj , j = 1, . . . ,m be formulas derived

by PC LoR for m time frames where Hj → P . Then property
P holds for system ξ for at least m transitions.

Proof: As we mentioned in Subsection V-C, I0∧Tj → Hj

holds. Then Hj → P entails I0 ∧ Tj → P .
Proposition 6: PC LoR is sound.
Proof: Consider the two obvious alternatives.
The answer is “property fails”. This answer is returned by

PC LoR if there is an assignment t satisfying I0∧Hj ∧TRLX
j

and P . From Proposition 3 it follows, that then there is an
assignment t∗ satisfying I0 ∧ Tj and P . Hence there is a
counterexample of length j + 1.

The answer is “property holds”. This answer is returned
when there appear a formula Hj−1 such that Hj → Hj−1 and
Hj−1 ∧ T rlx

j−1,j → Hj hold. Since Hj−1 implies Hj , then
Hj−1 ≡ Hj . Since Tj−1,j implies T rlx

j−1,j , Hj−1 ∧ Tj−1,j →
Hj holds as well and Hj−1 is an inductive invariant.

Proposition 7: PC LoR is complete.
Proof: Consider the following alternatives.
Property P fails. Let j be the first time frame where a

bad state sj is reachable by ξ. Let Hj be a boundary formula

generated for j-th time frame. Since Hj is implied by I0∧Tj ,
PC LoR will not be able to make Hj imply P . Then procedure
RemBadSt will terminate reporting that P failed.

Property P holds. Let H0, . . . ,Hm, be a sequence of
boundary formulas built by PC LoR . Let Hj−1 → Hj hold
for every j, 0 < j ≤ m. If m > 2|S| where S is the set
of state variables, there has to be a formula Hj−1 that is
logically equivalent to Hj . Since Hj−1 ∧T rlx

j−1,j → Hj holds,
PC LoR will terminate reporting that P holds.

REFERENCES

[1] A. R. Bradley. Sat-based model checking without unrolling. In VMCAI,
pages 70–87, 2011.

[2] E. Goldberg. Boundary points and resolution. In Proc. of SAT, pages
147–160. Springer-Verlag, 2009.

[3] E. Goldberg. Equivalence checking and simulation by computing range
reduction. Technical Report arXiv:1507.02297 [cs.LO], 2015.

[4] E. Goldberg. Equivalence checking by logic relaxation. Technical Report
arXiv:1511.01368 [cs.LO], 2015.

[5] E. Goldberg and P. Manolios. Quantifier elimination by dependency
sequents. In FMCAD-12, pages 34–44, 2012.

[6] E. Goldberg and P. Manolios. Quantifier elimination via clause redun-
dancy. In FMCAD-13, pages 85–92, 2013.

[7] E. Goldberg and P. Manolios. Bug hunting by computing range
reduction. Technical Report arXiv:1408.7039 [cs.LO], 2014.

[8] E. Goldberg and P. Manolios. Partial quantifier elimination. In Proc. of
HVC-14, pages 148–164. Springer-Verlag, 2014.

[9] E. Goldberg and P. Manolios. Quantifier elimination by dependency
sequents. Formal Methods in System Design, 45(2):111–143, 2014.

[10] K. L. Mcmillan. Interpolation and sat-based model checking. In CAV-03,
pages 1–13. Springer, 2003.

	I Introduction
	I-A Motivation
	I-B Problem formulation
	I-C Property checking by logic relaxation
	I-D Boundary formulas
	I-E Transition relation relaxation
	I-F A high-level view of PC_LoR
	I-G Merits of PC by LoR
	I-H Contributions and structure of the paper

	II An Example
	II-A Example description
	II-B Solving example by interpolation and IC3
	II-C Solving example by LoR

	III Basic Definitions
	IV Boundary Formulas
	IV-A Definition of boundary formulas and their relation to PQE
	IV-B Building boundary formulas inductively

	V An Algorithm Of PC By LoR
	V-A Stuttering
	V-B Four properties to guarantee convergence
	V-C Providing first and second CO conditions
	V-D Providing third and fourth CO conditions
	V-E Pseudo-code of PC_LoR
	V-F Description of RemBadSt procedure
	V-G Correctness of PC_LoR

	VI Two Important Modifications Of PC_LoR
	VI-A Relaxation by an educated guess
	VI-B Combining LoR with machinery of inductive clauses

	VII Conclusions
	Appendix
	References

