
ar
X

iv
:2

00
3.

09
66

7v
10

  [
cs

.L
O

] 
 2

0 
M

ay
 2

02
2

Partial Quantifier Elimination By Certificate

Clauses

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We study partial quantifier elimination (PQE) for proposi-
tional CNF formulas. PQE is a generalization of quantifier elimination
where one can limit the set of clauses taken out of the scope of quanti-
fiers to a small subset of target clauses. The appeal of PQE is twofold.
First, PQE can be dramatically simpler than full quantifier elimination.
Second, PQE provides a language for performing incremental computa-
tions. Many verification problems (e.g. equivalence checking and model
checking) are inherently incremental and so can be solved in terms of
PQE. Our approach is based on deriving clauses depending only on un-
quantified variables that make the target clauses redundant. Proving re-
dundancy of a target clause is done by construction of a “certificate”
clause implying the former. We describe a PQE algorithm called START

that employs the approach above. To evaluate START , we apply it to
invariant generation for a sequential circuit N . The goal of invariant gen-
eration is to find an unwanted invariant of N proving unreachability of a
state that is supposed to be reachable. If N has an unwanted invariant,
it is buggy. Our experiments with FIFO buffers and HWMCC-13 bench-
marks suggest that START can be used for detecting bugs that are hard
to find by existing methods.

1 Introduction

In this paper, we consider the following problem. Let F1(X,Y ), F2(X,Y ) be
propositional formulas in conjunctive normal form (CNF)1 where X,Y are sets
of variables. Given ∃X [F1∧F2], find a quantifier-free formula F ∗

1 (Y ) such that
∃X [F1 ∧ F2] ≡ F ∗

1 ∧ ∃X [F2]. In contrast to quantifier elimination (QE), only a
part of the formula gets “unquantified” here. So, this problem is called partial
QE (PQE) [1,2]. We will refer to F ∗

1 as a solution to PQE. Like SAT, PQE is a
way to cope with the complexity of QE. But in contrast to SAT that is a special
case of QE (where all variables are quantified), PQE generalizes QE. The latter
is just a special case of PQE where F2=∅ and the entire formula is unquantified.
Interpolation [3,4] is also a special case of PQE [5].

The appeal of PQE is twofold. First, it can be much more efficient than
QE if F1 is a small part of the formula. Second, PQE provides a language for

1 Every formula is a propositional CNF formula unless otherwise stated. Given a CNF
formula F represented as the conjunction of clauses C1∧· · ·∧Ck, we will also consider
F as the set of clauses {C1, . . . , Ck}.

http://arxiv.org/abs/2003.09667v10


performing incremental computing. So, PQE facilitates the development of new
approaches to various verification problems like SAT [6,1], equivalence check-
ing [7], model checking [8] and so on.

We solve PQE by redundancy based reasoning. Its introduction is motivated
by the following observations. First, F1 ∧ F2 ⇒ F ∗

1 and F ∗

1 ∧ ∃X [F1 ∧ F2] ≡
F ∗

1 ∧∃X [F2]. Thus, a formula F ∗

1 implied by F1 ∧F2 becomes a solution as soon
as F ∗

1 makes the clauses of F1 redundant. Second, one can prove clauses of F1

redundant2 one by one. The redundancy of a clause C ∈ F1 can be proved by
using (F1 ∪ F2) \ {C} to derive a clause K implying C. We refer to K as a
certificate clause. Importantly, one can produce K even if (F1 ∪ F2) \ {C} does
not imply C. This becomes possible if one allows generation of clauses preserving
equisatisfiability rather than equivalence.

We implement redundancy based reasoning in a PQE algorithm called START ,
an abbreviation of Single TARgeT. At any given moment, START proves redun-
dancy of only one clause (hence the name “single target”). START builds the
certificate K above by resolving “local” certificate clauses implying the clause
C in subspaces. Proving redundancy of C in subspaces where F1 ∧ F2 is unsat-
isfiable, in general, requires adding new clauses to F1 ∧ F2. The added clauses
depending only on unquantified variables form a solution F ∗

1 to the PQE prob-
lem. START is somewhat similar to a SAT-solver with conflict driven learning.
A major difference here is that START backtracks as soon as the target clause
is proved redundant in the current subspace (even if no conflict occurred).

The main body of this paper is structured as follows. (Some additional in-
formation is provided in the appendix.) Section 3 shows that interpolation is a
special case of PQE. In Section 4, to demonstrate the versatility of PQE, we re-
call reductions of a few well known problems to PQE. A description of START
is given in Sections 6-8. Ideally, we would like to apply START to a known
problem e.g. one listed in Section 4 and compare it with existing tools. How-
ever, PQE-solving is still in its infancy and must go through many improvements
before it matures. (PQE is much more complex than, say, SAT. As mentioned
above, SAT is a special case of QE and QE is a special case of PQE.) So instead,
in Sections 9-10, we apply START to the problem of invariant generation that
has no general solution yet. We use invariant generation for bug detection as
described below. Our objective here is to provide a “proof of concept” for PQE
i.e. to give some experimental evidence that PQE is an important direction for
research.

Let N be a sequential circuit to verify. As far as reachable states of N are
concerned, one can have bugs of two kinds. A bug of the first kind occurs if a
bad state is reachable in N . A bug of the second kind takes place if a required
good state (i.e. one that is supposed to be reachable) is unreachable in N . One
excludes bugs of the first kind by checking that a set of desired invariants holds.
The challenge here is that these invariants may be hard to prove. Bugs of the
second kind are currently identified either by testing or by checking if N has an

2 By ”proving a clause C redundant”, we mean showing that C is redundant after
adding (if necessary) some new clauses.



unwanted invariant. An invariant P of N is unwanted if a required good state
falsifies P and so is unreachable in N . If P holds for N , the latter has a bug
of the second kind. The unwanted invariants to check are currently generated
manually i.e. are guessed. So, one can easily overlook a bug of the second kind.
The main challenge here is to find an unwanted invariant that holds rather than
the hardness of proving it true. In Section 9, we show that PQE can be used
to automatically generate invariants to check for being unwanted. In Section 10,
we use START to detect a bug of the second kind in a FIFO buffer that is hard
to find by existing methods. In Appendix F, we present results showing that
START is efficient enough to generate invariants of HWMCC-13 benchmarks.
We also give evidence that PQE can be dramatically more efficient than QE.
Finally, Section 11 explains how to decide if an invariant is unwanted via test
generation.

2 Basic Definitions

We assume that every formula is in CNF unless otherwise stated. In this section,
when we say “formula” without mentioning quantifiers, we mean “a quantifier-
free formula”.

Definition 1. Let F be a formula. Then Vars(F ) denotes the set of variables
of F and Vars(∃X[F ]) denotes Vars(F )\X.

Definition 2. Let V be a set of variables. An assignment ~q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in ~q as
Vars(~q). We will refer to ~q as a full assignment to V if Vars(~q) = V . We
will denote as ~q ⊆ ~r the fact that a) Vars(~q) ⊆ Vars(~r) and b) every variable of
Vars(~q) has the same value in ~q and ~r.

Definition 3. Let C be a clause (i.e. a disjunction of literals). Let H be a
formula that may have quantifiers, and ~q be an assignment to Vars(H). If C

is satisfied by ~q, then C~q ≡ 1. Otherwise, C~q is the clause obtained from C by
removing all literals falsified by ~q. Denote by H~q the formula obtained from H

by removing the clauses satisfied by ~q and replacing every clause C unsatisfied
by ~q with C~q.

Definition 4. Given a formula ∃X [F (X,Y )], a clause C of F is called a quan-

tified clause if Vars(C) ∩ X 6= ∅. If Vars(C) ∩X = ∅, the clause C depends
only on free i.e. unquantified variables of F and is called a free clause.

Definition 5. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if G~q = H~q for all full assign-
ments ~q to Vars(G) ∪ Vars(H).

Definition 6. Let F be a formula and G ⊆ F and G 6= ∅. Formula G is re-

dundant in ∃X[F ] if ∃X [F ] ≡ ∃X [F \G].



Definition 7. Given a formula ∃X [F1(X,Y )∧F2(X,Y )], the Partial Quanti-

fier Elimination (PQE) problem is to find F ∗

1 (Y ) such that ∃X[F1 ∧ F2] ≡
F ∗

1 ∧∃X[F2]. (So, PQE takes F1 out of the scope of quantifiers.) F ∗

1 is called a
solution to PQE. The case of PQE where F2 = ∅ is called Quantifier Elimi-

nation (QE).

Remark 1. Let C be a clause of a solution F ∗

1 to the PQE problem above. If F2

implies C, then F ∗

1 \ {C} is a solution too.

3 PQE And Interpolation

In this section, we recall the observation of [5] that interpolation is a special
case of PQE. Let A(X,Y ) ∧ B(Y, Z) be an unsatisfiable formula. Let I(Y ) be
a formula such that A ∧ B ≡ I ∧ B and A ⇒ I. Then I is called an inter-
polant [3]. Now, let us show that interpolation can be described in terms of PQE.
Consider the formula ∃W [A ∧B] where A and B are the formulas above and
W = X ∪ Z. Let A∗(Y ) be obtained by taking A out of the scope of quantifiers
i.e. ∃W [A ∧B] ≡ A∗∧∃W [B]. Since A∧B is unsatisfiable, A∗∧B is unsatisfiable
too. So, A ∧B ≡ A∗ ∧B. If A ⇒ A∗, then A∗ is an interpolant.

The general case of PQE that takes A out of ∃W [A ∧B] is different from
the instance above in three aspects. First, one does not assume that A ∧ B is
unsatisfiable. Second, one does not assume that Vars(B) ⊂ Vars(A ∧B). In
other words, in general, PQE does not remove any variables from the original
formula. Third, a solution A∗ is implied by A ∧ B rather than by A alone.
Summarizing, one can say that interpolation is a special case of PQE.

4 Examples Of Problems That Reduce To PQE

In this section, we give a few examples of how a problem can be reduced to PQE.
In Section 9, we show how one can use PQE to generate invariants.

4.1 SAT-solving by PQE [1]

Consider the SAT problem of checking if formula ∃X [F (X)] is true. One can
view traditional SAT-solving as proving all clauses redundant in ∃X [F ] e.g. by
finding a satisfying assignment or by deriving an empty clause and adding it
to F . The reduction to PQE below facilitates developing an incremental SAT-
algorithm that needs to prove redundancy only for a fraction of clauses.

Let ~x be a full assignment to X and H denote the clauses of F falsified by ~x.
Checking the satisfiability of F reduces to takingH out of the scope of quantifiers
i.e. to finding H∗ such that ∃X [F ] ≡ H∗ ∧ ∃X [F \H ]. Since all variables of F
are quantified in ∃X [F ], the formula H∗ is a Boolean constant 0 or 1. If H∗=0,
F is unsatisfiable. If H∗=1, then F is satisfiable because F \H is satisfied by ~x.



4.2 Equivalence checking by PQE [7]

Let N ′(X ′, Y ′, z′) and N ′′(X ′′, Y ′′, z′′) be single-output combinational circuits
to check for equivalence. Here X∗, Y ∗ are the sets of input and internal variables
and z∗ is the output variable of N∗. The reduction to PQE below facilitates
the design of a complete algorithm able to exploit the similarity of N ′ and
N ′′. This is important because the current equivalence checkers exploiting such
similarity are incomplete. If N ′ and N ′′ are not “similar enough”, e.g. they
have no functionally equivalent internal points, the equivalence checker invokes
a complete (but inefficient) procedure that ignores similarity of N ′ and N ′′.

Let eq(X ′, X ′′) specify a formula such that eq(~x ′, ~x ′′) = 1 iff ~x ′ = ~x ′′

where ~x ′, ~x ′′ are full assignments to X ′ and X ′′. Let formulas G′(X ′, Y ′, z′)
and G′′(X ′′, Y ′′, z′′) specify N ′ and N ′′ respectively. (As usual, we assume that
a formula G specifying a circuit N is obtained by Tseitin transformations [9].)
Let h(z′, z′′) be a formula obtained by taking eq out of ∃W [eq ∧G′ ∧G′′] where
W = X ′ ∪ Y ′ ∪ X ′′ ∪ Y ′′. That is ∃W [eq∧G′∧G′′] ≡ h ∧ ∃W [G′ ∧G′′]. If
h ⇒ (z′ ≡ z′′), then N ′ and N ′′ are equivalent. Otherwise, N ′ and N ′′ are
inequivalent, unless they are identical constants i.e. z′≡z′′≡ 1 or z′≡ z′′≡0. It
is formally proved in [7] that the more similar N ′, N ′′ are (where similarity is
defined in the most general sense), the easier taking eq out of ∃W [eq ∧G′ ∧G′′]
becomes.

4.3 Computing reachability diameter by PQE [8]

One can use PQE to find the reachability diameter of a transition system without
computing the set of all reachable states. So, one can prove an invariant by PQE
without generating a stronger invariant that is inductive.

Let formulas T (Sj, Sj+1) and I(S0) specify the transition relation and initial
states of a transition system ξ. Here Sj denotes the set of state variables of j-th
time frame. For the sake of simplicity, we assume that ξ is able to stutter i.e.
T (~s, ~s) = 1, for every state ~s. (Then the sets of states reachable in m transitions
and at most m transitions are identical. If T does not have the stuttering feature
it can be easily introduced.)

Let Diam(I, T ) denote the reachability diameter for initial states I and tran-
sition relation T . That is every state of the system ξ can be reached in at
most Diam(I, T ) transitions. Given a number m, one can use PQE to decide if
Diam(I, T ) < m. This is done by checking if I1 is redundant in
∃Sm−1[I0 ∧ I1 ∧ Tm]. Here I0 and I1 are initial states in terms of variables of
S0 and S1 respectively, Sm−1 = S0 ∪ · · · ∪ Sm−1 and Tm = T (S0, S1) ∧ · · · ∧
T (Sm−1, Sm). If I1 is redundant, then Diam(I, T ) < m holds.

The idea above can be used, for instance, to prove an invariant P true in an
IC3-like manner (i.e. by constraining P ) but without turning P into an inductive
invariant. To prove P true, it suffices to constrain P to a formula H such that
a) I ⇒ H ⇒ P , b) Diam(H,T ) < m and c) no state falsifying P can be reached
from a state satisfying H in m− 1 transitions. The conditions b) and c) can be
verified by PQE and bounded model checking [10] respectively. In the special



case of H meeting the three conditions above for m = 1, H is an inductive
invariant.

5 Extended Implication And Blocked Clauses

One can introduce the notion of implication via that of redundancy. Namely,
F ⇒ G, iff G is redundant in F ∧G i.e. iff F ∧G ≡ F . We use this idea to extend
the notion of implication via redundancy in a quantified formula.

Definition 8. Let F (X,Y ) and G(X,Y ) be formulas and G be redundant in
∃X [F ∧G] i.e. ∃X [F ∧G] ≡ ∃X [F ]. Then (F ∧G)~y and F~y are equisatisfi-
able for every full assignment ~y to Y . So, we will say that F es-implies G

in ∃X [F ∧G]. (Here “es” stands for “equisatisfiability”.) A clause C is called
an es-clause in ∃X [F ∧ C] if F es-implies C in ∃X [F ∧ C]. One can view es-
implication as a weaker version of regular implication.

Note that if F implies G, then F also es-implies G in ∃X [F ∧G]. However,
the converse is not true. We will say that F es-implies G without mentioning
the formula ∃X [F ∧G] if the latter is clear from the context.

Definition 9. Let clauses C′,C′′ have opposite literals of exactly one variable
w ∈Vars(C′)∩Vars(C′′). Then C′,C′′ are called resolvable on w. The clause
C having all literals of C′, C′′ but those of w is called the resolvent of C′,C′′.
The clause C is said to be obtained by resolution on w.

Clauses C′, C′′ having opposite literals of more than one variable are consid-
ered unresolvable to avoid producing a tautologous resolvent C (i.e. C ≡ 1).

Definition 10. Given a formula ∃X [F (X,Y )], let C be a clause of F . Let G be
the set of clauses of F resolvable with C on a variable w ∈ X. Let w = b satisfy
C, where b ∈ {0, 1}. We will call C blocked in ∃X [F ] at w if G is redundant in
∃X [F ] in subspace w = b (i.e. if Gw=b is redundant in ∃X [Fw=b]).

Remark 2. Note that if G = ∅ or the clauses of G are removed from ∃X [F ] as
redundant, C meets the original definition of a blocked clause [11]. Definition 10
allows to declare C blocked without removing clauses of G if a proof of their
redundancy in ∃X [F ] is available. This feature is used by our PQE-solver START
(see Remark 4 of Section 8).

Proposition 1. Given a formula ∃X [F (X,Y )], let C be a clause blocked in
∃X [F ] at w ∈ X. Then C is redundant in ∃X [F ] i.e. ∃X [F ]≡ ∃X [F \ {C}]. So,
C is es-implied by F \ {C} in ∃X [F ].

Proofs of the propositions are given in Appendix A.



6 A Simple Example Of How START Operates

In this paper, we introduce a PQE algorithm called START (an abbreviation of
Single TARgeT). In this section, we give a taste of START by a simple example.
Figure 1 describes how START operates on the problem shown in lines 1-6.
(Figure 1 and Figures 6,7,8 of the appendix are built using a version of START
generating execution traces. A Linux binary of this version can be downloaded
from [12].)

1 Find F ∗

1 (Y ) such that
2 ∃X[F1∧F2] ≡F ∗

1 ∧∃X[F2]
3 Y = {y1}, X = {x2, x3}
4 F1 = {C1}, C1 = x2 ∨ x3

5 F2={C2, C3}, C2=y1∨x2,
6 C3 = y1 ∨ x3

7 pick. C1 ∈ F1 to prove red.

8 — call PrvRed—
9 decision: y1 = 0 at level 1
10 BCP :(C2 : x2=1)(C3 : x3=0)

11 LEAF: conflict at level 1
12 C1=x2∨x3 is falsified
13 gen. particip. cert. C4 = y1
14 R1 = Res(C1, C2, x2),
15 C4 = Res(R1, C3, x3)
16 F1 = F1 ∪ {C4}

17 backtracking to level 0
18 BCP : (C4 :y1 = 1)

19 LEAF: C1 is blocked at x2

20 (since C2 is sat. by y1 = 1)
21 K1=y

1
∨ x2 is the init. cert.

22 K2=x2 is the final cert.
23 K2=Res(K1,C4,y1)
24 K1,K2 are witness certs.
25 not added to F1∧F2

26 — exit PrvRed—

27 K2 is a global certif.
28 F1 := F1 \ {C1}
29 Sol. F ∗

1 = F1 = {C4}

Fig. 1: START , an ex-
ample of operation

First, START picks C1, the only quan-
tified clause of F1. We will refer to C1 as
the target clause. Then START invokes a
procedure called PrvRed to prove C1 redun-
dant (lines 8-26). The algorithm of PrvRed is
somewhat similar to that of a SAT-solver [13].
PrvRed makes decision assignments and runs
BCP (Boolean Constraint Propagation). Be-
sides, PrvRed uses the notion of a decision
level that consists of a decision assignment
and implied assignments derived by BCP. (The
decision level number 0 is an exception. It has
only implied assignments.) On the other hand,
there are a few important differences. In par-
ticular, PrvRed has a richer set of backtracking
conditions, a conflict being just one of them.

PrvRed starts the decision level number 1
by making assignment y1 = 0. Then it runs
BCP to derive assignments x2 = 1 and x3 = 0
from clauses C2 and C3 that became unit (i.e.
have only one unassigned variable). At this
point, a conflict occurs since C1 is falsified
(lines 11-16). Then PrvRed generates conflict
clause C4 = y1. It is built like a regular conflict
clause [13]. Namely, C4 is obtained by resolving
C1 with C2 and C3 to eliminate the variables
whose values were derived by BCP at decision
level 1. The clause C4 certifies that C1 is re-
dundant in ∃X [F1 ∧ F2] in subspace y1 = 0.
We call a clause like C4 a certificate. Note
that C1 becomes redundant only after adding
C4 to the formula, because C1 itself is involved
in the derivation of C4. We will refer to the cer-
tificates one has to add to the formula as par-
ticipant certificates. The participant certifi-

cates depending only on free variables form a solution to the PQE problem.
After generating C4, like a SAT-solver, PrvRed backtracks to the smallest

decision level where C4 is unit (i.e. level 0) and derives the assignment y1 =1.



Then the target C1 is blocked at variable x2 (lines 19-25). The reason is that
C2, the only clause resolvable with C1 on x2, is satisfied by y1=1. At this point,
PrvRed generates the clause K1 = y1∨ x2. It implies C1 in subspace y1 = 1,
thus certifying its redundancy there. (The construction of K1 is explained in
Example 1 of Subsection 7.3. Importantly, the target C1 is not used in generation
of K1.) By resolvingK1 and C4 = y1, PrvRed builds the final certificate K2 = x2

for the decision level 0. PrvRed derives K2 from K1 like a SAT-solver derives a
conflict clause from a clause falsified at a conflict level. That is K2 is built by
resolving out variables of K1 assigned by values derived at the current decision
level. In our case, it is the variable y1. Since K1 andK2 are derived without using
the target clause C1, one does not have to add them to the formula. They just
“witness” the redundancy of C1. We will refer to them as witness certificates.

K2 implies C1 in the entire space and thus is a global certificate. So, START
removes C1 from F1 (line 28). Since now F1 does not have quantified clauses,
START terminates. It returns the current F1 = {C4} as a solution F ∗

1 (Y ) to the
PQE problem. That is ∃X [C1 ∧ F2] ≡ C4 ∧ ∃X [F2].

7 Description Of START

In this section, we describe START in more detail. A proof of correctness of
START is given in Appendix E. For the sake of simplicity, in the current version
of START , the witness certificates are not added to the formula and so are not
reused3.

7.1 The main loop of START

START (F1, F2, Y ){
1 while (true) {
2 Ctrg := PickQntCls(F1)
3 if (Ctrg = nil) {
4 F ∗

1 := F1

5 return(F ∗

1 )}
6 ~q := ∅
7 K :=PrvRed(F1∧F2,Ctrg ,Y,~q)
8 if (EmptyCls(K)) return(K)
9 F1 := F1\ {Ctrg}}}

Fig. 2: The main loop

The main loop of START is shown in Fig. 2.
START accepts formulas F1(X,Y ), F2(X,Y )
and set Y and outputs formula F ∗

1 (Y ) such that
∃X [F1 ∧ F2] ≡ F ∗

1 ∧ ∃X [F2]. The loop begins
with picking a quantified clause Ctrg ∈ F1 that
is the target clause to be proved redundant (line
2). If F1 has no quantified clauses, it is the so-
lution F ∗

1 (Y ) returned by START (lines 3-5).
Otherwise, START initializes the assignment ~q
to X ∪Y and invokes a procedure called PrvRed
to prove Ctrg redundant (lines 6-7). PrvRed re-
turns a clause K implying Ctrg and thus certify-
ing its redundancy. If K is an empty clause (i.e.
has no literals), F is unsatisfiable. Then PrvRed

returns K as a solution to the PQE problem (line 8). Otherwise, K consists of
(some) literals of Ctrg . Besides, K is redundant in ∃X [K ∧ (F1 ∪ F2 \ {Ctrg})].

3 In practice, witness certificates are derived in subspaces where the formula is satisfi-
able. So, reusing them should boost the pruning power of START in those subspaces.



So, Ctrg is redundant in ∃X [Ctrg ∧ (F1 ∪ F2 \ {Ctrg})] and START removes it
from F1 (line 9). In the process of deriving the certificate K above, PrvRed may
add participant certificates to F1. If an added certificate clause K ′ is quantified,
PrvRed will be called at a later iteration of the main loop to proveK ′ redundant.

7.2 Description of PrvRed

The pseudo-code of PrvRed is shown in Fig 3. Let F denote F1 ∧ F2. The
objective of PrvRed is to prove the current target clause Ctrg redundant in
∃X [F ] in the subspace specified by an assignment ~q to X ∪ Y . The reason
why one needs ~q is that PrvRed can be called recursively in subspaces to prove
redundancy of some “local” target clauses (Section 8).

First, in line 1, PrvRed stores the initial value of ~q. (It is used in line 10 to
limit the backtracking of PrvRed .) Besides, PrvRed initializes the assignment
queue Q. The main work is done in a loop similar to that of a SAT-solver [13].
The operation of PrvRed in this loop is partitioned into two parts separated by
the dotted line.

// F denotes F1 ∧ F2

//
PrvRed(F,Ctrg ,Y,~q){
1 ~qinit := ~q; Q = ∅
2 while (true) {
3 if (Q = ∅) {
4 (v, b) :=MakeDec(F,Y,Ctrg)
5 UpdQueue(Q,v, b) }
6 Kbct :=BCP(Q,~q, F,Y,Ctrg)
7 if (Kbct = nil) continue

−−−−−
8 K :=Lrn(F, ~q,Kbct )
9 if (Particip(K)) F1 :=F1∪{K}
10 Backtrack (~qinit , ~q,K)
11 if (~q = ~qinit ) return(K)
12 UpdQueue(Q, ~q,K)}}

Fig. 3: The PrvRed procedure

The first part (lines 3-7) starts with
checking if the assignment queue Q is empty.
If so, a decision assignment v = b is picked
and added to Q (lines 4-5). Here v∈(X ∪Y )
and b ∈ {0, 1}. The variables of Y are the
first to be assigned by PrvRed4. So v∈X ,
only if all variables of Y are assigned. If
v ∈ Vars(Ctrg ), then v = b is picked so as to
falsify the corresponding literal of Ctrg . (Ctrg

is obviously redundant in subspaces where it
is satisfied.)

Then PrvRed calls the BCP procedure.
If BCP identifies a backtracking condition,
it returns a certificate clause Kbct implying
Ctrg in the current subspace. (Here, “bct”
stands for “backtracking” because Kbct is the
reason for backtracking.) After BCP, PrvRed
goes to the second part of the loop where the
actual backtracking is done. If no backtrack-
ing condition is met, a new iteration begins.

The certificate Kbct returned by BCP depends on the backtracking condition.
BCP identifies three of them: a) a conflict, b) Ctrg is implied in subspace ~q by
an existing clause, and c) Ctrg is blocked in subspace ~q. In the first case, Kbct is
a clause falsified in the current subspace ~q i.e. one reached during BCP. In the

4 The goal of START is to derive free clauses making the quantified clauses of F1

redundant in ∃X[F1 ∧ F2]. Assigning variables of X after those of Y guarantees that,
when generating a new clause, the variables of X are resolved out before those of Y .



second case, Kbct is a clause that BCP made unit and that shares its only literal
with Ctrg . (Such a clause implies Ctrg in the current subspace ~q.) In the third
case, Kbct is generated by PrvRed as described in the next subsection.

PrvRed starts the second part (lines 8-12) with a procedure called Lrn that
uses Kbct to build another certificate K implying Ctrg in subspace ~q. Generation
of K from Kbct is similar to how a SAT-solver generates a conflict clause from
a falsified clause [13]. Namely, when building K, Lrn resolves out the variables
whose value was derived at the decision level where the backtracking condition
occurred. If Ctrg was used to generate K i.e. the latter is a participant certificate,
K is added to F1 (line 9). This guarantees that PrvRed adds only clauses implied
by the current formula. (The only es-clauses generated by PrvRed and described
in the next subsection are used solely to generate witness certificates. So, a
witness certificate K is, in general, es-implied rather than implied by the formula
F in ∃X [K ∧ F ]. For that reason, in the current version of START , witness
certificates are not added to the formula. In one special case, to avoid adding a
witness certificate, PrvRed has to derive and add to the formula a special clause.
This case is described in Appendix D.)

After generating K, PrvRed backtracks (line 10). The assignment ~qinit sets
the limit of backtracking. If PrvRed reaches this limit, Ctrg is proved redundant in
the required subspace and PrvRed terminates (line 11). Otherwise, an assignment
is derived from K and added to the queue Q (line 12). This is similar to the
backtracking of a SAT-solver to the smallest decision level where the last conflict
clause is unit. So, an assignment can be derived from this clause by BCP. More
information can be found in Appendix B.

7.3 Generation of clause Kbct when Ctrg is blocked

Let Ctrg get blocked in ∃X [F ] in the current subspace ~q during BCP. So, Ctrg

is redundant in ∃X [F ] in this subspace. Then a clause Kbct is generated as
described in Proposition 2 where (Kbct)~q ⇒ (Ctrg)~q and Kbct is redundant in
∃X [Kbct ∧ (F \ {Ctrg})]. Thus, Kbct certifies redundancy of Ctrg in subspace ~q

and is returned by BCP as the reason for backtracking (line 6 of Fig 3). This
is the only case of backtracking where the clause Kbct returned by BCP is es-
implied rather than implied by F in ∃X [Kbct ∧ F ].

Proposition 2. Given a formula ∃X [F (X,Y )], let Ctrg ∈ F . Let ~q be an as-
signment to X ∪ Y that does not satisfy Ctrg . Let Ctrg be blocked in ∃X [F ] at
w ∈ X in subspace ~q where w 6∈ Vars(~q). Let l(w) be the literal of w present in
Ctrg . Let K

′ denote the longest clause falsified by ~q. Let K ′′ be a clause formed
from l(w) and a subset of literals of Ctrg such that every clause of F~q unresolv-
able with (Ctrg)~q on w is unresolvable with (K ′′)~q too. Let Kbct = K ′∨K ′′. Then
(Kbct)~q ⇒ (Ctrg)~q and Kbct is redundant in ∃X [Kbct ∧ (F \ {Ctrg})].

Example 1. Let us recall the example of Section 6. Here we have a formula
∃X [F ] where X = {x2, x3}, Y = {y1}, F = C1 ∧ C2 ∧ C3 ∧ C4, C1 = x2 ∨ x3,
C2 = y1 ∨ x2, C3 = y1 ∨ x3, C4 = y1. In subspace y1 = 1, the target clause C1



is blocked at x2 and hence is redundant. (C1 can be resolved on x2 only with
C2 that is satisfied by y1 = 1.) This redundancy can be certified by the clause
K1 = y1 ∨ x2 implying C1 in subspace y1 = 1. The clause K1 is constructed as
K ′ ∨K ′′ of Proposition 2. Here K ′ = y1 is the clause falsified by the assignment
y1 = 1. The clause K ′′ = x2 has the same literal of the blocked variable x2 as
the target clause C1. (Formula F has no clauses unresolvable with C1 on x2. So,
K ′′ needs no more literals.) �

Remark 3. Let Ctrg of Proposition 2 be unit in subspace ~q (and w be the only
unassigned variable of Ctrg). Then K ′′ reduces to l(w) and Kbct = K ′ ∨ l(w).

8 The Case When The Target Clause Becomes Unit

In this section, we describe what PrvRed does when the current target clause Ctrg

becomes unit. (Since PrvRed first assigns variables of Y , the unassigned variable
of Ctrg is in X i.e. quantified.) In this case, PrvRed recursively calls itself to
prove redundancy of every clause resolvable with Ctrg . A concrete example is
given in Appendix C.

Figure 4 shows the fragment of BCP invoked when the current target Ctrg

becomes unit. Let x ∈ X denote the only unassigned variable of Ctrg . Assume
for the sake of clarity that Ctrg contains the positive literal of x. At this point
a SAT-solver would derive the assignment x = 1 because Ctrg is falsified under
assignment x = 0. However, the goal of PrvRed is to prove Ctrg redundant rather
than find a satisfying assignment. The fact that Ctrg is falsified in a subspace
says nothing about whether it is redundant there.

// F denotes F1 ∧ F2

//
BCP(Q, ~q, F, Y,Ctrg) {

· · ·
10 if (Unit(Ctrg , ~q)) {
11 (Kbct , G) := Rcrs(F,Ctrg , ~q)
12 if (Kbct 6= nil) return(Kbct)
13 Kbct := GenCert(F,Ctrg , ~q,G)
14 return(Kbct) }

· · ·

Fig. 4: A fragment of BCP

So, BCP invokes procedure Rcrs that re-
cursively calls PrvRed for every clause re-
solvable with Ctrg on x. The name Rcrs ab-
breviates “recurse”. This call can have two
outcomes. First, Rcrs may return a clause
Kbct that is falsified by ~q. (This is possible
only if F is unsatisfiable in subspace ~q.) Then
BCP returns Kbct as the reason for back-
tracking (line 12). Second, Rcrs proves the
clauses resolvable with Ctrg on x redundant
and returns a set G of certificates. For each
clause C resolvable with Ctrg on x, the set
G contains a certificate of redundancy of C
in subspace ~q ∪ {x = 1}. At this point, Ctrg

is blocked at x in subspace ~q. So, a certificate Kbct is built using Proposition 2
(line 13). It is returned by BCP as the reason for backtracking.

Remark 4. Every clause C resolvable with Ctrg on x and proved redundant in
subspace ~q ∪ {x = 1} is temporarily removed from the formula F until back-
tracking. Since C is proved redundant only locally, one has to return it to F

after backtracking. Nevertheless, Ctrg remains blocked in subspace ~q and hence
redundant there (see Remark 2 of Section 5).



9 Invariant Generation For Bug Detection

In this section, we discuss using PQE for bug detection by invariant generation.
An invariant P of a sequential circuitN is a formula satisfied by every reachable
state of N . So, the states falsifying P are unreachable in N . We will call an
invariant local if it holds in some time frames. To distinguish between local
invariants and those holding in every time frame we will call the latter global.
When we say “invariant” without a qualifier we mean a global invariant.

9.1 Two kinds of bugs

Let N be a sequential circuit. Let P1(S),. . . ,Pn(S) be invariants that must hold
for N where S is the set of state variables. That is, these are desired invariants
of N . One can view the aggregate invariant P1 ∧ · · · ∧ Pn as a specification
Sp for N . We will say that ~s is a bad state (respectively a good state) if
Sp(~s) = 0 (respectively Sp(~s) = 1). As far as reachable states are concerned, N
can have two kinds of bugs. A bug of the first kind occurs when a bad state
is reachable in N . A bug of the second kind takes place when a good state that
is supposed to be reachable is unreachable in N . Informally, a bug of the first
kind (respectively the second kind) indicates that the set of reachable states is
“larger” (respectively “smaller”) than it should be.

To prove that N has no bugs of the first kind, it suffices to show that the
aggregate invariant Sp holds for N . Note that this does nothing to identify bugs
of the second kind. Indeed, let Ntriv be a circuit looping in an initial state #»s init

satisfying Sp. Then Sp holds for Ntriv . However, Ntriv has bugs of the second
kind (assuming that a correct implementation has to reach states other than
#»s init). A straightforward way to identify bugs of the second kind is to compute
the set of all unreachable states of N . If this set contains a state that is supposed
to be reachable, N has a bug of the second kind. Unfortunately, computing such
a set can be prohibitively hard.

Note that one cannot prove the existence of a bug of the second kind by
testing: the unreachability of a state cannot be established by a counterexample.
However, testing can point to the possibility of such a bug (see Section 11).
An important method for finding bugs of the second kind in a circuit N is to
identify its unwanted invariants. We will call Q an unwanted invariant if it is
falsified by a state ~s that is supposed to be reachable. If Q holds for N , then ~s is
unreachable and N has a bug of the second kind. Currently, unwanted invariants
are detected via checking a list of expected events [14]. (If an event of this list
never occurs, N has an unwanted invariant.) This list is formed manually. So, in
a sense, unwanted invariants are simply guessed. For instance, one can check if
N reaches a state where a state variable si ∈ S changes its initial value. If not,
then N has an unwanted invariant, assuming that states with both values of si
are supposed to be reachable in N . (For the circuit Ntriv above, this unwanted
invariant holds for every state variable.) The problem with guessing unwanted
invariants is that, in general, they are as unpredictable as bugs.



In this paper, we consider an approach to finding bugs of the second kind
where invariants are generated automatically in a systematic way. The nec-
essary condition for an invariant Q to be unwanted is Sp 6⇒ Q. (If Sp ⇒ Q, then
Q is a desired invariant of N .) So, the overall idea is to generate invariants of
N not implied by Sp and check if any of them is unwanted. In some cases, the
designer can tell if Q is an unwanted invariant. Otherwise, one needs to find a
bug-exposing test as explained in Section 11. In general, an invariant specifies
only a subset of unreachable states of N . So, it can be generated much more
efficiently than the entire set of unreachable states.

9.2 Invariant generation by PQE

Let us show how one can generate invariants by PQE. First, we consider the
generation of a local invariant that holds in k-th time frame. So, a state falsifying
such an invariant is unreachable in k transitions. Then we show that a local
invariant can be used to generate global invariants. Let formulas I and T specify
the initial states and the transition relation of N respectively. Let Fk denote
the formula obtained by unfolding N for k time frames. That is Fk = I(S0) ∧
T (S0, S1) ∧ · · · ∧ T (Sk−1, Sk) where Sj denotes the state variables of j-th time
frame, 0≤j≤ k. (For the sake of simplicity, in T , we omit the combinational i.e.
unlatched variables of N .)

Let Hk(Sk) be a solution to the PQE problem of taking a clause C out of
∃Sk−1[Fk] where Sk−1 = S0∪· · ·∪Sk−1. That is ∃Sk−1[Fk]≡ Hk∧ ∃Sk−1[Fk \ {C}].
Since Fk implies Hk, the latter is a local invariant of N holding in k-th time
frame. Note that performing full QE on ∃Sk−1[Fk] produces the strongest lo-
cal invariant specifying all states unreachable in k transitions. Computing this
invariant can be prohibitively hard. PQE allows to build a collection of weaker
local invariants Hk each specifying only a subset of states unreachable in k tran-
sitions. Computation of such invariants can be dramatically more efficient since
PQE can be much easier than QE.

One can use Hk to find global invariants as follows. The fact that Hk is not a
global invariant does not mean that every clause of Hk is not a global invariant
either. On the contrary, the experiments presented in Appendix F showed that
even for small k, a large share of clauses of Hk were a global invariant. (To find
out if a clause Q ∈ Hk is a global invariant, one can simply run a model checker
to see if Q holds.)

9.3 Using Invariant Generation

One of possible ways to use invariant generation is to take out clauses according
to some coverage metric. The intuition here is based on the two observations be-
low. Let Q be an invariant obtained by taking a clause C out of ∃Sk−1[Fk]. The
first observation is that the states falsifying Q are unreachable due to the pres-
ence of C. So, if a part of the circuit N is responsible for a bug of the second kind
and C is related to this part, taking out C may produce an unwanted invariant.
This observation is substantiated in the next section. The second observation is



that by taking out different clauses one generates different invariants “covering”
different parts of the circuit N . An example of a coverage metric is presented
in the next section. There we take out the clauses containing an unquantified
variable of ∃Sk−1[Fk] (i.e. a state variable of the k-th time frame). One can view
such a choice of clauses as a way to cover the design in terms of latches.

10 An Experiment With FIFO Buffers

In this section, we describe an experiment with FIFO buffers. Our objective
here is twofold. First, we explain how bug detection by invariant generation
works on a practical example. Second, we want to show that even the current
version of START whose performance can be dramatically improved can address
an important practical problem. (A mature PQE algorithm can be applied to a
long list of problems including those listed in Section 4.) In Appendix F, we apply
START to invariant generation for HWMCC-13 benchmarks. We also use these
benchmarks to compare PQE with QE and START with DS -PQE , our previous
PQE-solver [1]. In this section, such a comparison is done on FIFO buffers. A
Linux binary of START and a sample of formulas used in the experiments can
be downloaded from [12]. In all experiments, we used a computer with Intel Core
i5-8265U CPU of 1.6GHz.

10.1 Buffer description

· · ·
if (write == 1 && currSize < n)
* if (dataIn != Val)

begin
Data[wrPnt ] = dataIn ;
wrPnt = wrPnt + 1;
end

· · ·

Fig. 5: A buggy fragment of Ver-
ilog code describing Fifo

In this section, we give an example of bug
detection by invariant generation for a FIFO
buffer called Fifo. Let n be the number of ele-
ments of Fifo and Data denote the data buffer
of Fifo. Let each Data[i], i = 1, . . . , n have p

bits and be an integer where 0 ≤ Data[i] < 2p.
A fragment of the Verilog code describing Fifo
is shown in Fig 5. This fragment has a buggy
line marked with an asterisk. In the correct
version without the marked line, a new ele-
ment dataIn is added to Data if the write flag
is on and Fifo holds less than n elements. Since

Data can have any combination of numbers, all Data states are supposed to be
reachable.

However, due to the bug, the number Val cannot appear in Data. (Here Val
is some constant 0<Val<2p. We assume that the buffer elements are initialized
to 0.) So, Fifo has a bug of the second kind since it cannot reach states where
an element of Data equals Val . This bug is hard to detect by random testing
because it is exposed only if one tries to add Val to Fifo. Similarly, it is virtually
impossible to guess an unwanted invariant of Fifo exposing this bug unless one
knows exactly what this bug is.



10.2 Bug detection by invariant generation

Let N be a circuit implementing Fifo. Let S be the set of state variables of N
and Sdata ⊂ S be the subset corresponding to the data buffer Data. We used
START to generate invariants of N as described in the previous section. Note
that an invariant Q depending only on Sdata is an unwanted one. If Q holds for
N , some states of Data are unreachable. Then Fifo has a bug of the second kind
since every state of Data is supposed to be reachable. To generate invariants,
we used the formula Fk = I(S0) ∧ T (S0, S1) ∧ · · · ∧ T (Sk−1, Sk) introduced in
Subsection 9.2. Here I and T describe the initial states and the transition relation
of N respectively and Sj is the set of state variables in j-th time frame. First,
we used START to generate local invariants Hk. Namely, Hk was obtained by
taking a clause C out of ∃Sk−1[Fk] where Sk−1 = S0 ∪ · · · ∪ Sk−1. That is,
∃Sk−1[Fk] ≡ Hk∧ ∃Sk−1[Fk \ {C}]. We picked clauses to take out as described
in Subsection 9.3. Namely, we took out only clauses containing an unquantified
variable (i.e. a state variable of the k-th time frame). The time limit for solving
the PQE problem of taking out a clause was set to 10 sec.

For each clause Q of every local invariant Hk generated by PQE, we checked
if Q was a global invariant. Namely, we used a publicly available version of
IC3 [15,16] to verify if the invariant Q held. If so, and Q depended only on
variables of Sdata , N had an unwanted invariant. Then we stopped invariant
generation. The results of the experiment are given in Table 1. (In the exper-
iment, we considered buffers with 32-bit elements.) Let us use the first line of
Table 1 to explain its structure. The first two columns show the size of Fifo im-
plemented by N and the number of latches in N (8 and 300). The third column
gives the number k of time frames (i.e. 5). The value 13 shown in the fourth
column is the number of clauses taken out of ∃Sk−1[Fk] before an unwanted in-
variant was generated. That is, 13 was the number of PQE problems for START
to solve.

Table 1: FIFO buffer with n elements of 32
bits. Time limit is 10 sec. per PQE problem

buff. lat- time clau- local single tot.
size ches fra- ses clause invariants run
(n) mes taken gen. global? time

out invar. no yes (s.)
8 300 5 13 10 8 2 25
8 300 10 11 4 1 3 54
16 560 5 26 18 16 2 43
16 560 10 17 2 0 2 78

Let C be a clause taken out
of the scope of quantifiers by
START . Every free clause Q gen-
erated when taking out C was
stored as a local single-clause in-
variant. The fifth column shows
that when solving the 13 PQE
problems above, START gener-
ated 10 free clauses forming 10 lo-
cal single-clause invariants. These

invariants held in k-th time frame (where k=5). The next two columns show
how many invariants out of 10 IC3 proved false or true globally (8 and 2). The
last column gives the total run time (25 sec).

For all four instances of Fifo listed in Table 1, the invariants generated by
START had one asserting that Fifo cannot reach a state where an element of
Data equals Val . This invariant was produced when taking out a clause of Fk

related to the buggy line of Fig. 5 (confirming the intuition of Subsection 9.3.)



When picking a clause to take out, i.e. a clause containing a state variable of
k-th time frame, one could make a good choice by pure luck. To address this
issue, we picked clauses to take out randomly and performed 10 different runs of
invariant generation. For each line of Table 1, the columns four to eight actually
describe the average value of 10 runs.

10.3 Comparing PQE and QE

To contrast PQE and QE, we used a high-quality tool CADET [17,18] to perform
QE on formulas ∃Sk−1[Fk]. That is, instead of taking a clause out of ∃Sk−1[Fk]
by PQE, we applied CADET to perform full QE on this formula. As mentioned
in Subsection 9.2, performing QE on ∃Sk−1[Fk] produces the strongest local
invariant specifying all states unreachable in k transitions. CADET failed to
finish QE on ∃Sk−1[Fk] with the time limit of 600 sec. On the other hand,
START finished 63% of the PQE problems of taking a clause out of ∃Sk−1[Fk]
in the time limit (i.e. under 10 sec). This shows that PQE can be dramatically
more efficient than QE if only a small part of the formula gets unquantified.

10.4 START versus DS-PQE

We repeated the experiment above using DS -PQE instead of START . DS -PQE
is our previous PQE-solver [1] based on the machinery of D-sequents [19,20].
DS -PQE solved only 2% of the PQE problems in the time limit of 10 sec. (as
opposed to 63% by START) and failed to generate an unwanted invariant.

11 Identifying Unwanted Invariants

Sometimes it is easy to see that an invariant Q is unwanted (e.g. an invariant
of Fifo depending only on variables of Sdata is obviously unwanted). However,
in general, to show that Q is unwanted, one needs to find a bug-exposing test
(or be-test for short.) Let ~t denote a test ( #»s 0,

#»x 0, . . . ,
#»x k−1) for a circuit N .

Here #»s 0 is an initial state of N and #»x i, 0≤ i<k is a full assignment to the
combinational input variables of N in i-th time frame. (Recall that so far, for
the sake of simplicity, we omitted combinational variables in the description of
N .)

Let ( #»s 0,
#»s 1, . . . ,

#»s k) be the trace produced by the test ~t above (i.e. N moves
from state #»s i to

#»s i+1 under input #»x i). We will say that ~t is a be-test for an
invariant Q if it is a counterexample for Q in a correct version N ′ of N . That

is ~t produces a trace ( #»s 0,
#»

s′1, . . . ,
#»

s′k) in N ′ where
#»

s′k falsifies Q. Consider, for
instance, the invariant Q stating that Fifo cannot have the number Val in j-th
element of its data buffer. Let ~t = ( #»s 0,

#»x 0, . . . ,
#»x k−1) be a test such that when

applied to a correct design, ~t would make Val appear in the j-th element of the
data buffer. Then ~t is a be-test for Q.

Finding a be-test is based on the following idea. Let an invariant clause Q

be extracted from a formulaHk obtained by taking a clause C out of ∃Sk−1[Fk] as



described above. As we mentioned in Remark 1, ∃Sk−1[Fk]≡ Hk∧ ∃Sk−1[Fk \ {C}]
holds even if the clauses implied by Fk\{C} are removed fromHk. So, we will as-
sume that Fk\{C} 6⇒ Q. Then there is an assignment ~p satisfying (Fk\{C})∧Q.
One can view ~p as an execution trace of N when C is removed from Fk.

Let ~t∗=(
#»

s∗0,
# »

x∗

0,. . . ,
# »

x∗

k−1) be the test where the variables are assigned as in
~p. One can make two claims about ~t∗. First, if Q is an unwanted invariant, ~t∗ can
be very close to a be-test. Second, if Q is a desired invariant, ~t∗ is a high-quality
test for N that can be used e.g. in regression testing. The first claim is due to
~t∗ being extracted from ~p falsifying Q and satisfying all clauses of Fk but C.
The second claim is due to ~t∗ being able to detect modifications of N breaking
Q. One can try to produce a be-test from ~t∗ either “manually” or automatically
generating small variations of ~t∗.

Consider, for example, the unwanted invariant Q stating that the number Val
cannot appear in j-th element of the data buffer of Fifo. For every example of

Table 1, we built the test ~t∗ = (
#»

s∗0,
# »

x∗

0, . . . ,
# »

x∗

k−1) extracted from ~p satisfying

(Fk \ {C}) ∧ Q. In every case, ~t∗ turned out to be different from a be-test only
in one bit.

12 Some Background

In this section, we discuss some research relevant to PQE and invariant gen-
eration. Information on BDD and SAT based QE can be found in [21,22] and
[23,24,25,26,27,28,29,30,17] respectively. Making clauses of a formula redundant
by adding resolvents is routinely used in pre-processing [31,32] and in-processing
[33] phases of QBF/SAT-solving. Identification and removal of blocked clauses
is also an important part of formula simplification [34]. The difference of our
approach from these techniques is twofold. First, our approach employs redun-
dancy based reasoning rather than formula optimization. So, for instance, to
make a target clause redundant, START can add a lot of new clauses making
the formula larger. Second, these techniques try to identify non-trivial conditions
under which a clause C is redundant in the entire space. In our approach, one
branches to reach a subspace where proving C redundant is trivial. Proving re-
dundancy of C in the entire space is achieved by merging the results of different
branches.

The predecessor of the approach based on certificate clauses is the machinery
of dependency sequents (D-sequents) [19,20]. A D-sequent is a record stating re-
dundancy of a clause in a quantified formula. A flaw of this machinery is that to
reuse a learned D-sequent, one has to keep a lot of contextual information [35],
which makes D-sequent reusing expensive. On the other hand, the reuse of cer-
tificate clauses does not require to store any contextual information.

To the best of our knowledge, the existing procedures generate only particu-
lar classes of invariants. For instance, they generate invariants relating internal
points of circuits to check for equivalence [36] or loop invariants [37]. Another
example of special invariants are clauses generated by IC3 to make an invariant



P inductive [15]. The problem here is that the closer P to an inductive invariant,
the fewer invariant clauses IC3 generates to make P inductive. For instance, for
the circuit Ntriv mentioned in Subsection 9.1 that loops in an initial state, every
true desired invariant Pi is already inductive. Hence, IC3 will not generate any
new invariant clauses and will not produce an unwanted invariant even though
Ntriv is obviously buggy. In Appendix F.3, we experimentally compare invariants
generated by IC3 and START .

13 Conclusions

We consider partial quantifier elimination (PQE) on propositional CNF formulas
with existential quantifiers. PQE allows to unquantify a part of the formula. We
present a PQE algorithm called START employing redundancy based reasoning
via the machinery of certificate clauses. To prove a target clause C redundant,
START derives a clause implying C, thus “certifying” its redundancy. The ver-
sion of START we describe here can still be drastically improved. We show that
PQE can be used to generate invariants of a sequential circuit. The goal of in-
variant generation is to find an unwanted invariant of this circuit indicating that
the latter is buggy. Bugs causing unwanted invariants can be easily overlooked
by the existing methods. We applied START to identify a bug in a FIFO buffer
by generating an unwanted invariant of this buffer. We also showed that even the
current version of START is good enough to generate invariants for HWMCC-13
benchmarks. Our experiments suggest that START can be used for detecting
hard-to-find bugs in real-life designs.

References

1. E. Goldberg and P. Manolios, “Partial quantifier elimination,” in Proc. of HVC-14.
Springer-Verlag, 2014, pp. 148–164.

2. Introduction to partial quantifier elimination,
https://eigold.tripod.com/pqe page.pdf.

3. W. Craig, “Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory,” The Journal of Symbolic Logic, vol. 22, no. 3, pp. 269–285, 1957.

4. K. McMillan, “Interpolation and sat-based model checking,” in CAV-03. Springer,
2003, pp. 1–13.

5. E. Goldberg, “Property checking by logic relaxation,” Tech. Rep. arXiv:1601.02742
[cs.LO], 2016.

6. E. Goldberg and P. Manolios, “Software for quantifier elimination in propositional
logic,” in ICMS-2014,Seoul, South Korea, August 5-9, 2014, pp. 291–294.

7. E. Goldberg, “Equivalence checking by logic relaxation,” in FMCAD-16, 2016, pp.
49–56.

8. ——, “Property checking without inductive invariant generation,” Tech. Rep.
arXiv:1602.05829 [cs.LO], 2016.

9. G. Tseitin, “On the complexity of derivation in the propositional calculus,” Zapiski

nauchnykh seminarov LOMI, vol. 8, pp. 234–259, 1968, english translation of this
volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

https://eigold.tripod.com/pqe_page.pdf


10. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model checking
using sat procedures instead of bdds,” in DAC, 1999, pp. 317–320.

11. O. Kullmann, “New methods for 3-sat decision and worst-case analysis,” Theor.

Comput. Sci., vol. 223, no. 1-2, pp. 1–72, 1999.
12. “A linux binary of start and some instances of pqe problems,”

http://eigold.tripod.com/software/start.tar.gz.
13. J. Marques-Silva and K. Sakallah, “Grasp – a new search algorithm for satisfiabil-

ity,” in ICCAD-96, 1996, pp. 220–227.
14. B. Cohen, S. Venkataramanan, A. Kumari, and L. Piper, SystemVerilog Assertions

Handbook: ... For Dynamic and Formal Verification, 4th ed. North Charleston,
SC, USA: CreateSpace Independent Publishing Platform, 2015.

15. A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI, 2011,
pp. 70–87.

16. An implementation of IC3 by A. Bradley, https://github.com/arbrad/IC3ref.
17. M. Rabe, “Incremental determinization for quantifier elimination and functional

synthesis,” in CAV, 2019.
18. CADET, https://github.com/MarkusRabe/cadet.
19. E. Goldberg and P. Manolios, “Quantifier elimination by dependency sequents,”

in FMCAD-12, 2012, pp. 34–44.
20. ——, “Quantifier elimination via clause redundancy,” in FMCAD-13, 2013, pp.

85–92.
21. R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677–691, August 1986.
22. P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang, “Using com-

binatorial optimization methods for quantification scheduling,” ser. CHARME-01,
2001, pp. 293–309.

23. K. McMillan, “Applying sat methods in unbounded symbolic model checking,” in
Proc. of CAV-02. Springer-Verlag, 2002, pp. 250–264.

24. H. Jin and F.Somenzi, “Prime clauses for fast enumeration of satisfying assign-
ments to boolean circuits,” ser. DAC-05, 2005, pp. 750–753.

25. M. Ganai, A.Gupta, and P.Ashar, “Efficient sat-based unbounded symbolic model
checking using circuit cofactoring,” ser. ICCAD-04, 2004, pp. 510–517.

26. J. Jiang, “Quantifier elimination via functional composition,” in Proceedings of the

21st International Conference on Computer Aided Verification, ser. CAV-09, 2009,
pp. 383–397.

27. J. Brauer, A. King, and J. Kriener, “Existential quantification as incremental sat,”
ser. CAV-11, 2011, pp. 191–207.

28. W. Klieber, M. Janota, J.Marques-Silva, and E. Clarke, “Solving qbf with free
variables,” in CP, 2013, pp. 415–431.

29. N. Bjorner, M. Janota, and W. Klieber, “On conflicts and strategies in qbf,” in
LPAR, 2015.

30. N. Bjorner and M. Janota, “Playing with quantified satisfaction,” in LPAR, 2015.
31. N. Eén and A. Biere, “Effective preprocessing in sat through variable and clause

elimination,” in SAT, 2005, pp. 61–75.
32. A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for qbf,” ser.

CADE-11, 2011, pp. 101–115.
33. M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” ser. IJCAR-12, 2012,

pp. 355–370.
34. M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,” in TACAS,

2010, pp. 129–144.

https://github.com/arbrad/IC3ref
https://github.com/MarkusRabe/cadet


35. E. Goldberg, “Quantifier elimination with structural learning,” Tech. Rep. arXiv:
1810.00160 [cs.LO], 2018.

36. J.Baumgartner, H. Mony, M. Case, J. Sawada, and K. Yorav, “Scalable conditional
equivalence checking: An automated invariant-generation based approach,” in 2009

Formal Methods in Computer-Aided Design, 2009, pp. 120–127.
37. I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant generation via

abductive inference,” vol. 48, 10 2013, pp. 443–456.
38. HardWare Model Checking Competition 2013 (HWMCC-13),

http://fmv.jku.at/hwmcc13/.
39. R. E. Bryant, “Symbolic Boolean manipulation with ordered binary decision dia-

grams,” ACM Computing Surveys, 1992.

Appendix

A Proofs

Lemma 1 is used in the proof of Proposition 1.

Lemma 1. Given a formula ∃X [F (X)], let C be a clause blocked in ∃X [F ] at
w. Then ∃X [F ] ≡ ∃X [F \ {C}] i.e. C is redundant in ∃X [F ].

Proof. Let us prove that F and F \ {C} are equisatisfiable (and so ∃X [F ] ≡
∃X [F \ {C}]). The satisfiability of F obviously implies that of F \ {C}. Let us
show that the converse is true as well. Let ~x be a full assignment to X satisfying
F \ {C}. If ~x satisfies C, it satisfies F and our proof is over. Now assume that
~x falsifies C and hence falsifies F . Let #»xfl be the assignment obtained from ~x

by flipping the value of w. (So #»xfl satisfies C.) Let G be the set of clauses of F
resolvable with C on w. Let w = b satisfy C where b ∈ {0, 1}. (So, w is assigned
b in #»xfl, because ~x falsifies C.)

First, let us show that #»xfl satisfies F \G. Assume the contrary i.e. #»xfl falsifies
a clauseD of F \G. (Note thatD is different from C because the latter is satisfied
by #»xfl.) Assume that D does not contain the variable w. Then D is falsified by
the assignment ~x and hence the latter does not satisfy F \ {C}. So we have a
contradiction. Now, assume that D contains w. Then D is resolvable with C on
w and D ∈ G. So D cannot be in F \G and we have a contradiction again.

Since #»xfl satisfies F \ G, then (F \G)w=b is satisfiable. By definition of a
blocked clause (see Definition 10), G is redundant in ∃X [F ] in subspace w = b.
So formula Fw=b is satisfiable. Hence F is satisfiable too.

Proposition 1. Given a formula ∃X [F (X,Y )], let C be a clause blocked in
∃X [F ] at w ∈ X. Then C is redundant in ∃X [F ] i.e. ∃X [F ]≡ ∃X [F \ {C}]. So,
C is es-implied by F \ {C} in ∃X [F ].

Proof. One needs to show that for every full assignment ~y to Y , formulas F~y

and (F \ {C})~y are equisatisfiable. If ~y satisfies C, it is trivially true. Assume

http://fmv.jku.at/hwmcc13/


that ~y does not satisfy C. From Definition 10 it follows that if C is blocked in
∃X [F ] at a variable w, then C~y is blocked in (∃F [X ])~y at w. Then from Lemma 1
if follows that C~y is redundant in (∃F [X ])~y

Proposition 2. Given a formula ∃X [F (X,Y )], let Ctrg ∈ F . Let ~q be an as-
signment to X ∪ Y that does not satisfy Ctrg . Let Ctrg be blocked in ∃X [F ] at
w ∈ X in subspace ~q where w 6∈ Vars(~q). Let l(w) be the literal of w present in
Ctrg . Let K

′ denote the longest clause falsified by ~q. Let K ′′ be a clause formed
from l(w) and a subset of literals of Ctrg such that every clause of F~q unresolv-
able with (Ctrg)~q on w is unresolvable with (K ′′)~q too. Let Kbct = K ′∨K ′′. Then
(Kbct)~q ⇒ (Ctrg)~q and Kbct is redundant in ∃X [Kbct ∧ (F \ {Ctrg})].

Proof. The fact that (Kbct)~q ⇒ (Ctrg )~q trivially follows from the definition of
Kbct . The latter equals K ′ ∨ K ′′ where K ′ is falsified by ~q and K ′′ consists
only of (some) literals of Ctrg . Now we prove that the clause Kbct is redundant
in ∃X [Kbct∧(F \{Ctrg})]. Let H denote F \ {Ctrg}. One needs to show that
for every full assignment ~y to Y , (Kbct ∧H)~y and H~y are equisatisfiable. If ~y
satisfies Kbct , it is trivially true. Let ~y not satisfy Kbct . (This means that the
variables of Vars(~y) ∩ Vars(~q), if any, are assigned the same value in ~y and ~q.)
The satisfiability of (Kbct ∧H)~y obviously implies that of H~y. Below, we show in
three steps that the converse is true as well. First, we introduce an assignment
#»pfl such that ~y ⊆ #»pfl and ~q ⊆ #»pfl. (Here ’fl’ stands for ’flipped’.) Second, we
prove that #»pfl satisfies F~q \G~q where G is the set of clauses resolvable with Ctrg .
Third, we show that the satisfiability of F~q \G~q and the fact that Ctrg is blocked
imply that (Kbct ∧H)~y is satisfiable.

Step 1. Let ~p denote a full assignment to X ∪ Y such that ~y ⊆ ~p and ~p

satisfies H~y. If ~p satisfies (Kbct ∧H)~y, our proof is over. Assume that ~p falsifies
(Kbct ∧H)~y. Then ~p falsifies Kbct . This means that ~q ⊆ ~p. Let w = b denote the
assignment to w in ~p. Denote by #»pfl the assignment obtained from ~p by flipping
the value of w from b to b. Denote by #»qext the extension ~y ∪ ~q ∪ {w = b} of the
assignment ~q. Note that #»qext ⊆

#»pfl. Besides, due to the assignment w = b, both
#»qext and

#»pfl satisfy Kbct and Ctrg .
Step 2. Let G denote the set of clauses of F resolvable with Ctrg on w. Then

G~q is the set of clauses of F~q resolvable with (Ctrg)~q on w. Let us show that #»pfl
satisfies F~q \G~q. Assume the contrary i.e. there is a clause D ∈ F~q \G~q falsified
by #»pfl. First, assume that D does not contain w. Then D is falsified by ~p as
well. So, ~p falsifies F~q and hence H~q (because (Ctrg)~q is satisfied by #»pfl and so is
different from D). Thus, we have a contradiction. Now, assume that D contains
the literal l(w). Then it is resolvable with clause (Kbct)~q. This means that D is
resolvable with (Ctrg )~q too. (By our assumption, every clause of F~q unresolvable
with (Ctrg)~q is unresolvable with (Kbct)~q too.) Then D cannot be in F~q \G~q and
we have a contradiction.

Step 3. Since #»pfl satisfies F~q \G~q, the formula F #»qext
\G #»qext

is satisfiable. The

same applies to (F \G) #»qext
. Since Ctrg is blocked in ∃X [F ] at w in subspace

~q, it is also blocked in ∃X [F ] in subspace ~y ∪ ~q. Then (F \G) #»qext
es-implies

G #»qext
(see Definition 10) and F #»qext

is satisfiable too. Since Kbct is satisfied by



#»qext, then (Kbct ∧ F ) #»qext
is satisfiable. Hence (Kbct ∧ F )~y is satisfiable and so is

(Kbct ∧H)~y

B Backtracking By START

When a SAT-solver encounters a conflict, it generates a conflict clause and back-
tracks to the smallest decision level where this clause is unit. So, an assignment
can be derived from this clause. In contrast to a SAT-solver, the goal of a PQE-
solver is to prove a target clause Ctrg redundant rather than find a satisfying
assignment. So, START backtracks slightly differently from a SAT-solver. After
START derives a certificateK provingCtrg in the current subspace, it backtracks
to the smallest decision level at which the conditional of the derived certificate
K (rather than K itself) is unit.

Definition 11. Let K be a certificate stating the redundancy of clause Ctrg in a
subspace. The clause consisting of the literals of K not shared with Ctrg is called
the conditional of K.

1 Find F ∗

1 (Y ) such that
2 ∃X[F1 ∧ F2] ≡ F ∗

1 ∧ ∃X[F2]
3 Y ={y1},X={x2, x3, x4, . . . }
4 F1 = {C1}, C1 = x2 ∨ x4

5 F2={C2,C3,. . . },C2=y1∨x3,
6 C3=x3∨x4, . . .

7 pick. C1 ∈ F1 to prove red.

8 — call PrvRed—
9 decision: y1 = 0 at level 1
10 BCP :(C2 : x3=1)
11 C3 = x4 in curr. subsp.

12 LEAF: C3 impl. C1 at level 1
13 K1 = y1 ∨ x4 is the final cert.
14 K1 = Res(C3, C2, x3)

15 backtracking to level 0
16 BCP : (K1 :y1 = 1)

17 ....

Fig. 6: Backtracking by
START

If the conditional of K is empty, K im-
plies Ctrg in the entire space. Otherwise, K
implies Ctrg only in subspaces ~q where the con-
ditional of K is falsified by ~q. One can derive
an implied assignment from K when its con-
ditional is unit like this is done by a SAT-
solver when a clause becomes unit.

Example 2. Consider the example of Fig. 6
showing the operation of START . This fig-
ure gives only the relevant part of formula
F2 and the relevant fragment of the execution
trace. PrvRed begins proving the target clause
C1 = x2∨x4 redundant by the decision assign-
ment y1 = 0. Then it calls BCP that derives
x3 = 1 from the clause C2. At this point, C3

becomes the unit clause x4 implying C1. So,
BCP returns C3 as the reason for backtracking
(i.e. as the clause Kbct in line 6 of Fig. 3). Then
the Lrn procedure generates the final certifi-
cate K1 = y1 ∨ x4 by resolving C3 and C2 to
drop the non-decision variable x3 assigned at
level 1 (line 14).

The conditional of K1 is the unit clause
y1 because the literal x4 is shared by K1 and the target clause C1. PrvRed
backtracks to level 0, the smallest level where the conditional ofK1 is unit. (Note
that K1 itself is not unit at level 0). Then PrvRed runs BCP and derives the
assignment y1=1 from K1 even though K1 is not unit at level 0. This derivation



is possible because K1 certifies that the redundancy of C1 in subspace y1=0 is
already proved �

As we mentioned above, in the general case, after deriving a certificate K,
PrvRed backtracks to the smallest decision level where the conditional of K is
unit. The assignment derived from K is added to the assignment queue Q (lines
10 and 12 of Fig. 3). If K shares no literals with Ctrg , the PrvRed procedure
backtracks as a regular SAT-solver, i.e. to the smallest decision level where K is
unit.

C Operation Of START When Ctrg Becomes Unit

1 Find F ∗

1 (Y ) such that
2 ∃X[F1 ∧ F2] ≡ F ∗

1 ∧ ∃X[F2]
3 Y ={y1},X={x2, x3}
4 F1 = {C1}, C1 = y1 ∨ x2

5 F2={C2, C3},C2=x2∨x3,
6 C3=y

1
∨x3

7 putting C1 to target level A
8 PrvRed : proving C1 redund.
9 dec.: y1 = 0 at dec. level 1
10 BCP : C1 is unit at dec. level 1
11 creating target level B
12 of clauses res. with C1 on x2

13 making impl. assign. x2 = 1
14 picking C2 as a new targ.

15 PrvRed : prov. C2 redund.
16 in subsp. y1 = 0, x2 = 1
17 LEAF: C2 is blocked at x3

18 Der. cert. K′=y1∨x3

19 C2 is red. in subsp. above
20 C2 is temporarily removed
21 eliminating targ. level B
22 undoing x2 = 1
23 C2 is restored in the formula
24 LEAF: C1 is blocked at x2

25 der. cert. K′′= y1∨x2

· · ·

Fig. 7: Ctrg becomes unit

In Section 8, we described how START op-
erates when the current target clause Ctrg

becomes unit. In this appendix, we give
a concrete example. Consider solving the
PQE problem shown in Fig. 7 by lines 1-
6. First, C1 is picked as a clause to prove.
We will refer to it as the primary tar-
get assuming that it makes up target level
A. After decision assignment y1 = 0, the
clause C1 turns into unit clause x2 (lines
9-10). Denote the current assignment (i.e.
y1 = 0) as ~q. At this point, a SAT-solver
would simply derive the assignment x2 = 1.
However, the goal of PrvRed is not to check
if F1 ∧ F2 is satisfiable but to prove C1 re-
dundant. The fact that C1 is falsified in
subspace ~q ∪ {x2 = 0} does not say any-
thing about whether C1 is redundant there.

So, PrvRed creates a new target level
(referred to as level B). It consists of the
clauses resolvable with C1 on x2. Suppose
all clauses of this level are redundant in
subspace ~q ∪ {x2 = 1}. Then according to
Definition 10, C1 is blocked (and hence re-
dundant) in ∃X [F1 ∧ F2] in subspace ~q. In
our case, level B consists only of C2. So,
PrvRed recursively calls itself to prove re-
dundancy of C2 in subspace ~q ∪ {x2 = 1}

(lines 15-20). Note that C2 is blocked at x3 in this subspace since C3 (the clause
resolvable with C2 on x3) is satisfied by y1 = 0. Then using Proposition 2,
PrvRed derives the certificate K ′ = y1 ∨x3 asserting the redundancy of C2. The
latter is temporarily removed from the formula as redundant (see Remark 4).
At this point, the second activation of PrvRed terminates.



Then the first activation of PrvRed undoes target level B and assignment x2=
1. The clause C2 is restored in the formula (lines 21-23). Now, the primary target
C1 is blocked at x2, since C2 is proved redundant in subspace ~q ∪{x2=1}. Using
Proposition 2, PrvRed derives the certificate K ′′=y1∨x2 proving redundancy of
C1 in the entire space.

D Certificate Generation When A Conflict Occurs

1 Find F ∗

1 (Y ) such that
2 ∃X[F1 ∧ F2] ≡ F ∗

1 ∧ ∃X[F2]
3 Y ={y1},X={x2, x3}
4 F1 = {C1}, C1 = x2 ∨ x3

5 F2={C2,C3},C2=y
1
∨x2,

6 C3=y
1
∨x3

7 pick. C1 ∈ F1 to prove red.

8 — call PrvRed—
9 decision: y1 = 0 at level 1

10 LEAF: C1 is blocked at x2

11 (since C2 is sat. by y1 = 0)
12 K1=y1∨x2 is awitness cert.
13 K1 is not added to F1∧F2

14 backtracking to level 0
15 BCP : (K1 :y1 = 1)
16 (C2 : x2=1)(C3 : x3=0)

17 LEAF: conflict at level 0
18 C1=x2∨x3 is falsified

19 K̂ = y
1
is a new clause

20 falsif. in curr. subspace
21 R1 = Res(C1, C2, x2),

22 K̂ = Res(R1, C3, x3)

23 K̂ is added to F1∧F2

24 K2=x2 is a witness cert.

25 K2=Res(K1,K̂,y1)
26 K2 is not added to F1∧F2

· · ·

Fig. 8: Adding a special
clause after a conflict

In this appendix, we discuss in more detail the
generation of a certificate by the Lrn procedure
when a conflict occurs. As before, we denote
F1 ∧ F2 by F . Let Ctrg be the current target
clause. Let Kbct be the clause of F falsified in
this conflict. (Here, we use the notation of Fig-
ure 3 describing the PrvRed procedure). First,
consider the case when Kbct 6= Ctrg . Then Lrn
generates a certificate K as described in Subsec-
tion 7.2. Namely, it starts with Kbct gradually
resolving out literals assigned at the conflict level
by non-decision assignments. Since Ctrg is not in-
volved in derivation of K, the latter is a witness
certificate.

Now, consider the case when Kbct = Ctrg . If,
no relevant assignment is derived from a witness
certificate, Lrn generates the resulting certificate
K as described above. Since Ctrg is involved in
derivation ofK, the latter is a participant certifi-
cate that is added to the formula. If an assign-
ment relevant to the conflict is derived from a
witness certificate, Lrn acts differently. Namely,
it derives a witness certificate K and a special
clause K̂ that is added to the formula. (For the
sake of simplicity, we did not mention this fact
in the pseudo-code of the PrvRed procedure.)

Figure 8 illustrates adding a special clause.
Here C1 = x2 ∨x3 is the target clause. In the
branch y1 = 0, PrvRed proves C1 redundant by
deriving a witness certificate K1=y1 ∨ x2 (lines
9-13). Then PrvRed backtracks to level 0 and
runs BCP to derive y1=1 from K1, x2=1 from

C2 and x3=0 from C3. At this point, C1 is falsified i.e. a conflict occurs. Assume
we construct a certificate K2=x2 by resolving C1 with C2, C3, and K1 (i.e. with
the clauses from which the relevant assignments were derived). Then we have a
problem. On one hand, K2 is a participant certificate that has to be added to F

since the target clause C1 was involved in building K2. On the other hand, K2



may not be implied by F since a witness certificate K1 was involved in producing
K2. (A witness certificate K is, in general, only es-implied by F in ∃X [K ∧ F ].)
This breaks the invariant maintained by START that only clauses implied by F

are added to it.
The Lrn procedure addresses the problem above as follows. First, it generates

a clause K̂ = y1 that is falsified in the current subspace and so “replaces” C1 as
the reason for the conflict. K̂ is built without using witness certificates and so
can be added to F . It is obtained by resolving C1 with C2 and C3 and is added
to F (lines 19-23). Then Lrn derives the certificate K2 = x2 by resolving K̂ and
K1. The clause K2 certifies the redundancy of the target clause C1 in the entire
space. Note that K2 was derived using K̂ instead of the target clause C1. So, it
is a witness certificate that does not have to be added to the formula.

Here is how one handles the general case when Kbct = Ctrg and a witness

certificate is involved in the conflict. First, one produces a special clause K̂. It
is obtained by resolving Ctrg with clauses of F from which relevant assignments
were derived. This process stops when the assignment derived from a witness
certificate is reached. Then K̂ is added to the formula F . (This can be done since
witness certificates are not used in derivation of K̂.) After that, Lrn generates a
certificate K starting with K̂ as a clause falsified in the current subspace. (That
is, K̂ replaces Ctrg as the cause of the conflict.) Since Ctrg is not involved in
generation of K, the latter is a witness certificate.

E Correctness of START

In this appendix, we give a proof that START is correct. Let START be used to
take F1 out of the scope of quantifiers in ∃X [F1(X,Y )∧F2(X,Y )]. We will denote
F1 ∧F2 by F . In Subsection E.1, we show that START is sound. Subsection E.2
discusses the problem of generating duplicate clauses by START and describes a
solution to this problem. In Subsection E.3, we show that the versions of START
that do not produce duplicate clauses are complete.

E.1 START is sound

In its operation, START adds participant certificates and removes target clauses
from F . Denote the initial formula F as F ini . Let ~y be a full assignment to the
variables of Y (i.e. unquantified ones). Below, we demonstrate that for every
subspace ~y, START preserves the equisatisfiability between the F ini and the
current formula F . That is, ∃X [F ini ] ≡ ∃X [F ]. Then we use this fact to show
that START produces a correct solution.

First, consider adding participant certificates by START . As we mention in
Section 7, every clause added to F is implied by F . (If a clause K is es-implied by
F in ∃X [K ∧ F ], it is used only as a witness certificate and is not added to F .)
So, adding clauses cannot break equisatisfiability of F and F ini in a subspace ~y.

Now, we consider removing target clauses from F by START . A target clause
Ctrg is permanently removed from the formula only if a certificate K implying



Ctrg in the entire space is derived. K is obtained by resolving clauses of the
current formula F and witness certificates (if any). Derivation of K is correct
due to correctness of Proposition 2 (describing generation of clauses that are
es-implied rather than implied by the formula) and soundness of resolution. So,
removing Ctrg from F cannot break equisatisfiability of F and F ini in some
subspace ~y.

The fact that ∃X [F ini ] ≡ ∃X [F ] entails that START produces a correct solu-
tion. Indeed, START terminates when the current formula F1 does not contain a
quantified clause. So, the final formula F can be represented as F1(Y )∧F2(X,Y ).
Then ∃X [F ini

1 ∧ F ini
2 ] ≡ F1∧ ∃X [F2]. START does not add any clauses to F2.

Hence, the final and initial formulas F2 are identical. So, ∃X [F ini
1 ∧ F ini

2 ] ≡
F ∗

1 ∧ ∃X [F ini
2 ] where F ∗

1 is the final formula F1.

E.2 Avoiding generation of duplicate clauses

The version of PrvRed described in Sections 6-8 may generate a duplicate of a
quantified clause that is currently proved redundant. To avoid generating dupli-
cates one can modify START as follows. (We did not implement this modification
due to its inefficiency. We present it just to show that the problem of duplicates
can be fixed in principle.) We will refer to this modification as START∗.

Suppose PrvRed generated a quantified clause C proved redundant earlier.
This can happen only when all variables of Y are assigned because they are
assigned before those of X . Then START∗ discards the clause C, undoes the
assignment to X , and eliminates all recursive calls of PrvRed . That is START∗

returns to the original call of PrvRed made in the main loop (Fig. 2, line 7).
Let Ctrg be the target clause of this call of PrvRed and ~y be the current (full)
assignment to Y . At this point START∗ calls an internal SAT-solver to prove
redundancy of Ctrg in subspace ~y. This goal is achieved by this SAT-solver via
generating a witness or participant certificate implying Ctrg in subspace ~y (see
below). After that, PrvRed goes on as if it just finished line 10 of Figure 3.

Let B(Y ) denote the longest clause falsified by ~y. Suppose the internal SAT-
solver of START∗ proves F~y unsatisfiable. (Recall that F denotes F1∧F2.) Then
the clause B is a certificate of redundancy of Ctrg in F~y. If Ctrg is involved in
proving F~y unsatisfiable, B is a participant certificate. The PrvRed procedure
adds B to F to make Ctrg redundant in subspace ~y. If F~y is proved unsatisfiable
without using Ctrg , then B is a witness certificate that is not added to F .

Suppose that F~y is satisfiable. Then the internal SAT-solver above derives an
assignment ~p satisfying F~y where ~y ⊆ ~p. Note that ~y does not satisfy Ctrg since,
otherwise, PrvRed would have already proved redundancy of Ctrg in subspace
~y. Hence, ~p satisfies Ctrg by an assignment to a variable w ∈ X . Then PrvRed
derives a witness certificate K equal to B ∨ l(w) where l(w) is the literal of
w present in Ctrg . It is not hard to show that K is indeed a certificate. First,
it implies Ctrg in subspace ~y certifying its redundancy there. Second, K is es-
implied by F \ {Ctrg} in ∃X [K ∧ (F \ {Ctrg})].



E.3 START is complete

In this subsection, we show the completeness of the versions of START that do
not generate duplicate clauses. (An example of such a version is given in the
previous subsection). The completeness of START follows from the fact that

• the number of times START calls the PrvRed procedure (to prove redun-
dancy of the current target clause) is finite;

• the number of steps performed by one call of PrvRed is finite.

So, START always terminates. First, let us show that PrvRed is called a
finite number of times. By our assumption, START does not generate quantified
clauses seen before. So, the number of times PrvRed is called in the main loop of
START (see Figure 2) is finite. PrvRed recursively calls itself when the current
target clause Ctrg becomes unit. The number of such calls is finite (since the
number of clauses that can be resolved with Ctrg on its unassigned variable is
finite). The depth of recursion is finite here. Indeed, before a new recursive call
is made, the unassigned variable w ∈ X of Ctrg is assigned and X is a finite
set. Summarizing, the number of recursive calls made by PrvRed invoked in the
main loop of START is finite.

Now we prove that the number of steps performed by a single call of PrvRed
is finite. (Here we ignore the steps taken by recursive calls of PrvRed .) Namely,
we show that PrvRed examines a finite search tree. The number of branching
nodes of the search tree built by PrvRed is finite because X ∪ Y is a finite set.
Let us show that PrvRed indeed builds a tree. That is PrvRed does not have
“holes” and always reaches a leaf i.e. a node where a backtracking condition is
met. Below, we list the four kinds of leafs reached by PrvRed . (The backtracking
conditions are identified by the BCP procedure called by PrvRed .) Let ~q specify
the current assignment to Y ∪X . A leaf of the first kind is reached when the target
clause Ctrg becomes unit in subspace ~q. Then BCP calls the Rcrs procedure (line
11 of Fig. 4) and PrvRed backtracks. PrvRed reaches a leaf of the second kind
when BCP finds a clause of F implying Ctrg in subspace ~q. A leaf of the third
kind is reached when BCP identifies a clause falsified by ~q (i.e. a conflict occurs).
PrvRed reaches a leaf of the fourth kind when the target clause Ctrg is blocked
in ∃X [F ] in subspace ~q.

If F is unsatisfiable in subspace ~q, PrvRed always reaches a leaf before all
variables of Y ∪X are assigned. (Assigning all variables without a conflict, i.e.
without reaching a leaf of the third kind, would mean that F is satisfiable in
subspace ~q.) Let us show that if F is satisfiable in subspace ~q, PrvRed also
always reaches a leaf before every variable of Y ∪X is assigned. (That is before a
satisfying assignment is generated.) Let ~p be an assignment satisfying F where
~q ⊆ ~p. Consider the worst case scenario. That is all variables of Y ∪ X but
some variable w are already assigned in ~q and no leaf condition is encountered
yet. Assume that no literal of w is present in the target clause Ctrg . Since ~q

contains all assignments of ~p but that of w, Ctrg is satisfied by ~q. Recall that
PrvRed does not make decision assignments satisfying Ctrg (see Subsection 7.2).
So, Ctrg is satisfied by an assignment derived from a clause C. Then C implies



Ctrg in subspace ~q and a leaf of the second kind must have been reached. So, we
have a contradiction.

Now assume that Ctrg has a literal l(w) of w. Note that since PrvRed assigns
variables of Y before those of X , then w ∈ X . Since Ctrg is not implied by a
clause of F in subspace ~q, all the literals of Ctrg but l(w) are falsified by ~q. Let us
show that Ctrg is blocked in ∃X [F ] at w in subspace ~q. Assume the contrary i.e.

there is a clause C resolvable with Ctrg on w that contains the literal l(w) and

is not satisfied yet. That is all the literals of C other than l(w) are falsified by
~q. Then ~p cannot be a satisfying assignment because it falsifies either Ctrg or C
(depending on how the variable w is assigned). So, we have a contradiction.Thus,
Ctrg is blocked at w in subspace ~q and hence a leaf of the fourth kind is reached.

F Experiments With HWMCC-13 Benchmarks

In this appendix, we describe experiments with multi-property benchmarks of the
HWMCC-13 set [38]. (We use this set because the multi-property track has been
discontinued in HWMCC since 2013.) Each benchmark consists of a sequential
circuit N and invariants that are supposed to hold for N . One can view the
conjunction of those invariants as a specification Sp for N . In the experiments,
we used START to generate invariants of N not implied by Sp. Similarly to the
experiment of Section 10, the formula Fk = I(S0)∧T (S0, S1)∧· · · ∧T (Sk−1, Sk)
was used to generate invariants. The number k of time frames was in the range of
2≤k≤10. Specifically, we set k to the largest value in this range where |Fk| did
not exceed 500,000 clauses. We discarded the benchmarks with |F2|> 500, 000.
So, in the experiments, we used 112 out of the 178 benchmarks of the set.

We describe three experiments. In every experiment, we generated local in-
variants Hk by taking out a clause of ∃Sk−1[Fk]. The objective of the first exper-
iment was to demonstrate that START could compute Hk for realistic designs.
We also showed in this experiment that PQE could be much easier than QE
and that START outperforms our previous PQE-solver called DS -PQE . The
second experiment demonstrated that a clause Q of a local invariant Hk gen-
erated by START was often a global invariant not implied by the specification
Sp. (As we mentioned in Section 9, the necessary condition for an invariant
Q to be unwanted is Sp 6⇒ Q.) Note that the circuits of the HWMCC-13 set
are “anonymous”. So, we could not decide if Q was an unwanted invariant.
Our goal was to show that START was good enough to generate invariants not
implied by Sp. (Then one could check those invariants for being unwanted as
described in Section 11.) As in the experiment of Section 10, we took out only
clauses containing a state variable of the k-th time frame. The choice of the next
clause to take out was made according to the order in which clauses were listed
in Fk. In the third experiment, we showed that START generates invariants that
are different from those produced by IC3 .



F.1 Experiment 1

Table 2: START and DS -PQE .
The time limit is 5 sec.

pqe total sol- unsol-
solver probl. ved ved
start 5,418 3,102 2,316

ds-pqe 5,418 1,285 4,133

In this experiment, for each benchmark out of
112 mentioned above we generated PQE prob-
lems of taking a clause out of ∃Sk−1[Fk]. Some
of them were trivially solved by pre-processing.
The latter eliminated the blocked clauses of Fk

that could be easily identified and ran BCP
launched due to the unit clauses specifying the

initial state. We generated up to 50 non-trivial problems per benchmark ignor-
ing those solved by pre-processing. (For some benchmarks the total number of
non-trivial problems was under 50.)

We compared START with DS -PQE introduced in [1] that is based on the
machinery of D-sequents. The relation of D-sequents and certificates is briefly
discussed in Section 12. In contrast to START , DS -PQE proves redundancy of
many targets at once, which can lead to generating very deep search trees. To
make the experiment less time consuming, we limited the run time of START
to 5 sec. per PQE problem. The results are shown in Table 2. The first column
gives the name of a PQE solver. The second column shows the total number of
PQE problems we generated for the 112 benchmarks. The last two columns give
the number of problems solved and unsolved in the time limit. Table 2 shows
that START solved 57% of the problems within 5 sec. For 92 benchmarks out of
112, at least one PQE problem generated off ∃Sk−1[Fk] was solved by START
in the time limit. This is quite encouraging since many solved PQE problems
had more than a hundred thousand variables and clauses. Table 2 also shows
that START drastically outperforms DS -PQE .

To contrast PQE and QE, we used CADET [17,18] to perform QE on 112
formulas ∃Sk−1[Fk]. That is, instead of taking a clause out of ∃Sk−1[Fk] by PQE,
we applied CADET to perform full QE on this formula. (As mentioned in Sub-
section 9.2, performing QE on ∃Sk−1[Fk] produces the strongest local invariant
specifying all states unreachable in k transitions.) Our choice of CADET was
motivated by its high performance. CADET is a SAT-based tool that solves QE
implicitly via building Skolem functions. In the context of QE, CADET often
scales better than BDDs [21,39]. CADET solved only 32 out of 112 QE problems
with the time limit of 600 sec. For many formulas ∃Sk−1[Fk] that CADET failed
to solve in 600 sec., START solved all 50 PQE problems generated off ∃Sk−1[Fk]
in 5 sec. So, PQE can be much easier than QE if only a small part of the formula
gets unquantified.

F.2 Experiment 2

The second experiment was an extension of the first experiment. Namely, for
each clause Q of a local invariant Hk generated by PQE we used IC3 to verify
if Q was a global invariant. If so, we checked if Sp 6⇒ Q held.



Table 3: A sample of HWMCC-13 benchmarks

name lat- invar. time clau- local single-clause invariants
ches of fra- ses gen. global? not

Sp mes taken inva- un- no yes impl.
out riants dec. by Sp

6s380 5,606 897 2 46 101 0 49 52 0
6s176 1,566 952 3 20 101 0 9 92 14
6s428 3,790 340 4 29 102 15 12 75 75
6s292 3,190 247 5 21 104 44 0 60 60
6s156 513 32 6 218 101 0 90 11 11
6s275 3,196 673 7 25 106 2 21 83 77
6s325 1,756 301 8 23 105 0 0 105 105
6s391 2,686 387 9 30 104 0 14 90 90
6s372 1,124 33 10 159 101 60 41 0 0

Similarly to the first
experiment, to make the
experiment less time con-
suming, we set the time
limit of 5 sec. per PQE
problem. Besides, we im-
posed the following con-
straints. (Even with those
constraints, the run time
of the experiment was
about 4 days.) First, we
stopped START even be-
fore the time limit if it

generated more than 5 free clauses. Second, the time limit for IC3 was set to 30
sec. Third, instead of constraining the number of PQE problems per benchmark,
we limited the total number of free clauses generated for a benchmark. Namely,
processing a benchmark terminated when this number exceeded 100.

A sample of 9 benchmarks out of the 112 we used in the experiment is shown
in Table 3. Let us explain the structure of this table by the benchmark 6s380
(the first line of the table). The name of this benchmark is shown in the first
column. The second column gives the number of latches (5,606). The number
of invariants that should hold for 6s380 is provided in the third column (897).
So, the specification Sp of 6s380 is the conjunction of those 897 invariants. The
fourth column shows that the number k of time frames for 6s380 was set to
2 (since |F3| > 500, 000). The value 46 shown in the fifth column is the total
number of clauses taken out of ∃Sk−1[Fk] i.e. the number of PQE problems. (We
keep using the index k here assuming that k=2 for 6s380.)

Let C be a clause taken out of the scope of quantifiers by START . Every
free clause Q generated by START was stored as a local single-clause invariant.
The sixth column shows that taking clauses out of the scope of quantifiers was
terminated when 101 local single-clause invariants were generated. (Because the
total number of invariants exceeded 100.) Each of these 101 local invariants held
in k-th time frame. The following three columns show how many of those 101
local invariants were true globally. IC3 finished every problem out of 101 in
the time limit. So, the number of undecided invariants was 0. The number of
invariants IC3 proved false or true globally was 49 and 52 respectively. The last
column gives the number of global invariants not implied by Sp. For 6s380, this
number is 0.

For 109 benchmarks out of the 112 we used in the experiments, START was
able to generate local single-clause invariants that held in k-th time frame. For
100 benchmarks out of the 109 above, the invariants Hk generated by START
contained global single-clause invariants. For 89 out of these 100 benchmarks,
there were global invariants not implied by the specification Sp. Those invariants
were meant to be checked if any of them was unwanted.



F.3 Experiment 3

When proving an invariant P , IC3 conjoins it with clauses Q1, . . . ,Qm to make
P ∧ Q1∧ · · · ∧ Qm inductive. If IC3 succeeds, every Qi is an invariant. More-
over, Qi may be an unwanted invariant. Arguably, the cause of efficiency of
IC3 is that P is often close to an inductive invariant. So, IC3 needs to gener-
ate a relatively small number of clauses Qi to make the constrained version of
P inductive. However, as we mentioned in Section 12, this nice feature of IC3
drastically limits the set of unwanted invariants it can produce. In this subsec-
tion, we substantiate this claim by an experiment. In this experiment, we picked
the HWMCC-13 benchmarks for which one could prove all pre-defined invari-
ants P1, . . . , Pn within a time limit. Namely, for every benchmark we formed the
specification Sp = P1 ∧ · · · ∧ Pn and ran IC3 to prove Sp true.

We selected the benchmarks that IC3 solved in less than 1000 sec. (In ad-
dition to dropping the benchmarks not solved in 1000 sec., we discarded those
where Sp failed because some invariants Pi were false). Let Sp∗ denote the in-
ductive version of Sp produced by IC3 when proving Sp true. That is, Sp∗ is
Sp conjoined with the invariant clauses generated by IC3 . For each of the se-
lected benchmarks we generated invariants by START exactly as in Experiment
2. That is, we stopped generation of local single clause invariants when their
number exceeded 100. Then we ran IC3 to identify local invariants that were
global as well. After that we checked which of the global invariants generated by
START were not implied by Sp and Sp∗.

Table 4: Invariants of START and IC3

name lat- inva- glob sngl cls invars
ches ri- glob. not not

ants inva- impl. impl.
in Sp riants by Sp by Sp∗

6s135 2,307 340 68 68 61
6s325 1,756 301 101 101 96
ex1 130 33 29 21 19
ex2 212 32 93 61 42
6s106 135 17 100 86 83
6s256 3,141 5 0 0 0
ex3 61 3 2 2 2
ex4 63 3 3 3 3
6s209 5,759 2 73 72 66
6s113 994 1 18 17 17
6s143 260 1 103 83 77
6s170 3,141 1 1 1 1
6s252 170 1 94 71 65

Total 586 532

The results of the experiment
are shown in Table 4. The first
three columns of this table are the
same as in Table 3. They give the
name of a benchmark, the number
of latches and the number of invari-
ants P1,. . . ,Pn to prove. (The actual
names of examples ex1,..,ex4 in the
HWMCC-13 set are pdtvsarmultip,
bobtuintmulti, nusmvdme1d3multi,
nusmvdme2d3multi.) The next two
columns of Table 4 are the same
as the last two columns of Table 3.
They show the number of local in-
variant clauses that turn out to be
global invariants and the number of
global invariants that were not im-

plied by Sp. The last column gives the number of global invariants that were
not implied by Sp∗. The last row of the table shows that in 532 cases out of 586
the invariants not implied by Sp were not implied by Sp∗ either. So, in 90% of
cases START generated invariant clauses different from those of IC3 .


	Partial Quantifier Elimination By Certificate Clauses
	Eugene Goldberg

