
ar
X

iv
:1

81
0.

00
16

0v
3

 [
cs

.L
O

]
 1

5
O

ct
 2

01
8

Quantifier Elimination With Structural Learning

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We consider the Quantifier Elimination (QE) problem for
propositional CNF formulas with existential quantifiers. QE plays a key
role in formal verification. Earlier, we presented an approach based on
the following observation. To perform QE, one just needs to add a set
of clauses depending on free variables that makes the quantified clauses
(i.e. clauses with quantified variables) redundant. To implement this ap-
proach, we introduced a branching algorithm making quantified clauses
redundant in subspaces and merging the results of branches. To im-
plement this algorithm we developed the machinery of D-sequents. A
D-sequent is a record stating that a quantified clause is redundant in
a specified subspace. Redundancy of a clause is a structural property
(i.e. it holds only for a subset of logically equivalent formulas as op-
posed to a semantic property). So, re-using D-sequents is not as easy
as re-using conflict clauses in SAT-solving. In this paper, we address
this problem. We introduce a new definition of D-sequents that enables
their re-usability. We develop a theory showing under what conditions a
D-sequent can be safely re-used.

1 Introduction

Many verification problems can be cast as an instance of the Quantifier Elimina-
tion (QE) problem or its variations1. So any progress in solving the QE problem
is of great importance. In this paper, we consider the QE problem for propo-
sitional CNF formulas with existential quantifiers. Given formula ∃X [F (X,Y)]
where X and Y are sets of variables, the QE problem is to find a quantifier-free
formula F ∗(Y) such that F ∗ ≡ ∃X [F]. In [3,4], we introduced a new approach to
QE based on the following observation. Let us call a clause2 of F an X-clause
if it contains at least one variable of X . Solving the QE problem ∃X [F (X,Y)]
reduces to finding formula F ∗(Y) implied by F that makes the X-clauses of F
redundant in ∃X [F ∗ ∧ F] (and so F ∗ ≡ ∃X [F] holds).

1 In [5], we introduced Partial QE (PQE) where only a part of the formula is taken out
of the scope of quantifiers. The appeal of PQE is twofold. First, many verification
problems like equivalence and model checking require partial rather than complete
QE [1,2]. Second, PQE is much simpler to solve than QE. Both QE and PQE benefit
from the results of this paper. However, since QE is conceptually simpler than PQE,
we picked the former to introduce our new approach to D-sequent re-using.

2 A clause is a disjunction of literals. So, a CNF formula is a conjunction of clauses.

http://arxiv.org/abs/1810.00160v3

To implement the approach above, we introduced an algorithm called DCDS
(Derivation of Clause D-Sequents). DCDS is based on the following three ideas.
First, DCDS branches on variables of F to reach a subspace where proving
redundancy3 of X-clauses (or making them redundant by adding a new clause)
is easy. Second, once an X-clause is proved redundant, DCDS stores this fact
in the form of a Dependency Sequent (D-sequent). A D-sequent is a record
(∃X [F], ~q) → C where C is an X-clause of F and ~q is an assignment to variables
of F . This record states that C is redundant in ∃X [F] in subspace ~q. The third
idea of DCDS is to use a resolution-like operation called join to merge the results
of branches. This join operation is applied to D-sequents (∃X [F], ~q′) → C and

(∃X [F], ~q′′) → C derived in branches v = 0 and v = 1 where v is a variable of
F . The result of this operation is a D-sequent (∃X [F], ~q) → C where ~q does not
contain variable v.

To make DCDS more efficient, it is natural to try to re-use a D-sequent
(∃X [F], ~q) → C in every subspace ~r where ~q ⊆ ~r (i.e. ~r contains all the assign-
ments of ~q). However, here one faces the following problem. The definition of
D-sequent (∃X [F], ~q) → C implies that C is also redundant in subspace ~q for
formulas ∃X [G] logically equvialent to ∃X [F] where G is a subset of F . How-
ever, this may not be true for some formulas ∃X [G]. Here is a simple example
of that. Let formula ∃X [F] contain two identical X-clauses C′ and C′′. Then D-
sequents (∃X [F], ∅) → C′ and (∃X [F], ∅) → C′′ hold. They state that C′ and
C′′ are redundant in ∃X [F] individually. However, in general, one cannot4 drop
both C′ and C′′ from ∃X [F]. This means that, say, C′′ may not be redundant
in ∃X [F \ {C′}] despite the fact that F \ {C′} ≡ F .

The problem above prevents DCDS from reusing D-sequents. The reason
why D-sequents cannot be re-used as easily as, say, conflict clauses in SAT-
solvers [8,9] is as follows. Redundancy of a clause in a formula is a structural
property5. That is the fact that clause C is redundant in formula F may not
hold in a formula F ′ logically equivalent to F . On the other hand, re-using a
conflict clause C is based on the fact that C is implied by the initial formula F

and implication is a semantic property. That is C is implied by every formula
F ′ logically equivalent to F .

In this paper, we address the problem of re-usability of D-sequents. Our
approach is based on the following observation. Consider the example above
with two identical X-clauses C′, C′′. The D-sequent (∃X [F], ∅) → C′ requires
the presence of clause C′′ ∈ F . This means that C′′ is supposed to be proved
redundant after C′. On the contrary, the D-sequent (∃X [F], ∅) → C′′ requires

3 An X-clause C is said to be redundant in ∃X[F] if ∃X[F] ≡ ∃X[F \ {C}]. In this
paper, we use the standard convention of viewing a set of clauses {C1, . . . , Cn} as an
alternative way to specify the CNF formula C1∧· · ·∧Cn. So, the expression H \{C}
denotes the CNF formula obtained from H by removing clause C.

4 That is ∃X[F] 6≡ ∃X[F \ {C′, C′′}].
5 This is true regardless of whether this formula has quantifiers.

the presence of C′ ∈ F and hence C′′ is proved redundant before C′. So these
D-sequents have a conflict in the order of proving redundancy of C′ and C′′.

To be able to identify order conflicts, we modify the definition of D-sequents
given in [4]. A new D-sequent S is a record (∃X [F], ~q,H) → C where H is
a subset of F \ {C}. This D-sequent states that the clause C is redundant in
subspace ~q in every formula ∃X [W] where ∃X [W] ≡ ∃X [F] in subspace ~q and
(H ∪ {C}) ⊆ W ⊆ F . Note that if an X-clause of H is proved redundant and
removed from F , the D-sequent S is not applicable. So one can view H as an
order constraint stating that S applies only if X-clauses of H are proved
redundant after C. In other words, one can safely reuse S in subspace ~r where
~q ⊆ ~r, if none of the X-clauses of H is proved redundant yet.

The contribution of this paper is as follows. First, we give the necessary
definitions and propositions explaining the semantics of D-sequents stating re-
dundancy of X-clauses6 (Sections 2, 3, 4 and 5.) Second, we give a new definition
of D-sequents facilitating their re-using (Section 6). We also introduce the notion
of consistent D-sequents and show that they can be re-used. Third, we re-visit
definitions of atomic D-sequents (i.e. D-sequents stating trivial cases of redun-
dancy) and the join operation to accommodate the D-sequents of the new kind
(Sections 7 and 8). Fourth, we present DCDS+, a version of DCDS that can
safely re-use D-sequents (Section 12).

2 Basic Definitions

In this paper, we consider only propositional CNF formulas. In the sequel, when
we say “formula” without mentioning quantifiers we mean a quantifier-free CNF
formula. We consider true and false as a special kind of clauses. A non-empty
clause C becomes true when it is satisfied by an assignment ~q i.e. when a literal
of C is set to true by ~q. A clause C becomes false when it is falsified by ~q i.e.
when all the literals of C are set to false by ~q.

Definition 1. Let F be a CNF formula and X be a subset of variables of F .
We will refer to formula ∃X [F] as ∃CNF.

Definition 2. Let ~q be an assignment and F be a CNF formula. Vars(~q) de-
notes the variables assigned in ~q; Vars(F) denotes the set of variables of F ;
Vars(∃X[F]) denotes Vars(F) \X.

Definition 3. Let C be a clause, H be a formula that may have quantifiers, and
~p be an assignment. C~p is true if C is satisfied by ~p; otherwise it is the clause
obtained from C by removing all literals falsified by ~p. H~p denotes the formula
obtained from H by replacing C with C~p.

6 In [4], we just give basic definitions. In [6], we do provide a detailed theoretical
consideration but it is meant for D-sequents introduced in [3] expressing redundancy
of variables rather than clauses.

Definition 4. Let G,H be formulas that may have quantifiers. We say that
G,H are equivalent, written G ≡ H, if for all assignments ~q such that Vars(~q)
⊇ (Vars(G) ∪ Vars(H)), we have G~q = H~q.

Definition 5. The Quantifier Elimination (QE) problem for ∃CNF formula
∃X [F (X,Y)] is to find a formula F ∗(Y) such that F ∗

≡ ∃X[F].

Remark 1. From now on, we will use Y and X to denote sets of free and quan-
tified variables respectively. We will assume that variables denoted by xi and yi
are in X and Y respectively. When we use Y and X in a quantifier-free formula
we mean that, in the context of QE, the set X specifies the quantified variables.

Definition 6. A clause C of F is called a Z-clause if Vars(C) ∩ Z 6= ∅.
Denote by FZ the set of all Z-clauses of F .

Definition 7. Let F be a CNF formula and G ⊆ F (i.e. G is a non-empty
subset of clauses of F). The clauses of G are redundant in F if F ≡ (F \G).
The clauses of G are redundant in formula ∃X [F] if ∃X [F] ≡ ∃X [F \G].

Note that F ≡ (F \ G) implies ∃X [F] ≡ ∃X [F \G] but the opposite is not
true.

3 Clause Redundancy And Boundary Points

In this section, we explain the semantics of QE in terms so-called boundary
points.

Definition 8. Given assignment ~p and a formula F , we say that ~p is a point
of F if Vars(F) ⊆ Vars(~p).

In the sequel, by “assignment” we mean a possibly partial one. To refer to a
full assignment we will use the term “point”.

Definition 9. Let F be a formula and Z ⊆ Vars(F). A point ~p of F is called
a Z-boundary point of F if a) Z 6= ∅ and b) F~p = false and c) every clause
of F falsified by ~p is a Z-clause and d) the previous condition breaks for every
proper subset of Z.

Remark 2. Let F (X,Y) be a CNF formula where sets X and Y are interpreted
as described in Remark 1. In the context of QE, we will deal exclusively with
Z-boundary points that falsify only X-clauses of F and so Z ⊆ X holds.

Example 1. Let X = {x1, x2, x3} and Y = {y1, y2}. Let F (X,Y) be a CNF
formula of four clauses: C1 = x1∨x2, C2 = x1∨y1, C3 = x1∨x3∨y2, C4 = x2∨y2.
The clauses of F falsified by ~p = (x1 = 0, x2 = 0, x3 = 1, y1 = 0, y2 = 0) are C1

and C3. One can verify that ~p and the set Z = {x1} satisfy the four conditions
of Definition 9, which makes ~p a {x1}-boundary point. The set Z above is not
unique. One can easily check that ~p is also a {x2, x3}-boundary point.

The term “boundary” is justified as follows. Let F be a satisfiable CNF formula
with at least one clause. Then there always exists a {v}-boundary point of F ,
v ∈ Vars(F) that is different from a satisfying assignment only in value of v.

Definition 10. Given a CNF formula F (X,Y) and a Z-boundary point ~p of F :

• ~p is X ′-removable in F if 1) Z ⊆ X ′ ⊆ X; and 2) there is a clause C such
that a) F ⇒ C; b) Vars(C) ∩X ′ = ∅; and c) C~p = false.

• ~p is removable in ∃X [F] if ~p is X-removable in F .

In the above definition, notice that ~p is not a Z-boundary point of F ∧ C

because ~p falsifies C and Vars(C) ∩ Z = ∅. So adding clause C to F eliminates
~p as a Z-boundary point.

Example 2. Let us consider the {x1}-boundary point ~p = (x1 = 0, x2 = 0, x3 =
1, y1 = 0, y2 = 0) of Example 1. Let C denote clause C = y1 ∨ y2 obtained7

by resolving C1, C2 and C4 on variables x1 and x2. Note that set Z = {x1}
and C satisfy the conditions a),b) and c) of Definition 10 for X ′ = X . So ~p is
an X-removable {x1}-boundary point. After adding C to F , ~p is not an {x1}-
boundary point any more. Let us consider the point ~q=(x1 = 0, x2 = 0, x3 =
1, y1 = 1, y2 = 1) obtained from ~p by flipping values of y1 and y2. Both ~p and ~q

have the same set of falsified clauses consisting of C1 and C3. So, like ~p, point
~q is an {x1}-boundary point. However, no clause C implied by F and consisting
only of variables of Y is falsified by ~q. So, the latter, is an {x1}-boundary point
that is not X-removable.

Proposition 1. A Z-boundary point ~p of F (X,Y) is removable in ∃X [F], iff
one cannot turn ~p into an assignment satisfying F by changing only the values
of variables of X.

The proofs are given in the appendix.

Proposition 2. Let F (X,Y) be a CNF formula where FX 6= ∅ (see Defini-
tion 6). Let G be a non-empty subset of FX . The set G is not redundant in
∃X [F] iff there is a Z-boundary point ~p of F such that a) every clause falsified
by ~p is in G and b) ~p is X-removable in F .

Proposition 2 justifies the following strategy of solving the QE problem. Add
to F a set G of clauses that a) are implied by F ; b) eliminate every X-removable
boundary point falsifying a subset of X-clauses of F . By dropping all X-clauses
of F , one produces a solution to the QE problem.

4 Quantifier Elimination By Branching

In this section, we explain the semantics of QE algorithm called DCDS [4]
(Derivation of Clause D-Sequents). A high-level description of DCDS is given

7 See Definition 13 of the resolution operation.

in Section 11. DCDS is a branching algorithm. Given a formula ∃X [F], DCDS
branches on variables of F until it proves that every X-clause is redundant in
the current subspace. (In case of a conflict, proving X-clauses of F redundant, in
general, requires adding to F a conflict clause.) Then DCDS merges the results
obtained in different branches to prove that the X-clauses are redundant in the
entire search space. Below we give propositions justifying the strategy of DCDS .
Proposition 3 shows how to perform elimination of removable boundary points
of F in the subspace specified by assignment ~q. This is done by using formula F~q,
a “local version” of F . Proposition 4 justifies proving redundancy of X-clauses
of F~q incrementally.

Let ~q and ~r be assignments to a set of variables Z. Since ~q and ~r are sets of
value assignments to individual variables of Z one can apply set operations to
them. We will denote by ~r ⊆ ~q the fact that ~q contains all value assignments of
~r. The assignment consisting of value assignments of ~q and ~r is represented as
~q ∪ ~r.

Proposition 3. Let ∃X [F (X,Y)] be an ∃CNF and ~q be an assignment to Vars(F).
Let ~p be a Z-boundary point of F where ~q ⊆ ~p and Z ⊆ X. Then if ~p is removable
in ∃X [F] it is also removable in ∃X [F~q].

Remark 3. One cannot reverse Proposition 3: a boundary point may be X-
removable in F~q and not X-removable in F . For instance, if X = Vars(F),
a Z-boundary point ~p of F where |Z| = 1 is removed from ∃X [F] only by
adding an empty clause to F . So if F is satisfiable, ~p is not removable. Yet ~p

may be removable in ∃X [F~q] if F~q is unsatisfiable. A ramification of the fact that
Proposition 3 is not reversible is discussed in Section 5.

Proposition 4. Let ∃X [F (X,Y)] be an ∃CNF and H ⊂ FX be redundant in
∃X [F]. Let an X-clause C of F \H be redundant in ∃X [F \H]. Then H ∪ {C}
is redundant in ∃X [F].

Remark 4. To simplify the notation, we will sometimes use the expression “clause
C is redundant in ∃X [F] in subspace ~q ” instead of saying “clause C~q is redun-
dant in ∃X [F~q]”.

Proposition 4 shows that one can prove redundancy of, say, a set of X-clauses
{C′, C′′} in ∃X [F] in subspace ~q incrementally. This can be done by a) proving
redundancy of C′ in ∃X [F] in subspace ~q and c) proving redundancy of C′′ in
formula ∃X [F \ {C′}] in subspace ~q.

5 Virtual redundancy

If a boundary point ~p is X-removable in ∃X [F~q], this does not mean that it is
X-removable in ∃X [F] (see Remark 3). This fact leads to the following problem.
Let ~q and ~r be two assignments to Vars(F) and ~q ⊂ ~r. Suppose that clause
C is redundant in ∃X [F] in subspace ~q. It is natural to expect that this also
holds in the smaller subspace ~r. However, ∃X [F~q] ≡ ∃X [F~q \ C~q] does not imply

∃X [F~r] ≡ ∃X [F~r \C~r]. In particular, due to this problem, one cannot define the
join operation in terms of redundancy specified by Definition 7. To address this
issue we introduce the notion of virtual redundancy.

Definition 11. Let ∃X [F (X,Y)] be an ∃CNF formula, ~q be an assignment to
Vars(F), and C~q be an X-clause of F~q. Let B be the set of points of F such every
~p ∈ B falsifies only clause C and is X-removable. Clause C~q is called virtually
redundant in ∃X [F~q] if one of the two conditions are true.

1. B = ∅ or
2. For every ~p ∈ B, there is an assignment ~r where ~q∗ ⊆ ~r ⊂ ~q such that ~p

is not X-removable in F~r. Here ~q∗ is obtained from ~q by removing all value
assignments to variables of X.

The first condition just means that ∃X [F~q \ C~q] ≡ ∃X [F~q]. We will refer to
this type of redundancy (earlier specified by Definition 7) as regular redundancy.
Regular redundancy is a special case of virtual redundancy.

Proposition 5. Let ~q be an assignment to Vars(F) and clause C~q be redundant
in ∃X [F~q]. Then, for every ~r such that ~q ⊂ ~r, clause C~r is virtually redundant
in ∃X [F~r].

From now on, when we say that a clause C~r is redundant in ∃X [F~r] we mean
that it is at least virtually redundant. Note that, in general, proving virtual
redundancy of C in subspace ~r can be extremely hard. We avoid this problem
by using the notion of virtual of redundancy only if we have already proved that
C is redundant in a subspace containing subspace ~r. (For instance, we have
already proved that C is redundant in ∃X [F] in subspace ~q where ~q ⊂ ~r.)

6 Dependency Sequents (D-sequents)

In this section, we give a new definition of D-sequents that is different from that
of [4].

Definition 12. Let ∃X [F] be an ∃CNF formula. Let ~q be an assignment to
Vars(F) and C ∈ FX and H ⊆ (F \ {C}). A dependency sequent (D-sequent)
S has the form (∃X [F], ~q,H) → C. It states that clause C~q is redundant in every
formula ∃X [W~q] logically equivalent to ∃X [F~q] where H ∪ {C} ⊆ W ⊆ F . The
assignment ~q and formula H are called the conditional and order constraint
of S respectively. We will refer to W as a member formula for S.

Definition 12 implies that the D-sequent S becomes inapplicable if a clause of
H is removed from F . So, S is meant to be used in situations where the X-clauses
of H are proved redundant after C (hence the name “order constraint”). As we
mentioned in the introduction, in [4], a D-sequent implies redundancy of clause
C in ∃X [F] and in (some) logically equivalent formulas ∃X [W] where W ⊆ F .
In Definition 12, the set of formulas ∃X [W] where C is redundant in subspace ~q

is specified precisely. We will say that a D-sequent (∃X [F], ~q,H) → C is fragile
if H contains at least one X-clause. Such a D-sequent becomes inapplicable if an
X-clause of H is proved redundant before C. If H does not contain X-clauses,
the D-sequent above is called robust. A robust D-sequent is not affected by the
order in which X-clauses are proved redundant.

Remark 5. We will abbreviate D-sequent (∃X [F], ~q,H) → C to (~q,H) → C if
formula ∃X [F] is known from the context. We will further reduce (~q,H) → C

to ~q → C if H = ∅ i.e. if no order constraint is imposed.

There are two ways to produce D-sequents. First, one can generate an “atomic”
D-sequent that states a trivial case of redundancy. The three atomic types of
D-sequents are presented in Section 7. Second, one can use a pair of existing
D-sequents to generate a new one by applying a resolution-like operation called
join (Section 8).

7 Atomic D-sequents

In this section we describe D-sequents called atomic. These D-sequents are gen-
erated when redundancy of a clause can be trivially proved. Similarly to [4],
we introduce atomic D-sequents of three kinds. However, in contrast to [4], we
consider D-sequents specified by Definition 12. In particular, we show that D-
sequents of the first kind are robust whereas D-sequents of the second and third
kind are fragile.

7.1 Atomic D-sequents of the first kind

Proposition 6. Let ∃X [F] be an ∃CNF and C ∈ F and v ∈ Vars(C). Let
assignment v = b where b ∈ {0, 1} satisfy C. Then D-sequent (v = b) → C holds.
We will refer to it as an atomic D-sequent of the first kind.

Example 3. Let ∃X [F] be an ∃CNF and C = x1 ∨ y5 be a clause of F . Since
C is satisfied by assignments x1 = 0 and y5 = 1, D-sequents (x1 = 0) → C and
(y5 = 1) → C hold.

7.2 Atomic D-sequents of the second kind

Proposition 7. Let ∃X [F] be an ∃CNF formula and ~q be an assignment to
Vars(F). Let B,C be two clauses of F . Let C~q be an X-clause and B~q imply C~q

(i.e. every literal of B~q is in C~q). Then the D-sequent (~q,H) → C holds where
H = {B}. We will refer to it as an atomic D-sequent of the second kind.

Example 4. Let ∃X [F] be an ∃CNF formula. Let B = y1 ∨ x2 and C = x2 ∨
x3 be X-clauses of F . Let ~q = (y1 = 0). Since B~q implies C~q, the D-sequent
(~q, {B}) → C holds. Since B~q is an X-clause, this D-sequent is fragile.

7.3 Atomic D-sequents of the third kind

To introduce atomic D-sequents of the third kind, we need to make a few defi-
nitions.

Definition 13. Let C′ and C′′ be clauses having opposite literals of exactly one
variable v ∈ Vars(C′) ∩ Vars(C′′). The clause C consisting of all literals of C′

and C′′ but those of v is called the resolvent of C′,C′′ on v. Clause C is said
to be obtained by resolution on v. Clauses C′,C′′ are called resolvable on v.

Definition 14. A clause C of a CNF formula F is called blocked at variable
v, if no clause of F is resolvable with C on v. The notion of blocked clauses was
introduced in [7].

Proposition 8. Let ∃X [F] be an ∃CNF formula. Let C be an X-clause of F
and v ∈ Vars(C)∩X. Let C1, . . . , Ck be the clauses of F that can be resolved with
C on variable v. Let (~q1, H1) → C1,. . . ,(~qk, Hk) → Ck be a consistent set8 of

D-sequents. Then D-sequent (q,H) → C holds where ~q=
i=k⋃

i=1

~qi and H =
i=k⋃

i=1

Hi.

We will refer to it as an atomic D-sequent of the third kind.

Note that, in general, a D-sequent of the third kind is fragile.

Example 5. Let ∃X [F (X,Y)] be an ∃CNF formula. Let C3, C6, C8 be the only
clauses of F with variable x5 ∈ X where C3 = x5 ∧ x10, C6 = x5 ∧ y1, C8 =
x5 ∨ y3 ∨ y5. Note that assignment y1 = 1 satisfies clause C6. So the D-sequent
(y1 = 1) → C6 holds. Suppose that D-sequent (~r, {C10}) → C8 holds where C10

is a clause of F and ~r = (y2 = 0, x10 = 1). From Proposition 8 it follows that
D-sequent (~q, {C10}) → C3 holds where ~q = (y1 = 1, y2 = 0, x10 = 1).

8 Join Operation

In this section, we describe the operation of joining D-sequents that produces a
new D-sequent from two parent D-sequents. In contrast to [4], the join operation
introduced here is applied to D-sequents with order constraints.

Definition 15. Let ~q′ and ~q′′ be assignments in which exactly one variable v ∈
Vars(~q′) ∩ Vars(~q′′) is assigned different values. The assignment ~q consisting of

all the value assignments of ~q′ and ~q′′ but those to v is called the resolvent of
~q′, ~q′′ on v. Assignments ~q′, ~q′′ are called resolvable on v.

Proposition 9. Let ∃X [F] be an ∃CNF formula for which D-sequents (~q′, H ′) →

C and (~q′′, H ′′) → C hold. Let ~q′, ~q′′ be resolvable on v ∈ Vars(F) and ~q be the

resolvent of ~q′ and ~q′′. Let H = H ′∪H ′′. Then the D-sequent (~q,H) → C holds.

8 We will introduce the notion of a consistent set of D-sequents later, see Definition 19.
Consistency of D-sequents in Proposition 8 means that C1, . . . , Ck are redundant

together in subspace ~q=
i=k⋃

i=1

~qi. So clause C is blocked at variable v in subspace ~q.

Definition 16. We will say that the D-sequent (~q,H) → C of Proposition 9 is

produced by joining D-sequents (~q′, H ′) → C and (~q′′, H ′′) → C at v.

Remark 6. Note that the D-sequent S produced by the join operation has a
stronger order constraint than its parent D-sequents. The latter have order con-
straints H ′ and H ′′ in subspaces v = 0 and v = 1, whereas S has the same order
constraint H = H ′ ∪ H ′′ in either subspace. Due to this “imprecision” of the
join operation, a set of D-sequents with conflicting order constraints can still be
correct (see Section 9 and Subsection 11.2).

9 Re-usability of D-sequents

To address the problem of D-sequent re-using, we introduce the notion of com-
posability. Informally, a set of D-sequents is composable if the clauses stated
redundant individually are also redundant collectively. Robust D-sequents are
always composable. So they can be re-used in any context like conflict clauses
in SAT-solvers. However, this is not true for fragile D-sequents. Below, we show
that such D-sequents are composable if they are consistent. So it is safe to re-use
a fragile D-sequent in a subspace ~q, if it is consistent with the D-sequents already
used in subspace ~q.

Definition 17. Assignments ~q′ and ~q′′ are called compatible if every variable
from Vars(~q′) ∩ Vars(~q′′) is assigned the same value.

Definition 18. Let ∃X [F] be an ∃CNF. A set of D-sequents (~q1, H1) → C1,. . . ,
(~qk, Hk) → Ck is called composable if the clauses {C1, . . . , Ck} are redundant
collectively as well. That is ∃X [F] ≡ ∃X [F \ {C1, . . . , Ck}] holds in subspace ~q

where ~q=
i=k⋃

i=1

~qi.

Definition 19. Let ∃X [F] be an ∃CNF. A set of D-sequents (~q1, H1) → C1,. . . ,
(~qk, Hk) → Ck is called consistent if

• every pair of assignments ~qi,~qj, 1 ≤ i, j ≤ k is compatible;

• there is a total order π over clauses of
i=k⋃

i=1

Hi ∪ {Ci} that satisfies the order

constraints of these D-sequents i.e. ∀C ∈ Hi, π(Ci) < π(C) holds where
i = 1, . . . , k.

Proposition 10. Let ∃X [F] be an ∃CNF. Let (~q1, H1) → C1,. . . , (~qk, Hk) →
Ck be a consistent set of D-sequents. Then these D-sequents are composable and
hence clauses {C1, . . . , Ck} are collectively redundant in ∃X [F] in subspace ~q

where ~q=
i=k⋃

i=1

~qi.

Remark 7. The fact that D-sequents S1, . . . , Sk are inconsistent does not nec-
essarily mean that these D-sequents are not composable. As we mentioned in
Remark 6, as far as order constraints are concerned, the join operation is not
“precise”. This means that if the D-sequents above are obtained by applying the
join operation, their order-inconsistency may be artificial. An example of that is
the QE procedure called DCDS [4]. As we explain in Subsection 11.2, if one uses
the new definition of D-sequents (i.e. Definition 12), the D-sequents produced
by DCDS are, in general, inconsistent. However, DCDS is provably correct [6].

Remark 8. Let ∃X [F (X,Y)] be an ∃CNF and R(X,Y) be the set of clauses
added to F by a QE-solver. Let FX ∪ RX = {C1, . . . , Ck} (i.e. the latter is
the set of all X-clauses of F ∪ R). This QE-solver terminates when the set9

R \ RX is sufficient to derive consistent D-sequents (∃X [F ∧R],∅, H1) → C1,
. . . , (∃X [F ∧R],∅, Hk) → Ck. From Proposition 10 it follows, that all X-clauses
can be dropped from ∃X [F ∧R]. The resulting formula F ∗(Y) consisting of
clauses of F ∪R \ {C1, . . . , Ck} is logically equivalent to ∃X [F].

10 Two Useful Transformations Of D-sequents

In this section, we describe two transformations that are useful for a QE-solver
based on the machinery of D-sequents. Since a QE-solver has to add new clauses
once in a while, D-sequents of different branches are, in general, computed with
respect to different formulas. In Subsection 10.1, we describe a transformation
meant for “aligning” such D-sequents. In Subsection 10.2, we describe a trans-
formation meant for relaxing the order constraint of a D-sequent. In Section 12,
this transformation is used to generate a consistent set of D-sequents.

10.1 D-sequent alignment

According to Definition 12, a D-sequent holds with respect to a particular ∃CNF
formula ∃X [F]. Proposition 11 shows that this D-sequent also holds after adding
to F implied clauses.

Proposition 11. Let D-sequent (∃X [F], ~q,H) → C hold and R be a CNF for-
mula implied by F . Then D-sequent (∃X [F ∧R], ~q,H) → C holds too.

Proposition 11 is useful in aligning D-sequents derived in different branches.
Suppose that (∃X [F], ~q′, H ′) → C is derived in the current branch of the search

tree where the last assignment is v = 0. Suppose that (∃X [F ∧R], ~q′′, H ′′) → C

is derived after flipping the value of v from 0 to 1. Here R is the set of clauses
implied by F that has been added to F before the second D-sequent was de-
rived. One cannot apply the join operation to these D-sequents because they
are computed with respect to different formulas. Proposition 11 allows one to
replace (∃X [F], ~q′, H ′) → C with (∃X [F ∧R], ~q′, H ′) → C. The latter can be

joined with (∃X [F ∧R], ~q′′, H ′′) → C at variable v.

9 This set consists of the clauses of R that depend only on variables of Y .

10.2 Making a D-sequent more robust

In this subsection, we give two propositions showing how one can make a D-
sequent S more robust. Proposition 12 introduces a transformation that removes
a clause from the order constraint of S possibly adding to the latter some other
clauses. Proposition 13 describes a scenario where by repeatedly applying this
transformation one can remove a clause from the order constraint of S without
adding any other clauses.

Proposition 12. Let ∃X [F] be an ∃CNF. Let (~q′, H ′) → C′ and (~q′′, H ′′)→ C′′

be two D-sequents forming a consistent set (see Definition 19). Let C′′ be in H ′.

Then D-sequent (~q,H) → C′ holds where ~q = ~q′∪ ~q′′ and H = (H ′\{C′′})∪H ′′.

Proposition 13. Let ∃X [F] be an ∃CNF and (~q1, H1) → C1,. . . , (~qk, Hk)→ Ck

be consistent D-sequents where Hi ⊆ {C1, . . . , Ck}, i = 1, . . . , k. Assume, for
the sake of simplicity, that the numbering order is consistent with the order
constraints. Let Cm be in Hi. Then, by repeatedly applying the transforma-
tion of Proposition 12, one can produce D-sequent (~q,Hi \ {Cm}) → Ci where

~qi ⊆ ~q ⊆ ~qi ∪
j=k⋃

j=m

~qj.

11 Recalling DCDS

In [4], we described a QE algorithm called DCDS (Derivation of Clause D-
Sequents) that did not re-use D-sequents. We Recall DCDS in Subsections 11.1
and 11.2.

11.1 A brief description of DCDS

The pseudocode of DCDS is given10 in Fig. 1. DCDS uses the old definition of a
D-sequent lacking an order constraint. DCDS accepts three parameters: formula
∃X [F] (denoted as Φ), the current assignment ~q and the set of active D-sequents
Ω. (If an X-clause of F is proved redundant in subspace ~q, this fact is stated by
a D-sequent. This D-sequent is called active). DCDS returns the final formula
∃X [F] (where F consists of the initial clauses and derived clauses implied by
F) and the set Ω of current active D-sequents. Ω has an active D-sequent for
every X-clause of F . The conditional of this D-sequent is a subset of ~q. In the
first call of DCDS , the initial formula ∃X [F] is used and ~q and Ω are empty
sets. A solution F ∗(Y) to the QE problem at hand is obtained by dropping the
X-clauses of the final formula ∃X [F] and removing the quantifiers.

10 For the sake of simplicity, Figure 1 gives a very abstract view of DCDS . For instance,
we omit the lines of code where new clauses are generated. Our objective here is
just to show the part of DCDS where D-sequents are involved. A more detailed
description of DCDS can be found in [4].

DCDS starts with examining the X-clauses whose redundancy is not proved
yet. Namely, DCDS checks if the redundancy of such clauses can be estab-
lished by atomic D-sequents (line 1) introduced in Section 7. If all X-clauses are
proved redundant, DCDS terminates returning the current formula ∃X [F] and
the current set of active D-sequents (lines 2-3). Otherwise, DCDS moves to the
branching part of the algorithm (lines 4-9).

// Φ denotes ∃X[F]
// ~q is an assignment to Vars(F)
// Ω denotes the current set of active
// D-sequents

DCDS(Φ,~q,Ω){
1 Ω := Ω ∪AtomDseqs(Φ, ~q,Ω)
2 if (EveryXclauseRedund (Φ,Ω))
3 return(Φ,Ω)

- - - - - - - - - - - -
4 v := PickVar(F, ~q,Ω)
5 (Φ,Ω0) :=DCDS(Φ,~q ∪ {v = 0},Ω)
6 Ω := DropInapplic(Ω0, v)
7 (Φ,Ω1) :=DCDS(Φ,~q ∪ {v = 1},Ω)
8 Ω := JoinDseqs(Φ, v,Ω0, Ω1)
9 return(Φ,Ω)}

Fig. 1. DCDS procedure

First, DCDS picks a variable v to
branch on (line 4). Then it explores
the branch ~q ∪ {v = 0} (line 5). The
set Ω0 returned in this branch, in gen-
eral, contains D-sequents whose condi-
tionals include assignment v = 0. These
D-sequents are inapplicable in branch
v = 1 and so they are discarded (line
6). After that DCDS explores branch
~q ∪ {v = 1} (line 7) returning a set of
D-sequents Ω1. Then DCDS generates
a set of D-sequents Ω whose condition-
als do not depend on v (line 8). Set
Ω consists of two parts. The first part
comprises of the D-sequents of Ω0 that
do not depend on v. The second part
consists of the D-sequents obtained by
joining D-sequents of Ω0 and Ω1 that

do depend on v. Finally, DCDS terminates returning ∃X [F] and Ω.

11.2 Correctness of DCDS

As we mentioned earlier, DCDS employs D-sequents introduced in [4] that lack
order constraints. A D-sequent S of [4] states redundancy of a clause C in formula
∃X [F] in subspace ~q. Besides, clause C is also assumed to be redundant in
(some) formulas ∃X [W] logically equivalent to ∃X [F] where W is a subset of
F . The problem here is that the set of formulas ∃X [W] for which S guranatees
redundancy of clause C in subspace ~q is not specified precisely. Nevertheless,
DCDS is provably correct11.

There are three reasons why DCDS is correct despite the fact that it uses
a “sloppy” definition of a D-sequent. First, DCDS does not re-use D-sequents.
After generating a new D-sequent by the join operation, DCDS discards the
parent clauses of this D-sequent. Second, in every branch of the search tree the
X-clauses are proved redundant in some order which makes them composable.
Third, by joining composable D-sequents obtained in branch v = 0 with com-
posable D-sequents obtained in branch v = 1 one produces a set of composable
D-sequents.

11 In [6], we proved the correctness of a similar algorithm. This proof applies to DCDS .

12 Introducing DCDS+

In this section, we describe a modification of DCDS that re-uses D-sequents.
We will refer to it as DCDS+. The pseudocode of DCDS+ is shown in Fig. 2.
In comparison to DCDS , DCDS+ has one more input parameter: a set Ψ of
D-sequents stored to re-use. The four lines where DCDS+ behaves differently
from DCDS are marked with an asterisk.

// Φ denotes ∃X[F]
// ~q is an assignment to Vars(F)
// Ω denotes the current set of active
// D-sequents
// Ψ denotes the set of stored D-sequents

DCDS+(Φ,~q,Ω,Ψ){
1* Ω := Ω ∪ ReuseDseqs(Φ, ~q, Ψ,Ω)
2* Ω := Ω ∪AtomDseqs(Φ, ~q,Ω)
3 if (EveryXclauseRedund (Φ,Ω))
4 return(Φ,Ω, Ψ)

- - - - - - - - - - - -
5 v := PickVar(F, ~q,Ω)
6 (Φ,Ω0, Ψ) :=DCDS+(Φ,~q ∪(v = 0),Ω,Ψ)
7 Ω := DropInapplic(Ω0, v)
8 (Φ,Ω1, Ψ) :=DCDS+(Φ,~q ∪(v = 1),Ω,Ψ)
9* Ω := JoinDseqs+(Φ, v,Ω0, Ω1)
10* Ψ := Ψ ∪DseqsToStore(Ω)
11 return(Φ,Ω, Ψ)}

Fig. 2. DCDS+ procedure

The difference between DCDS+

and DCDS is as follows. First,
DCDS+ uses the new definition of
D-sequents and thus keeps track
of order constraints. (In particu-
lar, DCDS+ stores order constraints
when generating the atomic D-
sequents of the second/third kind.
For that reason, line 2 is marked
with an asterisk.) Second, DCDS+

tries to re-use D-sequents stored in
Ψ . Namely, if an X-clause C is
not proved redundant yet, DCDS+

checks if there is a D-sequent of Ψ
a) that states redundancy of C; b)
whose conditional ~r satisfies ~r ⊆
~q and c) whose order constraint
is consistent with those of active
D-sequents. Third, DCDS+ stores
some of new D-sequents obtained by
the join operation (line 10).

JoinDseqs+(Φ, v, Ω0, Ω1){
1 Ω := SymmDseqs(Ω0)
2 G := FormXcls(Ω0 \Ω)
3 foreach (C ∈ G) {
4 (S0, S1) := ExtrDseqs(Ω0, Ω1, C)
5 S := join(S0, S1, v)
6 if (incons(Ω ∪ {S}))
7 S := FixDseq(S,Ω,Ω0, Ω1)
8 Ω := Ω ∪ {S} }
9 return(Ω);}

Fig. 3. JoinDseqs+ procedure

The final difference between DCDS+

and DCDS is as follows. The order in
which X-clauses are proved redundant in
the two branches generated by splitting
on variable v can be different. So if one
just joins D-sequents obtained in those
branches at variable v (as it is done by
the JoinDseqs procedure of DCDS), an
inconsistent set of D-sequents can be gen-
erated. If no D-sequents are re-used, as in
DCDS , this inconsistency does not mean
that the D-sequents of this set are not
composable12 (see Subsection 11.2). How-

ever, re-using D-sequents, as it is done in DCDS+, may produce inconsistent

12 As we mentioned in Remark 6, an inconsistency can be introduced by the imprecision
of the join operation with respect to order constraints.

D-sequents that are indeed not composable. For that reason, in DCDS+, a mod-
ification of JoinDseqs called JoinDseqs+ is used.

The pseudocode of JoinDseqs+ is shown in Fig. 3. The objective of JoinDseqs+

is to generate a set of consistent D-sequents that do not depend on variable v.
The resulting D-sequents are accumulated in Ω. JoinDseqs+ starts by initializ-
ing Ω with the D-sequents that are already symmetric in v i.e. their conditionals
do not contain an assignment to variable v. Then JoinDseqs+ forms the set G

of X-clauses whose D-sequents are asymmetric in v.

The main part of JoinDseqs+ consists of a loop (lines 3-8) where, for ev-
ery clause C of G, a D-sequent whose conditional is symmetric in v is built.
First, JoinDseqs+ extracts D-sequents S0 and S1 of clause C and joins them at
variable v to produce a D-sequent S (lines 4-5). If the D-sequents of Ω become
inconsistent after adding S, JoinDseqs+ calls FixDseq to produce a D-sequent
S that preserves the consistency of Ω. Proposition 13 shows that it is always
possible. Namely, one can always relax the order constraints of S0 and S1 thus
relaxing that of S. In particular, one can totally eliminate order constraints of
S0 and S1, which makes them (and hence S) robust.

References

1. E. Goldberg. Equivalence checking by logic relaxation. In FMCAD-16, pages 49–56,
2016.

2. E. Goldberg. Property checking without invariant generation. Technical Report
arXiv:1602.05829 [cs.LO], 2016.

3. E. Goldberg and P. Manolios. Quantifier elimination by dependency sequents. In
FMCAD-12, pages 34–44, 2012.

4. E. Goldberg and P. Manolios. Quantifier elimination via clause redundancy. In
FMCAD-13, pages 85–92, 2013.

5. E. Goldberg and P. Manolios. Partial quantifier elimination. In Proc. of HVC-14,
pages 148–164. Springer-Verlag, 2014.

6. E. Goldberg and P. Manolios. Quantifier elimination by dependency sequents. For-
mal Methods in System Design, 45(2):111–143, 2014.

7. O. Kullmann. New methods for 3-sat decision and worst-case analysis. Theor.

Comput. Sci., 223(1-2):1–72, 1999.

8. J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for satisfiability.
In ICCAD-96, pages 220–227, 1996.

9. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient sat solver. In DAC-01, pages 530–535, New York, NY, USA, 2001.

Appendix

The appendix contains proofs of the propositions listed in the paper. We also
give proofs of lemmas used in the proofs of propositions.

Propositions of Section 3: Clause Redundancy And
Boundary Points

Proposition 1. A Z-boundary point ~p of F (X,Y) is removable in ∃X [F], iff
one cannot turn ~p into an assignment satisfying F by changing only the values
of variables of X.

Proof: If part. Assume the contrary. That is ~p is not removable while no satis-
fying assignment can be obtained from ~p by changing only values of variables of
X . Let C be the clause consisting of all variables of Y and falsified by ~p. Since
~p is not removable, clause C is not implied by F . This means that there is an
assignment ~s that falsifies C and satisfies F . By construction, ~s and ~p have iden-
tical assignments to variables of Y . Thus, ~s can be obtained from ~p by changing
only values of variables of X and we have a contradiction.

Only if part. Assume the contrary. That is ~p is removable but one can obtain an
assignment ~s satisfying F from ~p by changing only values of variables of X . Since
~p is removable, there is a clause C that is implied by F and falsified by ~p and
that depends only of variables of Y . Since ~s and ~p have identical assignments to
variables of Y , point ~s falsifies C. However, since ~s satisfies F , this means that
C is not implied by F and we have a contradiction. �

Proposition 2. Let F (X,Y) be a CNF formula where FX 6= ∅ (see Defini-
tion 6). Let G be a non-empty subset of FX . The set G is not redundant in
∃X [F] iff there is a Z-boundary point ~p of F such that a) every clause falsified
by ~p is in G and b) ~p is X-removable in F .

Proof: Let H denote F \G. Given a point ~p, let (~x,~y) specify the assignments
of ~p to the variables of X and Y respectively.
If part. Assume the contrary, i.e., there is anX-removable point ~p=(~x,~y) of F but
G is redundant in ∃X [F] and so ∃X [F] ≡ ∃X [H]. Since ~p is a boundary point,
F (~p) = 0. Since ~p is removable, (∃X [F])~y = 0. On the other hand, since ~p falsifies
only clauses of G it satisfies H . Hence (∃X [H])~y = 1 and (∃X [F])~y 6= (∃X [H])~y,
which leads to a contradiction.

Only if part. Assume the contrary, i.e., set G is not redundant (and hence
∃X [F] 6≡ ∃X [H]) and there does not exist an X-removable Z-boundary point
of F falsifying only clauses of G. Let ~y be an assignment to Y such that
(∃X [F])~y 6= (∃X [H])~y. Consider the following two cases.

• (∃X [F])~y = 1 and (∃X [H])~y = 0. Then there exists an assignment ~x to X

such that (~x,~y) satisfies F . Since every clause of H is in F , formula H is also
satisfied by ~p. So we have a contradiction.

• (∃X [F])~y = 0 and (∃X [H])~y = 1. Then there exists an assignment ~x to
variables of X such that (~x,~y) satisfies H . Since F~y ≡ 0, point (~x,~y) falsifies
F . Since H(~p) = 1, (~x,~y) is a Z-boundary point of F that falsifies only
clauses of G. Since F~y ≡ 0, (~x,~y) is an X-removable Z-boundary point of F ,
which leads to a contradiction. �

Propositions of Section 4: Quantifier Elimination By
Branching

Proposition 3. Let ∃X [F (X,Y)] be an ∃CNF and ~q be an assignment to Vars(F).
Let ~p be a Z-boundary point of F where ~q ⊆ ~p and Z ⊆ X. Then if ~p is removable
in ∃X [F] it is also removable in ∃X [F~q].

Proof: Assume the contrary. That is ~p is removable in ∃X [F] but is not re-
movable in ∃X [F~q]. The fact that ~p is removable in ∃X [F] means that there
is a clause C implied by F and falsified by ~p that consists only of variables of
Y . Since ~p is not removable in ∃X [F~q], from Proposition 1 it follows that an
assignment ~s satisfying F~q can be obtained from ~p by changing only values of
variables of X \Vars(~q). By construction, ~p and ~s have identical assignments to
variables of Y . So ~s has to falsify C. On the other hand, by construction, ~q ⊆ ~s.
So, the fact that ~s satisfies F~q implies that ~s satisfies F too. Since ~s falsifies C

and satisfies F , clause C is not implied by F and we have a contradiction. �

Proposition 4. Let ∃X [F (X,Y)] be an ∃CNF and H ⊂ FX be redundant in
∃X [F]. Let an X-clause C of F \H be redundant in ∃X [F \H]. Then H ∪ {C}
is redundant in ∃X [F].

Proof: Denote H∪{C} as H ′. Assume the contrary, i.e. H ′ is not redundant in
∃X [F]. Then, from Proposition 2, it follows that F has anX-removable boundary
~p such that every clause falsified by ~p is inH ′. Denote asH ′′ the subset of clauses
of H ′ falsified by ~p. Let us consider the two possible cases.

• Clause C is not in H ′′. In this case, H ′′ is a subset of H and the existence
of ~p means that H is not redundant in ∃X [F]. So we have a contradiction.

• Clause C is in H ′′. Redundancy of C in ∃X [F \H] means that one can turn
~p into an assignment ~s satisfying F \H by flipping values of variables from
X . Since ~p is X-removable, ~s falsifies F . The only clauses of F falsified by ~s

are those of H . Since ~p and ~s have identical values assigned to Y , point ~s is
X-removable as well. Then the existence of ~s means that H is not redundant
in ∃X [F] and we have a contradiction. �

Propositions of Section 5: Virtual Redundancy

Proposition 5. Let ~q be an assignment to Vars(F) and clause C~q be redundant
in ∃X [F~q]. Then, for every ~r such that ~q ⊂ ~r, clause C~r is virtually redundant
in ∃X [F~r].

Proof: Let a point ~p of F falsify only C~r and be X-removable. Then ~p falsifies
only clause C~q of F~q. Since C~q is redundant in ∃X [F~q], point ~p is notX-removable
in F~q. �

Propositions of Section 7: Atomic D-sequents

Proposition 6. Let ∃X [F] be an ∃CNF. Let v ∈ Vars(C) and by assigning
value b to v where b ∈ {0, 1} one satisfies C. Then D-sequent (v = b) → C holds
We will refer to it as a D-sequent of the first kind.

Proof: Let ~q denote (v = b). Let W be a member formula for the D-sequent
(v = b) → C. Hence, W contains C. Clause C~q is true and so is redundant in W~q

and hence, in ∃X [W~q]. �

Proposition 7. Let ∃X [F] be an ∃CNF formula and ~q be an assignment to
Vars(F). Let B,C be two clauses of F . Let C~q be an X-clause and B~q imply
C~q (i.e. every literal of B~q is in C~q). Then the D-sequent (~q,H) → C holds
where H = {B} if B~q is an X-clause and H = ∅ otherwise. We will refer to the
D-sequent above as an atomic D-sequent of the second kind.

Proof: Let W be a member formula for the D-sequent (~q,H) → C. Then
{B,C} ⊆ W . Indeed, if B~q is an X-clause then B ∈ H and H ⊆ W . Otherwise,
B is in W because W is obtained from F by removing only clauses that are
X-clauses in subspace ~q. Since B~q implies C~q, then W~q ≡ W~q \ {C~q}.�

Lemma 1. Let ∃X [F] be an ∃CNF formula and ~q be an assignment to Vars(F).
Let C be an X-clause of F not satisfied by ~q and v ∈ X be a variable of C such
that v 6∈ Vars(~q). Let clause C~q be blocked at v in F~q. Then C~q is redundant in
∃X [F~q].

Proof: Assume the contrary i.e. C~q is not redundant in ∃X [F~q]. Then there is
a Z-boundary point ~p where Z ⊆ X that falsifies only C~q and is X-removable

in F~q. Let ~p′ be the point obtained from ~p by flipping the value of v. Consider
the following two possibilities.

• ~p′ satisfies F~q. Then ~p is not X-removable and we have a contradiction.

• ~p′ falsifies a clause C′

~q of F~q. Then C~q and C′

~q are resolvable on variable v

and we have a contradiction again. �

Proposition 8. Let ∃X [F] be an ∃CNF formula. Let C be an X-clause of F
and v ∈ Vars(C)∩X. Let C1, . . . , Ck be the clauses of F that can be resolved with
C on variable v. Let (~q1, H1) → C1,. . . ,(~qk, Hk) → Ck be a consistent set of

D-sequents. Then D-sequent (q,H) → C holds where ~q=
i=k⋃

i=1

~qi and H =
i=k⋃

i=1

Hi.

We will refer to it as an atomic D-sequent of the third kind.

Proof: Let W be a member formula for the D-sequent (q,H) → C. Since
Hi ⊆ H holds, W is a member formula for D-sequent (~qi, Hi) → Ci too. So
Ci is redundant in ∃X [W] in subspace ~qi. Since ~qi ⊆ ~q, from Proposition 5 it
follows, that Ci is redundant in ∃X [W] in subspace ~q too. Since D-sequents
(~q1, H1) → C1, . . . , (~qk, Hk) → Ck are consistent, the clauses C1, . . . , Ck are
redundant together in ∃X [W] in subspace ~q. So clause C is blocked in ∃X [W]
at variable v in subspace ~q. From Lemma 1 it follows that C is redundant in
∃X [W] in subspace ~q. �

Propositions of Section 8: Join Operation

Proposition 9. Let ∃X [F] be an ∃CNF formula. Let D-sequents (~q′, H ′) → C

and (~q′′, H ′′) → C hold. Let ~q′, ~q′′ be resolvable on v ∈ Vars(F) and ~q be the

resolvent of ~q′ and ~q′′. Let H = H ′∪H ′′. Then the D-sequent (~q,H) → C holds.

Proof: Denote by S′ and S the D-sequents (~q′, H ′) → C and (~q,H) → C

respectively. Assume that S does not hold. Then there is a member formula W

of S such that C is not redundant in ∃X [W~q] even virtually. This means that

• the set B of Definition 11 is not empty and
• there is a point ~p ∈ B that is X-removable in every formula W~r where

~q∗ ⊆ ~r ⊂ ~q (see Definition 11).

Assume for the sake of clarity that ~p has the same assignment to v as ~q′. Note
that, since H ′ ⊆ H , W is a member formula of the D-sequent (~q′, H ′) → C. So,
C~q′

is redundant in ∃X [W~q′
]. Consider the following possibilities.

• Point ~p is not X-removable in W~q′
and v ∈ X . Then it is not X-removable

in W~s where ~s is obtained from ~q′ by dropping the assignment to v. Since
~s ⊂ ~q holds, this contradicts the fact that ~p has to be X-removable in every
subspace ~q∗ ⊆ ~r ⊂ ~q.

• Point ~p is not X-removable in W~q′
and v 6∈ X . Then ~p is not X-removable

in W~q. This contradicts the fact that ~p ∈ B.

• Point ~p is X-removable in W~q′
and it is X-removable in W~r for every ~q′

∗

⊆

~r ⊂ ~q′. Then C~q′
is not redundant in ∃X [W~q′

], which contradicts the fact

that D-sequent S′ holds.
• Point ~p is X-removable in W~q′

, and v ∈ X and ~p is not X-removable in W~r

where ~q′
∗

⊆ ~r ⊂ ~q′. Then it is not X-removable in W ~r∗ obtained from ~r by
dropping the assignment to v, if any (regardless of whether or not v is in X).
Since ~r∗ ⊂ ~q holds, this contradicts the fact that ~p has to be X-removable
in every subspace ~q∗ ⊆ ~r ⊂ ~q. �

Propositions of Section 9: Re-usability of D-sequents

Proposition 10. Let ∃X [F] be an ∃CNF. Let (~q1, H1) → C1,. . . , (~qk, Hk) →
Ck be a consistent set of D-sequents. Then these D-sequents are composable and
hence clauses {C1, . . . , Ck} are collectively redundant in ∃X [F] in subspace ~q

where ~q=
i=k⋃

i=1

~qi.

Proof: Since ~qi ⊆ ~q, i = 1, . . . , k, from Proposition 5 it follows that D-sequents
(~q,Hi) → Ci, i = 1, . . . , k hold. Assume for the sake of simplicity that π(Ci) <
π(Cj) if i < j. Then one can prove redundancy of clauses Ci, i = 1, .., k in
subspace ~q in the order they are numbered. Denote (~q,Hi) → Ci as Si, i =

1, . . . , k. Denote by Fi+1 formula F \ {C1, . . . , Ci}, i = 1, . . . , k. Formula F1 is
set to F . Since S1 is applicable to F1 one can remove C1 in subspace ~q producing
formula F2. Note that F2 is a member formula for S2. By applying S2 to F1 one
removes clause C2 in subspace ~q producing F3, a member formula for S3. Going
on in such a manner one eventually produces formula Fk+1 thus showing that
{C1, . . . , Ck} are redundant in ∃X [F] in subspace ~q. �

Propositions of Section 10: Two Useful Transformations
Of D-sequents

Lemma 2. Let ∃X [F (X,Y)] be an ∃CNF formula. Let ~q be an assignment to
Vars(F). Let C be an X-clause redundant in ∃X [F~q]. Let C be also redundant
in formula ∃X [W~q] where W is obtained from F by dropping X-clauses that are
redundant in ∃X [F~q]. Then every point ~p falsifying only clause C~q of W~q can be
turned into a point satisfying F by changing values of (some) variables of X.

Proof: Denote by C1, . . . , Ck the X-clauses dropped from F to obtain W .
Assume that these clauses were dropped in the numbering order. That is clause
Ci is redundant in ∃X [Wi] in subspace ~q where W1 = F and Wi+1 = Wi \ {Ci},
i = 1, . . . , k. So Wk+1 = F \ {C1, . . . , Ck} = W .

Let ~p be a point falsifying only C of W in subspace ~q. Since clause C is
redundant, one can turn ~p into a point satisfying W in subspace ~q by changing
values of variables of X . Denote the new point as ~p again. If ~p satisfies F then
we are done. Otherwise, ~p falsifies some clauses C1, . . . , Ck.

Let Ci be the clause with the largest index that is falsified by ~p. Note that ~p
falsifies only clause Ci in Wi in subspace ~q. Since Ci is redundant in ∃X [Wi] in
subspace ~q, one can turn ~p into an assignment satisfying Wi in subspace ~q by
changing only assignments to X . Denote the new point as ~p again. If ~p satisfies
F we are done. Otherwise, ~p falsifies some clauses C1, . . . , Ci−1.

Going on in such a manner one eventually builds a point satisfying F that is
obtained from the very first point ~p by changing only assignments to variables
of X . �

Proposition 11. Let D-sequent (∃X [F], ~q,H) → C hold and R be a CNF for-
mula implied by F . Then D-sequent (∃X [F ∧R], ~q,H) → C holds too.

Proof: LetWR be a member formula for (∃X [F ∧R], ~q,H) → C. Denote byW

the formula WR \R. Note that W is a member formula for (∃X [F], ~q,H) → C.
If W = WR, then C is redundant in ∃X [W] (and hence in ∃X [WR]) in subspace
~q. Now consider the case W ⊂ WR. Assume that C is not redundant in ∃X [WR]
in subspace ~q. Then there is a point ~p such that

• ~p falsifies only clause C of WR in subspace ~q where ~q ⊆ ~p

• ~p is X-removable for every ~r obtained from ~q by dropping (some) assign-
ments to X .

Since C is redundant in ∃X [W] in subspace ~q, from Lemma 2, it follows that one
can turn ~p into point ~p∗ satisfying F by changing only values of variables of X .
Since R is implied by F , ~p∗ satisfies F ∧R as well. Hence ~p∗ satisfies WR and ~p

is not X-removable in subspace ~r obtained by dropping from ~q all assignments
to X . So we have a contradiction. �

Lemma 3. Let ∃X [F] be an ∃CNF formula and ~q be an assignment to Vars(F).
Let C′ and C′′ be X-clauses of F and {C′, C′′} be redundant in ∃X [F] in subspace
~q. Then clause C′ is redundant in ∃X [F \ {C′′}] in subspace ~q.

Proof: Assume that C′ is not redundant in ∃X [F \ {C′′}]. in subspace ~q. Then
there is a point ~p falsifying only C′

~q that is X-removable in every subspace

~q∗ ⊆ ~r ⊆ ~q (see Definition 11). Then, from Proposition 2 it follows that clauses
{C′, C′′} are not redundant in ∃X [F] in subspace ~q (even virtually). �

Lemma 4. Let ∃X [F] be an ∃CNF. Let D-sequents (~q′, H ′) → C′ and (~q′′, H ′′)

→ C′′ hold where ~q′′ ⊆ ~q′ and H ′′ ⊂ H ′ and C′′ ∈ H ′ and C′ 6∈ H ′′. Then the
D-sequent (~q′, H ′ \ {C′′}) → C′ holds.

Proof: Let W be a member formula for (~q′, H ′ \ {C′′}) → C′. Let us show

that C′ is redundant in ∃X [W] in subspace ~q′ and so (~q′, H ′ \ {C′′}) → C′

holds. Consider the following two situations. First, assume that clause C′′ ∈ W .
Then W is a member formula for the D-sequent (~q′, H ′) → C′ and hence C′ is

redundant in ∃X [W] in subspace ~q′.

Now assume that clause C′′ 6∈ W . Denote D-sequents (~q′, H ′) → C′ and

(~q′, H ′′) → C′′ (computed with respect to ∃X [F]) as S′ and S′′ respectively.
Denote formula W ∪ {C′′} by W ′′. Note that W ′′ is a member formula for S′

and S′′. Besides, S′ and S′′ are consistent. So, in particular, S′′ can be used after
S′ . By applying S′ and S′′ one shows that {C′, C′′} are redundant in ∃X [W ′′] in

subspace ~q′. From Lemma 3 it follows that C′ is redundant in ∃X [W] in subspace
~q′. �

Lemma 5. Let ∃X [F] be an ∃CNF. Let D-sequent (~q,H) → C hold. Let G be
an arbitrary subset of X-clauses of F \H. Then D-sequent (~q,H ∪G) → C holds
too.

Proof: Let W be a member formula for (~q,H ∪G) → C. Then W is a member
formula for (~q,H) → C. So, C is redundant in ∃X [W] in subspace ~q. �

Proposition 12. Let ∃X [F] be an ∃CNF. Let (~q′, H ′) → C′ and (~q′′, H ′′)→ C′′

be two D-sequents forming a consistent set (see Definition 19). Let C′′ be in H ′.

Then D-sequent (~q,H) → C′ holds where ~q = ~q′∪ ~q′′ and H = (H ′\{C′′})∪H ′′.

Proof: From Proposition 5 it follows that D-sequent (~q,H ′) → C′ holds. From
Lemma 5 it follows that (~q,H ′ ∪H ′′) → C′ holds too. The latter and D-sequent

(~q′′, H ′′) → C′′ satisfy the conditions of Lemma 4. (Note thatH ′′ cannot contain

C′ because (~q′, H ′) → C′ and (~q′′, H ′′) → C′′ are consistent.) This entails that
(~q,H) → C′ holds. �

Proposition 13. Let ∃X [F] be an ∃CNF and (~q1, H1) → C1,. . . , (~qk, Hk)→ Ck

be consistent D-sequents where Hi ⊆ {C1, . . . , Ck}, i = 1, . . . , k. Assume, for
the sake of simplicity, that the numbering order is consistent with the order
constraints. Let Cm be in Hi. Then, by repeatedly applying the transforma-
tion of Proposition 12, one can produce D-sequent (~q,Hi \ {Cm}) → Ci where

~qi ⊆ ~q ⊆ ~qi ∪
j=k⋃

j=m

~qj.

Proof: Let Sj denote D-sequent (~qj , Hj) → Cj , j = 1, . . . , k. Note that i <

m holds, otherwise, Sm would be used before Si proving Cm redundant and
thus making Si inapplicable. Let us use Proposition 12 to remove clause Cm

from the order constraint of Sm. This produces a new D-sequent S equal to
(~q, (Hi∪Hm)\{Cm}) → Ci where ~q = ~qi∪~qm. IfHm ⊆ Hi holds, the proposition
in question is proved. Otherwise, one keeps removing clauses from the order
constraint of D-sequent S.

Let Cr be the clause of Hm \ Hi with the largest index. Note that m < r

holds (and, hence, i < m < r) for the same reason i < m does. By applying
Proposition 12 to remove clause Cr from the order constraint of S one produces
a new D-sequent S equal to (~q, (Hi ∪Hm ∪Hr) \ {Cm, Cr}) → Ci where ~q =
~qi ∪ ~qm ∪ ~qr. Note that since i < r and m < r, set Hr cannot contain Cm or
Cr. If (Hm ∪Hr) \ {Cr} is a subset of Hi the proposition in question is proved.
Otherwise, one picks the clause of (Hm ∪Hr) \ {Cr} with the largest index that
is not in Hi and removes it by applying the transformation of Proposition 12.

The procedure above goes one until one produces a D-sequent S with order
constraint Hi \ {Cm}. This procedure converges, since one always removes a
clause with the largest index and so this clause cannot re-appear in the order
constraint of S. Thus, eventually, in no more than k −m steps, all the clauses
that are not in Hi \ {Cm} will be removed from the order constraint of S. �

	Quantifier Elimination With Structural Learning
	Eugene Goldberg

