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Abstract—We consider a modification of the Quantifier Elim-
ination (QE) problem called Partial QE (PQE). In PQE, only a
small part of the formula is taken out of the scope of quantifiers.
The appeal of PQE is that many verification problems, e.g.
equivalence checking and model checking, reduce to PQE and the
latter is much easier than complete QE. Earlier, we introduced
a PQE algorithm based on the machinery of D-sequents. A
D-sequent is a record stating that a clause is redundant in a
quantified CNF formula in a specified subspace. To make this
algorithm efficient, it is important to reuse learned D-sequents.
However, reusing D-sequents is not as easy as conflict clauses
in SAT-solvers because redundancy is a structural rather than
a semantic property. In [21], we modified the definition of D-
sequents to enable their safe reusing. In this paper, we present a
PQE algorithm based on new D-sequents. It is different from its
predecessor in two aspects. First, the new algorithm can learn
and reuse D-sequents. Second, it proves clauses redundant one
by one and thus backtracks as soon as the current target clause
is proved redundant in the current subspace. This makes the new
PQE algorithm similar to a SAT-solver that backtracks as soon
as just one clause is falsified. We show experimentally that the
new PQE algorithm outperforms its predecessor.

I. INTRODUCTION

Many verification problems reduce to Quantifier Elimination

(QE). So, any progress in QE is of great importance. In

this paper, we consider propositional CNF formulas with

existential quantifiers. Given formula ∃X [F (X,Y )] where

X and Y are sets of variables, the QE problem is to find

a quantifier-free formula F ∗(Y ) such that F ∗ ≡ ∃X [F ].
Building a practical QE algorithm is a tall order. In addition

to the sheer complexity of QE, a major obstacle here is that

the size of formula F ∗(Y ) can be prohibitively large.

There are at least two ways of making QE easier to solve.

First, one can consider only instances of QE where |Y | is

small, which limits the size of F ∗. In particular, if |Y | = 0,

QE reduces to the satisfiability problem (SAT). This line of

research featuring very efficient methods of model checking

based on SAT [3], [35], [7] has gained great popularity.

Another way to address the complexity of QE suggested

in [25] is to perform partial QE (PQE). Given formula

∃X [F1(X,Y ) ∧ F2(X,Y )], the PQE problem is to find a

quantifier-free formula F ∗

1 (Y ) such that F ∗

1 ∧ ∃X [F2] ≡
∃X [F1 ∧ F2]. We will say that formula F ∗

1 is obtained by

taking F1 out of the scope of quantifiers.

The appeal of PQE is threefold. First, intuitively, PQE

should be much simpler than QE if F1 is much smaller than

F2. Second, PQE can perform SAT. So one can view a PQE-

solver as a SAT-solver with extra semantic power due to

using quantifiers. Third, in addition to SAT, many verification

problems, reduce to PQE (see Section III). For instance, an

equivalence checker based on PQE [19] enables construction

of short resolution proofs of equivalence for a very broad class

of structurally similar circuits. These proofs are based on the

notion of clause redundancy1 in a quantified formula and thus

cannot be generated by a traditional SAT-solver. In [20], we

show that a PQE-solver can check if the reachability diameter

exceeds a specified value. So it can turn bounded model

checking [3] into unbounded as opposed to a pure SAT-solver.

Importantly, no generation of an inductive invariant is required

by the method of [20].

If F ∗

1 (Y ) is a solution to the PQE problem above, it is

implied by F1 ∧ F2. So F ∗

1 can be obtained by resolving

clauses of F1∧F2. However, a PQE-solver based on resolution

alone cannot efficiently address the following “termination

problem”. Suppose one builds F ∗

1 incrementally, adding one

clause at a time. When can one terminate this procedure

claiming that F ∗ is a solution to the PQE problem (and so

F ∗

1 ∧ ∃X [F2] ≡ ∃X [F1 ∧ F2])? The inability of resolution to

address the termination problem stems from its “asymmetry”

in treating satisfiable and unsatisfiable formulas. To prove

formula G unsatisfiable, one just needs to add to G new

resolvents until an empty clause is derived. However, proving

G satisfiable requires reaching a saturation point where every

new resolvent is implied by a clause of G.

In [22], [24] we approached the termination problem above

using the following observation. Assume for the sake of

simplicity that every clause of F1 contains at least one variable

of X . Then, if F ∗

1 is a solution, F1 can be dropped from

F ∗

1 ∧∃X [F1 ∧ F2]. Thus, F ∗

1 becomes a solution as soon as it

makes the clauses of F1 redundant. The ability of redundancy-

based reasoning to handle the termination problem is rooted

in the fact that such reasoning enables treating satisfiable and

unsatisfiable formulas in a symmetric way (see Section V).

In [25], we introduced a PQE-solver called DS -PQE based

on the notion of redundancy (DS stands for “D-Sequent”).

DS -PQE is a branching algorithm that, in addition to deriving

new clauses and conjoining them with F1 ∧ F2, generates

dependency sequents (D-sequents). A D-sequent is a record

saying that a clause is redundant in a specified subspace.

DS -PQE branches until proving redundancy2 of target clauses

becomes trivial at which point so-called “atomic” D-sequents

are generated. The D-sequents of different branches are

merged using a resolution-like operation called join. Upon

1A clause is a disjunction of literals. So a CNF formula F is a conjunction
of clauses: C1 ∧ · · · ∧ Ck . We also consider F as the set of clauses
{C1, . . . , Ck}. Clause C is redundant in ∃X[F ] if ∃X[F ] ≡ ∃X[F \ {C}].

2By ”proving a clause C redundant” we mean “making C redundant by
adding new clauses (if necessary) and then proving C redundant”.
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completing the search tree, DS -PQE derives D-sequents

stating redundancy of the clauses of F1.

DS -PQE has two flaws. First, DS -PQE employs “multi-

event” backtracking. Namely, it backtracks only when all

clauses of F1 are proved redundant in the current subspace.

(This is different from a SAT-solver that backtracks as soon as

just one clause of the formula is falsified.) The intuition here is

that multi-event backtracking leads to building very deep and

thus very large search trees. Second, DS -PQE does not reuse

D-sequents derived in different branches. The problem here is

that redundancy is a structural rather than a semantic property.

So, a clause redundant in formula G′ may not be redundant

in G′′ logically equivalent to G′ (whereas a semantic property

holds for all equivalent formulas). So, reusing a D-sequent is

not as easy as reusing a clause learned by a SAT-solver.

In this paper, we address both flaws of DS -PQE . First, we

present a new PQE algorithm called DS -PQE+ that employs

single-event backtracking. At any given moment, DS -PQE+

proves redundancy of only one clause. Once this goal is

achieved, it picks a new clause to prove redundant. Second,

DS -PQE+ uses a new definition of D-sequents introduced

in [21]. This definition facilitates safe reusing of D-sequents.

We show experimentally that DS -PQE+ is significantly faster

than DS -PQE .

This main body of the paper3 is structured as follows.

Basic definitions are given in Section II. Section III lists some

verification problems that reduce to PQE. In Section IV, we

give a simple example of using the machinery of D-sequents in

PQE. Section V explains how to use the notion of redundancy

to treat satisfiable and unsatisfiable formulas “symmetrically”.

In Section VI, we describe the semantics of clause redundancy

in terms of boundary points. Sections VII-X present the

machinery of D-sequents. Section XIII provides experimental

results. Some background is given in Section XIV. Finally,

in Sections XV and XVI, we make conclusions and describe

directions for future research.

II. BASIC DEFINITIONS

In this paper, we consider only propositional CNF formulas.

In the sequel, when we say “formula” without mentioning

quantifiers we mean a quantifier-free CNF formula.

Definition 1: Let F be a CNF formula and X be a subset of

variables of F . We will refer to ∃X [F ] as an ∃CNF formula.

Definition 2: Let F be a CNF formula. Vars(F ) de-

notes the set of variables of F and Vars(∃X[F ]) denotes

Vars(F ) \X .

Definition 3: Let V be a set of variables. An assignment

~q to V is a mapping V ′ → {0, 1} where V ′ ⊆ V . We will

denote the set of variables assigned in ~q as Vars(~q). We will

denote as ~q ⊆ ~r the fact that a) Vars(~q) ⊆ Vars(~r) and b)

every variable of Vars(~q) has the same value in ~q and ~r.

Definition 4: Let C be a clause, H be a formula that may

have quantifiers, and ~q be an assignment. C~q ≡ 1 if C is

satisfied by ~q; otherwise it is the clause obtained from C by

3Some additional information is provided in Appendices.

removing all literals falsified by ~q. H~q denotes the formula

obtained from H by replacing every clause C with C~q .

Definition 5: Let G,H be formulas that may have quan-

tifiers. We say that G,H are equivalent, written G ≡ H , if

for all assignments ~q where Vars(~q) ⊇ (Vars(G)∪Vars(H)),
we have G~q = H~q .

Definition 6: The Quantifier Elimination (QE) problem

for formula ∃X [F (X,Y )] is to find a formula F ∗(Y ) such

that F ∗ ≡ ∃X[F ].
Definition 7: The Partial QE (PQE) problem

of taking F1 out of the scope of quantifiers in

∃X [F1(X,Y ) ∧ F2(X,Y )] is to find formula F ∗

1 (Y )
such that F ∗

1
∧ ∃X[F2] ≡ ∃X[F1 ∧ F2].

Remark 1: From now on, we will use X and Y to denote

sets of quantified and non-quantified variables respectively. We

will assume that variables denoted by xi and yi are in X and Y

respectively. Using X,Y in a quantifier-free formula implies

that in the context of QE/PQE, X and Y specify the quantified

and non-quantified variables respectively.

Definition 8: Let ∃X [F (X,Y )] be an ∃CNF formula. A

clause C of F is called an X-clause if Vars(C) ∩ X 6= ∅.

Definition 9: Let F be a CNF formula and G ⊆ F

and G 6= ∅. The clauses of G are redundant in F if

F ≡ (F \ G). The clauses of G are redundant in ∃X[F ]
if ∃X [F ] ≡ ∃X [F \G]. Note that F ≡ (F \ G) implies

∃X [F ] ≡ ∃X [F \G] but the opposite is not true.

III. SOME APPLICATIONS OF PQE

In this section, we justify our interest in PQE by listing some

verification problems that can be solved by a PQE algorithm.

A. Circuit-SAT

Let N(X,Y, Z) be a combinational circuit where X ,Y ,Z

are sets of input, internal and output variables respectively. Let

~z be an assignment4 to Z . Consider the problem5 of finding

inputs (i.e. assignments to X) for which N produces output

~z. Let F (X,Y, Z) be a formula specifying N . Let Cz denote

the longest clause falsified by ~z. The problem above reduces

to taking Cz out of the scope of quantifiers in ∃W [Cz ∧ F ]
where W = Y ∪ Z (see [26]). Namely, one needs to find a

formula G(X) such that ∃W [Cz ∧ F ] ≡ G ∧ ∃W [F ]. Every

input ~x falsifying G produces the output ~z.

B. General SAT

Let F (X) be a formula to be checked for satisfiability and

~x be an assignment to X . Let F1 and F2 denote the clauses

of F satisfied and falsified by ~x respectively. Then checking

the satisfiability of F reduces to taking F1 out of the scope of

quantifiers in ∃X [F1 ∧ F2] (see [25]). That is one just needs

to find F ∗

1 such that ∃X [F1 ∧ F2] ≡ F ∗

1 ∧ ∃X [F2]. Since all

variables of F are quantified, F ∗

1 is a constant. If F ∗

1 = false ,

F is unsatisfiable because ∃X [F ] ≡ ∃X [F1 ∧ F2] ≡ false . If

F ∗

1 = true, F is satisfiable (because F2 is satisfied by ~x).

4In this section, when we say “an assignment ~v to a set of variables V ”
we mean a full assignment (i.e. every variable of V is assigned in ~v).

5This problem reduces to Circuit-SAT if Z = {z}, ~z = (z = 1) and it
suffices to produce just one input (if any) for which N outputs ~z.



C. Interpolation

Let I(Y ) be an interpolant for formulas A(X,Y ) and

B(Y, Z) i.e A ⇒ I ⇒ B. Let formula A∗(Y ) be obtained

by taking A out of the scope of quantifiers in ∃W [A ∧B]
where W = X ∪ Z . That is ∃W [A ∧B] ≡ A∗ ∧ ∃W [B].
Assume also that A ⇒ A∗. Then A ⇒ A∗ ⇒ B and A∗ is an

interpolant [18]. So, one can view interpolation as a special

case of PQE.

D. Equivalence checking

Let N ′(X ′, Y ′, z′) and N ′′(X ′′, Y ′′, z′′) be single-output

combinational circuits to be checked for equivalence. Here

X ′, Y ′ are sets of input and internal variables and z′ is the

output variable of N ′. Sets X ′′ and Y ′′ and variable z′′

have the same meaning for N ′′. Let EQ(X ′, X ′′) specify

the predicate such that EQ(~x′, ~x′′) iff ~x′ = ~x′′. Let formulas

F ′(X ′, Y ′, z′) and F ′′(X ′′, Y ′′, z′′) specify circuits N ′ and

N ′′ respectively.

The equivalence of N ′ and N ′′ can be checked by taking

EQ from the scope of quantifiers in ∃W [EQ ∧ F ′ ∧ F ′′]
where W = X ′∪X ′′ ∪Y ′ ∪Y ′′ (see [19]). Let h(z′, z′′) be a

formula such that ∃W [EQ ∧ F ′ ∧ F ′′] ≡ h ∧ ∃W [F ′ ∧ F ′′].
If h(z′, z′′) specifies z′ ≡ z′′, then N ′ and N ′′ are equivalent.

Otherwise, N ′ and N ′′ are inequivalent unless they implement

identical constants. (This possibility can be ruled out by a few

easy SAT-checks.)

E. Model checking

Let formulas T (S, S′) and I(S) specify the transition rela-

tion and initial states of a system ξ respectively. Here S and

S′ are sets of variables specifying the present and next states

respectively. Let Diam(I, T ) denote the reachability diameter

of ξ (i.e. every state of ξ is reachable in at most Diam(I, T )
transitions).

Given a number n, one can use a PQE solver to check

if n ≥ Diam(I, T ) as follows [20]. Let I1 = I(S1) and

Wn = S0 ∪ · · · ∪ Sn and G0,n = T0,1 ∧ · · · ∧ Tn−1,n and

Ti,i+1 = T (Si, Si+1). Testing if n ≥ Diam(I, T ) reduces

to checking if I1 is redundant in ∃Wn[I1 ∧ I0 ∧G0,n+1] i.e.

whether ∃Wn[I1 ∧ I0 ∧G0,n+1] ≡ ∃Wn[I0 ∧G0,n+1]. If so,

then n ≥ Diam(I, T ). Then, to prove a safety property P (S),
it suffices to run BMC [3] to show that no counterexample of

length n or less exists.

IV. A SIMPLE EXAMPLE

In this section, we present a simple example of performing

PQE by deriving D-sequents. A D-sequent of [24] is a record

(∃X [F ], ~q) → C stating redundancy of clause C in ∃X [F ] in

subspace ~q (where ~q is an assignment to variables of F ). Let

∃X [C1 ∧G] be a formula where X = {x1, x2}, C1 = x1∨x2,

G = C2 ∧ C3, C2 = y ∨ x1, C3 = y ∨ x2. Consider the PQE

problem of taking C1 out of the scope of quantifiers. Below

we solve this problem by proving C1 redundant.

In subspace y=0, clauses C2, C3 are unit (i.e. one literal

is unassigned, the rest are falsified). After assigning x1=1,

x2=0 to satisfy C2, C3, the clause C1 is falsified. Using the

standard conflict analysis [33] one derives a conflict clause

C4 = y. Adding C4 to C1∧G makes C1 redundant in subspace

y = 0. So the D-sequent S′ equal to (∃X [F ], ~q′) → C1 holds

where F = C1 ∧G ∧ C4 and ~q′ = (y = 0).
In subspace y = 1, the clause C1 is “blocked” at x1. That is

no clause of F is resolvable with C1 on x1 in subspace y = 1
because C2 is satisfied by y = 1 (see Subsection IX-C). So C1

is redundant in formula ∃X [F ] and the D-sequent S′′ equal

to (∃X [F ], ~q′′) → C1 holds where ~q′′ = (y = 1). D-sequents

S′ and S′′ are examples of so-called atomic D-sequents. They

are derived when proving clause redundancy is trivial (see Sec-

tion IX). One can produce a new D-sequent (∃X [F ], ~q) → C1

where ~q = ∅ by “joining” S′ and S′′ at y (see Subsection X-A).

This D-sequent states the unconditional redundancy of C1 in

∃X [F ]. So, C4 ∧ ∃X [G] ≡ ∃X [C1 ∧G ∧ C4]. Since C1 ∧ G

implies C4, then C4 ∧ ∃X [G] ≡ ∃X [C1 ∧G]. So C4 is a

solution to our PQE problem.

V. REDUNDANCY AND SAT/UNSAT SYMMETRY

As mentioned earlier, there is an obvious asymmetry in how

pure resolution treats satisfiable and unsatisfiable formulas.

Namely, resolution cannot efficiently solve satisfiable formu-

las. In the SAT-solvers based on the DPLL procedure [13],

this problem is addressed by building a search tree where

each branch corresponds to an assignment. For a satisfiable

formula, the search terminates as soon as a branch specifying

a satisfying assignment is found.

Note that the DPLL procedure does not eliminate the

asymmetry in treating satisfiable and unsatisfiable formulas.

It just simplifies proving a formula satisfiable (by finding a

satisfying assignment). However, this does not work well when

one has to enumerate many satisfying assignments. Consider,

for instance, the QE problem of finding F ∗(Y ) logically

equivalent to ∃X [F (X,Y )]. Suppose one builds F ∗(Y ) by a

DPLL-like procedure. In the worst case, this requires finding

a satisfying assignment for every assignment ~y to Y for which

F is satisfiable.

One can use the notion of redundancy to recover the sym-

metry between satisfiable and unsatisfiable formulas. Consider,

for instance, the QE problem above. Let F be unsatisfiable in

subspace ~y. Then to make the X-clauses of F redundant in

this subspace one needs to add a clause C(Y ) (implied by

F ) that is falsified by ~y. If F is satisfiable in subspace ~y, all

X-clauses are already redundant in this subspace and hence

no clause needs to be added. So, the only difference between

SAT and UNSAT cases is that in the UNSAT case one has to

add add a clause to make target X-clauses redundant.

VI. PROVING CLAUSE REDUNDANCY

Let F (X) be a quantifier-free formula. Proving redundancy

of a clause C ∈ F reduces to checking if F \ {C} implies

C. So, in this case, a redundancy check is straightforward

and reduces to SAT. Now consider proving redundancy of

C ∈ F in formula ∃X [F (X,Y )]. If Vars(C) ⊆ Y , then

the redundancy check is still the same as above. However,

the situation changes if C is an X-clause. The fact that an



X-clause is redundant in ∃X [F ] does not mean that it is

redundant in F as well.

In [23], to address the problem of proving clause redun-

dancy, we developed a machinery of boundary points. Given

a formula ∃X [F ] and a clause C ∈ F , a boundary point is

a full assignment (~x,~y) to X ∪ Y that falsifies C but satisfies

F \ {C}. This boundary point is called removable if there is

a clause B(Y ) implied by F that is falsified by (~x,~y). Adding

B to F eliminates (~x,~y) as a boundary point (because it does

not satisfy F \ {C} anymore). An X-clause C is redundant

in ∃X [F ] if no removable boundary point exists.

VII. DEPENDENCY SEQUENTS (D-SEQUENTS)

In [24], we introduced a machinery of D-sequents meant

for dealing with quantified formulas. It can be viewed as an

extension of resolution that facilitates treating satisfiable and

unsatisfiable formulas in a symmetric way (see Section V). In

this section, we modify the definition of D-sequents introduced

in [24]. In Subsection VII-A, we explain the reason for such a

modification. The new definition is given in Subsection VII-B.

A. Motivating example

Let formula ∃X [F ] contain two identical X-clauses C and

B. The presence of C makes B redundant and vice versa.

So, D-sequents (∃X [F ], ~q) → C and (∃X [F ], ~q) → B hold

where ~q = ∅. Denote them as SC and SB respectively. (Here,

we use the old definition of D-sequents given in [24].) SC and

SB state that C and B are redundant in ∃X [F ] individually.

Using SC and SB together (to remove both B and C from

∃X [F ]) is incorrect because it involves circular reasoning.

The problem here is that redundancy is a structural property.

So, the redundancy of B in ∃X [F ] does not imply that of B in

∃X [F \ {C}] even though F ≡ F \ {C}. The definition of a

D-sequent given in [24] does not help to address the problem

above. This definition states redundancy of a clause only with

respect to formula ∃X [F ]. (This makes it hard to reuse D-

sequents and is the reason why the PQE-solver introduced

in [24] does not reuse D-sequents). We address this problem by

adding a structural constraint to the definition of a D-sequent.

It specifies a subset of formulas where a D-sequent holds and

so helps to avoid using this D-sequent in situations where

it may not hold. Adding structural constraints to D-sequents

SC and SB makes them mutually exclusive (see Example 1

below).

B. Definition of D-sequents

Definition 10: Let ∃X [F ] be an ∃CNF formula and ~q be

an assignment to Vars(F ). Let C be an X-clause of F and

H be a subset of F \{C}. A dependency sequent (D-sequent)

S has the form (∃X [F ], ~q,H) → C. It states that clause C~q

is redundant in every formula ∃X [W~q] logically equivalent to

∃X [F~q] where H ∪ {C} ⊆ W ⊆ F .

Definition 11: The assignment ~q and formula H above

are called the conditional and the structure constraint of

the D-sequent S respectively. We will call ∃X [W ], where

H ∪ {C} ⊆ W ⊆ F , a member formula of S. We will say

that a D-sequent S specified by (∃X [F ], ~q,H) → C holds if

it states redundancy of C according to Definition 10 (i.e. if

S is correct). We will say that S is applicable to a formula

∃X [W ] if the latter is a member formula of S. Otherwise, S

is called inapplicable to ∃X [W ].
The structure constraint H of Definition 10 specifies a

subset of formulas logically equivalent to ∃X [F ] where the

clause C is redundant. From a practical point of view, the

presence of H influences the order in which X-clauses can be

proved redundant. Proving an X-clause B of H redundant and

removing it from F renders the D-sequent S inapplicable to

the modified formula (i.e. ∃X [F \ {B}]). Thus, if one intends

to use S, the clause B should be proved redundant after C.

Example 1: Consider the example introduced in Subsec-

tion VII-A. In terms of Definition 10, the D-sequent SC looks

like (∃X [F ], ~q,HC) → C where ~q = ∅, HC = {B} (because

the presence of clause B is used to prove C redundant).

Similarly, the D-sequent SB looks like (∃X [F ], ~q,HB) → B

where HB = {C}. D-sequents SC and SB are mutually

exclusive: using SC to remove C from F as a redundant clause

renders SB inapplicable and vice versa.

Remark 2: We will abbreviate D-sequent (∃X [F ],~q,H)→C

to (~q,H) → C if ∃X [F ] is known from the context.

VIII. REUSING SINGLE AND MULTIPLE D-SEQUENTS

In this section, we discuss conditions under which single

and multiple D-sequents can be safely reused.

A. Reusing a single D-sequent

Let S be a D-sequent specified by (∃X [F ], ~q,H) → C . We

will say that S is active in subspace ~r for formula ∃X [W ] if

• ~q ⊆ ~r and

• S is applicable to ∃X [W ] (see Definition 11)

The activation of S means that it can be safely reused (i.e. C

can be dropped in the subspace ~r as redundant6 in ∃X [W ]).
An applicable D-sequent S equal to (∃X [F ], ~q,H) → C is

called unit under assignment ~r if all values assigned in ~q but

one are present in ~r. Suppose, for instance, ~q = (y1 = 0, x5 =
1) and ~r contains y1 = 0 but x5 is not assigned in ~r. Then S

is unit. Adding the assignment x5 = 1 to ~r, activates S, which

indicates that C is redundant in the subspace ~r ∪ {x5 = 1}.

So, a unit D-sequent can be used like a unit clause in Boolean

Constraint Propagation (BCP) of a SAT-solver. Namely, one

can use S to derive the “deactivating” assignment x5 = 0 as a

direction to a subspace where C is not proved redundant yet.

B. Reusing a set of D-sequents

In Example 1, we described D-sequents that cannot be

active together. Below, we introduce a condition under which

a set of D-sequents can be active together.

Definition 12: Assignments ~q′ and ~q′′ are called compatible

if every variable of Vars(~q′)∩Vars( ~q′′) is assigned the same

value in ~q′ and ~q′′.

6Redundancy of a clause in subspace ~q does not trivially imply its
redundancy in subspace ~q ⊂ ~r, i.e. in a smaller subspace (see Appendix I).



Definition 13: Let ∃X [F ] be an ∃CNF formula. Let

S1, . . . , Sk be D-sequents specified by (~q1, H1) → C1,. . . ,

(~qk,Hk) → Ck respectively. They are called consistent if a)

every pair ~qi,~qj , 1≤ i, j≤ k is compatible and b) there is an

order π on {1,. . . ,k} such that ∃X [F \ {Cπ(1),. . . ,Cπ(m−1)}]
obtained after using D-sequents Sπ(1),. . . ,Sπ(m−1) is a mem-

ber formula of Sπ(m), ∀m∈{2,. . ., k}.

The item b) above means that S1, . . . , Sk can be active

together if there is an order π following which one guarantees

the applicability of every D-sequent. (The D-sequents SC and

SB of Example 1 are inconsistent because such an order

does not exist. Applying one D-sequent makes the other

inapplicable.) Definition 13 specifies a sufficient condition for

a set of D-sequents to be active together in a subspace ~r where

~qi ⊆ ~r, 1 ≤ i ≤ k. If this condition is met, C1, . . . , Ck can be

safely removed from ∃X [F ] in the subspace ~r (see [21]).

IX. ATOMIC D-SEQUENTS

In this section, we describe D-sequents called atomic.

An atomic D-sequent is generated when proving a clause

redundant is trivial [24]. We modify the definitions of [24]

to accommodate the appearance of a structure constraint.

A. Atomic D-sequents of the first kind

Proposition 1: Let ∃X [F ] be an ∃CNF formula and C∈F

and v ∈ Vars(C). Let v = b where b∈{0, 1} satisfy C. Then

the D-sequent (~q,H)→C holds where ~q=(v = b) and H=∅.

We will refer to it as an atomic D-sequent of the first kind.

Proofs of all propositions can be found in [21]. Satisfying

C by an assignment does not require the presence of any other

clause of F . Hence, the structure constraint of a D-sequent of

the first kind is an empty set of clauses.

Example 2: Let ∃X [F ] be an ∃CNF formula and C =
y1 ∨ x5 be a clause of F . Since C is satisfied by assignments

y1 = 1 and x5 = 0, D-sequents (y1 = 1, ∅) → C and

(x5 = 0, ∅) → C hold.

B. Atomic D-sequents of the second kind

Proposition 2: Let ∃X [F ] be an ∃CNF formula and ~q be

an assignment to Vars(F ). Let C and B be clauses of F and

C be an X-clause. Let C~q still be an X-clause and B~q imply

C~q (i.e. every literal of B~q is in C~q). Then the D-sequent

(~q,H) → C holds where H = {B}. We will refer to it as an

atomic D-sequent of the second kind.

Example 3: Let ∃X [F ] be an ∃CNF formula. Let B =
y1 ∨ x2 and C = x2 ∨ x3 be clauses of F . Let ~q = (y1 = 0).
Since B~q implies C~q the D-sequent (~q, {B}) → C holds.

C. Atomic D-sequents of the third kind

Definition 14: Let clauses C′,C′′ have opposite literals of

exactly one variable v ∈ Vars(C′) ∩ Vars(C′′). The clause

C having all literals of C′, C′′ but those of v is called the

resolvent of C′,C′′ on v. The clause C is said to be obtained

by resolution on v. Clauses C′,C′′ are called resolvable on v.

Definition 15: A clause C of a CNF formula F is called

blocked at variable v, if no clause of F is resolvable with C

on v. The notion of blocked clauses was introduced in [31].

If a clause C of an ∃CNF formula is blocked with respect

to a quantified variable in a subspace, it is redundant in this

subspace. This fact is used by the proposition below.

Proposition 3: Let ∃X [F ] be an ∃CNF formula. Let C be

an X-clause of F and v ∈ (Vars(C) ∩ X). Let C1, . . . , Ck

be the clauses of F resolvable with C on variable v. Let

(~q1, H1) → C1,. . . ,(~qk, Hk) → Ck be consistent D-sequents

(see Definition 13). Then the D-sequent (q,H) → C holds

where ~q=
i=k⋃

i=1

~qi and H =
i=k⋃

i=1

Hi. We will refer to it as an

atomic D-sequent of the third kind.

Example 4: Let ∃X [F ] be an ∃CNF formula. Let

C1, C2, C3 be the only clauses of F with variable x1 ∈ X

where C1 = x1 ∨ x2, C2 = y1 ∨ x1, C3 = y2 ∨ x1.

Since y1 = 1 satisfies C2, the D-sequent (y1 = 1, ∅) → C2

holds. Suppose that the D-sequent (x2 = 1, {C4}) → C3

holds where C4 ∈ F . Note that the two D-sequents above

are consistent. So, from Proposition 3 it follows that the D-

sequent (~q, {C4}) → C1 holds where ~q = (y1 = 1, x2 = 1).
The clause C1 is redundant in the subspace ~q because it is

blocked at x1 in this subspace.

X. JOINING AND UPDATING D-SEQUENTS

In this section, we recall two methods for producing a new

D-sequent from existing ones [24]. In Subsection X-A, we

present a resolution-like operation called join that produces a

new D-sequent from two parent D-sequents. Subsection X-B

describes how a D-sequent is recomputed after adding impli-

cations. We modify the description of these methods given

in [24] to accommodate the appearance of a structure con-

straint. In Appendix II, we describe one more way to produce

a new D-sequent that was not described in [24].

A. Join operation

Definition 16: Let ~q′ and ~q′′ be assignments in which exactly

one variable v ∈ Vars(~q′) ∩ Vars( ~q′′) is assigned different

values. The assignment ~q consisting of all the assignments of
~q′ and ~q′′ but those to v is called the resolvent of ~q′, ~q′′ on v.

Assignments ~q′, ~q′′ are called resolvable on v.

Proposition 4: Let ∃X [F ] be an ∃CNF formula. Let D-

sequents (~q′,H ′)→ C and ( ~q′′,H ′′)→ C hold. Let ~q′, ~q′′ be

resolvable on v and ~q be the resolvent. Then the D-sequent

(~q,H) → C holds where H = H ′ ∪H ′′.

Definition 17: We will say that the D-sequent (~q,H) → C

of Proposition 4 is produced by joining D-sequents

(~q′, H ′) → C and ( ~q′′, H ′′) → C at variable v.

Example 5: Let ∃X [F (X,Y )] be an ∃CNF formula. Let

C1, C2, C3 be clauses of F and C1 be an X-clause. Let

(~q′,H ′)→C1, ( ~q′′,H ′′)→C1 be D-sequents were ~q′ =(y1 =
0, x1 = 0), ~q′′=(y1=1, x2=1), H ′ = {C2}, H ′′ = {C3}. By

joining them at y1, one produces the D-sequent (~q,H) → C1

where ~q=(x1 = 0, x2 = 1) and H = {C2, C3}.

B. Updating D-sequents after adding an implication

As we mentioned earlier, proving redundancy of X-clauses

of ∃X [F ] requires adding new clauses implied by F . The



proposition below shows that the D-sequents learned for

∃X [F ] before can be trivially updated.

Proposition 5: Let D-sequent (∃X [F ], ~q,H) → C hold

and R be a formula implied by F . Then the D-sequent

(∃X [F ∧R], ~q,H) → C holds too.

XI. INTRODUCING DS -PQE+

In this section, we describe a PQE-algorithm called

DS -PQE+. As we mentioned earlier, in contrast to DS -PQE

of [25],DS -PQE+ uses single-event backtracking. Namely,

DS -PQE+ proves redundancy of X-clauses one by one and

backtracks as soon as the current target X-clause is proved

redundant in the current subspace. Besides, due to introduction

of structure constraints, it is safe for DS -PQE+ to reuse D-

sequents. A proof of correctness of DS -PQE+ is given in

Appendix VI.

A. Main loop of DS -PQE+

DS -PQE+(F1, F2 ‖X){
1 Ds := ∅
2 while (true) {
3 C := PickXcls(F1)
4 if (C = nil) return(F1)
5 PrvRed(F1,F2,Ds‖C,X)
6 F1 := F1 \ {C} }}

Fig. 1. Main loop

The main loop of

DS -PQE+ is shown in

Fig. 1. DS -PQE+ accepts

formulas F1(X,Y ), F2(X,Y )
and set X and outputs

formula F ∗

1 (Y ) such that

∃X [F1 ∧ F2] ≡ F ∗

1 ∧ ∃X [F2].
We use symbol ’ ‖ ’ to separate

in/out-parameters and in-

parameters. For instance, the line DS -PQE+(F1, F2 ‖X)
means that formulas F1, F2 change by DS -PQE+ (via

adding/removing clauses) whereas X does not.

DS -PQE+ first initializes the set Ds of learned D-sequents.

It starts an iteration of the loop with picking an X-clause

C ∈ F1 (line 3). If every clause of F1 contains only variables

of Y , then F1 is a solution F ∗

1 (Y ) to the PQE problem above

(line 4). Otherwise, DS -PQE+ invokes a procedure called

PrvRed to prove C redundant. This may require adding new

clauses to F1 and F2. In particular, PrvRed may add to F1

new X-clauses to be proved redundant in later iterations of

the loop. Finally, DS -PQE+ removes C from F1 (line 6).

B. Description of PrvRed procedure

The pseudo-code of PrvRed is shown in Fig 2. The objective

of PrvRed is to prove a clause of F1 redundant. We will refer to

this clause as the primary target and denote it as Cpr . To prove

Cpr redundant, PrvRed, in general, needs to prove redundancy

of other X-clauses called secondary targets. At any given

moment, PrvRed tries to prove redundancy of only one X-

clause. If a new secondary target is selected, the current target

is pushed on a stack T to be finished later. How DS -PQE+

manages secondary targets is described in Section XII. (The

lines of code relevant to this part of DS -PQE+ are marked

in Fig. 2 and 3 with an asterisk.)

First, PrvRed initializes its variables (lines 1-3). The stack

T of the target X-clauses is initialized to Cpr . The current

assignment ~a to X∪Y is initially empty. So is the assignment

queue Q. The current target clause Ctrg is set to Cpr . The main

work is done in a while loop that is similar to the main loop of

a SAT-solver [33]. In particular, PrvRed uses the notion of a

decision level. The latter consists of a decision assignment and

implied assignments derived by BCP. Decision level number 0

is an exception: it consists only of implied assignments. BCP

derives implied assignments from unit clauses and from unit

D-sequents (see Subsection VIII-A).

// η denotes (Q,~a, T,Ctrg)
// ξ denotes (F1, F2,Ds , X)
// φ denotes (F1, F2,Ds ,~a, T )
//
PrvRed(F1, F2,Ds ‖Cpr , X){
1 T := InitStack(Cpr )
2 ~a := ∅; Q := ∅
3 Ctrg := Cpr

−−−−−
4 while (true) {
5 if (Q = ∅) {
6 (v, b) :=Assgn(F1,F2,X)
7 UpdQueue(Q ‖ v, b) }
8 (ans , C′, S′) :=BCP(η ‖ ξ)
9 if (ans = NoBcktr)
10 continue

−−−−−
11 (S,C) :=Lrn(ans ,φ,C′,S′)
12 Store(F1, F2,Ds ‖S,C)
13 if (Ctrg = Cpr ) {
14 RegBcktr (~a, T ‖S, C)
15 if (Cond(S) = ∅) return
16 UpdQueue(Q ‖~a, S,C)
17 continue }

− − −−−
18* SpecBcktr (~a, T ‖S,C)
19* if (¬TrgDone(T )) {
20* UpdQueue(Q ‖~a,S,C)
21* continue }
22* (Ctrg , S) := NewTrg(φ ‖ )
23* if (Ctrg 6= Cpr ) continue
24* if (Cond(S) = ∅) return
25* UpdQueue(Q ‖~a, S)}}

Fig. 2. The PrvRed procedure

The operation of PrvRed

in the while loop can be par-

titioned into three parts iden-

tified by dotted lines. The

first part (lines 5-10) starts

with checking if the assign-

ment queue Q is empty. If

so, a new assignment v =
b is picked (line 6) where

v ∈ (X ∪ Y ) and b ∈ {0, 1}
and added to Q. PrvRed

first assigns7 the variables

of Y . So v ∈ X , only if

all variables of Y are as-

signed. Then PrvRed calls

the BCP procedure. If BCP

identifies a backtracking con-

dition, PrvRed goes to the

second part. (This means that

Ctrg is proved redundant in

the subspace ~a. In partic-

ular, a backtracking condi-

tion is met if BCP falsifies a

clause C′ or activates a D-

sequent S′ learned earlier.)

Otherwise, PrvRed begins a

new iteration.

PrvRed starts the second

part (lines 11-17) with gen-

erating a conflict clause C or

a new D-sequent S for Ctrg (line 11). Then PrvRed stores

S in Ds (if it is worth reusing) or adds C to F1 ∧ F2.

If a clause of F1 is used in generation of C, the latter is

added to F1. Otherwise, C is added to F2. If the current

target is Cpr , one uses “regular” backtracking (lines 13-14,

see Subsection XI-E). If the conditional of S is empty, PrvRed

terminates (line 15). Otherwise, an assignment derived from

S or C is added to ~a (line 16). This derivation is possible

because after backtracking, the generated conflict clause C

(or the D-sequent S) becomes unit. If the assignment above

is derived from S, PrvRed keeps S until the decision level of

this assignment is eliminated (even if S is not stored in Ds).

The third part (lines 18-25) is described in Section XII.

7The reason for making decision assignments on variables of Y before
those of X is as follows. The final goal of PQE is to derive clauses C(Y )
making F1 redundant in ∃X[F1 ∧ F2]. Giving preference to variables of Y
simplifies generation of such clauses. If a conflict occurs at a decision level
started by an assignment to variable v ∈ Y , one can easily derive a conflict
clause depending only on variables of Y .



C. BCP

The main loop of BCP consists of the three parts shown

in Fig. 3 by dotted lines. (Parameters η and ξ are defined in

Fig. 2.) In the first part (lines 2-9), BCP extracts an assignment

w = b from the assignment queue Q (line 2). It can be a

decision assignment or one derived from a clause C or D-

sequent S. Then, BCP updates the current assignment ~a (line

9). Lines 3-8 are explained in Subsection XII-B.

BCP(η ‖ ξ) {
1 while (Q 6= ∅) {
2 (w, b, C, S) := Pop(Q ‖ )
3* if (C = Ctrg) {
4* C′ := BCP∗(η ‖ ξ, w, b)
5* Ctrg := NewTrg(T )
6* if (C′ 6= nil)
7* return(FlsCls, C′,nil)
8* break; }
9 UpdAssgn(~a ‖w, b, C, S)

−−−−−
10 if (Satisf (Ctrg , w, b))
11 return(SatTrg ,nil ,nil)}
12 C′ :=ChkCls(Q‖F1,F2,w,b)
13 if (C′ 6= nil)
14 return(FlsCls , C′,nil)
15 S′ :=ChkDsq(Q‖Ds ,w,b)
16 if (S′ 6= nil)
17 return(ActDseq ,nil , S′)

−−−−−
18 if (Blocked(Ctrg ,~a, F1, F2))
19 return(BlkTrg ,nil ,nil)}
20 return(NoBcktr ,nil ,nil)}

Fig. 3. The BCP procedure

In the second part (lines

10-17), BCP first checks if

the current target clause Ctrg

is satisfied by w = b. If

so, BCP terminates return-

ing the backtracking condi-

tion SatTrg (line 11). Then

BCP identifies the clauses

of F1∧F2 satisfied or con-

strained by w = b (line 12).

If a clause becomes unit,

BCP stores the assignment

derived from this clause

in Q. If a falsified clause

C′ is found, BCP termi-

nates (lines 13-14). Other-

wise, BCP checks the ap-

plicable D-sequents of Ds

stating the redundancy of

Ctrg (line 15). If such a

D-sequent became unit, the

deactivating assignment is

added to Q (see Subsection VIII-A). If an active D-sequent

S′ is found, BCP terminates (lines 16-17).

Finally, BCP checks if Ctrg is blocked (lines 18-19). If not,

BCP reports that no backtracking condition is met (line 20).

D. D-sequent generation

When BCP reports a backtracking condition, the Lrn pro-

cedure (line 11 of Fig 2) generates a conflict clause C or

a D-sequent S. Lrn generates a conflict clause when BCP

returns a falsified clause C′ and every implied assignment

used by Lrn to construct C is derived from a clause [33].

Adding C to F1 ∧ F2 makes the current target clause Ctrg

redundant in subspace ~a. Otherwise8, Lrn generates a D-

sequent S for Ctrg . The D-sequent S is built similarly to a

conflict clause C. First, Lrn forms an initial D-sequent S equal

to (~q,H) → Ctrg (unless an existing D-sequent is activated

by BCP). The conditional ~q and structure constraint H of S

depend on the backtracking condition returned by BCP. If

~q contains assignments derived at the current decision level,

Lrn tries to get rid of them as it is done by a SAT-solver

generating a conflict clause. Only instead of resolution, Lrn

uses the join operation. Let w = b be the assignment of ~q

derived at the current decision level where b ∈ {0, 1}. If it is

8There is one case where Lrn generates a D-sequent and a clause (see
Appendix III-E).

derived from a D-sequent S′ equal to (~q′, H ′) → Ctrg , Lrn

joins S and S′ at w to produce a new D-sequent S. If w = b

is derived from a clause B, Lrn joins S with the atomic D-

sequent S′ of the second kind stating the redundancy of Ctrg

when B is falsified. S′ is equal to (~q′, H ′) → Ctrg where ~q′

is the shortest assignment falsifying B and H ′ = {B}. Lrn

keeps joining D-sequents until it builds a D-sequent S whose

conditional does not contain assignments derived at the current

decision level (but may contain the decision assignment of this

level). Appendix III gives examples of D-sequents built by Lrn.

E. Regular backtracking

If Ctrg is the primary target Cpr , PrvRed calls the back-

tracking procedure RegBcktr (line 14 of Fig. 2). If Lrn returns a

conflict clause C, RegBcktr backtracks to the smallest decision

level where C is still unit. So an assignment can be derived

from C. (This is how a SAT-solver with conflict clause

learning backtracks [33].) Similarly, if Lrn returns a D-sequent

S, RegBcktr backtracks to the smallest decision level where S

is still unit. So an assignment can be derived from S.

XII. USING SECONDARY-TARGET CLAUSES

The objective of PrvRed (see Fig. 2) is to prove the primary

target clause Cpr redundant. To achieve this goal, PrvRed

may need to prove redundancy of so-called secondary target

clauses. In this section, we describe how this is done.

A. The reason for using secondary targets

Let ∃X [F1(X,Y ) ∧ F2(X,Y )] be an ∃CNF formula. As-

sume that PrvRed tries to prove redundancy of the clause

Cpr ∈ F1 where Cpr = y1 ∨x2. Suppose that ~a is the current

assignment to X∪Y and y1 is assigned 0 in ~a whereas x2 is not

assigned yet. Since Cpr is falsified in subspace ~a∪{x2 = 0},

the assignment x2 = 1 is derived by BCP. However, the goal of

PrvRed is to prove Cpr redundant rather than satisfy F1∧F2.

The fact that Cpr is falsified in a subspace says nothing about

its redundancy in this subspace.

To address the problem above, PrvRed explores the sub-

space ~a ∪ {x2 = 1} to prove redundancy of the clauses of

F1 ∧ F2 resolvable with Cpr on x2. These clauses are called

secondary targets. Proving their redundancy results in proving

redundancy of Cpr . If F1∧F2 is unsatisfiable in the subspace

~a∪{x2 = 1}, PrvRed generates a conflict clause that does not

depend on x2. Adding it to F1 ∧ F2 makes Cpr redundant in

the subspace ~a and an atomic D-sequent of the second kind is

built. If F1 ∧ F2 is satisfiable in the subspace ~a ∪ {x2 = 1},

PrvRed simply proves redundancy of the secondary targets.

Then Cpr is blocked at variable x2 and an atomic D-sequent

of the third kind is generated stating the redundancy of Cpr

in the subspace ~a.

The same strategy is used for every current target clause

Ctrg (secondary or primary). Whenever Ctrg becomes unit,

PrvRed generates new secondary targets to be proved redun-

dant. These are the clauses of F1 ∧ F2 resolvable with Ctrg

on the variable that is currently unassigned in Ctrg .



B. Generation of secondary targets

To keep track of secondary targets PrvRed maintains a stack

T of target levels. (Appendix IV gives an example of how T

is updated.) The bottom level of T consists of the primary

target clause Cpr . All other levels are meant for secondary

targets. Every such a level is specified by a pair (C,w) where

C is either Cpr or a secondary target clause and w ∈ X is

a variable of C. They are called the key clause and the key

variable of this level. The secondary targets specified by this

level are the clauses of F1 ∧ F2 resolvable with C on w. The

top level of T specifies the current target clause Ctrg . Namely,

Ctrg is resolvable with the key clause C on the key variable w

of the top level of T . Once Ctrg is proved redundant, another

clause resolvable with C on w and not proved redundant yet

is chosen as the new target.

BCP picks assignment w = b derived from Ctrg only if Q

does not contain any other assignments (line 2 of Fig. 3). Lines

(4-8) show what happens next. First, the BCP∗ procedure is

called to make the assignment w = b. BCP∗ is similar to BCP

of a SAT-solver: it derives assignments only from clauses and

returns a falsified clause C′ if a conflict occurs. The only

difference is that every time BCP∗ finds a unit clause C, a

new target level of T is generated. (The reason is that every

unit clause produced by BCP∗ is resolvable either with Ctrg

or with some secondary target generated by BCP∗.) Let w be

the unassigned variable of C. Then this level is specified by the

pair (C,w). It consists of the clauses of F1 ∧ F2 resolvable

with C on w. On completing BCP∗, a new Ctrg is chosen

among the clauses of the top level of T (line 5). If a conflict

occurred during BCP∗, the BCP procedure terminates (lines

6-7). Otherwise, the main loop of BCP terminates (line 8).

C. Special backtracking

PrvRed uses a special backtracking procedure called

SpecBcktr (line 18 of Fig. 2) if the current target is not the

primary target Cpr . (An example of special backtracking is

given in Appendix V.) If Lrn returns a conflict clause C (line

11), SpecBcktr backtracks in the same manner as RegBcktr

(line 14). Namely, it jumps to the smallest decision level where

C is still unit. The difference is that SpecBcktr also eliminates

the target levels of T that are jumped over. Namely, if the key

variable w of a target level is unassigned by SpecBcktr, this

level is eliminated. (Adding C makes all X-clauses of F1∧F2

redundant in the current subspace. So proving redundancy of

secondary targets with variable w is not needed anymore.)

Suppose Lrn returns a D-sequent S. Since S states re-

dundancy of Ctrg , the scope of SpecBcktr is limited to the

variables assigned after the key variable w of the top target

level of T (to which Ctrg belongs). If some variables assigned

after w remain assigned on completing SpecBcktr, proving

Ctrg redundant is not over yet. In this case, PrvRed adds

the assignment derived from S to the queue Q and starts

the next iteration of the while loop (lines 19-21 of Fig. 2).

Otherwise, Ctrg is proved redundant up to the point of origin

and PrvRed calls NewTrg to look for a new target (line 22).

Namely, NewTrg looks for a clause resolvable with the key

clause C on the key variable w of the top level of T that is

not proved redundant yet.

If NewTrg fails to find a target in the top level of T , C is

blocked at w. Then NewTrg generates a D-sequent for C and

deletes the top level of T . This entails returning the clauses of

this level proved redundant back in F1 ∧ F2 and unassigning

w. Then NewTrg looks for a target in the new top level of

T and so on. If NewTrg finds Ctrg that is not the primary

target Cpr , PrvRed starts a new iteration of the while loop

(line 23). Otherwise, NewTrg sets Ctrg to Cpr . It also returns

a D-sequent S for Cpr since Cpr is blocked. If the conditional

of S is empty, Cpr is redundant unconditionally and PrvRed

terminates (line 24). Otherwise, the assignment derived from

S is added to Q and a new iteration begins (line 25).

XIII. EXPERIMENTAL RESULTS

In this section, we evaluate an implementation of

DS -PQE+. (Appendix VIII provides more experimental

data). Our preliminary experiments showed that structure con-

straints can grow very large, which makes storing D-sequents

expensive. In Appendix VII, we discuss various methods of

dealing with this problem. In our experiments, we used the

following idea. One can reduce the size of structure constraints

by storing/reusing only D-sequents for the target clauses of k

bottom levels of the stack T . In particular, one can safely reuse

the D-sequents for the primary target clause (k = 0) without

computing structure constraints at all (see Appendix VII).

For the evaluation of DS -PQE+, we use Circuit-SAT, the

first problem listed in Section III. We consider this problem in

the form repeatedly solved in IC3 [7]: given a state ~z, find the

states from which ~z can be reached in one transition. In [37],

it was suggested to look for the largest subset of these states

forming a cube. In this section, we use a variation of this

problem for evaluation of DS -PQE+. We demonstrate that

DS -PQE+ dramatically outperforms DS -PQE of [25].

We also compare DS -PQE+ with two SAT-based methods.

On examples with deterministic Transition Relations (TRs),

both methods are faster than DS -PQE+. However, method 1

shows poorer results (in terms of cube size). Method 2 is

comparable with DS -PQE+ in terms of cube size but is, in

general, inapplicable to non-deterministic TRs. (A determinis-

tic TR is specified by a deterministic circuit N i.e. an input to

N produces only one output. A deterministic TR can become

non-deterministic e.g. after pre-processing [15] performed to

speed up the SAT-checks of IC3). Importantly, no optimization

techniques are used in our implementation of DS -PQE+ yet.

So its performance can be dramatically improved.

Let N(X,Y, Z) be a combinational circuit where X ,Y and

Z are sets of input, internal and output variables respectively.

Let ~z be a full assignment to Z . The problem we consider

is to find the input assignments for which N evaluates to ~z.

Let C~z be the longest clause falsified by ~z. Let F (X,Y, Z)
be a CNF formula specifying N . Let W denote Y ∪ Z . As

we mentioned in Subsection III-A, the problem above reduces

to finding G(X) such that G ∧ ∃W [F ] ≡ ∃W [C~z ∧ F ] i.e. to

PQE. We assume here that N produces at least one output



for every input. So, ∃W [F ] ≡ 1 and G ≡ ∃W [C~z ∧ F ]. If

C ∈ G, then C specifies a cube of input assignments for

which N evaluates to ~z. So, a shorter clause C specifies a

larger set of input assignments producing output ~z.

TABLE I
TAKING C~z OUT OF THE SCOPE OF QUANTIFIERS IN ∃W [C~z ∧ F ]. THE

TIME LIMIT IS 100 SECONDS.

name #inps DS -PQE DS -PQE+ DS -PQE+

no learning limited learning

#dseqs time #dseqs time #dseqs time

×103 (s.) ×103 (s.) ×103 (s.)

pdtvisheap00 37 231 3.4 0.9 0.03 0.1 0.02

texasifetch1p1 87 >416 ∗ 6.8 0.4 0.7 0.4

pdtpmsretherrtf 93 >10,128 ∗ 17 1 0.6 0.05

pdtvisblackjack2 109 >6,857 ∗ 690 61 226 18

pdtvisvsar04 147 2,507 68 6.5 0.9 0.4 0.06

texaspimainp01 253 >35.6 ∗ 71 30 8.7 3.4

eijkbs3330 286 >17 ∗ 2.6 0.7 0.2 0.2

nusmvtcasp2 325 >3,301 ∗ 22 1.4 3.4 0.2

pdtvissfeistel 429 >2,305 ∗ >44 ∗ 7.3 13

pdtpmsvsa16a 453 >1,742 ∗ 171 87 1.1 1

First, we compared the performance of DS -PQE [25],

DS -PQE+ with no learning and DS -PQE+ with limited

learning (only for primary targets). We used the transition

relation of a HWMCC-10 benchmark as circuit N . For the

sake of simplicity, we ignored the difference between latched

and combinational input variables of N . (In the context of

model checking, the literals of combinational variables are

supposed to be dropped from C ∈ G to make C a cube of

states.) In Table I, we give a sample of the set of benchmarks

we tried that shows the general trend. The first column gives

the name of a benchmark. The second column shows the

number of input variables of N . The remaining columns

give the number of generated D-sequents (in thousands) and

the run time for each PQE procedure. Table I shows that

DS -PQE+ without learning outperforms DS -PQE due to

generating fewer D-sequents. For the same reason, DS -PQE+

with learning outperforms DS -PQE+ without learning.

TABLE II
COMPARISON WITH SAT-BASED METHODS (DETERMINISTIC CIRCUITS)

name #inps SAT SAT DS -PQE+

method 1 method 2 limited learning

#len- time #len- time #len- time

gth (s.) gth (s.) gth (s.)

visemodel 26 22 0.1 6 0 6 0.01

bobcohdoptdcd4 62 53 0.1 46 0.1 42 0.1

eijkbs3330 286 155 0.2 43 0.1 43 0.2

pdtvissfeistel 429 363 1.3 1 0.3 1 4.8

139464p0 1,002 992 3 625 3.3 572 23

The formula G(X) above can also be found by SAT. We

tried two SAT-based methods using Minisat [16] as a SAT-

solver. Method 1 (inspired by [34]) is essentially a univer-

sal QE algorithm whereas method 2 is applicable only for

formulas derived from deterministic circuits. Method 1 looks

for an assignment (~x,~y,~z) satisfying G ∧ F ∧U~z . (Originally,

G = ∅.) Here U~z is the set of unit clauses specifying ~z.

Then it builds the smallest assignment (~x′,~y,~z) where ~x′ ⊆ ~x

that still satisfies G∧F ∧U~z . Finally, the longest clause C~x′

falsified by ~x′ is added to G and a new satisfying assignment

is generated. Method 1 terminates when G ∧ F ∧ U~z is

unsatisfiable. Method 2 follows the idea employed in advanced

implementations of IC3/PDR [37], [11]. Namely, it uses the

satisfying assignment (~x,~y,~z) above to build formula R equal

to U~x ∧ F ∧ G ∧ C~z . Here U~x is the set of unit clauses

specifying ~x. If circuit N is deterministic, R is unsatisfiable.

Then one extracts the subset of U~x used in the proof of

unsatisfiability of R. The clause made up of the negated literals

of this subset is added to G. Then a new satisfying assignment

is generated (if any).

TABLE III
NON-DETERMINISTIC CIRCUITS

name SAT DS -PQE+

method 1 limited learning

#len- time #len- time

gth (s.) gth (s.)

visemodel 14 0.04 6 0.01

bob..ptdcd4 47 0.1 42 0.1

eijkbs3330 75 0.2 43 0.2

pdt..sfeistel 140 1.1 1 13

139464p0 748 3.4 577 32

Table II compares

the SAT-based methods

above with DS -PQE+

(with limited learning)

on 5 formulas showing

the general trend. All

three methods were run

until 1,000 clauses of G

were generated or the

problem was finished.

We computed the length of the shortest clause generated by

each method and its run time. Table II shows that the SAT-

based methods are faster than DS -PQE+ whereas the best

clause generated by method 2 and DS -PQE+ is shorter than

that of method 1. So method 2 is the winner.

In Table III we repeat the same experiment for non-

deterministic versions of circuits from Table II. To make

the original circuit N non-deterministic, we just dropped a

fraction of clauses in the formula F representing N . A non-

deterministic circuit N may produce different outputs for the

same input. In this case, the formula R above can be satis-

fiable, which renders method 2 inapplicable. Table III shows

that method 1 is still faster than DS -PQE+ but generates

much longer clauses.

XIV. SOME BACKGROUND

In this section, we give some background on learning

in branching algorithms9 used in verification. For such al-

gorithms, it is important to share information obtained in

different subspaces. An important example of such sharing is

the identification of isomorphic subgraphs when constructing a

BDD [9]. Another example is SAT-solving with conflict driven

learning [33], [36], [16]. The difference between learning

in BDDs/SAT-solvers and D-sequents is that the former is

semantic10 whereas the latter is structural.

The appeal of finding structural properties is that they are

formula-specific. So using such properties can give a dramatic

performance improvement. An obvious example of a structural

property is symmetry. In [12], [2], [14], the permutational

symmetry of a CNF formula F is exploited via adding

9Information about algorithms performing complete QE for propositional
logic can be found in [9], [10] (BDD based) and [34], [29], [17], [28], [8],
[30], [6], [5] (SAT-based).

10A BDD of a formula is just a compact representation of its truth table.
A conflict clause C is implied by the formula F from which C is derived
and implication is a semantic property of F .



“structural implications”. By a structural implication of F , we

mean a clause C that, in general, is not implied by F but

preserves the equisatisfiability of F ∧ C to F . For instance,

to keep only one satisfying assignment (if any) out of a set of

symmetric ones, symmetry-breaking clauses are added to F .

ATPG is another area where formula structure is exploited.

In ATPG methods [1], one reasons about a circuit in terms of

signal propagation. In the classic paper [32], signal propaga-

tion is simulated in a CNF formula F generated for identifying

a circuit fault. Formula F specifies the functionality of correct

and faulty circuits. Additional variables and clauses are added

to F to facilitate signal reasoning. These extra clauses, like in

formulas with symmetries, are “structural implications”.

The difference between D-sequents and traditional methods

of exploiting formula structure is twofold. First, redundancy

is a very general structural property. For that reason, the

machinery of D-sequents can be applied to any CNF formula

(e.g. a random CNF formula). Second, a traditional way to

take into account structure is to add some kind of structural

implications and then run a verification engine performing

semantic derivations (e.g. a SAT-solver). The machinery of

D-sequents is different in that it performs structural deriva-

tions (namely, proving redundancy of clauses with quantified

variables) all the way until some semantic fact is established

e.g. F ∗

1 ∧ ∃X [F2] ≡ ∃X [F1 ∧ F2].
Removal of redundant clauses is used in preprocessing

procedures of QBF-algorithms and SAT-solvers [15], [4].

Redundant clauses are also identified in the inner loop of SAT-

solving (inprocessing) [27]. These procedures identify uncon-

ditional clause redundancies by recognizing some situations

where such redundancies can be easily proved.

XV. CONCLUSIONS

We consider Partial Quantifier Elimination (PQE) on propo-

sitional CNF formulas with existential quantifiers. In PQE,

only a (small) subformula is taken out of the scope of quanti-

fiers. The appeal of PQE is that in many verification problems

one can use PQE instead of complete QE and the former

can be dramatically more efficient. Earlier, we developed a

PQE algorithm based on the notion of clause redundancy.

Since redundancy is a structural property, reusing learned

information is not trivial. In this paper, we provide some

theory addressing this problem. Besides, we introduce a new

PQE algorithm that performs single-event backtracking. This

algorithm bears some similarity to a SAT-solver and facilitates

reusing learned information. We show experimentally that the

new PQE algorithm is dramatically faster than its predecessor.

We believe that reusing learned information is an important

step in making PQE practical.

XVI. DIRECTIONS FOR FUTURE RESEARCH

In our future research we are planning to focus on the

following two directions. First, although DS -PQE+ shows

an obvious improvement over DS -PQE , it is too complex.

So, we will try to find a simpler version of DS -PQE+ that

preserves its good performance. Second, we want to relax the

decision making constraint (quantified variables are assigned

before unquantified). As we know from the practice of SAT-

solving, a poor choice of branching variables may lead to a

significant performance degradation.
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APPENDIX I

REDUNDANCY OF A CLAUSE IN A SUBSPACE

In this appendix, we discuss the following problem. Let

∃X [F ] be an ∃CNF formula. Let C be an X-clause of F

redundant in ∃X [F ] in subspace ~q. Let ~r be an assignment to

Vars(F ) where ~q ⊂ ~r. Intuitively, the clause C should remain

redundant in the smaller subspace specified by ~r. However,

this is not the case. ∃X [F~q] ≡ ∃X [F~q \ {C~q}] does not imply

∃X [F~r] ≡ ∃X [F~r \ {C~r}] (see the example below).

Example 6: Let G(X) be a satisfiable formula. Then every

G∗ ⊆ G is redundant in ∃X [G]. Assume that G is unsatisfiable

in subspace ~r. Then there is G∗ ⊆ G that is not redundant in

∃X [G] in subspace ~r. So G∗ is redundant in subspace ~q = ∅
and is not redundant in subspace ~r where ~q ⊂ ~r. An obvious

problem here is that the formula G~r does not preserve the

structure of G (in terms of redundancy of clauses).

The problem above can be easily addressed by using a

more sophisticated notion of redundancy called virtual redun-

dancy [21]. (The latter is different from redundancy specified

by Definition 9.) However, this would require adding more

definitions and propositions. So, for the sake of simplicity, in

this paper, we assume that if C is redundant in ∃X [F ] in a

subspace ~q (where redundancy is specified by Definition 9), it

is also redundant in subspace ~r if ~q ⊂ ~r holds.

APPENDIX II

GENERATION OF NEW D-SEQUENTS BY SUBSTITUTION

In Section X, we recalled two methods of producing new

D-sequents. In this appendix, we describe one more procedure

for generating a new D-sequent. This procedure is to reshape

the structure constraint H of a D-sequent by substituting a

clause C ∈ H with the structure constraint of another D-

sequent stating redundancy of C.

Proposition 6: Let ∃X [F ] be an ∃CNF formula. Let

(~q′, H ′) → C′ and ( ~q′′, H ′′) → C′′ be consistent D-sequents

(see Definition 13). Let C′′ be in H ′. Then the D-sequent

(~q,H) → C′ holds where ~q = ~q′∪ ~q′′, H=(H ′\{C′′})∪H ′′.

The proposition below is an implication of Proposition 6

to be used in Appendix VII. Since this proposition is not

mentioned in [21], we prove it here.

Proposition 7: Let ∃X [F ] be an ∃CNF formula. Let S be

a D-sequent equal to (~q,H) → C . Let ~r be an assignment

satisfying at least one clause of H where ~q ⊂ ~r holds. Then

the D-sequent S′ equal to (~r,H ′) → C holds where H ′ is

obtained from H by removing the clauses satisfied by ~r.

Proof: Let C1, . . . , Ck be the clauses of H satisfied by ~r.

For each clause Ci, 1 ≤ i ≤ k, one can build an atomic

D-sequent Si of the first kind equal to (~qi, Hi) → Ci. Here

Hi = ∅ and ~qi = (vi = bi) is an assignment satisfying Ci

where ~qi ⊆ ~r. It is not hard to show that S, S1 are consistent

(see Definition 13). By applying Proposition 6, one obtains a

new D-sequent S′ equal to (~q′, H ′) → C where ~q′ = ~q ∪ ~q1
and H ′ = H \{C1}. Since the new D-sequent S′ is consistent

with S2, one can apply Proposition 6 again. Going on in such a

manner, one obtains the D-sequent S′ equal to (~r′, H ′) → C

where ~r′ = ~q ∪ ~q1 · · · ∪ ~qk and H ′ = H \ {C1, . . . , Ck}.

Since ~r′ ⊆ ~r, the D-sequent (~r,H ′) → C holds as well (see

Appendix I) �

APPENDIX III

EXAMPLES OF D-SEQUENT GENERATION BY Lrn

In this appendix, we give examples of how Lrn builds D-

sequents. (The only exception is Appendix III-A where we

describe how a conflict clause generated.) We continue using

the notation of Section XI. In particular, we assume that

DS -PQE+ is applied to take F1 out of the scope of quantifiers

in ∃X [F1(X,Y ) ∧ F2(X,Y )].

A. Generation of a conflict clause

Suppose that a clause Cfls of F1 ∧ F2 is falsified in BCP

(see Fig. 3). Let ~a be the current assignment at the point of

BCP where Cfls gets falsified. (So ~a falsifies Cfls ). Then Lrn

generates a conflict clause i.e. a clause falsified by ~a in which

there is only one literal falsified at the conflict level. This

clause is built as follows [33]. First, Lrn picks the last literal

Lit of Cfls falsified by ~a. Lrn takes the clause C from which

the value falsifying Lit was derived and resolves it with Cfls

producing a new clause Cfls falsified by ~a. Then Lrn again

picks the last literal Lit of Cfls falsified by ~a. This goes on

until only one literal of Cfls is falsified by an assignment made

at the conflict level and this is the decision assignment of this

level. At this point, Cfls is a conflict clause that is added to

F1 ∧ F2.

B. D-sequent generation when current target is satisfied

Suppose that Y = {y} and F1 ∧ F2 contains (among

others) the clauses C1 = y ∨ x1, C2 = x1 ∨ x2. Suppose

C2 is the current target clause and PrvRed makes the decision

assignment y = 0. BCP finds out that C1 is unit and derives the

assignment x1 = 1 satisfying C2. So BCP terminates reporting

the backtracking condition SatTrg (line 11 of Fig. 3). At this

point the current assignment ~a is equal to (y = 0, x1 = 1).
Then Lrn builds a D-sequent S as follows. It starts with the

atomic D-sequent S of the first kind equal to (~q,H) → C2

where ~q = (x1 = 1) and H = ∅. The D-sequent S states

that C2 is satisfied by ~q and hence redundant in the subspace



~q (and so in the subspace ~a). The conditional ~q contains the

assignment (x1 = 1) derived from clause C1. Lrn gets rid

of this assignment as described in Subsection XI-D. First,

it forms the D-sequent S′ equal to (~q′, H ′) → C2 where
~q′ = (y = 0, x1 = 0) and H ′ = {C1}. This is an atomic

D-sequent of the second kind stating the redundancy of C2

in the subspace where C1 is falsified. Then Lrn joins S

and S′ at variable x1 to obtain a new D-sequent S equal

to (~q,H) → C2 where ~q = (y = 0) and H = {C1}. The

conditional ~q of S does not contain assignments derived at

the current decision level. So Lrn terminates returning S.

C. D-sequent generation when current target is blocked

Suppose that Y = {y} and F1∧F2 contains (among others)

the clauses C1 = y∨x1, C2 = x1∨x2, C3 = x2∨x3. Suppose

that C3 is the current target clause and C2 is the only clause

of F1 ∧ F2 that can be resolved with C3 on x2.

Suppose PrvRed made the assignment y = 0. By running

BCP, PrvRed derives the assignment x1 = 1 from clause C1.

This assignment satisfies C2, which makes the target clause

C3 blocked at x2. At this point, Lrn generates a D-sequent

as follows. First, an atomic D-sequent S of the third kind is

generated (see Subsection IX-C). S is equal to (~q,H) → C3

where ~q = (x1 = 1), H = ∅.

The conditional ~q of S contains the assignment x1 = 1
derived at the current decision level. To get rid of it, Lrn

joins S with the D-sequent S′ =(~q′, H ′) → C3 at x1 where
~q′ = (y = 0, x1 = 0), H ′ = {C1}. This D-sequent states

redundancy of C3 in the subspace where C1 is falsified. After

joining S and S′, one obtains a new D-sequent S equal to

(~q,H) → C3 where ~q = (y = 0), H = {C1}. The conditional

of S does not contain assignments derived at the current

decision level. So S is the final D-sequent returned by Lrn.

D. D-sequent generation when a non-target clause is falsified

Generation of a conflict clause C implies that every literal

Lit resolved out in the process of obtaining C is falsified by

the assignment derived from a clause (see Appendix III-A).

Suppose that at least one such an assignment is derived from a

D-sequent. Then Lrn cannot derive a clause implied by F1∧F2

and falsified by the current assignment ~a. Instead, Lrn derives a

D-sequent stating redundancy of the current target clause Ctrg .

In this subsection, we consider the case where the clause Cfls

falsified by BCP (i.e. the starting point of Lrn) is different from

Ctrg . The next subsection considers the case where Cfls=Ctrg .

Suppose that Y = {y} and F1∧F2 contains (among others)

the clauses C1 = y ∨ x1 ∨ x2, C2 = x1 ∨ x3, C3 = x2 ∨ x3.

Suppose that the current target clause is C4 ∈ (F1 ∪ F2).
Suppose that the D-sequent S∗ equal to (~q∗, H∗) → C4 was

derived earlier where ~q∗ = (y = 0, x1 = 0) and H∗ = ∅.

Assume that PrvRed makes the decision assignment y = 0.

By running BCP, PrvRed first derives x1 = 1 from S∗. This is

due to the fact that S∗ becomes unit under y = 0 and x1 = 1
deactivates S∗ (see Subsection VIII-A). Then PrvRed derives

x2 = 1 and x3 = 1 from C1 and C2 respectively. These two

assignments falsify C3.

The final D-sequent stating redundancy of C4 is built by

Lrn as follows. First, Lrn generates the D-sequent S equal to

(~q,H) → C4 where ~q = (x2 = 1, x3 = 1), H = {C3}. It

is an atomic D-sequent of the second kind stating redundancy

of C4 in the subspace where C3 is falsified. The conditional

~q of S contains assignments derived at the current decision

level. So, Lrn picks the most recent derived assignment of ~q

i.e. x3 = 1 and gets rid of it. This is achieved by joining S

with the D-sequent S′ equal to (~q′, H ′) → C4 at variable x3

where ~q′ = (x1 = 1, x3 = 0), H ′ = {C2}. The D-sequent S′

states redundancy of C4 in the subspace where C2 is falsified.

The result of joining S and S′ is a new D-sequent S equal to

(~q,H) → C4 where ~q = (x1 = 1, x2 = 1), H = {C2, C3}.

Lrn again picks the most recent derived assignment of ~q

i.e. x2 = 1. Then it joins S with the D-sequent S′′ equal

to ( ~q′′, H ′′) → C4 at variable x2 where ~q′′ = (y = 0, x1 =
1, x2 = 0), H ′′ = {C1}. The D-sequent S′′ states redundancy

of C4 in the subspace where C1 is falsified. The result of

joining S and S′′ is a new D-sequent S equal to (~q,H) → C4

where ~q = (y = 0, x1 = 1), H = {C1, C2, C3}.

Finally, Lrn gets rid of the assignment x1 = 1 derived from

the D-sequent S∗ above. To this end, Lrn joins S with S∗ at

variable x1 to produce the D-sequent S equal to (~q,H) → C4

where ~q = (y = 0), H = {C1, C2, C3}. This is the final D-

sequent S returned by Lrn.

E. D-sequent generation when a target clause is falsified

In this subsection, we continue the topic of the previous

subsection. Here, we consider the case Cfls=Ctrg i.e. the

current target clause is falsified by BCP. (As in the previous

subsection, we assume that at least one assignment that

“matters” is derived from a D-sequent rather than a clause.)

Then Lrn still derives a D-sequent S stating redundancy of

Ctrg but also adds a new clause C. The latter is not a full-

fledged conflict clause: it may contain more than one literal

falsified at the conflict level. Lrn has to add C to F1 ∧ F2 to

make Ctrg redundant. Lrn derives S and C as follows. The

clause C is built similarly to a conflict clause until Lrn reaches

an assignment derived from a D-sequent. Then Lrn builds S

by the procedure described in the previous subsection where

C is used as a “starting clause” falsified by ~a.

Let us re-examine the example of the previous subsection

under the assumption that the falsified clause C3 is also the

current target clause. Lrn resolves C3 with C2 (on variable x3)

and C1 (on variable x2) to produce the clause C = y ∨ x1.

This clause is falsified by the current assignment ~a. Then Lrn

builds the D-sequent S equal to (~q,H) → C3 where ~q =
(y = 0, x1 = 1) and H = {C}. This D-sequent states the

redundancy of C3 in the subspace where the new clause C

is falsified. Finally, Lrn gets rid of x1 = 1 (derived from the

D-sequent S∗) in the conditional ~q of S. To this end, Lrn joins

S with S∗ at variable x1 to produce a new D-sequent S equal

to (~q,H) → C3 where ~q = (y = 0) and H = {C}. Then Lrn

terminates returning the D-sequent S and clause C.



F. D-sequent generation when a D-sequent is activated

In this subsection, we discuss the case where a D-sequent

S derived earlier becomes active. This means that Ctrg is

redundant in the current subspace ~a. If the conditional of

S contains assignments derived at the current decision level,

Lrn generates a new D-sequent whose conditional does not

contain such assignments. Consider the following example.

Let Y = {y} and F1 ∧F2 contain (among others) the clauses

C1 = y ∨ x1 and C2 = y ∨ x2. Suppose that clause C3

of F1 ∧ F2 is the current target clause. Suppose that the D-

sequent S equal to (~q,H) → C3 was derived earlier where

~q = (x1 = 1, x2 = 1) and H = ∅.

Assume that PrvRed made the decision assignment y = 0.

After running BCP, the assignments x1 = 1 and x2 = 1
are derived from C1 and C2 respectively, which activates

the D-sequent S. Note that the conditional ~q of S contains

assignments derived at the current level. So Lrn generates

a new D-sequent as follows. First S is joined with the D-

sequent S′ equal to (~q′, H ′) → C3 at variable x2 where
~q′ = (y = 0, x2 = 0), H ′ = {C2}. This D-sequent states

the redundancy of C3 in the subspace where C2 is falsified.

The resulting D-sequent S is equal to (~q,H) → C3 where

~q = (y = 0, x1 = 1) and H = {C2}.

Then S is joined with the D-sequent S′′ equal to

( ~q′′, H ′′) → C3 at variable x1 where ~q′′ = (y = 0, x1 = 0),
H ′′ = {C1}. This D-sequent states the redundancy of C3

in the subspace where C1 is falsified. The resulting D-

sequent S is equal to (~q,H) → C3 where ~q = (y = 0)
and H = {C1, C2}. The conditional of S does not contain

assignments derived at the current decision level. So S is the

final D-sequent returned by Lrn.

APPENDIX IV

UPDATING STACK OF TARGET LEVELS

In this appendix, we give an example of how the stack T

of target levels is updated. Let ∃X [F (X,Y )] be an ∃CNF
formula where F = C1 ∧ · · · ∧ C5. Here C1 = y ∨ x1, C2 =
x1 ∨ x2, C3 = x2 ∨ x3 ∨ x4, C4 = y ∨ x3, C5 = x3 ∨ x4 and

Y = {y}. Consider the PQE problem of taking C1 out of the

scope of quantifiers. So C1 is the primary target clause and,

originally, T has only one target level consisting of C1.

Suppose that PrvRed makes the assignment y = 0. The

BCP procedure finds out that C1 became a unit clause and

adds x1 = 1 derived from C1 to the assignment queue Q.

Since Q does not have any other assignments to make and C1

is the current target clause Ctrg , the BCP∗ procedure is called

(line 4 of Fig. 3). It makes the assignment x1 = 1 derived from

C1 and creates a new top level of T . This level is specified

by the pair (C1, x1) where C1 is the key clause and x1 is the

key variable of this level. The latter consists of C2, the only

clause of F resolvable with C1 on x1. Then BCP∗ derives

x2 = 1 from C2 and creates a new top level of T specified by

the pair (C2, x2). This level consists of C3, the only clause of

F resolvable with C2 on x2.

At this point, BCP∗ runs out of unit clauses and returns

to BCP. Then BCP uses the top level of T to pick the next

target clause T . Since the top level of T consists only of C3,

the latter is chosen as Ctrg (line 5) and BCP breaks the while

loop (line 8).

APPENDIX V

SPECIAL BACKTRACKING

In this appendix, we discuss backtracking performed by

PrvRed when T contains secondary targets. Let us continue

considering the example of Appendix IV. After picking C3

as the current target clause, BCP finds out that C3 is blocked

(line 18 of Fig. 3) at variable x3. Indeed, C4 is the only clause

with x3 and it is satisfied by y = 0. So BCP returns the

backtracking condition BlkTrg (line 19). Then PrvRed learns

an atomic D-sequent S of the third kind (line 11 of Fig. 2)

equal to (~q,H) → C3 where ~q = (y = 0), H = ∅.

Since C3 is a secondary target, PrvRed skips the regular

backtracking part (lines 14-17) and goes to the third part of

the while loop (lines 18-25). Recall that the current assignment

~a is (y = 0, x1 = 1, x2 = 1) and T consists of three target

levels. The bottom level of T consists of the primary target

C1. Then next level is specified by the pair (C1, x1) and the

top level of T is specified by the pair (C2, x2).
At this point, PrvRed calls the special backtracking pro-

cedure SpecBcktr (line 18). Although the conditional of S

contains only assignment to y, SpecBcktr cannot undo as-

signments x1 = 1 and x2 = 1 for the reason explained in

Subsection XII-C. The clause C3 (whose redundancy is stated

by S) became a secondary target only after the assignment

x2 = 1 was made. Since there is no conflict, SpecBcktr

cannot backtrack past x2 = 1 (i.e. the “point of origin”). So,

SpecBcktr terminates without changing ~a.

Since the conditional of S does not contain any assignments

made after x2 = 1, the redundancy of C3 is proved up to

the point of origin. So PrvRed calls NewTrg to pick a new

target among the clauses of the top level of T (line 22). As

we mentioned earlier, the current top level of T consists only

of C3. So no new target can be found. As we mentioned in

Subsection XII-C, this means that C2, the key clause of the

top level of T , is blocked at variable x2. (Because the only

clause of F resolvable with C2 on x2 is proved redundant.)

So, NewTrg generates an atomic D-sequent S′ of the third

kind stating the redundancy of C2. This D-sequent is equal

to (~q′, H ′) → C2 where ~q′ = (y = 0) and H ′ = ∅. Then

NewTrg eliminates the current top level of T restoring the

clause C3 back into the formula F (i.e. treating it as present

in formula F ). Besides, NewTrg unassigns x2.

Now, NewTrg tries to find a target clause in the new top level

of T specified by the pair (C1, x1). Since the only clause of F

resolvable with C1 on x1 (i.e. C2) is proved redundant in the

subspace ~a, NewTrg repeats the actions described before. First,

it derives an atomic D-sequent S′′ of the third kind stating the

redundancy of C1. Here S′′ is equal to ( ~q′′, H ′′) → C2 where
~q′′ = (y = 0) and H ′′ = ∅. Then it eliminates the top level of

T restoring C2 back into formula F and unassigning x1.

Now, T is reduced to the primary target level (containing

clause C1). NewTrg terminates returning C1 as Ctrg and S′′ as



D-sequent S (line 22). Since C1 is the primary target, PrvRed

checks if the conditional of S is empty (line 24). Since it

is not, the redundancy of C1 is proved only in the subspace

~a that is currently equal to (y = 0). Since S is unit in the

subspace ~a, PrvRed adds the assignment y = 1 derived from

S to the assignment queue Q (line 25). Then PrvRed starts a

new iteration of the while loop.

APPENDIX VI

CORRECTNESS OF DS -PQE+

In this appendix, we give an informal proof that DS -PQE+

is sound and complete.

A. DS -PQE+ is sound

Let ∃X [F1(X,Y ) ∧ F2(X,Y )] be an ∃CNF formula. Sup-

pose that DS -PQE+ is used to take F1 out of the scope

of quantifiers. Assume, for the sake of simplicity, that every

clause of F1 is an X-clause. In its operation, DS -PQE+

generates new clauses obtained by resolving clauses of F1∧F2

and thus implied by F1 ∧ F2. The final formula produced

by DS -PQE+ can be represented as ∃X [F ] where F =
F ini
1 ∧F ∗

1 ∧F ∗∗

1 ∧F ini
2 ∧F ∗

2 . Here F ini
1 and F ini

2 denote the

initial versions of F1 and F2 respectively. The formula F ∗

1 (Y )
denotes the derived clauses depending only on variables of

Y whose generation involved clauses of F ini
1 and/or their

descendants. The formula F ∗∗

1 (X,Y ) denotes the derived X-

clauses whose generation involved clauses of F ini
1 and/or

their descendants. The formula F ∗

2 (X,Y ) denotes the derived

clauses whose generation involved only clauses of F ini
2 and/or

their descendants.

For every clause C of F ini
1 ∧F ∗∗

1 , DS -PQE+ calls PrvRed

that generates a D-sequent S equal to (~q,H) → C where

~q = ∅ and H ⊆ (F \{C}). The D-sequent S states redundancy

of C in formula ∃X [F ]. This D-sequent is correct due to

correctness of the atomic D-sequents and the join operation

and due to Proposition 5 of Appendix II. The D-sequents for

the clauses of F ini
1 ∧ F ∗∗

1 are derived by DS -PQE+ one by

one in some order. That is these D-sequents are consistent

(see Definition 13). So, one can claim that ∃X [F ini
1 ∧ F ini

2 ] ≡
∃X [F ] ≡ F ∗

1 ∧ ∃X [F ini
2 ∧ F ∗

2 ] ≡ F ∗

1 ∧ ∃X [F ini
2 ]. Thus,

F ∗

1 (Y ) is indeed a solution to the PQE problem at hand.

B. DS -PQE+ is complete

Assume that DS -PQE+ generates only clauses that have

not been seen before. Taking into account that DS -PQE+

examines a finite search tree, this means that DS -PQE+

always terminates and thus is complete. The problem however

is that the version of PrvRed described in Section XI may

generate a duplicate of an X-clause that is currently proved

redundant. So PrvRed and hence DS -PQE+ may loop.

To prevent looping, the current implementation of PrvRed

does the following. (For the sake of simplicity, we did not

discuss this part of PrvRed in Section XI.) Let (~y,~x) be

the current assignment to Y ∪ X made by PrvRed before

a duplicate of an X-clause is generated. After a duplicate

C is generated, PrvRed discards C and backtracks to the

last assignment to a variable of Y (and thus undoing all

assignments to X). This is accompanied by removing all

secondary targets from the stack T . So, on completion of

backtracking, the primary target clause Cpr is the current

target clause. Then PrvRed generates a D-sequent stating the

redundancy of Cpr in subspace ~y and keeps going as if PrvRed

just finished line 11 of Figure 2.

To generate the D-sequent above, PrvRed does the follow-

ing. First, PrvRed runs an internal SAT-solver to check if

formula F (defined in the previous subsection) is satisfiable

in subspace ~y. If not, a clause C(Y ) implied by F is

generated and added to F . Then an atomic D-sequent of

the second kind is generated stating the redundancy of Cpr

in the subspace where C(Y ) is falsified. Otherwise, PrvRed

finds an assignment (~y,~x) satisfying F . The existence of such

an assignment means that Cpr is redundant in the subspace

~y without adding any clauses. Then PrvRed generates a D-

sequent ( ~y∗, H) → Cpr where H = ∅ and ~y∗ ⊆ ~y and

( ~y∗,~x) satisfies F . (In other words, PrvRed tries to shorten

the satisfying assignment to reduce the conditional of the D-

sequent constructed for Cpr )

APPENDIX VII

REDUCING SIZE OF STRUCTURE CONSTRAINTS

In this appendix, we describe some methods for reducing

the size of structure constraints in D-sequents learned by

DS -PQE+. Let S be a D-sequent (~q,H) → C stating redun-

dancy of C in ∃X [F1(X,Y ) ∧ F2(X,Y )]. A useful observa-

tion here is that one does not need to keep a clause B ∈ H

if Vars(B) ⊆ Y . Indeed, DS -PQE+ proves redundancy only

of X-clauses. So a clause B(Y ) is either present in H or is

satisfied by the current assignment ~a. In either case, S can be

safely reused in the subspace ~a (see Proposition 7).

As we mentioned earlier, one can keep structure constraints

small by generating only D-sequents for the target clauses of

the k bottom levels of the stack T (see Section XIII). In this

case, the size of H is limited by the total number of secondary

target clauses of levels 1, . . . , k. In particular, one can safely

reuse the D-sequents of the primary target clause (level 0 of

T ) without computing structure constraints at all11.

Another method is based on using the substitution operation

(see Appendix II). By repeatedly applying this operation, one

can reduce the structure constraint of a D-sequent S to an

empty set (which may increase the conditional of S) [21].

Finally, one can reduce the size of structure constraints by

adding new clauses. Consider the following example. Sup-

pose that ∃X [F1(X,Y ) ∧ F2(X,Y )] contains (among others)

clauses C1 = y ∨ x1, C2 = x1 ∨ x2, ..., Ck = xk−1 ∨ xk,

Ck+1 = xk∨xk+1. Suppose Ck+1 is the current target clause.

Suppose that Y = {y} and PrvRed made the assignment

11 Let (~q,H) → Ctrg be a D-sequent S where Ctrg is the current
target. Suppose ~q ⊆ ~a holds where ~a is the current subspace examined by
DS -PQE+. If Ctrg is the primary target, no X-clause of H is a secondary
target (because the set of secondary targets is currently empty). So a clause
of H is either present in F1 ∧ F2 or satisfied by ~a. In either case, S can be
safely reused in the subspace ~a (see Proposition 7).



y = 0. After running BCP, PrvRed derives x2 = 1 from

C2, x3 = 1 from C3 and so on until xk = 1 is derived from

Ck. The latter assignment satisfies the target clause Ck+1. In

this case, in our current implementation, the Lrn procedure

generates the D-sequent S equal to (~q,H) → Ck+1 where

~q = (y = 0) and H = {C1, . . . , Ck}. (This D-sequent

is constructed as described in Appendix III-B where one

performs k join operations at variables xk, . . . , x1.) Note that

no new clauses are added when building S. One can reduce the

size of H by generating a new clause C = y∨xk obtained by

resolving clauses Ck, . . . , C1 on variables xk, . . . , x1. Adding

C to F1∧F2 makes Ck+1 redundant in subspace y = 0. So one

can derive the D-sequent (~q,H) → Ck+1 where ~q = (y = 0),
H = {C} stating redundancy of Ck+1 in ∃X [C ∧ F1 ∧ F2].
Thus, one reduces the size of the structure constraint H at the

expense of adding a new clause.

APPENDIX VIII

ONE MORE EXPERIMENT

In Section XIII, we describe some experiments with

DS -PQE+. In this appendix, we describe one more experi-

ment. Similarly to the experiments of Section XIII, DS -PQE+

stored/reused only D-sequents of the primary target clauses.

This could not affect the results of Section XIII much because,

for the problem we considered there, generation of a secondary

target clause was a rare event. This was not true for the

problem considered in this appendix where a very large

number of secondary targets was generated. Nevertheless, the

experimental results presented in this appendix show that

reusing even a small fraction of D-sequents can be beneficial.

In this section, we solve the PQE problem arising in the

method of equivalence checking introduced in [19]. (The main

idea of this method is sketched in Subsection III-D.) Let

N ′(X ′, Y ′, z′) and N ′′(X ′′, Y ′′, z′′) be single-output circuits

to be checked for equivalence. Let Tcut specify the variables

of a cut in N ′ and N ′′. Let Fcut specify the gates of N ′ and

N ′′ located between the inputs and the cut. Let Wcut denote

Vars(Fcut) \Tcut . Let EQ(X ′, X ′′) be a formula evaluating

to 1 iff X ′ an X ′′ have the same assignments. We consider

the problem of taking EQ out of the scope of quantifiers

in ∃Wcut [EQ ∧ Fcut ]. That is one needs to find a formula

G(Tcut ) such that G ∧ ∃Wcut [Fcut ] ≡ ∃Wcut [EQ ∧ Fcut ].
In this experiment, we used HWMCC-10 benchmarks. Cir-

cuit N ′ was specified by the transition relation of a benchmark

and N ′′ was obtained from N ′ by a logic optimization tool.

A cut of N ′ and N ′′ was formed from gates located in N ′

and N ′′ at topological levels ≤ k. (The set consisting only of

gates of topological level k, in general, does not form a cut.)

The input variables have topological level 0. Table IV shows

results for a sample of the set of benchmarks we tried.

The first column gives the name of a benchmark. The second

column gives the value of k above. The following columns

give the number of generated D-sequents (in thousands) and

the run time for the PQE procedures we compared. In this

experiment, we compared the same procedures as in Tables I.

The results of Table IV show that DS -PQE+ with limited

TABLE IV
COMPUTING CUT CONSTRAINS IN EQUIVALENCE CHECKING. THE TIME

LIMIT IS SET TO 100 SECONDS

name k DS -PQE DS -PQE+ DS -PQE+

no learning limited learning

#dseqs time #dseqs time #dseqs time

×103 (s.) ×103 (s.) ×103 (s.)

kenoopp1 5 >22,500 ∗ 4 0.3 2.9 0.2

bj08autg3f1 50 424 0.8 15 0.6 7.2 0.3

abp4pold 2 >18,786 ∗ 25 0.9 7 0.2

eijks838 5 302 0.6 43 1.0 52 1.1

pdtpmstwo 3 1,345 2.1 310 5.1 96 1.9

prodconspold4 15 89 0.2 1.7 0.02 2 0.02

kenoopp2 2 >12,985 ∗ 4.4 1.3 3.3 1.1

texastwoprocp1 12 465 0.8 68 1.0 17 0.3

eijks953 3 331 2.0 1 0.06 0.6 0.05

bj08amba2g1 3 2,414 6.0 3.5 0.6 1.7 0.3

pdtvishuffman1 40 1,656 1.8 1 0.3 0.6 0.2

pdtpmsheap 3 2,039 6.0 3.7 0.08 2.1 0.07

pdtvistimeout1 16 22,902 39 8.9 0.03 8 0.02

brpptimo 2 >16,841 ∗ 9.1 1.0 4.1 0.4

learning outperforms DS -PQE and DS -PQE+ without learn-

ing.
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