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Abstract. Virtually all efficient algorithms of hardware verification are
formula-specific i.e., take into account the structure of the formula at
hand. So, those algorithms can be viewed as structure-aware computing
(SAC). We relate SAC and partial quantifier elimination (PQE), a gen-
eralization of regular quantifier elimination. In PQE, one can take a part
of the formula out of the scope of quantifiers. Interpolation can be viewed
as a special case of PQE. The objective of this paper is twofold. First,
we want to show that new powerful methods of SAC can be formulated
in terms of PQE. We use three hardware verification problems (testing
by property generation, equivalence checking and model checking) to ex-
plain how SAC is performed by PQE. Second, we want to demonstrate
that PQE solving itself can benefit from SAC. To this end, we describe
a new SAT procedure based on SAC and then use it to introduce a
structure-aware PQE algorithm.

1 Introduction

Arguably, almost all efficient algorithms of hardware verification take into ac-
count the structure of the formula at hand i.e., they are formula-specific (see
Appendix A). We will say that those algorithms employ structure-aware com-
puting. In this paper, we relate structure-aware computing and partial quantifier
elimination (PQE). Our objective here is twofold. First, we want to show off PQE
as a language of structure-aware algorithms. Second, we want to demonstrate
that PQE solving itself can benefit from being structure-aware.

In this paper, we consider only propositional formulas in conjunctive normal
form (CNF) and only existential quantifiers. PQE is a generalization of regular
quantifier elimination (QE) that is defined as follows [1]. Let F (X,Y ) be a
quantifier-free formula where X,Y are sets of variables and G be a subset of
clauses1 of F . Given a formula ∃X[F ], the PQE problem is to find a quantifier-
free formula H(Y ) such that ∃X[F ] ≡ H ∧ ∃X[F \G]. In contrast to full QE,
only the clauses of G are taken out of the scope of quantifiers hence the name
partial QE. Note that QE is just a special case of PQE where G = F and the
entire formula is unquantified. A key role in PQE solving plays redundancy based

1 Given a CNF formula F represented as the conjunction of clauses C1 ∧ · · · ∧Ck, we
will also consider F as the set of clauses {C1, . . . , Ck}.
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reasoning : to take a set of clauses G out of ∃X[F (X,Y )], one essentially needs
to find a formula H(Y ) that makes G redundant in H ∧ ∃X[F ]. The appeal of
PQE is that it can be much more efficient than QE if G is a small piece of F .
To solve PQE, one needs to make redundant only G whereas in QE the entire
formula F is redundant in H ∧ ∃X[F ]. (The complexity of PQE can even be
reduced to linear [2].) So, it is beneficial to design algorithms based on PQE.

The idea of structure-aware computing by PQE is derived from the following
observation. QE is a semantic operation in the sense that if ∃X[F (X,Y )] ≡
H(Y ) and F ′ ≡ F , then ∃X[F ′] ≡ H. That is, to verify the correctness of H it
suffices to know the truth table of F . On the other hand, PQE is a structural
(i.e., formula-specific) operation in the following sense. The fact that ∃X[F ] ≡
H ∧∃X[F \G] and F ′ ≡ F does not imply that ∃X[F ′] ≡ H ∧∃X[F ′ \G]. For
instance, G may be redundant in ∃X[F ] (and so H ≡ 1 and ∃X[F ] ≡ ∃X[F \G])
but not redundant in ∃X[F ′]. In other words, one cannot prove H correct using
the truth table of F alone because H depends on the particulars of F . That
is H is formula-specific. In this sense, PQE is similar to interpolation that is a
structural operation too (see Section 4).

The contribution of this paper is threefold. First, we show that one can
formulate powerful methods of structure-aware computing in terms of PQE. In
particular, we show that the methods of property generation and equivalence
checking by PQE published in [3,2] are actually examples of structure-aware
computing (Section 5). Besides, we apply structure-aware computing by PQE
to model checking (Section 6). Second, we demonstrate that PQE solving itself
can benefit from taking into account the formula structure (Section 7). Namely,
we introduce a structure-aware PQE algorithm called PQE sa (Section 11). It is
based on a structure-aware SAT algorithm we present before describing PQE sa

(Sections 8-10). The introduction of this algorithm is our third contribution.
The main body of this paper is structured as follows. (Some additional in-

formation is given in the appendix.) In Section 2, we provide basic definitions.
A high-level view of PQE solving is presented in Section 3. As mentioned above,
Sections 4 -11 relate structure-aware computing, interpolation, PQE, and SAT.
In Section 12, we make conclusions.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal
of a variable v is either v (the positive literal) or its negation v (the negative
literal). A clause is a disjunction of literals. A formula F is in conjunctive
normal form (CNF) if F = C1 ∧ · · · ∧ Ck where C1, . . . , Ck are clauses. We
will also view F as the set of clauses {C1, . . . , Ck}. We assume that every
formula is in CNF unless otherwise stated.



Definition 2. Let F be a formula. Then Vars(F ) denotes the set of variables
of F and Vars(∃X[F ]) denotes Vars(F )\X.

Definition 3. Let V be a set of variables. An assignment #»q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in #»q as
Vars(q⃗). We will refer to #»q as a full assignment to V if Vars(q⃗) = V . We
will denote as #»q ⊆ #»r the fact that a) Vars(q⃗) ⊆ Vars(r⃗) and b) every variable
of Vars(q⃗) has the same value in #»q and #»r .

Definition 4. A literal and a clause are satisfied (respectively falsified) by an
assignment #»q if they evaluate to 1 (respectively 0) under #»q .

Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and #»q be an assignment to Vars(H). If C is satisfied by #»q , then Cq⃗ ≡ 1. Oth-
erwise, Cq⃗ is the clause obtained from C by removing all literals falsified by #»q .
Denote by Hq⃗ the formula obtained from H by removing the clauses satisfied by
#»q and replacing every clause C unsatisfied by #»q with Cq⃗.

Definition 6. Given a formula ∃X[F ], a clause C of F is called quantified if
Vars(C) ∩X ̸= ∅. Otherwise, the clause C is called unquantified.

Definition 7. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if Gq⃗ = Hq⃗ for all full assign-
ments #»q to Vars(G) ∪Vars(H).

Definition 8. Let F (X,Y ) be a formula and G ⊆ F and G ̸= ∅. The clauses of
G are said to be redundant in ∃X[F ] if ∃X[F ] ≡ ∃X[F \G]. If F \G implies
G, the clauses of G are redundant in ∃X[F ] but the reverse is not true.

Definition 9. Given a formula ∃X[F (X,Y ))] and G where G ⊆ F , the Partial
Quantifier Elimination (PQE) problem is to find H(Y ) such that
∃X[F ] ≡ H ∧ ∃X[F \ G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Example 1. Consider formula F = C1 ∧ · · · ∧ C5 where C1 = x3 ∨ x4, C1 =
y1∨x3, C2 = y1 ∨ x4, C4 = y2∨x4, C5 = y2∨x4. Let Y = {y1, y2} and X =
{x3, x4}. Consider the PQE problem of taking C1 out of ∃X[F ] i.e., finding
H(Y ) such that ∃X[F ] ≡ H ∧ ∃X[F \ {C1}]. In Subsection 3.3 we show that
∃X[F ] ≡ y1 ∧ ∃X[F \ {C1}] i.e., H=y1 is a solution to this PQE problem.

Definition 10. Let clauses C ′,C ′′ have opposite literals of exactly one variable
w∈Vars(C ′)∩Vars(C ′′). Then C ′,C ′′ are called resolvable on w. Let C be the
clause consisting of the literals of C ′ and C ′′ minus those of w. Then C is said
to be obtained by resolution of C ′ and C ′′ on w.

Definition 11. Let C be a clause of a formula F and w ∈ Vars(C). The clause
C is called blocked in F at w [4] if no clause of F is resolvable with C on w.



Proposition 1. Let a clause C be blocked in a formula F (X,Y ) at a variable
x ∈ X. Then C is redundant in ∃X[F ], i.e., ∃X[F \ {C}] ≡ ∃X[F ].

Proposition 1 was proved in [2]. The proofs of all propositions (old and new
ones) are given in Appendix B.

3 PQE solving

In this section, we briefly describe the PQE algorithm called DS -PQE [1]. Our
objective here is to provide an idea of how the PQE problem can be solved.
So, in Subsection 3.2, we give a high-level description of this algorithm and in
Subsection 3.3 we present an example of PQE solving. In Sections 7 and 11 we
continue the topic of PQE solving.

3.1 Some background

Information on QE in propositional logic can be found in [5,6,7,8,9,10]. QE
by redundancy based reasoning is presented in [11,12]. One of the merits of
such reasoning is that it allows to introduce partial QE. A description of PQE
algorithms and their sources can be found in [1,2,13,14,15].

3.2 High-level view

Like all existing PQE algorithms, DS -PQE uses redundancy based reasoning
justified by the proposition below.

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking G
out of ∃X[F (X,Y )] (i.e., ∃X[F ] ≡ H ∧ ∃X[F \G]) iff

1. F ⇒ H and
2. H ∧ ∃X[F ] ≡ H ∧ ∃X[F \G]

So, to take G out of ∃X[F (X,Y )], it suffices to find H(Y ) implied by F that
makes G redundant in H ∧ ∃X[F ]. We refer to clauses of G as target ones.

Below, we provide some basic facts about DS -PQE . Since taking out an un-
quantified clause is trivial, we assume that the formula G contains only quantified
clauses. DS -PQE finds a solution to the PQE problem above by branching on
variables of F . The idea here is to reach a subspace #»q where every clause of G
can be easily proved or made redundant in ∃X[F ]. DS -PQE branches on un-
quantified variables, i.e., those of Y , before quantified ones. Like a SAT-solver,
DS -PQE runs Boolean Constraint Propagation (BCP). If a conflict occurs in
subspace #»q , DS -PQE generates a conflict clause Ccnfl and adds it to F to make
clauses of G redundant in subspace #»q . DS -PQE can also prove that G is already
redundant in a subspace without reaching a conflict and adding a conflict clause.

To express the redundancy of a clause C in a subspace #»q , DS -PQE uses a
record #»q → C called a D-sequent [11,12] (see below). It states the redundancy



of C in the current formula ∃X[F ] in subspace #»q . This D-sequent also holds in
any formula ∃X[F ∗] where F ∗ is obtained from F by adding clauses implied by
F . A D-sequent derived for a target clause C is called atomic if the redundancy
of C can be trivially proved. D-sequents derived in different branches can be
resolved similarly to clauses. For every target clause C of the original formula
G, DS -PQE uses such resolution to eventually derive the D-sequent ∅ → C. The
latter states the redundancy of C in the entire space. At this point DS -PQE
terminates. The solution H(Y ) to the PQE problem found by DS -PQE consists
of the unquantified clauses added to the initial formula F to make G redundant.

3.3 An example of PQE solving

Here we show how DS -PQE solves Example 1 introduced in Section 2. Recall
that one takes G = {C1} out of ∃X[F (X,Y )] where F = C1 ∧ · · · ∧ C5 and
C1 = x3∨x4, C2=y1∨x3, C3 = y1∨x4, C4=y2∨x4, C5=y2∨x4 and Y = {y1, y2}
andX = {x3, x4}. One needs to findH(Y ) such that ∃X[F ] ≡ H∧∃X[F \ {C1}].

Assume DS -PQE picks the variable y1 for branching and first explores the
branch #»q ′ = (y1=0). In subspace #»q ′, clauses C2, C3 become unit. (An unsatisfied
clause is called unit if it has only one unassigned literal.) After assigning x3=1
to satisfy C2, the clause C1 turns into unit too and a conflict occurs (to satisfy C1

and C3, one has to assign the opposite values to x4). After a standard conflict
analysis [16], a conflict clause Ccnfl = y1 is obtained by resolving C2 and C3

with C1. To make C1 redundant in subspace #»q ′, DS -PQE adds Ccnfl to F . The
redundancy of C1 is expressed by the D-sequent #»q ′ → C1. This D-sequent is an
example of an atomic one. It asserts that C1 is redundant in subspace #»q ′.

Having finished the first branch, DS -PQE considers the second branch: #»q ′′ =
(y1 = 1). Since the clause C2 is satisfied by #»q ′′, no clause of F is resolv-
able with C1 on variable x3 in subspace #»q ′′. Hence, C1 is blocked at vari-
able x3 and thus redundant in ∃X[F ] in subspace #»q ′′. So, DS -PQE generates
the D-sequent #»q ′′ → C1. This D-sequent is another example of an atomic D-
sequent. It states that C1 is already redundant in ∃X[F ] in subspace #»q ′′ (with-
out adding a new clause). Then DS -PQE resolves the D-sequents (y1 = 0) → C1

and (y1 = 1) → C1 on y1. This resolution produces the D-sequent ∅ → C1 stat-
ing the redundancy of C1 in ∃X[F ] in the entire space (i.e., globally). Recall
that Ffin = Ccnfl ∧Finit where Ffin and Finit denote the final and initial formula
F respectively. That is Ccnfl is the only unquantified clause added to Finit . So,
DS -PQE returns Ccnfl as a solution H(Y ). The clause Ccnfl = y1 is indeed a so-
lution since it is implied by Finit and C1 is redundant in Ccnfl∧∃X[Finit ]. So both
conditions of Proposition 2 are met and thus ∃X[Finit ] ≡ y1 ∧ ∃X[Finit \ {C1}].

4 PQE And Interpolation

Interpolation [17,18] is an example of structure-aware computing. In this section,
we show that interpolation can be viewed as a special case of PQE.



Let A(X,Y ) ∧B(Y, Z) be an unsatisfiable formula where X,Y, Z are sets of
variables. Let I(Y ) be a formula such that A∧B ≡ I ∧B and A ⇒ I. Replacing
A ∧ B with I ∧ B is called interpolation and I is called an interpolant. PQE is
similar to interpolation in the sense that the latter is a structural rather than
semantic operation. Suppose, for instance, that A′(X,Y ) ∧ B is a formula such
that A′ ∧ B ≡ A ∧ B but A′ ̸≡ A. Then, in general, the formula I above is not
an interpolant for A′ ∧B i.e., A′ ∧B ̸≡ I ∧B or A′ ̸⇒ I.

Now, let us describe interpolation in terms of PQE. Consider the formula
∃W [A ∧B] whereW = X∪Z and A,B are the formulas above. Let A∗(Y ) be ob-
tained by taking A out of the scope of quantifiers i.e., ∃W [A ∧B] ≡ A∗∧∃W [B].
Since A∧B is unsatisfiable, A∗ ∧B is unsatisfiable too. So, A ∧B ≡ A∗ ∧B. If
A ⇒ A∗, then A∗ is an interpolant.

The general case of PQE that takes A out of ∃W [A ∧B] is different from the
instance above in three aspects. First, A∧B can be satisfiable. Second, one does
not assume that Vars(B) ⊂ Vars(A ∧B). That is, in general, PQE is not meant
to produce a new formula with a smaller set of variables. Third, a solution A∗

is generally implied by A ∧ B rather than by A alone. So, interpolation can be
viewed as a special case of PQE. Hence, one can expect PQE to enable a much
more general set of structure-aware algorithms than interpolation.

5 Previous Results As Structure-Aware Computing

In this section, we recall the methods of property generation and equivalence
checking by PQE [2,3]. We describe them by the example of combinational cir-
cuits. Our objective here is to show that these are actually powerful methods of
structure-aware computing.

5.1 Representing a combinational circuit by a CNF formula

Let M(X,V,W ) be a combinational circuit where X,V,W are sets of inter-
nal, input, and output variables of M respectively. Let F (X,V,W ) denote a
formula specifying M . As usual, this formula is obtained by Tseitsin’s transfor-
mations [19]. Namely, F = Fg1 ∧ · · · ∧ Fgk where g1, . . . , gk are the gates of M
and Fgi specifies the functionality of gate gi.

Example 2. Let g be a 2-input AND gate defined as x3 = x1 ∧ x2 where x3

denotes the output variable and x1, x2 denote the input variables. Then g is
specified by the formula Fg=(x1∨x2∨x3)∧ (x1∨x3)∧ (x2∨x3). Every clause of
Fg is falsified by an inconsistent assignment (where the output value of g is not
implied by its input values). For instance, x1∨ x3 is falsified by the inconsistent
assignment x1 = 0, x3 = 1. So, every assignment satisfying Fg corresponds to a
consistent assignment to g and vice versa. Similarly, every assignment satisfying
the formula F above is a consistent assignment to the gates of M and vice versa.



5.2 Testing, property generation, and structure-aware computing

Testing is a workhorse of functional verification. The appeal of testing is that it
is surprisingly effective in bug hunting taking into account that the set of tests
makes up only a tiny part of the truth table. This effectiveness can be attributed
to the fact that modern procedures are aimed at testing a particular implemen-
tation rather than sampling the truth table. So, testing can be viewed as an
instance of structure-aware computing. In this subsection, we recall property
generation by PQE [2] that is a generalization of testing. We show that using
PQE dramatically boosts the power of structure-aware computing.

In addition to incompleteness, testing has the following flaw. Let M(X,V,W )
be a combinational circuit and F be a formula specifying M as described above.
Let #»v denote a single test i.e., a full assignment to V . The input/output behavior
corresponding to #»v can be cast as a property H v⃗(V,W ) of M (i.e., F implies H v⃗,
see Appendix C). If the test #»v exposes a bug, then H v⃗ is an unwanted property
of M . The flaw above is that H v⃗ is a weakest property of M . So, testing can
overlook a bug easily exposed by a stronger unwanted property (e.g., a property
stating that some valid combination of output values is never produced by M).
A comprehensive solution would be to generate the truth table T (V,W ), which
is the strongest property of M . (T can be produced by performing QE on ∃X[F ]
i.e., T ≡ ∃X[F ].) However, computing T can be prohibitively expensive. PQE
allows to produce properties that are much stronger than single-test properties
H v⃗ but can be generated much more efficiently than the truth table T .

For the sake of simplicity, consider property generation by taking a sin-
gle clause C out of ∃X[F ]. Let H(V,W ) be a solution, i.e., ∃X[F ] ≡ H ∧
∃X[F \ {C}]. Since F ⇒ H, the solution H is a property of M . If H is an
unwanted property, M has a bug. If taking out C is still too hard, one can sim-
plify the problem by clause splitting. The idea here is to replace C with clauses
C ∨ p and C ∨ p where p ∈ Vars(F ) and take out, say, C ∨ p instead of C. Then
PQE becomes simpler but produces a weaker property H. Given a single test #»v ,
one can produce the single-test property H v⃗ by combining PQE with splitting
C on all input variables (see Appendix C).

Like testing, property generation is an instance of structure-aware com-
puting. Indeed, let M ′ be a circuit equivalent to M but having a different
structure and F ′ be a formula specifying M ′. Let H be a property obtained by
taking a single clause out of ∃X[F ]. Intuitively, to produce H (or a close stronger
property) from ∃X ′[F ′], one may need to take out a large set of clauses. That is
H is much easier to obtain and hence more natural for M than for M ′.

Here some experimental results on property generation reported in [2] that
describe the status quo. Those results were produced by an optimized version of
DS -PQE [2]. The latter was used to generate properties for the combinational
circuit Mk obtained by unfolding a sequential circuit N for k time frames. Those
properties were employed to produce invariants of N . A sample of HWMCC
benchmarks containing from 100 to 8,000 latches was used in those experiments.
DS -PQE managed to generate a lot of properties of Mk that turned out to be



invariants of N . DS -PQE also successfully generated an unwanted invariant of
a tailor-made FIFO buffer and so identified a hard-to-find bug.

5.3 Equivalence checking and structure-aware computing

In this subsection, we discuss equivalence checking by PQE [3] in the context
of structure-aware computing. Let M ′(X ′, V ′, w′) and M ′′(X ′′, V ′′, w′′) be the
single-output combinational circuits to check for equivalence. Here Xα, V α are
the sets of internal and input variables and wα is the output variable ofMα where
α ∈ {′ , ′′}. Circuits M ′,M ′′ are called equivalent if they produce identical values
of w′, w′′ for identical inputs #»v ′, #»v ′′ (i.e., identical full assignments to V ′, V ′′).

Let F ′(X ′, V ′, w′) and F ′′(X ′′, V ′′, w′′) specify M ′ and M ′′ respectively as de-
scribed in Subsection 5.1. Let F ∗ denote the formula F ′(X ′, V, w′)∧F ′′(X ′′, V, w′′)
where V ′=V ′′=V . (V ′ and V ′′ are identified in F ∗ because equivalence checking
is concerned only with identical assignments to V ′ and V ′′.) Let Z∗=X ′∪X ′′∪V .
A straightforward but hugely inefficient method of equivalence checking is to per-
form QE on ∃Z∗[F ∗] to derive w′ ≡ w′′. The most efficient equivalence checking
tools use the method that we will call cut propagation (CP) [20,21,22]. The
CP method can be viewed as an efficient approximation of QE meant for proving
equivalence of circuits that are very similar.

The idea of CP is to build a sequence of cuts Cut1, . . . ,Cutk of M ′ and M ′′

and find cut points of M ′,M ′′ for which some simple pre-defined relationsRel1,
. . . , Relk hold (e.g., functional equivalence). Computations move from inputs to
outputs where Cut1 = V and Cutk = {w′, w′′}. The relation Rel1 is set to the
constant 1 whereas Rel2, . . . ,Relk are computed in an inductive manner. (That
is Rel i is obtained using previously derived Rel1, . . . ,Rel i−1.) The objective of
CP is to prove Relk = (w′ ≡ w′′). The main flaw of CP is that circuits M ′

and M ′′ may not have cut points related by pre-defined relations even if M ′ and
M ′′ are very similar. In this case CP fails. So, it is incomplete even for similar
circuits M ′,M ′′. Despite its flaws, CP is a successful practical structure-aware
method that exploits the similarity of M ′ and M ′′.

In [3], a method of equivalence checking based on PQE was introduced. This
method also uses cut propagation. So, we will refer to it as CPpqe . Let F denote
the formula F ′(X ′, V ′, w′)∧F ′′(X ′′, V ′′, w′′) where V ′ and V ′′ are separate sets.
Let Eq(V ′, V ′′) denote a formula such that Eq( #»v ′, #»v ′′) = 1 iff #»v ′ = #»v ′′. Let
Z = X ′ ∪X ′′ ∪ V ′ ∪ V ′′. CPpqe is based on the proposition below proved in [3].

Proposition 3. Assume M ′,M ′′ do not implement a constant (0 or 1). Let
∃Z[Eq ∧ F ] ≡ H(w′, w′′) ∧ ∃Z[F ]. Then M ′ and M ′′ are equivalent iff H ⇒
(w′ ≡ w′′).

Hence, to find ifM ′,M ′′ are equivalent, it suffices to take Eq out of ∃Z[Eq ∧ F ].
(Checking if M ′ or M ′′ implement a constant reduces to a few simple SAT
checks.) Note that Eq(V ′, V ′′) ∧ F (. . . , V ′, V ′′, . . .) is semantically the same as
the formula F ∗(. . . , V, . . .) above used in CP. However, CPpqe cannot be formu-
lated in terms of F ∗ since it exploits the structure of Eq ∧ F (i.e., the presence
of Eq).



CPpqe takes Eq out of ∃Z[Eq ∧ F ] incrementally, cut by cut, by computing
relations Rel i (see Fig. 1). Rel1 is set to Eq whereas the remaining relations Rel i
are computed by PQE (see Appendix D). CPpqe provides a dramatically more
powerful version of structure-aware computing than CP. (One can show that
CP is just a special case of CPpqe where only particular relationships between
cut points are considered.) The difference between CPpqe and CP is threefold.
First, there are no pre-defined relationships to look for. Relations Rel i just need
to satisfy a very simple property: ∃Z[Rel i−1 ∧ Rel i ∧ F ] ≡ ∃Z[Rel i ∧ F ]. That
is the next relation Rel i makes the previous relation Rel i−1 redundant. Second,
CPpqe is complete. Third, as formally proved in [3], relations Rel i become quite
simple if M ′ and M ′′ are structurally similar.

Fig. 1: Proving equivalence by
the CPpqe method

In [3], some experiments with CPpqe were
described where circuits M ′,M ′′ containing
a multiplier of various sizes were checked for
equivalence. (The size of the multiplier ranged
from 10 to 16 bits. An optimized version of
DS -PQE was used as a PQE solver.) M ′,M ′′

were intentionally designed so that they were
structurally similar but did not have any func-
tionally equivalent points. A high-quality tool
called ABC [23] showed very poor perfor-
mance, whereas CPpqe solved all examples ef-
ficiently. In particular, CPpqe solved the exam-
ple involving a 16-bit multiplier in 70 seconds,
whereas ABC failed to finish it in 6 hours.

6 Model Checking And Structure-Aware Computing

In this section, we apply structure-aware computing by PQE to finding the
reachability diameter, i.e., to a problem of model checking.

6.1 Motivation and some background

An efficient algorithm for finding the reachability diameter can be quite bene-
ficial. Suppose one knows that the reachability diameter of a sequential circuit
N is less than k. Then, to verify any invariant of N , it suffices to check if it
holds for the states of N reachable in at most k−1 transitions. This check can
be done by bounded model checking [24]. Finding the reachability diameter of a
sequential circuit by existing methods essentially requires computing the set of
all reachable states [25,26], which does not scale well. An upper bound on the
reachability diameter called the recurrence diameter can be found by a SAT-
solver [27]. However, this upper bound is very imprecise. Besides, its computing
does not scale well either.



6.2 Some definitions

Let S specify the set of state variables of a sequential circuit N . Let T (S′, S′′)
denote the transition relation of N where S′, S′′ are the sets of present and next
state variables. Let formula I(S) specify the initial states of N . (A state is a full
assignment to S.) A state #»sk+1 of N with initial states I is called reachable
in k transitions if there is a sequence of states #»s1, . . . ,

#»sk+1 such that I( #»s1) = 1
and T ( #»si,

#»si+1) = 1, i = 1, . . . , k. For the reason explained in Remark 1, we
assume that N can stutter. That is, T ( #»s , #»s ) = 1 for every state #»s . (If N lacks
stuttering, it can be easily introduced.)

Remark 1. If N can stutter, the set of states of N reachable in k transitions
is the same as the set of states reachable in at most k transitions. This nice
property holds because, due to the ability of N to stutter, each state reachable
in p transitions is also reachable in k transitions where k > p.

Let Rk(S) be a formula specifying the set of states of N reachable in k
transitions. That is Rk(

#»s ) = 1 iff #»s is reachable in k transitions. Let Si specify
the state variables of i-th time frame. Formula Rk(S) where S = Sk+1 can be
computed by performing QE on ∃S1,k[I1 ∧ T1,k]. Here S1,k = S1 ∪ · · · ∪ Sk and
T1,k = T (S1, S2)∧ · · · ∧ T (Sk, Sk+1). We will call Diam(N, I) the reachability
diameter of N with initial states I if any reachable state of N requires at most
Diam(N, I) transitions to reach it.

6.3 Computing reachability diameter

In this subsection, we consider the problem of deciding if Diam(N, I) < k. A
straightforward way to solve this problem is to compute Rk−1 and Rk by per-
forming QE as described above. Diam(N, I) < k iff Rk−1 and Rk are equivalent.
Unfortunately, computing Rk−1 and Rk even for a relatively small value of k can
be very hard or simply infeasible for large circuits. Below, we show that one can
arguably solve this problem more efficiently using structure-aware computing.

Proposition 4. Let k ≥ 1. Let ∃S1,k[I1 ∧ I2 ∧ T1,k] be a formula where I1 and
I2 specify the initial states of N in terms of variables of S1 and S2 respectively.
Then Diam(N, I) < k iff I2 is redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k].

Proposition 4 reduces checking if Diam(N, I) < k to the decision version
of PQE (i.e., finding if I2 is redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k]). Note that the
presence of I2 simply “cuts out” the initial time frame (indexed by 1). So, se-
mantically, ∃S1,k[I1 ∧ I2 ∧ T1,k] is the same as ∃S2,k[I2 ∧ T2,k] i.e., specifies the
states reachable in k−1 transitions. But the former has a different structure one
can exploit by PQE. Namely, proving I2 redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k] means
that the sets of states reachable in k−1 and k transitions (the latter specified by
∃S1,k[I1 ∧ T1,k]) are identical. Importantly, I2 is a small piece of the formula. So,
proving it redundant can be much more efficient than computing Rk−1 and Rk.
For instance, computing Rk by QE requires proving the entire formula I1 ∧T1,k

redundant in Rk ∧ ∃S1,k[I1 ∧ T1,k].



7 Making PQE Solving More Structure-Aware

So far, we have considered using PQE for creating new methods of structure-
aware computing. However, PQE solving itself can benefit from being structure-
aware. In this section, we describe a problem of the current methods of PQE
solving by the example of DS -PQE presented in Section 3. We argue that this
problem is caused by changing the formula via adding quantified conflict clauses.
We address this problem in two steps. First, in Sections 8-10 we describe a
structure-aware SAT algorithm called SAT sa that separates the original clauses
from proof ones (here ’sa’ stands for ’structure-aware’). So, SAT sa enjoys the
power of learning proof clauses while preserving the original formula intact.
Second, in Section 11 we use the idea of SAT sa to introduce a structure-aware
PQE algorithm where the problem above is fixed.

Below we explain the problem with adding new quantified clauses (i.e., those
with quantified variables) in more detail. Consider, the PQE problem of taking
a set of clauses G out of ∃X[F (X,Y )]. DS -PQE does this by branching on
variables of F until the target clauses are proved/made redundant in the current
subspace #»q . Then the results of different branches are merged. If a conflict occurs
in subspace #»q , the target clauses are made redundant by adding a conflict clause
Ccnfl that is falsified by #»q . Otherwise, DS -PQE simply shows that the target
clauses are already redundant in subspace #»q without adding any clauses. The
addition of conflict clauses is inherited by DS -PQE from modern CDCL solvers
where CDCL stands for “Conflict Driven Clause Learning”.

On one hand, adding conflict clauses to F increases the power of BCP. So, it
helps to prove redundancy of a target clause C in a subspace #»q if (F \{C}) ⇒ C
in this subspace [1]. Namely, if C is satisfied by an assignment derived from a
clause B that is unit in subspace #»q then B ⇒ C in this subspace. Note that in
this case C is redundant regardless of whether formula F is quantified.

On the other hand, adding conflict clauses makes it harder to prove redun-
dancy displaying itself only in quantified formulas. Suppose that a target clause
C is redundant in ∃X[F ] in subspace #»q not being implied in this subspace by
F \ {C}. DS -PQE proves this type of redundancy as follows [1]. Let x be a
quantified variable of C. DS -PQE tries to show that all clauses of F resolvable
with C on x are redundant in subspace #»q . If so, C is blocked at x in subspace
#»q and so redundant in ∃X[F ] in this subspace. Note that a quantified conflict
clause can be resolvable with C on x. So, adding conflict clauses increases the
number of clauses one needs to prove redundant to show that C is blocked at x.
This makes proving redundancy of C harder.

8 SAT Solving By Structure-Aware Computing

In Sections 9 and 10, we describe a structure-aware SAT solver called SAT sa . In
Section 11, we use the idea of SAT sa to introduce a structure-aware PQE algo-
rithm. In this section, we give some background and list attractions of SAT sa .



8.1 Some background

Given a formula F (X), SAT is to check if F is satisfiable i.e., whether ∃X[F ]=1.
SAT plays a huge role in practical applications. Modern CDCL solvers are de-
scendants of the DPLL procedure [28] that checks the satisfiability of F by
looking for an explicit satisfying assignment. They identify subspaces where F
is unsatisfiable due to an assignment conflict and learn conflict clauses to avoid
those subspaces (see e.g., [16,29,30,31]). The conflict clauses are derived by res-
olution. Importantly, the basic operation of the DPLL procedure is variable
splitting (i.e., exploring the branches x = 0 and x = 1 for a variable x ∈ X).
This operation is semantic. Intuitively, a formula-specific SAT solver can be
more efficient than semantic since the latter is, in a way, an “overkill”.

8.2 Some attractions of structure-aware SAT solving

SAT sa has at least two attractions. The first attraction is that SAT sa sep-
arates the initial and learned clauses thus keeping the original formula intact.
Besides, SAT sa is “clause-oriented”, which simplifies moving between different
parts of the formula. So, SAT sa can be tuned to a particular class of formulas.
Suppose, for instance, that a formula F specifies equivalence checking of similar
combinational circuits M ′ and M ′′. When checking the satisfiability of F it is
useful to compute relations between cut points of M ′, M ′′ for a sequence of cuts
(see Subsection 5.3). Such computations can be mimicked by SAT sa (see Ap-
pendix G) but are hard for a CDCL solver for two reasons. First, adding conflict
clauses to F blurs cuts. Second, CDCL solvers do not have a natural way of
moving from one part of the formula to another.

Separation of the original and learned clauses is easy in SAT sa because the
proof generated by SAT sa is a collection of so-called proof clauses. A proof clause
certifies that the current subspace #»q does not have an assignment satisfying F
that also satisfies only one literal of a particular clause of F . (A clause falsified
by #»q that is derived by a CDCL solver can be viewed as an “overkill” proof
clause refuting the existence of any satisfying assignment in subspace #»q .)

The second attraction of SAT sa is that the proof clauses mentioned above
are derived not only by resolution but also by structural derivations enabled
by Proposition 6 below. In general, a structural derivation cannot be trivially
simulated by resolution. However, as we show in Example 4, simulation of struc-
tural derivation can be simplified if resolution is enhanced with adding blocked
clauses [32]. This is important for two reasons. First, the ability to add blocked
clauses makes resolution exponentially more powerful. So, structural derivations
give SAT sa extra power in comparison to a solver based on resolution alone.
Second, enhancing a regular CDCL solver by the ability to add blocked clauses
is a tall order because there are too many blocked clauses to choose from. (So, it
is virtually impossible to efficiently find blocked clauses that are useful.) SAT sa

avoids this problem since it taps to the power of blocked clauses without gener-
ating them explicitly.



9 Propositions Supporting SAT sa

In this section, we present two propositions on which SAT sa is based. These
propositions strengthen the results of [33].

Proposition 5. Let C be a clause of a formula F (X). If F is satisfiable, there
exists an assignment #»x satisfying F that a) satisfies only one literal of C or b)
satisfies only one literal l of another clause C ′ ∈ F where l is present in C.

Proposition 6. Let S be a formula falsified by every assignment meeting the
condition a) or b) of Proposition 5 and F ⇒ S. Then F is unsatisfiable.

The satisfiability of the formula S in Proposition 6 is irrelevant. In particular,
it can be satisfiable (see Example 4). This means that the proof of unsatisfiabil-
ity by Proposition 6 is formula-specific: in general, if a formula F implies a
satisfiable formula, this does not entail that F is unsatisfiable. If Proposition 6
holds in a subspace #»r , a clause B implied by F and falsified by #»r can be gener-
ated. Similarly to a conflict clause, B consists of literals falsified by the relevant
value assignments of #»r . (Subsection 10.2 and Appendix E give more details.)

One can construct S as a conjunction of l-proof clauses defined below.

Definition 12. Let C be a clause of F (X) and l be a literal of C. The set of
full assignments to X satisfying only the literal l is called the l-vicinity of C.
We will say that the shortest assignment #»q satisfying l and falsifying the other
literals of C specifies the l-vicinity of C. A clause B is called an l-proof for C
if #»q falsifies B. If F ⇒ B, the l-vicinity of C has no assignment satisfying F .

Example 3. Let C=x1 ∨ x2 ∨ x3 be a clause of F . Then, say, the x1-vicinity of
C is specified by the assignment #»q =(x1=1, x2=0, x3=0). (The single-variable
assignment satisfying C is shown in bold.) The clause B = x1 ∨ x2 ∨ x3 is an
example of an x1-proof clause for C. If F⇒B, the subspace #»q has no assignment
satisfying F . Clauses x2 ∨ x3 and x1 are also x1-proof clauses for C.

Definition 13. We will refer to the clause C of Proposition 5 as the primary
clause and the clauses of F sharing literals with C as the secondary clauses.

Example 4. Let F be equal to C1∧C2∧C3∧. . . where C1 = x1∨x2, C2 = x1∨x5

and C3 = x2 ∨ x6 ∨ x8. Assume that C1, C2, C3 are the only clauses of F with
literals x1,x2 whereas F can contain any number of clauses with literals x1,x2.
Let us apply Proposition 6 using C1 as the primary clause. Then C2, C3 are
the secondary clauses. So, to prove F unsatisfiable it suffices to show that the
x1-vicinity and x2-vicinity of C1, and the x1-vicinity of C2 and x2-vicinity of C3

do not contain a satisfying assignment. That is there is no such an assignment
in subspaces (x1 = 1, x2 = 1), (x1 = 0,x2 = 0) and (x1 = 1, x5 = 0) and
(x2 = 0, x6 = 1, x8 = 0).

Assume, for the sake of clarity, that S is the formula consisting of the proof
clauses obtained by flipping the literal x1 or x2 of C1, the literal x1 of C2 and
x2 of C3. That is S = C ′

1 ∨ C ′′
1 ∨ C ′

2 ∨ C ′
3 where C ′

1 = x1 ∨ x2, C
′′
1 = x1 ∨ x2,



C ′
2 = x1 ∨ x5 and C ′

3 = x2 ∨ x6 ∨ x8. To prove F unsatisfiable it suffices to show
that F ⇒ S. Note that S is a satisfiable formula. It remains satisfiable even if it
is conjoined with the primary and secondary clauses i.e., C1, C2, C3. Denote the
formula S∧C1∧C2∧C3 as S

∗. The assignments satisfying S∗ make up subspaces
(x1 = 1, x2 = 0, x5 = 1, x6 = 0) and (x1 = 1, x2 = 0, x5 = 1, x8 = 1) and satisfy at
least two literals of C1,C2,C3. According to Proposition 5, such assignments can
be ignored when proving F unsatisfiable. Note that the clause K = x1 ∨ x2 ∨ x5

is blocked in F at x1 (since K is unresolvable with C1 and C2 on x1). Adding K
to S∗ makes the latter unsatisfiable, which can be easily proved by resolution.
However, the derivation of K from F by resolution alone can be hard.

Remark 2. Similarly to variable splitting of CDCL solvers, Proposition 6 parti-
tions the original problem into simpler subproblems (of examining l-vicinities of
some clauses). The difference here is that variable splitting is semantic whereas
problem partitioning by Proposition 6 is formula-specific i.e., structural.

10 Description Of SAT sa

As we mentioned earlier, one of the attractions of SAT sa is the ability to tune
to a specific class of formulas (an example with equivalence checking is given
in Appendix G). In this section, we give a generic version of SAT sa meant to
be a starting point for formula-specific implementations. It can also be used
in the quest for an efficient general-purpose SAT algorithm that can exploit
the structure of the formula. So, in this section, we just identify a direction to
pursue. We believe that due to the novelty and promise of this direction, even
the description of a generic version of SAT sa is of high value.

10.1 Top procedure of SAT sa

SAT sa accepts the formula F to check for satisfiability, the current set P of
proof clauses, an assignment #»q specifying the current subspace (see Fig. 2). We
assume that P is an in/out parameter. That is, if P is changed by a procedure,
the caller of this procedure gets the changed value of P . SAT sa recursively
calls itself, the initial call being SAT sa(F, ∅, ∅). Importantly, F does not change,
whereas P grows. SAT sa returns a satisfying assignment (if F is satisfiable in
subspace #»q ) or a clause falsified by #»q (if F is unsatisfiable in subspace #»q ). A
recursive invocation of SAT sa can also return a clause U that is unit in subspace
#»q . Then the satisfiability of F in subspace #»q remains undecided.

SAT sa runs a while loop that is broken if some conditions are met. SAT sa

starts an iteration of this loop by running BCP on F ∪ P that assigns the new
variables of Vars(q⃗) i.e., those that are assigned in #»q but not in F ∪P yet (line
2). Besides, as usual, BCP makes implied assignments satisfying unit clauses. If
BCP leads to a conflict, a conflict clause Ccnfl is generated [16] and returned
by SAT sa (line 3). If, by extending #»q with implied assignments, BCP produces
an assignment satisfying F , then SAT sa returns #»q (line 4). If SAT sa does not



terminate after BCP, it picks a clause C ∈ F not satisfied by #»q (line 5). Then
SAT sa invokes a procedure called Prop to check Proposition 6 where C is used
as the primary clause (line 6).

SAT sa(F, P, #»q ){
1 while True {
2 (Ccnfl ,

#»q ) := BCP(F ∪ P, #»q )
3 if (Ccnfl ̸= nil) return(nil ,Ccnfl ,nil)
4 if (Satisf (F, #»q )) return(nil ,nil , #»q )
5 C := PickCls(F )
6 (U,B, #»s ) :=Prop(F, P,C, #»q )
7 if (U ̸= nil)
8 if (CheckInvoc(U, #»q )) {
9 P := P ∪ {U}; continue}
10 else return(U,nil ,nil)
11 if (B ̸= nil) return(nil , B,nil)
12 return(nil ,nil , #»s )}}

Fig. 2: Top procedure

If Prop derives a clause U that is unit
in subspace #»q , it stops checking Propo-
sition 6 and returns U . If the current
invocation of SAT sa is the last where
U is still unit, SAT sa adds U to the
set of proof clauses P . Then it starts a
new iteration of the loop to satisfy U
by BCP (lines 8-9). Otherwise, SAT sa

terminates returning U to the previous
invocation (line 10). Here SAT sa mim-
ics the behavior of a CDCL solver af-
ter a conflict. Namely, the backtracking
of such a solver to the farthest decision
level where the derived conflict clause is
still unit. If Prop proves Proposition 6
true, F is unsatisfiable in subspace #»q .
In this case, Prop outputs a proof clause

B falsified by #»q that SAT sa returns (line 11). Otherwise, Prop produces a sat-
isfying assignment #»s returned by SAT sa where #»q ⊆ #»s (line 12).

10.2 Prop procedure

Prop(F, P,C, #»q ){
1 Lits := FreeLits(C, #»q )
2 ClsSet := GenSet(F,Lits, #»q )
3 for every C′ ∈ ClsSet {
4 for every l′ ∈ Lits {
5 if (l′ ̸∈ C′) continue
6 (U,B, #»s ) :=Vic(F,P,C′,l′, #»q )
7 if (U ̸= nil) return(U,nil ,nil)
8 if ( #»s ̸= nil) return(nil ,nil , #»s )
9 P := P ∪ {B} }}
10 B := FormCls(ClsSet , P, #»q )
11 return(nil , B,nil)}

Fig. 3: Checking Proposi-
tion 6

The pseudocode of Prop is given in Fig. 3. It
checks if Proposition 6 holds in subspace #»q
when C ∈ F is used as the primary clause.
Prop starts with finding the set Lits of lit-
erals of C not falsified by #»q (line 1). Then it
builds the set ClsSet of clauses of F unsatis-
fied by #»q that contain at least one literal of
Lits i.e., the primary and secondary clauses
(line 2). Note that since ClsSet is a subset of
the formula F , it stays the same regardless
of how many proof clauses are generated by
SAT sa (because they are not added to F ).

Then Prop starts two nested for loops
that check if Proposition 6 holds for F in
subspace #»q . The outer loop (lines 3-9) enu-
merates the clauses of ClsSet . The inner

loop (lines 4-9) iterates over the literals of Lits. If a literal l′ of Lits is present
in C ′ ∈ ClsSet , Prop calls the procedure named Vic that checks the l′-vicinity
of C ′ in subspace #»q (line 6).

The pseudocode of Vic is shown in Fig. 4. (First, Vic extends #»q to #»q ′ by
adding the assignment specifying the l′-vicinity of C ′. Then it calls SAT sa to



check the satisfiability of F in subspace #»q ′.) Vic returns a clause U that is unit
in subspace #»q or a clause B that is an l′-proof proof for C ′ in subspace #»q or
a satisfying assignment #»s . If Vic returns U , then Prop terminates returning U
(line 7). As we mentioned above, SAT sa simulates here the behavior of a CDCL
solver after a conflict. In this case, Proposition 6 is neither proved nor refuted
in subspace #»q . If Vic returns #»s , then Proposition 6 does not hold in subspace
#»q and Prop terminates (line 8). If Vic returns an l′-proof clause B, Prop adds
it to the set P of proof clauses (line 9) and starts a new iteration.

Vic(F, P,C′, l′, #»q ){
1

#»q ′ := #»q ∪VicAssign(C′, l′)
2 (U,B, #»s ) :=SAT sa(F, P, #»q ′)
3 return(U ,B, #»s )

Fig. 4: Checking vicinity

If the outer loop terminates, Proposition 6
holds. Then Prop generates a proof clause B falsi-
fied by #»q and terminates (line 10-11). B consists
of the literals falsified by the relevant variable as-
signments of #»q . An example of the generation of
B is given in Appendix E.

10.3 An example of how SAT sa operates

Let us apply SAT sa to the formula F = C1 ∧ · · · ∧ C7 where C1 = x1 ∨ x2,
C2 = x1∨ x3∨ x4, C3 = x2 ∨ x3 ∨x4, C4 = x2∨ x4 ∨x6, C5 = x2 ∨ x4 ∨ x6,
C6=x2∨x5, C7=x2∨x5. Here we show a fragment of the operation of SAT sa .
(A full description is given in Appendix F.) Let SAT sa

i ,Propi and
#»qi denote a

call of SAT sa ,Prop and the current assignment #»q at recursion depth i.
The initial call is specified by SAT sa

0 where #»q0 = ∅ and P = ∅. Assume that
SAT sa

0 picks C1=x1∨ x2 and calls Prop0 with C1 as the primary clause. Then
C3, C4, C5 are the secondary clauses since they share the literal x2 with C1. To
check Proposition 6, Prop0 makes calls of SAT sa

1 to examine the x1-vicinity and
x2-vicinity of C1 and the x2-vicinity of C3, C4, C5. Consider examining the x1-
vicinity of C1. To this end, SAT sa

1 is called in subspace #»q1 = {x1=1, x2=0}.
When SAT sa

1 runs BCP in subspace #»q1, neither a conflict is encountered nor a
satisfying assignment is produced.

Assume that then SAT sa
1 picks C2 = x1∨ x3∨ x4 and calls Prop1 with C2

as the primary clause. Then C3 = x2 ∨ x3 ∨x4 is the secondary clause since
it shares the literal x4 with C2. At this point Prop1 makes calls of SAT sa

2

to examine the x3-vicinity and x4-vicinity of C2 and the x4-vicinity of C3 in
subspace #»q1. To examine the x3-vicinity of C2, SAT sa

2 is called in subspace
#»q2 = #»q1 ∪ {x3 = 1, x4 = 0}. Here (x3 = 1, x4 = 0) specifies the x3-vicinity of
C2 in subspace #»q1. (Since (C2) #»q1

= ��x1 ∨ x3 ∨ x4.) When running BCP, SAT sa
2

gets a conflict and produces a conflict clause B2 = x1 ∨ x2 ∨ x4 obtained by
resolving C2 and C3. The clause B2 is an x3-proof clause for C2 in subspace #»q1
since (B2) #»q1=��x1 ∨��x2 ∨ x4. So, Prop1 adds B2 to P . Then a new call of SAT sa

2

is made to examine the x4-vicinity of C2 in subspace #»q1 and so on.

11 A Structure-Aware PQE Procedure

In this section, we sketch a structure-aware PQE solver called PQE sa that does
not add new quantified clauses (see Section 7). As in the case of SAT sa , our



objective here is to present a powerful direction for further research. We assume
that PQE sa serves as a local plug-in solver for EG-PQE+, a generic PQE algo-
rithm [2] that we recall below. We also assume that EG-PQE+ is used to take a
clause C out of ∃X[F (X,Y )]. (One can take a subset G out of ∃X[F ] by using
EG-PQE+ to process the clauses of G one by one.)

11.1 Recalling EG-PQE+

The pseudocode of EG-PQE+ is shown in Fig. 5. It starts with initializing
formulas Hs(Y ) and Hu(Y ) specifying subspaces #»y already examined. Here #»y
is a full assignment to Y . If #»y falsifies Hs (or Hu), Fy⃗ is satisfiable (respectively
unsatisfiable). Then EG-PQE+ runs a while loop (lines 2-8). EG-PQE+ aims
to avoid the subspaces #»y where C is implied by F \ {C} and hence trivially
redundant. So, EG-PQE+ checks if there is a full assignment ( #»y , #»x ) to Y ∪X
falsifying C and satisfying F \{C} such that the subspace #»y was not examined
yet (lines 3-4). (The existence of ( #»y , #»x ) entails (F \ {C})y⃗ ̸⇒ Cy⃗ .) If not, Hu is
a solution i.e., ∃X[F ] ≡ Hu ∧ ∃X[F \ {C}]. So, EG-PQE+ terminates (line 5).

EG-PQE+(F,X, Y, C) {
1 Hs := ∅; Hu := ∅
2 while (true) {
3 F ′ := (F \ {C}) ∧ C
4 ( #»y , #»x ) :=Sat(Hs∧Hu∧F ′)
5 if (( #»y , #»x )=nil) return(Hu)
6 (B,D) :=PQEplg(F,C,

#»y )
7 if (B ̸=nil) Hu :=Hu∪{B}
8 else Hs :=Hs ∪{Cls(D)}}

Fig. 5: EG-PQE+

If ( #»y , #»x ) exists, EG-PQE+ calls PQEplg , a
plug-in PQE solver taking C out of ∃X[Fy⃗] (line
6). If C is not redundant, PQEplg returns a
clause B(Y ) falsified by #»y as a solution to the
PQE problem of line 6. That is ∃X[Fy⃗] ≡ B ∧
∃X[(F \ {C})y⃗]. The clause B is added to Huns

(line 7). If C is redundant in ∃X[Fy⃗], PQEplg

returns a D-sequent D equal to #»y ′ → C (where
#»y ′ ⊆ #»y ) stating redundancy of C in subspace #»y ′.
EG-PQE+ adds to Hsat the shortest clause falsi-
fied by #»y ′ to avoid entering the subspace #»y ′ again
(line 8). In the context of EG-PQE+, PQEplg es-

sentially works as a SAT-solver employing redundancy based reasoning. If C
is redundant, Fy⃗ is satisfiable because ( #»y , #»x ) satisfies F \ {C}. Otherwise, i.e.,
if C is not redundant, Fy⃗ is unsatisfiable.

11.2 Main idea behind PQE sa

In this subsection, we give the main idea behind PQE sa assuming that it is
used as a plug-in solver for EG-PQE+. (The pseudocode of PQE sa is given in
Appendix H.) Similarly to SAT sa , PQE sa is based on Proposition 6 and hence
keeps proof clauses separately from the formula F . So, PQE sa does not add
new quantified clauses to the formula. Like SAT sa , PQE sa recursively calls itself.
A call PQE sa(F, P,C, #»q ) accepts the formula F , the current set of proof clauses
P , a clause C ∈ F and the current assignment #»q . In the original call, P = ∅ and
#»q = #»y where #»y is computed by EG-PQE+ (line 4 of Fig 5).

Similarly to SAT sa , PQE sa checks if Proposition 6 holds in subspace #»q when
C is used as the primary clause. However, to perform this check, PQE sa calls a
procedure Prop∗ instead of Prop. The main difference of Prop∗ from Prop is



that the former calls a procedure named Vic∗ (rather than Vic) that explores
literal vicinities approximately. Namely, if Vic∗ examines the l′-vicinity of a
clause C ′ and fails to produce an l′-proof clause, it returns a D-sequent stating
the redundancy of C ′ in subspace #»q rather than a satisfying assignment. So,
if Prop∗ fails to prove Proposition 6 with C as the primary clause, it returns
a certificate of redundancy of C in subspace #»q . For that reason, if Prop∗ is
invoked in the initial call PQE sa(F, P,C, ∅) and fails to prove Proposition 6 for
the primary clause C, PQE sa returns aD-sequent stating the redundancy of C in
the subspace #»y . As we mentioned above, this means that Fy⃗ is satisfiable. So, to
check the satisfiability of Fy⃗, it suffices to explore literal vicinities approximately.

11.3 Procedures Prop∗ and Vic∗

Prop∗(F, P,C, #»q )
1 for each second. clause C′

2 for each shared free lit. l′

3 check l′-vic. of C′ byVic∗
4 if C′ is redund.
5 store D-seq. ; remove C′

6 else add l′-proof clause to P
- - - - -

7 for each free lit. l of C
8 check l-vic. of C by Vic∗
9 if C is red. return D-seq.
10 else add l-proof clause to P
11 form proof clause; return it

Fig. 6: Prop∗

A description of Prop∗ checking Proposition 6
in subspace #»q for the primary clause C is given
in Fig. 6. (The pseudocode of Prop∗ and Vic∗
is given in Appendix H.) First, Prop∗ processes
secondary clauses (lines 1-6). For every sec-
ondary clause C ′ and for every unassigned lit-
eral l′ shared by C ′ and C, the procedure Vic∗
is called to check the l′-vicinity of C ′ in sub-
space #»q . Vic∗ either returns a D-sequent stat-
ing that C ′ is redundant in subspace #»q , or an
l′-proof clause. In C ′ is redundant, it is (tem-
porarily) removed from F in subspace #»q . Oth-
erwise, the l′-proof clause is added to P .

Then Prop∗ processes every unassigned lit-
eral l of the primary clause C (lines 7-11) calling
Vic∗ to check the l-vicinity of C in subspace #»q .

For the sake of simplicity, we omit the case when Vic∗ produces a clause U that
is unit in subspace #»q . (This case works exactly as in SAT sa .) So, in our descrip-
tion, Vic∗ returns either a a D-sequent stating that C is redundant in subspace
#»q (line 9) or an l-proof clause (line 10) . The former means that Prop∗ failed to
prove Proposition 6. If Prop∗ reaches line 11, Proposition 6 holds. Then Prop∗
uses the proof clauses and D-sequents stored earlier to produce a clause falsified
by #»q . (Appendix E shows how this clause is produced.)

A description of Vic∗ checking the l-vicinity of C in subspace #»q approx-
imately is sketched in Fig. 7. First, Vic∗ computes the assignment #»q ′ obtained
from #»q by adding the assignment satisfying l and falsifying the other free literals
of C (line 1). In SAT sa , to do the check above, the Vic procedure calls a new
invocation of SAT sa to find out if F is satisfiable in subspace #»q ′. In contrast
to Vic, Vic∗ avoids generating a satisfying assignment. Instead, Vic∗ checks the
redundancy of each clause C ′ ∈ F that contains l and is not satisfied by #»q ′

(lines 2-8). If every such a clause is proved redundant in subspace #»q ′, then C is
blocked in subspace #»q (line 9). In this case, Vic∗ generates a D-sequent stating
redundancy of C in subspace #»q as described in [12].



Vic∗(F, P,C, l, #»q ){
1

#»q ′ := #»q ∪ {l-vicin. of C }
2 G := clauses with l and
3 unsatisf. by #»q ′

4 for each C′ ∈ G {
5 run PQE sa with C′

6 as the primary clause
7 if C′ is redund. continue
8 else return l-proof clause }
9 C is blocked; return D-seq. }

Fig. 7: Checking l-vicinity

The redundancy of C ′ is tested by recursively
calling PQE sa (lines 5-6). It checks if Proposi-
tion 6 holds in subspace #»q ′ when C ′ is the pri-
mary clause. If not, C ′ is proved redundant and
removed from F in subspace #»q ′ (line 7). Other-
wise, a clause falsified by #»q ′ is produced that is
an l-proof clause for C (line 8).

12 Conclusions

Virtually all efficient algorithms of hardware ver-
ification use some form of structure-aware com-
puting (SAC). We relate SAC to Partial Quan-
tifier Elimination (PQE). Interpolation, an in-

stance of SAC, is as a special case of PQE. We show that SAC by PQE en-
ables powerful methods of equivalence checking, model checking and testing via
property generation. We also show that PQE solving itself benefit from being
structure-aware. We formulate a new SAT algorithm based on SAC and use it
to introduce a structure-aware PQE solver. Our discussion and results suggest
that studying PQE and designing fast PQE solvers is of great importance.
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Appendix

A Some Examples Of Structure-Aware Computing

As mentioned in the introduction, virtually all successful techniques of hardware
verification use some form of structure-aware computing. In this appendix, we
list some examples of that.

A.1 Testing

Testing is a ubiquitous technique of hardware verification [34,35,36]. One of
the reasons for such omnipresence is that testing is surprisingly effective taking
into account that only a minuscule part of the truth table is sampled. This
effectiveness can be explained by the fact that current testing procedures check a
particular implementation rather than sample the truth table. This is achieved by
using some coverage metric that directs test generation at invoking a certain set
of events. So, testing can be viewed as an instance of structure-aware computing.

A.2 Equivalence checking

Equivalence checking is one of the most efficient techniques of formal hardware
verification [37]. Let N ′ and N ′′ be the circuits to check for equivalence. In
general, equivalence checking is a hard problem that does not scale well even
for combinational circuits. Fortunately, in practice, N ′ and N ′′ are structurally
similar. In this case, one can often prove the equivalence of N ′ and N ′′ quite
efficiently by using structure-aware computing. The latter is to locate internal
points of N ′ and N ′′ linked by simple relations like equivalence [38,39,20,21,22].
The computation of these relations moves from inputs to outputs until the equiv-
alence of the corresponding output variables of N ′ and N ′′ is proved. (If N ′ and
N ′′ are sequential circuits, relations between internal points are propagated over
multiple time frames.)

A.3 Model checking

A significant boost in hardware model checking has been achieved due to the
appearance of IC3 [40]. The idea of IC3 is as follows. Let N be a sequential
circuit. Let P (S) be an invariant to prove where S is the set of state variables of
N . (Proving P means showing that it holds in every reachable state of N .) IC3
looks for an inductive invariant P ′ such that I ⇒ P ′ ⇒ P where I(S) specifies
the initial states of N . IC3 builds P ′ by constraining P via adding so-called



inductive clauses. The high scalability of IC3 can be attributed to the fact that
in many cases P is “almost” inductive. So, to turn P into P ′, it suffices to add
a relatively small number of inductive clauses. These clauses are specific to N
i.e., to a particular implementation. So, building P ′ as a variation of P can be
viewed as a form of structure-aware computing.

A.4 SAT solving

The success of modern SAT-solvers can be attributed to two techniques. The first
technique is the conflict analysis introduced by GRASP [16]. The idea is that
when a conflict occurs in the current subspace, one identifies the set of clauses
responsible for this conflict. This set is used to generate a so-called conflict clause
that is falsified in the current subspace. So, adding it to the formula diverts the
SAT solver from any subspace where the same conflict occurs. Finding clauses
involved in a conflict can be viewed as a form of structure-aware computing.

The second key technique of SAT solving introduced by Chaff [29] is to em-
ploy decision making that involves variables of recent conflict clauses. The reason
why Chaff-like decision making works so well can be explained as follows. As-
sume that a SAT-solver with conflict clause learning checks the satisfiability of
a formula F . Assume that F is unsatisfiable. (If F is satisfiable, the reasoning
below can be applied to every subspace visited by this SAT-solver where F was
unsatisfiable.) Learning and adding conflict clauses produces an unsatisfiable
core of F that includes learned clauses. This core gradually shrinks in size and
eventually reduces to an empty clause. The decision making of Chaff helps to
identify the subset of clauses/variables of F making up the ever-changing unsat-
isfiable core that incorporates conflict clauses. So, one can also view the second
technique as a form of structure-aware computing.

B Proofs Of Propositions

B.1 Proofs of Section 2

Proposition 1. Let a clause C be blocked in a formula F (X,Y ) at a variable
x ∈ X. Then C is redundant in ∃X[F ] i.e., ∃X[F \ {C}] ≡ ∃X[F ].

Proof. It was shown in [4] that adding a clause B(X) blocked in G(X) to the
formula ∃X[G] does not change the value of this formula. This entails that
removing a clause B(X) blocked in G(X) does not change the value of ∃X[G]
either. So, B is redundant in ∃X[G].

Let #»y be a full assignment to Y . Then the clause C of the proposition at
hand is either satisfied by #»y or Cy⃗ is blocked in Fy⃗ at x. (The latter follows from
the definition of a blocked clause.) In either case, Cy⃗ is redundant in ∃X[Fy⃗].
Since this redundancy holds in every subspace #»y , C is redundant in ∃X[F ].



B.2 Proofs of Section 3

Proposition 2. Formula H(Y ) is a solution to the PQE problem of taking G
out of ∃X[F (X,Y )] (i.e., ∃X[F ] ≡ H ∧ ∃X[F \G]) iff

1. F ⇒ H and

2. H ∧ ∃X[F ] ≡ H ∧ ∃X[F \G]

Proof. The if part. Assume that conditions 1, 2 hold. Let us show that
∃X[F ] ≡ H ∧ ∃X[F \G]. Assume the contrary i.e., there is a full assignment #»y
to Y such that ∃X[F ] ̸= H ∧ ∃X[F \G] in subspace #»y .

There are two cases to consider here. First, assume that F is satisfiable and
H∧∃X[F \G] is unsatisfiable in subspace #»y . Then there is an assignment ( #»x , #»y )
satisfying F (and hence satisfying F \G). This means that ( #»x , #»y ) falsifies H and
hence F does not imply H. So, we have a contradiction. Second, assume that
F is unsatisfiable and H ∧ ∃X[F \G] is satisfiable in subspace #»y . Then H ∧ F
is unsatisfiable in subspace #»y too. So, condition 2 does not hold and we again
have a contradiction.

The only if part. Assume that ∃X[F ] ≡ H ∧ ∃X[F \G]. Let us show that
conditions 1 and 2 hold. Assume that condition 1 fails i.e., F ̸⇒ H. Then
there is an assignment ( #»x , #»y ) satisfying F and falsifying H. This means that
∃X[F ] ̸= H ∧ ∃X[F \G] in subspace #»y and we have a contradiction. To prove
that condition 2 holds, one can simply conjoin both sides of the equality ∃X[F ] ≡
H ∧ ∃X[F \G] with H.

B.3 Proofs of Section 5

Proposition 3. Assume M ′,M ′′ do not implement a constant (0 or 1). Let
∃Z[Eq ∧ F ] ≡ H(w′, w′′) ∧ ∃Z[F ]. Then M ′ and M ′′ are equivalent iff H ⇒
(w′ ≡ w′′).

Proof. The if part. Assume that H ⇒ (w′ ≡ w′′). From Proposition 2 it follows
that (Eq ∧ F ) ⇒ H. So (Eq ∧ F ) ⇒ (w′ ≡ w′′). Recall that F = F ′ ∧ F ′′ where
F ′ and F ′′ specify M ′ and M ′′ respectively. So, for every pair of inputs #»v ′ and
#»v ′′ satisfying Eq(V ′, V ′′) (i.e., #»v ′ = #»v ′′), M ′ and M ′′ produce identical values
of w′ and w′′. Hence, M ′ and M ′′ are equivalent.

The only if part. Assume the contrary i.e., M ′ and M ′′ are equivalent but
H(w′, w′′) ̸⇒ (w′ ≡ w′′). There are two possibilities here: H(0, 1) = 1 or
H(1, 0) = 1. Consider, for instance, the first possibility i.e., w′ = 0, w′′ = 1.
Since, M ′ and M ′′ are not constants, there is an input #»v ′ for which M ′ out-
puts 0 and an input #»v ′′ for which M ′′ outputs 1. This means that the formula
H ∧ ∃Z[F ] is satisfiable in the subspace w′ = 0, w′′ = 1. Then the formula
∃Z[Eq ∧ F ] is satisfiable in this subspace too. This means that there is an input
#»v under which M ′ and M ′′ produce w′ = 0 and w′′ = 1. So, M ′ and M ′′ are
inequivalent and we have a contradiction.



B.4 Proofs of Section 6

Proposition 4. Let k ≥ 1. Let ∃S1,k[I1 ∧ I2 ∧ T1,k] be a formula where I1 and
I2 specify the initial states of N in terms of variables of S1 and S2 respectively.
Then Diam(N, I) < k iff I2 is redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k].

Proof. The if part. Recall that S1,k = S1∪· · ·∪Sk and T1,k = T (S1, S2)∧· · ·∧
T (Sk, Sk+1). Assume that I2 is redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k] i.e.,
∃S1,k[I1 ∧ T1,k] ≡ ∃S1,k[I1 ∧ I2 ∧ T1,k]. The formula ∃S1,k[I1 ∧ T1,k] is logically
equivalent to Rk specifying the set of states of N reachable in k transitions.
On the other hand, ∃S1,k[I1 ∧ I2 ∧ T1,k] is logically equivalent to ∃S2,k[I2 ∧ T2,k]
specifying the states reachable in k−1 transitions (because I1 and T (S1, S2) are
redundant in ∃S1,k[I1 ∧ I2 ∧ T1,k]). So, redundancy of I2 means that Rk−1 and
Rk are logically equivalent and hence, Diam(N, I) < k.

The only if part. Assume the contrary i.e., Diam(N, I) < k but I2 is not re-
dundant in ∃S1,k[I1 ∧ I2 ∧ T1,k]. Then there is an assignment #»p = ( #»s1, . . . ,

#»sk+1)
such that a) #»p satisfies I1 ∧ T1,k; b) formula I1 ∧ I2 ∧ T1,k is unsatisfiable in
subspace #»sk+1. (So, I2 is not redundant because removing it from I1 ∧ I2 ∧ T1,k

makes the latter satisfiable in subspace #»sk+1.) Condition b) means that #»sk+1

is unreachable in k−1 transitions whereas condition a) implies that #»sk+1 is
reachable in k transitions. Hence Diam(N, I) ≥ k and we have a contradiction.

B.5 Proofs of Section 9

Proposition 5. Let C be a clause of a formula F (X). If F is satisfiable, there
exists an assignment #»x satisfying F that a) satisfies only one literal of C or b)
satisfies only one literal l of another clause C ′ ∈ F where l is present in C.

Proof. Let #»p be an assignment satisfying F . Let Lits(C) denote the set of literals
present in the clause C. Assume that #»p satisfies only one literal of C or there is
a clause C ′ ∈ F that contains a literal l ∈ Lits(C) and l is the only literal of C ′

satisfied by #»p . Then #»p is the satisfying assignment #»x we look for.
Now assume that #»p satisfies more than one literal in C and there is no

clause C ′ of F that contains a literal l of Lits(C) and l is the only literal
satisfied by #»p . Denote by SatLits(C, #»p ) the literals of C satisfied by #»p . (So,
SatLits(C, #»p ) ⊆ Lits(C).) Below, we show that by flipping values of #»p satisfying
literals of SatLits(C, #»p ), one eventually obtains a required satisfying assignment.

Let l(x) be a literal of SatLits(C, #»p ). Denote by Q the set of clauses of F
having at least one literal from SatLits(s, #»p ). Note that by our assumption, every
clause of Q has at least two literals satisfied by #»p . Denote by #»p ′ the assignment
obtained from #»p by flipping the value of x. Let B be a clause of F . Note that
if B ̸∈ Q, the number of literals satisfied by #»p ′ is either the same as for #»p or
increases by 1. Only if B ∈ Q, the number of literals satisfied by #»p ′ may decrease
in comparison to #»p . In particular, the number of literals of the clause C satisfied
by #»p ′ is decreased by 1.

Denote by SatLits(C, #»p ′) the set of literals of C satisfied by #»p ′ (that is equal
to SatLits(C, #»p ) \ {l(x)}). If there is a clause of Q for which #»p ′ satisfies only



one literal than it is a required satisfying assignment. If not, we remove from
Q the clauses that do not contain a literal of SatLits(C, #»p ′) and continue the
procedure above. Note that the updated set Q and #»p ′ preserve the property of Q
and #»p . That is #»p ′ satisfies at least two literals of every clause of Q. Now we pick
another literal l′(x′) from SatLits(C, #»p ′) and flip the value of x′. Eventually such
a procedure will produce an assignment that satisfies only one literal of either
the clause C itself or some other clause of Q.

Proposition 6. Let S be a formula falsified by every assignment meeting the
condition a) or b) of Proposition 5 and F ⇒ S. Then F is unsatisfiable.

Proof. Assume the contrary i.e., there is an assignment satisfying F . Then
Proposition 5 entails that there exists an assignment #»x satisfying F that meets
the condition a) and/or b). Hence, #»x falsifies S. Since #»x satisfies F , the latter
cannot imply S and we have a contradiction.

C A Single-Test Property

In this appendix, we formally define a single-test property. Let M(X,V,W ) be
a combinational circuit where X,V,W denote the internal, input and output
variables of M . Let #»v be a test and #»w be the output of M under #»v . (Here
#»v is a full assignment to the set V of input variables and #»w is a full assign-
ment to the set W of output variables.) Let H v⃗(V,W ) be a formula such that
H v⃗( #»v ′, #»w ′) = 1 iff #»v ′ ̸= #»v or ( #»v ′ = #»v ) ∧ ( #»w ′ = #»w). One can view H v⃗ as de-
scribing the input/output behavior of M under the test #»v . Let F (X,V,W ) be
a formula specifying the circuit M as explained in Subsection 5.1. The formula
H v⃗ is implied by F and so it is a property of M . In Subsection 5.2, we refer to
H v⃗ as a single-test property.

One can obtain H v⃗ by combining PQE with clause splitting. Let
V = {v1, . . . , vk} and C be a clause of F . Let F ′ denote the formula obtained
from F by replacing C with the following k + 1 clauses: C1 = C ∨ l(v1),. . . ,

Ck = C ∨ l(vk), Ck+1 = C ∨ l(v1) ∨ · · · ∨ l(vk), where l(vi) is a literal of vi.
(So, F ′ ≡ F .) Consider the problem of taking the clause Ck+1 out of ∃X[F ′].
One can show [2] that a) this PQE problem has linear complexity; b) taking out
Ck+1 produces a single-test property H v⃗ corresponding to the test #»v falsifying
the literals l(v1), . . . , l(vk).

D Computing Rel i By CPpqe

In Subsection 5.3, we recalled CPpqe , a method of equivalence checking by PQE
introduced in [3]. In this appendix, we describe how CPpqe computes the formula
Rel i specifying relations between cut points of Cut i. We reuse the notation of
Subsection 5.3.



Fig. 8: Computing Rel i in CPpqe

Let formula Fi specify the gates of
M ′ and M ′′ located between their inputs
and Cut i (see Fig. 8). Let Zi denote the
variables of Fi minus those of Cut i. Then
Rel i is obtained by taking Rel i−1 out of
∃Zi[Rel i−1 ∧ Fi] i.e., ∃Zi[Rel i−1 ∧ Fi] ≡
Rel i ∧∃Zi[Fi]. The formula Rel i depends
only on variables of Cut i. (The other vari-
ables of Rel i−1 ∧ Fi are in Zi and hence,
quantified.) Since Rel i is obtained by tak-

ing out Rel i−1, the latter is redundant in ∃Zi[Rel i−1 ∧ Rel i ∧ Fi]. One can show
that this property implies the property mentioned in Subsection 5.3: Rel i−1 is
redundant in ∃Z[Rel i−1 ∧ Rel i ∧ F ]. So, the latter is just a weaker version of the
former.

E Examples Of How A Proof Clause Is Generated

In this appendix, we explain how a proof clause is generated when Proposition 6
holds in subspace #»q . Denote this clause as B. The main idea here is the same as
in generation of a conflict clause by a CDCL solver. Namely, B consists of the
literals falsified by the values of #»q that mattered in proving Proposition 6. In
Example 5 we describe how B is generated by the Prop procedure of SAT sa . Ex-
ample 6 explains generation of B by Prop∗ of PQE sa described in Appendix H.2.

Example 5. Here we give an example of how the procedure FormCls of Prop (line
11 of Fig. 3) generates a proof clause. Let F (X) be equal to C1 ∧ C2 ∧ C3 ∧ . . .
where C1 = x1 ∨ x2, C2 = x1 ∨ x5 and C3 = x2 ∨ x6 ∨ x8. Let C1, C2, C3 be the
only clauses of F with literals x1 and/or x2 (but F can contain any number of
clauses with x1 and/or x2). Assume that SAT sa is applied to F and that the
current assignment #»q equals (x3 = 0, x4 = 1, x5 = 1, x7 = 0, x9 = 0, x10 = 1).
Assume also that Prop is called to check if Proposition 6 holds in subspace #»q
when C1 is used as the primary clause. (Then C2, C3 are the secondary clauses.)

Assume that Proposition 6 is true and Prop generates proof clauses B1, B
′
1

and B3 for C1 and C3 in subspace #»q . (Prop ignores the secondary clause C2 since
it is satisfied by #»q .) Namely, B1 = x3∨x2, B

′
1 = x4∨x1, B3 = x6∨x9. Here, B1

and B′
1 are x1-proof and x2-proof clauses for C1 in subspace #»q respectively. The

clause B3 is an x2-proof clause for C3 in subspace #»q . Then FormCls will produce
the clause B = x3 ∨ x4 ∨ x9 that includes the literals of the proof clauses B1, B

′
1

and B3 falsified by #»q . Note that B does not contain the literal x5 falsified by the
assignment x5 = 1 of #»q satisfying C2. The reason is that since B1, B

′
1, B3 do not

depend on x5, they could be derived even if x5 was assigned 0. This implies that
C2 is redundant in any subspace falsifiying the clause B and so can be ignored.

Example 6. Now we consider generation of a proof clause by PQE sa . Namely,
we describe how the procedure FormCls of Prop∗ (line 15 of Fig. 12) generates a



proof clause. The difference here is that some clauses relevant to proving Propo-
sition 6 may be proved redundant. Then, when generating a proof clause, one
needs to take into account the D-sequents of redundant clauses.

Let us consider a modification of Example 5 where one deals with the same
formula F . As before we assume that C1 is the primary clause and C2, C3 are the
secondary clauses. Assume that the current assignment is different in the value
of x5 that is #»q equals (x3 = 0, x4 = 1,x5 = 0, x7 = 0, x9 = 0, x10 = 1). So, the
clause C2 is not satisfied by #»q . Assume that Prop∗ generated the same proof
clauses B1, B

′
1, B3 for C1 and C3 as in Example 5. Now assume that C2 is proved

redundant in subspace #»q and (x10 = 1) → C2 is the corresponding D-sequent.
Then FormCls produces the same proof clause B = x3∨x4∨x9 consisting of

the literals of B1, B
′
1, B3 falsified by #»q . Note that B does not contain the literal

x10 reflecting the fact that C2 is proved redundant in subspace x10 = 1. The
reason is the same as in the previous example. That is, since B1, B

′
1, B3 do not

depend on x10, they could be derived even if x10 was assigned 0.

F An Example Of How SAT sa Operates

In this appendix, we show how SAT sa operates on a small example. We partly
described the operation of SAT sa on this example in Subsection 10.3. That is we
apply SAT sa to the formula F =C1∧· · ·∧C7 where C1=x1∨x2, C2=x1∨x3∨x4,
C3=x2 ∨ x3 ∨x4, C4= x2∨ x4 ∨x6, C5=x2 ∨ x4 ∨ x6, C6=x2 ∨ x5, C7=x2 ∨ x5.
The control flow of SAT sa is shown in Fig. 9. Here #»qi is the current assignment.
The subscript in SAT sa

i ,Propi and
#»qi gives the recursion depth. Nd j is a node

of the search tree.

Fig. 9: Control flow

The call SAT sa
0 is specified by the

node Nd1. SAT
sa
0 picks C1 and calls Prop0

with C1 as the primary clause (node Nd2).
C3, C4, C5 are the secondary clauses shar-
ing the literal x2 with C1. To check Propo-
sition 6, Prop0 makes calls of SAT sa

1 to
examine the x1-vicinity and x2-vicinity of
C1 (nodes Nd3,Nd9), and the x2-vicinity
of C3, C4, C5 (node Nd10). In the node
Nd3, SAT sa

1 is called in subspace #»q1 =
{x1=1, x2=0} (the x1-vicinity of C1).
SAT sa

1 picks C2 and calls Prop1 with C2

as the primary clause. C3 is the secondary
clause sharing x4 with C2. Prop1 makes
calls of SAT sa

2 to examine the x3-vicinity
and x4-vicinity of C2 (nodes Nd5, Nd6),
and the x4-vicinity of C3 in subspace #»q1

(node Nd7).
In the node Nd5, the subspace #»q2 = #»q1 ∪{x3 = 1, x4 = 0} is examined (the

x3-vicinity of C2 in subspace #»q1). When running BCP, SAT sa
2 gets a conflict



and produces a conflict clause B2 = x1 ∨ x2 ∨ x4 by resolving C2 and C3. The
clause B2 is an x3-proof clause for C2 in subspace #»q1 since (B2) #»q1

=��x1∨��x2∨x4.
So, Prop1 adds B2 to P before entering Nd6.

In the node Nd6, SAT
sa
2 is called to explore the x4-vicinity of C2 in subspace

#»q1. So,
#»q2 = #»q1 ∪ {x3 = 0,x4 = 1}. Here SAT sa

2 gets a conflict and produces a
conflict clause B′

2 = x2 ∨ x4 by resolving C4 and C5. So, B
′
2 is an x4-clause for

C2 in subspace #»q1 and Prop1 adds B′
2 to P . Since B′

2 is also an x4-proof clause
for C3 in subspace #»q1 (node Nd7), Proposition 6 holds and F is unsatisfiable
in subspace #»q1. Prop1 generates the clause B1 = x1 ∨ x2 falsified by #»q1 (node
Nd8). B1 is an x1-proof clause for C1 whose computation started in Nd3.

In the node Nd9, SAT
sa
1 gets a conflict producing the conflict clause B′

1 = x2

obtained by resolving C6 and C7. B
′
1 is an x2-proof clause for C1. This clause is

also an x2-proof clause for C3, C4, C5 (node Nd10). So, Proposition 6 holds for
Prop0 in subspace #»q0 = ∅ (node Nd2). So, the formula F is unsatisfiable (node
Nd11). At this point, the set P of proof clauses consists of B2, B

′
2, B1, B

′
1.

G Tuning SAT sa To A Class Of Formulas

Fig. 10: Checking M ′ and M ′′ for
equivalence

In this appendix, we describe how SAT sa

can be tuned to a particular applica-
tion, namely, equivalence checking. Con-
sider checking the equivalence of circuits
M ′ and M ′′ shown in Fig. 10. This prob-
lem reduces to testing the satisfiability of
the formula F = F ′ ∧ F ′′ ∧ A1 ∧ A2

where F ′(X ′, V, w′), F ′′(X ′′, V, w′′) specify
M ′ andM ′′ andA1 = w′∨w′′,A2 = w′∨w′′

specify w′ ̸= w′′. Here X ′, X ′′ specify the
sets of internal variables w′, w′′ denote the
output variables of M ′ and M ′′. The set V
specifies the input variables shared by M ′

and M ′′. In this appendix we reuse the no-
tation of Appendix F. That is SAT sa

i and
#»qi specify the invocation of SAT sa and cur-

rent assignment #»q at recursion level i. (For the sake of simplicity, we omit men-
tioning the function Propi called by SAT sa

i to check Proposition 6.) The idea
of tuning is to mimic the behavior of the specialized equivalence checker CP
described in Subsection 5.3.

Recall that CP derives some relationships between cut points of M ′ and M ′′

moving from inputs to outputs. SAT sa can simulate this behavior by processing
the clauses of F from outputs to inputs. That is the current invocation SAT sa

i

looks for the next primary clause among the clauses that a) are not satisfied by
#»qi yet and b) specify gates that are the closest to the outputs. This guarantees
that calls SAT sa

i with the largest depth i produce proof clauses relating internal



points of M ′ and M ′′ that are the closest to inputs. By going from deeper to
more shallow recursion depths, SAT sa actually moves from inputs to outputs.

Let us consider the operation of SAT sa in more detail. The clauses of F
that are the “closest” to outputs are A1 and A2. So, the original invocation
SAT sa

0 picks one of them as the primary clause. Assume that it is the clause
A1 = w′∨w′′. Suppose that SAT sa

0 derived an w′-proof clause e.g. B1 = w′∨w′′

and an w′′-proof clause e.g. B∗
1 = w′ ∨ w′′ for A1. Then one can trivially derive

proof clauses for the secondary clauses of F (i.e., those containing literals w′ and
w′′) from A1 ∧A2 ∧B1 ∧B∗

1 because the latter is unsatisfiable.
Assume that SAT sa

0 explores the w′-vicinity of A1 i.e., (w′ = 1, w′′ = 0).
Assume that eventually SAT sa

i is called after the gates g′2 and g′′1 of N ′ and N ′′

are reached (see Fig. 10). That is #»qi contains assignments x′
3 = 1 and x′′

1 = 0 to
the output variables of g′2 and g′′1 . The formulas Fg′

1
, Fg′

2
, Fg′′

1
specifying those

gates and the gate g′1 are as follows:

Fg′
1
= C ′

1 ∧ C ′
2 ∧ C ′

3 where C ′
1 = v1 ∨ v2 ∨ x′

1, C
′
2 = v1 ∨ x′

1, C
′
3 = v2 ∨ x′

1,
Fg′

2
= C ′

4 ∧ C ′
5 ∧ C ′

6 where C ′
4 = x′

1 ∨ x′
2 ∨ x′

3, C
′
5 = x′

1 ∨ x′
3, C

′
6 = x′

2 ∨ x′
3,

Fg′′
1
= C ′′

1 ∧ C ′′
2 ∧ C ′′

3 where C ′′
1 = v1 ∨ v2 ∨ x′′

1 , C
′′
2 = v1 ∨ x′′

1 , C
′′
3 = v2 ∨ x′′

1 .
Assume that SAT sa

i picks C ′
4 = x′

1 ∨ x′
2 ∨ x′

3 as the primary clause. Suppose
that in contrast to x′

3, the variables x
′
1 and x′

2 are not assigned in #»qi. Assume that
SAT sa

i+1 is invoked to explore the x′
1-vicinity of C ′

4 specified by (x′
1 = 1, x′

2 =
0, x′

3 = 1). So, #»qi+1 = #»qi ∪ {x′
1 = 1, x′

2 = 0}. When running BCP, a conflict
occurs in subspace #»qi+1 and the conflict clause Ccnfl = x′

1 ∨ x′′
1 is derived. (The

latter is obtained by resolving C ′′
1 with C ′

2 and C ′
3.) The clause Ccnfl is an x′

1-
proof clause for C ′

4 in subspace #»qi (where x′′
1 = 0). So, Ccnfl is added to P .

Note that the proof clause Ccnfl above relates two internal variables of M ′

and M ′′. This clause can be used by calls SAT sa
j where j < i to derive proof

clauses relating internal points located further away from inputs.

H Pseudocode of PQE sa

PQE sa(F, P,C, #»q ){
1 (Ccnfl ,

#»q ) := BCP(F∪P, #»q )
2 if (Ccnfl ̸= nil)
3 return(Ccnfl ,nil)
4 if (Satisf (F, #»q )) {
5 D := FormDseq(F,C, #»q )
6 return(nil , D)}
7 (Bprf , D) :=Prop∗(F, P,C, #»q )
8 if (Bprf ̸= nil) {
9 return(Bprf ,nil)}
10 return(nil , D)}

Fig. 11: Top procedure of
PQE sa

In this appendix, we provide the pseudocode of
PQE sa introduced in Section 11.

H.1 Top procedure of PQE sa

In the rest of this appendix, we describe PQE sa

assuming that it is used as a plug-in solver for
EG-PQE+ (see Subsection 11.1). Similarly to
SAT sa , PQE sa is based on Proposition 6 and
hence keeps the original formula intact. That is,
PQE sa does not add new quantified clauses
to the formula. Like SAT sa , PQE sa recursively
calls itself.

The top procedure of PQE sa (Fig. 11) is
similar to that of SAT sa . PQE sa accepts the



formula F , the current set of proof clauses P , a clause C of F and the cur-
rent assignment #»q . PQE sa returns a clause falsified by #»q (F is unsatisfiable in
subspace #»q ) or a D-sequent stating the redundancy of C in subspace #»q (the
satisfiability of F in subspace #»q is unknown). In the original call, P = ∅ and
#»q = #»y where #»y is a full assignment to Y (see Fig. 5, line 4).

Like SAT sa , PQE sa first runs BCP (line 1). In case of a conflict, a con-
flict clause Ccnfl is generated and PQE sa terminates returning Ccnfl (lines 2-3).
Although PQE sa , in general, does not produce a satisfying assignment, BCP
may accidentally find one (lines 4-6). In this case, PQE sa produces a D-sequent
stating the redundancy of C in subspace #»q as described in [12]. Then SAT sa

terminates returning D. If BCP does not encounter a terminating condition,
PQE sa calls a procedure named Prop∗ to check if Proposition 6 holds where C
is used as the primary clause (line 7). As we mentioned in Subsection 11.3, for
the sake of simplicity, we ignore the case when the procedure Vic∗ below (and
hence Prop∗) returns a clause U that is unit in subspace #»q .

If Proposition 6 holds, then Prop∗ returns a clause Bprf falsified by #»q . The
difference of Prop∗ from Prop is that the former does not return a satisfying
assignment if it fails to prove Proposition 6. Instead, Prop∗ returns a D-sequent
D stating the redundancy of C in subspace #»q . After calling Prop∗, PQE sa

terminates returning Bprf or D (lines 8-10).

H.2 Prop∗ procedure

Prop∗(F, P,C, #»q ){
1 Lits := FreeLits(C, #»q )
2 ClsSet := GenSet(F,Lits, #»q )
3 Ds := ∅
4 for every C′ ∈ ClsSet {
5 for every l′ ∈ Lits {
6 if (l′ ̸∈ C′) continue
7 (Bprf , D) := Vic∗(F, P,C′, l′, #»q )
8 if (D ̸= nil) {
9 if (C′ = C) goto Finish
10 RemCls(F,C′, #»q )
11 Ds := Ds ∪ {D}}
12 if (Falsif (Bprf ,

#»q ))
13 goto Finish
14 P := P ∪ {Bprf }}}
15 Bprf := FormCls(F, P,Ds, #»q )
Finish:
16 RecCls(F, #»q )
17 return(Bprf , D)}

Fig. 12: Checking Proposi-
tion 6

Assume that PQE sa is used to take a
clause C out of ∃X[F ] in subspace #»q .
Prop∗ is called by PQE sa to check if
Proposition 6 holds in subspace #»q if
C is used as the primary clause. The
pseudocode of Prop∗ is given in Fig. 12.
Prop∗ accepts the formula F , the current
set P of proof clauses, a clause C ∈ F
and assignment #»q . If Prop∗ succeeds in
proving Proposition 6, it returns a proof
clause Bprf falsified by #»q . Otherwise, it
returns a D-sequent D stating the redun-
dancy of the primary clause C in sub-
space #»q .

Prop∗ starts with finding the set Lits
of literals of C not falsified by #»q and
building the set ClsSet of clauses of F
with at least one literal of Lits that are
not satisfied by #»q (lines 1-2). That is
ClsSet consists of the primary clause C
and secondary clauses. Besides, Prop∗
initializes the set Ds of D-sequents for
the clauses of ClsSet proved redundant



in subspace #»q (line 3). After that, Prop∗ starts two nested for loops that check
if Proposition 6 holds for ∃X[F ] in subspace #»q (lines 4-14).

In each iteration of the outer loop, a clause C ′ ∈ ClsSet is selected. (We as-
sume here that the secondary clauses of ClsSet are processed before the primary
clause C.) Then the inner loop enumerates every literal l′ of Lits. If a literal l′ of
Lits is present in C ′, the procedure called Vic∗ is invoked to check the l′-vicinity
of C ′ in subspace #»q (lines 6-7).

If Vic∗ does not produce an l′-proof clause P , it returns a D-sequent D
stating that C ′ is redundant in subspace #»q . Then Prop∗ does the following.
If C ′ is the primary clause (i.e., C ′ = C), then Prop∗ terminates and returns
D indicating that it failed to prove Proposition 6 (line 9). Otherwise, C ′ is
temporarily removed from the formula as redundant (line 10). Besides, Prop∗
adds to Ds the D-sequent D (line 11).

In reality, when a secondary clause C ′ is proved redundant, one needs to
check the validity of the proof clauses previously generated in this call of Prop∗.
For the sake of simplicity, we do not mention this fact in Fig. 12. Instead, we
discuss this issue in Subsection H.4.

If Vic∗ returns an l′-proof clause Bprf for C ′, then Prop∗ first checks if Bprf

is falsified by the current assignment #»q . If so, Prop∗ terminates returning Bprf

(line 12-13). Otherwise, Prop∗ adds Bprf to the set of proof clauses P . If Prop∗
reaches the end of the outer loop, Proposition 6 holds. Prop∗ calls the procedure
named FormCls to generate a clause Bprf falsified by #»q (line 15). Generation of
such a clause is described in Appendix E.

Vic∗(F, P,C, l(x), #»q ){
1 Ds := ∅
2

#»r := #»q ∪VicAssgn(C, l, #»q )
3 T := ResCls(F,C, l, #»r )
4 for every clause C′ ∈ T {
5 (Bprf ,D) :=PQE sa(F, P,C′, #»r )
6 if (Bprf = nil) {
7 RemCls(F,C′, #»r )
8 Ds := Ds ∪ {D}
9 continue }
10 else goto Finish }
11 D := BlkdCls(F, T,Ds, #»q )
Finish:
12 RecCls(F, T,Ds, #»q )
13 return(Bprf , D)}

Fig. 13: Checking vicinity

Finally Prop∗ puts the secondary clauses
proved redundant in subspace #»q back to the
formula (line 16). Then it returns Bprf or
the D sequent stating redundancy of the
primary clause C in subspace #»q (line 17).
At this point, one of them is nil .

H.3 Vic∗ procedure

The pseudocode of the Vic∗ procedure is
shown in Fig. 13. It accepts the formula F ,
the current set P of proof clauses, a clause
C ∈ F , a literal l(x) of a variable x present
in C and the current assignment #»q . Vic∗
returns either a clause Bprf that is an l-proof
for C in subspace #»q or a D-sequent D. The
latter states that C is redundant in subspace
#»q because it is blocked at x.

First, Vic∗ initializes the set Ds that accumulates the D-sequents of clauses
proved redundant in subspace #»q (line 1). Then it generates the assignment #»r
obtained by adding to #»q the assignment specifying the l-vicinity of C (line 2).
After that, Vic∗ forms the set T of clauses with the literal l that are not satisfied
by #»r . These are the clauses resolvable with C on x in subspace #»r .



Then Vic∗ runs a for loop (lines 4-10). In each iteration of this loop, Vic∗
checks the redundancy of a clause C ′ ∈ T in subspace #»r . This is done by calling
PQE sa in subspace #»r (line 5). PQE sa either returns a clause Bprf falsified by #»r
or produces a D-sequent D stating that C ′ is redundant in subspace #»r . In the
latter case, Vic∗ temporarily removes C ′ from the formula and adds D to the
set of D-sequents Ds (lines 6-9). If PQE sa returns Bprf , the latter is the l-proof
clause for C in subspace #»q . So, Vic∗ terminates (line 10).

If all clauses of T are proved redundant in subspace #»r , then C is blocked
at variable x in subspace #»r . So, C is redundant in this subspace and Vic∗
generates a D-sequent stating this fact (line 11). Generation of such a D-sequent
is described in [12]. Finally, Vic∗ recovers all clauses temporarily removed from
the formula in the loop and terminates returning Bprf and D (lines 12-13). At
this point one of them is nil .

H.4 Consistency of proof clauses and D-sequents

To produce correct results, PQE sa needs to maintain some form of consistency
between proof clauses and D-sequents. Suppose, for instance, that PQE sa does
computations in a subspace #»q and temporarily removes a clause C ∈ F as
proved redundant in this subspace. Then PQE sa should not employ proof clauses
derived using C. Assume, for instance, that a secondary clause C ′ is proved
redundant and temporarily removed in a call of Prop∗ (line 10 of Fig. 12).
Then one should check the proof clauses previously added to P (line 14) and
recompute those that were derived using C ′. A straightforward way to achieve
the consistency above is to a) store the list clauses used to derive each proof
clause Bprf and b) avoid reusing Bprf if one of the clauses on this list is currently
removed as redundant. However, more efficient methods can be designed that
reduce the amount of information one needs to store.
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