
Checking Satisfiability by Dependency Sequents

Eugene Goldberg, Panagiotis Manolios

Northeastern University, USA {eigold,pete}@ccs.neu.edu

Abstract. We introduce a new algorithm for checking satisfiability based
on a calculus of Dependency sequents (D-sequents). Given a CNF for-
mula F (X), a D-sequent is a record stating that under a partial assign-
ment a set of variables of X is redundant in formula ∃X[F]. The D-
sequent calculus is based on operation join that forms a new D-sequent
from two existing ones. The new algorithm solves the quantified ver-
sion of SAT. That is, given a satisfiable formula F , it, in general, does
not produce an assignment satisfying F . The new algorithm is called
DS-QSAT where DS stands for Dependency Sequent and Q for Quan-
tified. Importantly, a DPLL-like procedure is only a special case of DS-
QSAT where a very restricted kind of D-sequents is used. We argue that
this restriction a) adversely affects scalability of SAT-solvers b) is caused
by looking for an explicit satisfying assignment rather than just proving
satisfiability. We give experimental results substantiating these claims.

1 Introduction

Algorithms for solving the Boolean satisfiability problem are an important part
of modern design flows. Despite great progress in the performance of such algo-
rithms achieved recently, the scalability of SAT-solvers still remains a big issue.
In this paper, we address this issue by introducing a new method of satisfiability
checking that can be viewed as a descendant of the DP procedure [3].

We consider Boolean formulas represented in Conjunctive Normal Form (CNF).
Given a CNF formula F (X), one can formulate two different kinds of satisfiabil-
ity checking problems. We will refer to the problems of the first kind as QSAT
where Q stands for quantified. Solving QSAT means just checking if ∃X[F] is
true. In particular, if F is satisfiable, a QSAT-solver does not have to produce
an assignment satisfying F . The problems of the second kind that we will refer
to as just SAT are a special case of those of the first kind. If F is satisfiable, a
SAT-solver has to produce an assignment satisfying F .

Intuitively, QSAT should be easier than SAT because a QSAT-solver needs
to return only one bit of information. This intuition is substantiated by the fact
that checking if an integer number N is prime (i.e. answering the question if
non-trivial factors of N exist) is polynomial while finding factors of N explicitly
is believed to be hard. However, the situation among practical algorithms defies
this intuition. Currently, the field is dominated by procedures based on DPLL
algorithm [2] that is by SAT-solvers. On the other hand, a classical QSAT-solver,
the DP procedure [3], does not have any competitive descendants (although some

ar
X

iv
:1

20
7.

50
14

v1
 [

cs
.L

O
]

 2
0

Ju
l 2

01
2

elements of the DP procedure are used in formula preprocessing performed by
SAT-solvers [5]).

In this paper, we introduce a QSAT-solver called DS-QSAT where DS stands
for Dependency Sequent. On the one hand, DS-QSAT can be viewed as a de-
scendant of the DP procedure. On the other hand, DPLL-like procedures with
clause learning is a special case of DS-QSAT. Like DP procedure, DS-QSAT is
based on the idea of elimination of redundant variables. A variable v ∈ X is
redundant in ∃X[F] if the latter is equivalent to ∃X[F \ F v] where F v is the set
of all clauses of F with v. Note that removal of clauses of F v produces a formula
that is equisatisfiable rather than functionally equivalent to F .

If F is satisfiable, all variables of X are redundant in ∃X[F] because an empty
set of clauses is satisfiable. If F is unsatisfiable, one can make the variables of F
redundant by deriving an empty clause and adding it to F . An empty clause is
unsatisfiable, hence all other clauses of F can be dropped. So, from the viewpoint
of DS-QSAT, the only difference between satisfiable and unsatisfiable formulas
is as follows. If F is satisfiable, its variables are already redundant and one just
needs to prove this redundancy. If F is unsatisfiable, one has to make variables
redundant by derivation and adding to F an empty clause.

The DP procedure makes a variable v of X redundant in one step, by adding
to F all clauses that can be produced by resolution on v. This is extremely
inefficient due to generation of prohibitively large sets of clauses even for very
small formulas. DS-QSAT addresses this problem by using branching. The idea
is to prove redundancy of variables in subspaces and then “merge” the obtained
results. DS-QSAT records the fact that a set of variables Z is redundant in
∃X[F] in subspace specified by partial assignment q as (∃X[F], r) → Z. Here
r is a subset of the assignments of q relevant to redundancy of Z. The record
(∃X[F], r) → Z is called a dependency sequent (or D-sequent for short). To
simplify notation, if F and X are obvious from the context, we record the D-
sequent above as just r → Z .

A remarkable fact is that a resolution-like operation called join can be used to
produce a new D-sequent from two D-sequents derived earlier [8,7]. Suppose, for
example, that D-sequents (x1 = 0, x2 = 0)→ {x9} and (x2 = 1, x5 = 1)→ {x9}
specify redundancy of variable x9 in different branches of variable x2. Then D-
sequent (x1 = 0, x5 = 1) → {x9} holds where the left part assignment of this
D-sequent is obtained by taking the union of the left part assignments of the
two D-sequents above but those to variable x2. The new D-sequent is said to
be obtained by joining the two D-sequents above at variable x2. The calculus
based on the join operation is complete. That is, eventually DS-QSAT derives D-
sequent ∅ → X stating unconditional redundancy of the variables of X in ∃X[F].
If by the time the D-sequent above is derived, F contains an empty clause,
F is unsatisfiable. Otherwise, F is satisfiable. Importantly, if F is satisfiable,
derivation of D-sequent ∅ → X does not require finding an assignment satisfying
F .

DPLL-based SAT-solvers with clause learning can be viewed as a special
case of DS-QSAT where only a particular kind of D-sequents is used. This limi-

tation on D-sequents is caused by the necessity to generate a satisfying assign-
ment as a proof of satisfiability. Importantly, this necessity deprives DPLL-based
SAT-solvers of using transformations preserving equisatisfiability rather than
functional equivalence. In turn, this adversely affects the performance of SAT-
solvers. We illustrate this point by comparing the performance of DPLL-like
SAT-solvers and a version of DS-QSAT on compositional formulas. This version
of DS-QSAT use the strategy of lazy backtracking as opposed to that of eager
backtracking employed by DPLL-based procedures. A compositional CNF for-
mula has the form F1(X1)∧ . . .∧Fk(Xk) where Xi ∩Xj = ∅,i 6= j. Subformulas
Fi, Fj are identical modulo variable renaming/negation. We prove theoretically
that performance of DS-QSAT is linear in k. On the other hand, one can argue
that the average performance of DPLL-based SAT-solvers with conflict learning
should be quadratic in k. In Section 8, we describe experiments confirming our
theoretical results.

The contribution of this paper is fourfold. First, we use the machinery of
D-sequents to explain some problems of DPLL-based SAT-solvers. Second, we
describe a new QSAT-solver based on D-sequents called DS-QSAT. Third, we
give a theoretical analysis of the behavior of DS-QSAT on compositional for-
mulas. Fourth, we show the promise of DS-QSATby comparing its performance
with that of well-known SAT-solvers on compositional and non-compositional
formulas.

This paper is structured as follows. In Section 2 we discuss the complexity
of QSAT and SAT. Section 3 gives a brief introduction into DS-QSAT. We recall
D-sequent calculus in Section 4. A detailed description of DS-QSAT is given in
Section 5. Section 6 gives some theoretical results on performance of DS-QSAT.
Section 7 describes a modification of DS-QSAT that allows additional pruning
of the search tree. Experimental results are given in Section 8. We describe some
background of this research in Section 9 and give conclusions in Section 10.

2 Is QSAT Simpler Than SAT?

In this section, we make the following point. Both QSAT-solvers and SAT-solvers
have exponential complexity on the set of all CNF formulas, unless P = NP.
However, this is not true for subsets of CNF formulas. It is possible that a set
K of formulas describing, say, properties of a parameterized set of designs can
be solved in polynomial time by some QSAT-solver while any SAT-solver has
exponential complexity on K.

To illustrate the point above, let us consider procedure gen sat assgn shown
in Figure 1. It finds an assignment satisfying a CNF formula F (if any) by
solving a sequence of QSAT problems. First, gen sat assgn calls a QSAT-solver
solve qsat to check if F is satisfiable (line 2). If it is, gen sat assgn picks a
variable v of F (line 5) and calls solve qsat to find assignment v = val under
which formula F is satisfiable (lines 6-8). Since F is satisfiable, Fv=0 and/or Fv=1

has to be satisfiable. Then gen sat assgn fixes variable v at the chosen value val
and adds (v=val) to assignment s (lines 9-10) that was originally empty. The

gen sat assgn procedure keeps assigning variables of F in the same manner in
a loop (lines 5-11) until every variable of F is assigned. At this point, s is a
satisfying assignment of F .

gen sat assgn(F){
1 ans = solve qsat(F);
2 if (ans=unsat) return(unsat);
3 s := ∅; X:=Vars(F);
4 while (X 6= ∅) {
5 v := pick var(X);
6 if (solve qsat(Fv=0) = sat)
7 val = 0;
8 else val = 1;
9 F := Fv=val;
10 s = s ∪ {(v = val)};
11 X := X \ {v};}
12 return(s);

Fig. 1. SAT-solving by QSAT

The number of QSAT checks performed
by solve qsat in gen sat assgn is at most
n+1. So if there is a QSAT-solver solving all
satisfiable CNF formulas in polynomial time,
gen sat assgn can use this QSAT-solver in its
inner loop to find a satisfying assignment for
any satisfiable formula in polynomial time.
However, this is not true when considering a
subset K of all possible CNF formulas. Sup-
pose there is a QSAT-solver solving the for-
mulas of K in polynomial time. Let F be a
formula of K. Let Fq denote F under par-
tial assignment q. The fact that F ∈ K
does not imply Fq ∈ K. So the behavior of
gen sat assgn using this QSAT-solver in the

inner loop may actually be even exponential if this QSAT-solver does not perform
well on formulas Fq.

For example, one can form a subset K of all possible CNF formulas such
that a) a formula F ∈ K describes a check that a number N is composite and
b) an assignment satisfying F (if any) specifies two numbers A,B such that
A 6= 1,B 6= 1 and A × B = N . The satisfiability of formulas in K can be
checked by a QSAT-solver in polynomial time [14]. At the same time, finding
satisfying assignments of formulas fromK i.e. factorization of composite numbers
is believed to be hard. For instance, gen sat assgn cannot use the QSAT-solver
above to find satisfying assignments for formulas of K in polynomial time. The
reason is that formula Fq does not specify a check if a number is composite.
That is F ∈ K does not imply that Fq ∈ K.

Note that a SAT-solver is also limited in the ways of proving unsatisfiability.
For a SAT-solver, such a proof is just a failed attempt to build a satisfying
assignment explicitly. For example, instead of using the polynomial algorithm of
[14], a SAT-solver would prove that a number N is prime by failing to find two
non-trivial factors of N .

3 Brief comparison of DPLL-based SAT-solvers and
DS-QSAT in Terms of D-sequents

In this section, we use the notion of D-sequents to discuss some limitations of
DPLL-based SAT-solvers. We also explain how DS-QSAT (described in Section 5
in detail) overcomes those limitations.

Example 1. Let SAT ALG be a DPLL-based SAT-solver with clause learning.
We assume that the reader is familiar with the basics of such SAT-solvers [15,16].

Let F be a CNF formula of 8 clauses where C1 = x1 ∨ x3, C2 = x2 ∨ x3,
C3 = x1 ∨ x2 ∨ x3, C4 = x2 ∨ x3, C5 = x1 ∨ x4 ∨ x5, C6 = x4 ∨ x5, C7 = x4 ∨ x5,
C8 = x1 ∨ x4 ∨ x5. The set X of variables of F is equal to {x1, x2, x3, x4, x5}.

Let SAT ALG first make assignment x1 = 0. This satisfies clauses C1,C5,C8

and removes literal x1 from C3. Let SAT ALG then make assignment x2 =
0. Removing literal x2 from C3 and C4 turn them into unit clauses x3 and
x3 respectively. This means that SAT ALG ran into a conflict. At this point,
SAT ALG generates conflict clause C9 = x1 ∨ x2 that is obtained by resolving
clauses C3 and C4 on x3 and adds C9 to F . After that, SAT ALG erases as-
signment x2 = 0 and the assignment made by SAT ALG to x3 and runs BCP
that assigns x2 = 1 to satisfy C9 that is currently unit. In terms of D-sequents,
one can view generation of conflict clause C9 and adding it to F as deriva-
tion of D-sequent S equal to (x1 = 0, x2 = 0) → {x3, x4, x5}. D-sequent S
says that making assignments falsifying clause C9 renders all unassigned vari-
ables redundant. Note that S is inactive in the subspace (x1 = 0, x2 = 1) that
SAT ALG enters after assigning 1 to x2. (We will say that D-sequent r → Z is
active in the subspace specified by partial assignment q if the assignments of
r are a subset of those of q.) So the variables x3, x4, x5 proved redundant in
subspace (x1 = 0, x2 = 0) become non-redundant again.

One may think that reappearance of variables x3, x4, x5 in subspace (x1 =
0, x2 = 1) is “inevitable” but this is not so. Variables x4,x5 have at least two
reasons to be redundant in subspace (x1 = 0, x2 = 0). First, C9 is falsified
in this subspace. Second, the only clauses of F containing variables x4,x5 are
C5,C6,C7,C8. But C5 and C8 are satisfied by x1 = 0 and C6, C7 can be satisfied
by an assignment to x4,x5. So C5,C6,C7,C8 can be removed from F in subspace
x1 = 0 without affecting the satisfiability of F . Hence D-sequents S1 and S2

equal to (x1 = 0)→ {x4} and (x1 = 0)→ {x5} are true. (In Example 3, we will
show how S1 and S2 are derived by DS-QSAT.) Suppose that one replaces the
D-sequent S above with D-sequents S′, S1, S2 where S′ is equal to (x1 = 0, x2 =
0)→ {x3}. Note that only D-sequent S′ is inactive in subspace (x1 = 0, x2 = 1).
So only variable x3 reappears after x2 changes its value from 0 to 1 �

The example above illustrates the main difference between SAT ALG and
DS-QSAT in terms of D-sequents. At every moment, SAT ALG has at most one
active D-sequent. This D-sequent is of the form r → Z where r is an assignment
falsifying a clause of F and Z is the set of all variables that are currently unas-
signed. DS-QSAT may have a set of active D-sequents r1 → Z1 , . . . , rk → Zk

where Z1 ∪ . . . ∪ Zk = Z, Zi ∩ Zj = ∅,i 6= j. When SAT ALG changes the value
of variable v of Vars(r), all the variables of Z reappear as non-redundant. When
DS-QSAT changes the value of v, variables of Zi reappear only if v ∈ Vars(ri).
So only a subset of variables of Z reappear.

To derive D-sequents ri → Zi above, DS-QSAT goes on branching in the
presence of a conflict. Informally, the goal of such branching is to find alternative
ways of proving redundancy of variables from Z. So DS-QSAT uses extra branch-
ing to minimize the number of variables reappearing in the right branch (after
the left branch has been explored). This should eventually lead to the opposite
result i.e. to reducing the amount of branching. Looking for alternative ways to

prove redundancy can be justified as follows. A practical formula F typically can
be represented as F1(X1, Y1) ∧ . . . ∧ Fk(Xk, Yk). Here Xi are internal variables
of Fi and Yi are “communication” variables that Fi may share with some other
subformulas Fj , j 6= i. One can view Fi as describing a “design block” with
external variables Yi. Usually, |Yi| is much smaller than |Xi|. Let a clause of Fi

be falsified by the current assignment due to a conflict. Suppose that at the time
of the conflict all variables of Yj of subformula Fj were assigned and their values
were specified by assignment yi. Suppose yi is consistent for Fi i.e. yi can be
extended by assignments to Xi to satisfy Fi. This means that the variables of Xi

are redundant in subspace yi in ∃V [F] where V = Vars(F). Then by branching
on variables of Xi one can derive D-sequent yi → Xi . If yi is inconsistent for
Fi, then by branching on variables of Xi one can derive a clause C falsified by
yi. Adding C to F makes the variables of Xi redundant in ∃V [F] in subspace
yi. So the existence of many ways to prove variable redundancy is essentially
implied by the fact that formula F has structure.

The possibility to control the size of right branches gives an algorithm a lot
of power. Suppose, for example, that an algorithm guarantees that the number
of variables reappearing in the right branch is bounded by a constant d. We
assume that this applies to the right branch going out of any node of the search
tree, including the root node. Then the size of the search tree built by such an
algorithm is O(|X| · 2d). Here |X| is the maximum depth of a search tree built
by branching on variables of X and 2d is the number of nodes in a full binary
sub-tree over d variables. So the factor 2d limits the size of the right branch.
The complexity of an algorithm building such a search tree is linear in F . In
Section 6, we show that bounding the size of right branches by a constant is
exactly the reason why the complexity of DS-QSAT on compositional formulas
is linear in the number of subformulas.

The limitation of D-sequents available to SAT ALG is consistent with the
necessity to produce a satisfying assignment. Although such limitation cripples
the ability of an algorithm to compute the parts of the formula that are re-
dundant in the current subspace, it does not matter much for SAT ALG. The
latter simply cannot use this redundancy because it is formulated with respect
to formula ∃X[F] rather than F . Hence, discarding the clauses containing re-
dundant variables preserves equisatisfiability rather than functional equivalence.
So, an algorithm using such transformations cannot guarantee that a satisfying
assignment it found is correct.

4 D-sequent Calculus

In this section, we recall the D-sequent calculus introduced [8,7]. In Subsec-
tions 4.1 and 4.2 we give basic definitions and describe simple cases of variable
redundancy. The notion of D-sequents is introduced in Subsection 4.3. Finally,
the operation of joining D-sequents is presented in Subsection 4.4.

4.1 Basic definitions

Definition 1. A literal of a Boolean variable v is v itself and its negation. A
clause is a disjunction of literals. A formula F represented as a conjunction
of clauses is said to be the Conjunctive Normal Form (CNF) of F . A CNF
formula F is also viewed as a set of clauses. Let q be an assignment, F be a
CNF formula, and C be a clause. Vars(q) denotes the variables assigned in q;
Vars(F) denotes the set of variables of F ; Vars(C) denotes the set of variables
of C.

Definition 2. Let q be an assignment. Clause C is satisfied by q if a literal of
C is set to 1 by q. Otherwise, C is falsified by q. Assignment q satisfies F if
q satisfies every clause of F .

Definition 3. Let F be a CNF formula and q be a partial assignment to vari-
ables of F . Denote by Fq that is obtained from F by a) removing all clauses of
F satisfied by q; b) removing the literals set to 0 by q from the clauses that are
not satisfied by q. Notice, that if q=∅, then Fq = F .

Definition 4. Let F be a CNF formula and Z be a subset of Vars(F). Denote
by FZ the set of all clauses of F containing at least one variable of Z.

Definition 5. The variables of Z are redundant in formula ∃X[F] if ∃X[F]
≡ ∃X[F \FZ]. We note that since F \FZ does not contain any Z variables, we
could have written ∃(X \ Z)[F \ FZ]. To simplify notation, we avoid explicitly
using this optimization in the rest of the paper.

Definition 6. Let q1 and q2 be assignments. The expression q1 ≤ q2 denotes
the fact that Vars(q1) ⊆ Vars(q2) and each variable of Vars(q1) has the same
value in q1 and q2.

4.2 Simple cases of variable redundancy

There at least two cases where proving that a variable of F is redundant in
∃X[F] is easy. The first case concerns monotone variables of F . A variable v
of F is called monotone if all clauses of F containing v have only positive (or
only negative) literal of v. A monotone variable v is redundant in ∃X[F] because
removing the clauses with v from F does not change the satisfiability of F . The
second case concerns the presence of an empty clause. If F contains such a clause,
every variable of F is redundant.

4.3 D-sequents

Definition 7. Let F (X) be a CNF formula. Let q be an assignment to X and
Z be a subset of X \Vars(q). A dependency sequent (D-sequent) has the form
(∃X[F], q)→ Z. It states that the variables of Z are redundant in ∃X[Fq]. If
formula F for which a D-sequent holds is obvious from the context we will write
this D-sequent in a short notation: q → Z.

Example 2. Let F be a CNF formula of four clauses: C1 = x1∨x2, C2 = x1∨x2,
C3 = x1 ∨ x3, C4 = x2 ∨ x3. Notice that since clause C1 is satisfied in subspace
(x2 = 1), variable x1 is monotone in formula Fx2=1. So D-sequent (x2 = 1) →
{x1} holds. On the other hand, the assignment r = (x1 = 1, x3 = 0) falsifies
clause C3. So variable x2 is redundant in Fr and D-sequent r → {x2} holds.

4.4 Join Operation for D-sequents

Proposition 1 ([8]). Let F (X) be a CNF formula. Let D-sequents r′ → Z and
r′′ → Z hold, where Z ⊆ X. Let r′, r′′ have different values for exactly one
variable v ∈ Vars(r′) ∩ Vars(r′′). Let r consist of all assignments of r′,r′′ but
those to v. Then, D-sequent r → Z holds too.

We will say that the D-sequent r → Z of Proposition 1 is obtained by
joining D-sequents r′ → Z and r′′ → Z at variable v. The join operation
is complete [8,7]. That is eventually, D-sequent ∅ → X is derived proving that
the variables of the current formula F are redundant. If F contains an empty
clause, then F is unsatisfiable. Otherwise, it is unsatisfiable.

An obvious difference between the D-sequent calculus and resolution is that
the former can handle both satisfiable and unsatisfiable formulas. This limitation
of resolution is due to the fact that it operates on subspaces where formula F is
unsatisfiable. One can interpret resolving clauses C ′, C ′′ to produce clause C as
using the Boolean cubes K ′,K ′′ where C ′ and C ′′ are unsatisfiable to produce
a new Boolean cube K where the resolvent C is unsatisfiable. On the contrary,
the join operation can be performed over parts of the search space where F
may be satisfiable. When D-sequents r′ → Z and r′′ → Z are joined, it does
not matter whether formulas Fr′ and Fr′′ are satisfiable. The only thing that
matters is that variables Z are redundant in Fr′ and Fr′′ .

4.5 Virtual redundancy

Let F (X) be a CNF formula and r be an assignment to X. Let Z ⊆ X and
Vars(r) ∩ Z = ∅. The fact that variables of Z are redundant in F , in general,
does not mean that they are redundant in Fr. Suppose, for example, that F
is satisfiable, Fr is unsatisfiable, F does not have a clause falsified by r and
Z = Vars(F) \ Vars(r). Then formula Fr \ (Fr)Z has no clauses and so is
satisfiable. Hence ∃X[Fr] 6= ∃X[Fr \ (Fr)Z] and so the variables of Z are not
redundant in Fr. On the other hand, since F is satisfiable, the variables of Z are
redundant in ∃X[F].

We will say that the variables of Z are virtually redundant in Fr where
Z ∩ Vars(r) = ∅ if either a) ∃X[Fr] = ∃X[Fr \ (Fr)Z] or b) ∃X[Fr] 6= ∃X[Fr \
(Fr)Z] and F is satisfiable. In other words, if variables Z are virtually redundant
in ∃X[Fr], removing the clauses with a variable of Z from Fr may be wrong but
only locally. From the global point of view this mistake does not matter because
it occurs only when F is satisfiable.

We need a new notion of redundancy because the join operation introduced
above preserves virtual redundancy [8] rather than redundancy in terms of Defi-
nition 5. Suppose, for example, that the variables of Z are redundant in Fr1 and
Fr2 in terms of Definition 5 and so D-sequents r1 → Z and r2 → Z hold. Let
r → Z be the D-sequent obtained by joining the D-sequents above. Then one
can guarantee only that the variables of Z are virtually redundant in Fr. For
that reason we need to replace the notion of redundancy by Definition 5 with
that of virtually redundancy. In the future explanation, we will omit the word
“virtually”. That is when we say that variables of Z are redundant in Fr we
actually mean that they are virtually redundant in Fr.

5 Description of DS-QSAT

In this section, we describe DS-QSAT, a QSAT-solver based on the machinery
of D-sequents.

5.1 High-level view

Pseudocode of DS-QSAT is given in Figure 2. DS-QSAT accepts a CNF formula
F , a partial assignment q to X where X = Vars(F), and a set of active D-
sequents Ω stating redundancy of some variables from X \Vars(q) in subspace
q. DS-QSAT returns CNF formula F that consists of the clauses of the initial
formula plus some resolvent clauses and a setΩ of D-sequents stating redundancy
of every variable of X \Vars(q) in subspace q. To check satisfiability of a CNF
formula, one needs to call DS-QSAT with q = ∅, Ω = ∅.

DS-QSAT is a branching procedure. If DS-QSAT cannot prove redundancy
of some variables in the current subspace, it picks one of such variables v and
branches on it. So DS-QSAT builds a binary search tree where a node corre-
sponds to a branching variable. We will refer to the first (respectively second)
assignment to v as the left (respectively right) branch of v. Although Boolean
Constraint Propagation (BCP) is not explicitly mentioned in Figure 2, it is in-
cluded into the pick variable procedure as follows. Let q be the current partial
assignment. Then a) preference is given to branching on variables of unit clauses
of Fq (if any); b) if v is a variable of a unit clause of C of Fq and v is picked for
branching, then the value satisfying C is assigned first.

As soon as a variable v is proved redundant in the current subspace q, a
D-sequent r → {v} is recorded where r is a subset of assignments of q. All the
clauses of F containing variable v are marked as redundant and ignored until v
becomes non-redundant again. This happens when a variable of Vars(r) changes
its value making the D-sequent r → {v} inactive in the current subspace.

As we mentioned in Section 3, if a clause C containing a variable v is falsified
after an assignment is made to v, DS-QSAT keeps making assignments to unas-
signed non-redundant variables. However, this happens only in the left branch
of v. If C is falsified in the right branch of v, DS-QSAT backtracks. A unit clause
C ′ gets falsified in the left branch only when DS-QSAT tries to satisfy another

unit clause C ′′ such that C ′ and C ′′ have the opposite literals of a variable v.
We will refer to the node of the search tree corresponding to v as a conflict one.
The number of conflict nodes DS-QSAT may have is not limited.

// F is a CNF formula
// q is an assignment to Vars(F)
// Ω is a set of active D-sequents

DS-QSAT (F ,q,Ω){
1 if (empty clause(F))

exit(unsat);
2 if (new falsif clause(C,F, q))
3 if (left branch(q))
4 Ω:=update Dseqs(Ω,F,C);
5 else {
6 Ω:=finish Dseqs(Ω,F,C);
7 return(F,Ω); }
8 Ω := monot vars Dseqs(Ω,F, q);
9 if (all vars assgn or redund(Ω,q);
10 if (no falsif clauses(F, q))

exit(sat);
11 else return(F,Ω);

- - - - - - - - - - - - - -
12 v := pick variable(F, q, Ω);
13 q0=q ∪ {(v = 0)};
14 (F,Ω0)←DS-QSAT (F ,Ω,q0);
15 (Ωsym , Ωasym) = split(Ω0, v);
16 if (Ωasym = ∅) return(F,Ω0);
17 recover vars clauses(F,Ωasym);
18 q1=q ∪ {(v = 1)};
19 (F,Ω1)←DS-QSAT (F ,Ωsym ,q1);

- - - - - - - - - - - - - -
20 (F,Ω)←merge(F, v, q, Ω0, Ω1);
21 return(F,Ω);}

Fig. 2. DS-QSAT procedure

DS-QSAT consists of three parts. In
Figure 2, they are separated by dashed
lines. In the first part, described in
Subsections 5.3 and 5.4 in more de-
tail, DS-QSAT checks for termination
conditions and builds D-sequents for
variables whose redundancy is obvious.
In the second part (Subsection 5.5),
DS-QSAT picks an unassigned non-
redundant variable v and splits the cur-
rent subspace into subspaces v = 0 and
v = 1. Finally, DS-QSAT merges the
results of branches v = 0 and v = 1
(Subsection 5.6).

5.2 Eager and lazy backtracking
(DPLL as a special case of
DS-QSAT)

Let q be the current partial assignment
to variables of X and variable v be the
variable assigned in q most recently. Let
v be assigned a first value (left branch).
Let C be a clause of F falsified after v
is assigned in q. In this case, procedure
update Dseqs of DS-QSAT (line 4 of
Figure 2), derives a D-sequent r → Z ′ .
Here r is the smallest subset of assign-
ments of q falsifying C and Z ′ is a sub-
set of the current set Z of the unas-
signed, non-redundant variables.

The version where Z ′ = ∅ i.e. where no D-sequent r → Z ′ is derived by
update Dseqs will be called DS-QSAT with lazy backtracking. In our theoretical
and experimental evaluation of DS-QSAT given in Sections 6 and 8 we used
the version with lazy backtracking. The version of DS-QSAT where Z ′ is always
equal to Z will be referred to as DS-QSAT with eager backtracking. DPLL is a
special case of DS-QSAT where the latter employs eager backtracking. In this
case, all unassigned variables are declared redundant and DS-QSAT immediately
backtracks without trying to prove redundancy of variables of Z in some other
ways.

5.3 Termination conditions

// q0=q∪{(v = 0)}; q1=q∪{(v = 1)};
// C0 = nil , C1 = nil if no clause of F
// is falsified by q0,q1 respectively

merge(F, v, q, Ω0, Ω1){
1 for (w ∈ (Vars(F) \ (Vars(q) ∪ v)) {
2 if (symmetric in v(Ω1, w))

continue;
3 S0 = extract Dseq(Ω0, w);
4 S1 = extract Dseq(Ω1, w);
5 S = join(S0, S1, v);
6 Ω1 = (Ω1 ∪ {S}) \ {S1} ;}

- - - - - - - - - - - - - - -
7 C0 = pick falsif clause(F, q0);
8 C1 = pick falsif clause(F, q1);
9 if ((C0 6= nil) and (C1 6= nil)) {
10 C = resolve(C0, C1, v);
11 F = F ∪ {C};
12 Ω1 = Ω1∪{falsif clause Dseq(C, v)};
13 else
14 Ω1 = Ω1∪{monot var Dseq(F, v, q)};
15 return(F,Ω1); }

Fig. 3. merge procedure

DS-QSAT reports unsatisfiability if
the current formula F contains an
empty clause (line 1 of Figure 2).
DS-QSAT reports satisfiability if no
clause of F is falsified by the current
assignment q and every variable of
F is either assigned in q or proved
redundant in subspace q (line 10).
Note that DS-QSAT uses slight op-
timization here by terminating be-
fore the D-sequent ∅ → X is derived
stating unconditional redundancy of
variables of X in ∃X[F].

If no termination condition is
met but every variable of F is as-
signed or proved redundant, DS-
QSAT ends the current call and re-
turns F and Ω (lines 7,11). In con-
trast to operator return, the opera-
tor exit used in lines 1,10 eliminates
the entire stack of nested calls of
DS-QSAT.

5.4 Derivation of atomic
D-sequents

Henceforth, for simplicity, we will assume that DS-QSAT derives D-sequents
of the form r → {v} i.e. for single variables. A D-sequent r → Z is then
represented as |Z| different D-sequents r → {v} , v ∈ Z.

In the two cases below, variable redundancy is obvious. Then DS-QSAT de-
rives D-sequents we will call atomic. The first case, is when clause of F is falsified
by the current assignment q. This kind of D-sequents is derived by procedures
update Dseqs (line 4) and finish Dseqs(line 6). Let v be the variable assigned in
q most recently. Let C be a clause of F falsified after the current assignment to
v is made. If v is assigned a first value (left branch), then, as we mentioned in
Subsection 5.2, for some unassigned variables w1, . . . , wm that are not proved
redundant yet, one can build D-sequents r → {w1} ,...,r → wm . Here r is the
shortest assignment falsifying C. So update Dseqs may leave some unassigned
variables non-redundant. On the contrary, finish Dseqs is called in the right
branch of v. In this case, for every unassigned variable wi that is not proved
redundant yet, D-sequent r → {wi} is generated. So on exit from finish Dseqs,
every variable of F is either assigned or proved redundant.

D-sequents of monotonic variables are the second case of atomic D-sequents.
They are generated by procedure monot vars Dseqs (line 8) and by procedure
monot var Dseq called when DS-QSAT merges results of branches (line 14 of Fig-
ure 3). Let q be the current partial assignment and v be a monotone unassigned

variable of F . Assume for the sake of clarity, that only clauses with positive
polarity of v are present in Fq. This means that every clause of F with literal v
is either satisfied by q or contains a variable w proved redundant in Fq. Then
DS-QSAT generates D-sequent r → {v} where r is formed from assignments
of q as follows. For every clause C of F with literal v assignment r a) contains
an assignment satisfying C or b) contains all the assignments of s such that
D-sequent s → {w} is active and w is a variable of C. Informally, r contains a
set of assignments under which variable v becomes monotone.

5.5 Branching in DS-QSAT

When DS-QSAT cannot prove redundancy of some unassigned variables in the
current subspace q, it picks a non-redundant variable v for branching (line 12
of Figure 2). First, DS-QSAT calls itself with assignment q0 = q ∪ {(v = 0)}.
(Figure 2 shows the case when assignment v = 0 is explored in the left branch
but obviously the assignment v = 1 can be explored before v = 0.) Then DS-
QSAT partitions the returned set of D-sequents Ω0 into Ωsym and Ωasym .

The set Ωsym consists of the D-sequents r → {w} of Ω0 such that v 6∈
Vars(r). The D-sequents of Ωsym remain active in the branch v = 1. The set
Ωasym consists of the D-sequents r → {w} such that r contains assignment (v =
0). The D-sequents of Ωasym are inactive in the subspace v = 1 and the variables
whose redundancy is stated by those D-sequents reappear in the right branch.
If Ωasym = ∅, there is no reason to explore the right branch. So, DS-QSAT just
returns the set of D-sequents Ω0 (line 16). Otherwise, DS-QSAT recovers the
variables and clauses that were marked redundant after D-sequents from Ωasym

were derived (line 17) and calls itself with partial assignment q1 = q∪{(v = 1)}.

5.6 Merging results of branches

After both branches of variable v has been explored, DS-QSAT merges the results
by calling the merge procedure (line 20). The pseudocode of merge is shown in
Figure 3. DS-QSAT backtracks only when every unassigned variable is proved
redundant in the current subspace. The objective of merge is to maintain this
invariant by a) replacing the currently D-sequents that depend on the branching
variable v with those that are symmetric in v; b) building a D-sequent for the
branching variable v itself.

The merge procedure consists of two parts separated in Figure 3 by the dotted
line. In the first part, merge builds D-sequents for the variables of X \(Vars(q)∪
{v}). In the second part, it builds a D-sequent for the branching variable. In the
first part, merge iterates over variables X \ (Vars(q)∪ {v}). Let w be a variable
of X \ (Vars(q) ∪ {v}). If the current D-sequent for w (i.e. the D-sequent for w
from the set Ω1 returned in the right branch) is symmetric in v, then there is no
need to build a new D-sequent (line 2). Otherwise, a new D-sequent S for w that
does not depend on v is generated as follows. Let S0 and S1 be the D-sequents
for variable w contained in Ω0 and Ω1 respectively (lines 3,4). That is S0 and

S1 were generated for variable w in branches v = 0 and v = 1. Then D-sequent
S is produced by joining S0 and S1 at variable v (line 5).

Fig. 4. Search tree built by DS-QSAT

Generation of a D-sequent for
the variable v itself depends on
whether node v (i.e the node of the
search tree corresponding to v) is a
conflict one. If so, F contains clauses
C0 and C1 that have variable v and
are falsified by q0 and q1 respec-
tively. In this case, to make variable
v redundant merge generates the re-
solvent C of C0 and C1 on variable
v and adds C to F (lines 10,11).
Then D-sequent r → {v} is gener-
ated where r is the shortest assign-
ment falsifying clause C (line 12).

If node v is not a conflict one,
this means that clause C0 and/or
clause C1 does not exist. Suppose,
for example, that no clause C0 con-
taining variable v is falsified by q0.

This means that every clause F with the positive literal of v is either satisfied
by q or contains a variable redundant in subspace q. In other words, v is mono-
tone in Fq after removing the clauses with redundant variables. Then an atomic
D-sequent is generated by merge (line 14) as described in Subsection 5.4.

Example 3. Here we show how DS-QSAT with lazy backtracking operates when
solving the CNF formula F introduced in Example 1. Formula F consists of
8 clauses: C1 = x1 ∨ x3, C2 = x2 ∨ x3, C3 = x1 ∨ x2 ∨ x3, C4 = x2 ∨ x3,
C5 = x1 ∨ x4 ∨ x5, C6 = x4 ∨ x5, C7 = x4 ∨ x5, C8 = x1 ∨ x4 ∨ x5. Figure 4
shows the search tree built by DS-QSAT. The ovals specify the branching nodes
labeled by the corresponding branching variables. The label 0 or 1 on the edge
connecting two nodes specifies the value made to the variable of the higher node.
The rectangles specify the leaves of the search tree. The rectangle SAT specifies
the leaf where DS-QSAT reported that F is satisfiable.

Every edge of the search tree labeled with value 0 (respectively 1) also shows
the set of D-sequents Ω0 (respectively Ω1) derived when the assignment corre-
sponding to this edge was made. The D-sequents produced by DS-QSAT are
denoted in Figure 4 as S1, . . . , S5. The values of S1, . . . , S5 are given in Fig-
ure 5. When representing Ω0 and Ω1, we use the symbol ’|’ to separate D-
sequents derived before and after a call of DS-QSAT. Consider for example, the
set Ω0 = {|S3, S4, S5} on the path x1 = 0, x2 = 0. The set of D-sequents listed
before ’|’ is empty in Ω0. This means that no D-sequents had been derived when
DS-QSAT was called with q = (x1 = 0, x2 = 0). On the exit of this invocation
of DS-QSAT, D-sequents S3, S4, S5 were derived. We use ellipsis after symbol

’|’ for the calls of DS-QSAT that were not finished by the time F was proved
satisfiable.

Below, we use Figures 4 and 5 to illustrate various aspects of the work of
DS-QSAT.

Leaf nodes correspond to subspaces where every variable is either assigned
or proved redundant. For example, the node on the path (x1 = 0, x2 = 0, x3 =
0, x4 = 0) is a leaf because x1, x2, x3, x4 are assigned and x5 is proved redundant.

Atomic D-sequents. D-sequents S1, S2, S4, S5 are atomic. For example, the
D-sequent S1 is derived in subspace x1 = 0, x2 = 0, x3 = 0, x4 = 0 due to
x5 becoming monotone. S1 is equal to (x1 = 0, x4 = 0) → {s5} because only
assignments x1 = 0, x4 = 0 are responsible for the fact that x5 is monotone.

Branching in the presence of a conflict. On the path x1 = 0, x2 = 0, clauses
C3 and C4 turned into unit clauses x3 and x3 respectively. So no matter how
first assignment to x3 was made, one of these two clauses would get falsified.
DS-QSAT made first assignment x3 = 0 and falsified clause C3. Since this was
the left branch of x3, DS-QSAT proceeded further to branch on variable x4.

Merging results of branches. When branching on variable x4, DS-QSAT de-
rived sets Ω0 = {S1} and Ω1 = {S2} where S1 is equal to (x1 = 0, x4 = 0) →
{x5} and S2 is equal to (x1 = 0, x4 = 1)→ {x5}. DS-QSAT merged the results
of branching by joining S1 and S2 at the branching variable x4. The resulting
D-sequent S3 equal to (x1 = 0)→ {x5} does not depend on x4.

D-sequents for branching variables. DS-QSAT generated D-sequents for branch-
ing variables x4 and x3. Variable x4 was monotone in subspace x1 = 0, x2 =
0, x3 = 0 because the clauses C5,C6 containing the positive literal of x4 were
not present in this subspace. C5 was satisfied by assignment x1 = 0 while C6

contained variable x5 whose redundancy was stated by D-sequent S3 equal to
(x1 = 0)→ {x5}. So the D-sequent S4 equal to (x1 = 0)→ {x4} was derived.

Variable x3 was not monotone in subspace q = (x1 = 0, x2 = 0) because, in
this subspace, clauses C3 and C4 turned into unit clauses x3 and x3 respectively.
So first, DS-QSAT made variable x3 redundant by adding to F clause C9 =
x1 ∨ x2 obtained by resolution of C3 and C4 on x3. Note that C9 is falsified
in subspace q. So the D-sequent S5 equal to (x1 = 0, x2 = 0) → {x3} was
generated.

Reduction of the size of right branches. In the left branch of node x2, the
set of D-sequents Ω0 = {S3, S4, S5} was derived. D-sequent S5 equal to (x1 =
0, x2 = 0) → {x3} is not symmetric in x2 (i.e. depends on x2). On the other
hand, S3 and S3 stating redundancy of x4 and x5 are symmetric in x2. So only
D-sequent S5 was inactive in the right branch x2 = 1 . So only variable x3

reappeared in this branch while x4,x5 remain redundant.
Termination. In subspace q = (x1 = 0, x2 = 1, x3 = 1), every variable of

F was assigned or redundant and no clause of F was falsified by q. So DS-
QSAT terminated reporting that F was satisfiable.

5.7 Correctness of DS-QSAT

S1 : (x1 = 0, x4 = 0)→ {x5}
S2 : (x1 = 0, x4 = 1)→ {x5}
S3 : (x1 = 0)→ {x5}
S4 : (x1 = 0)→ {x4}
S5 : (x1 = 0, x2 = 0)→ {x3}

Fig. 5. D-sequents of Figure 4

The proof of correctness of DS-QSAT can
be performed by induction on the number
of derived D-sequents. Since such a proof is
very similar to the proof of correctness of
the quantifier elimination algorithm we gave
in [8], we omit it here. Below we just list
the facts on which this proof of correctness
is based.

• DS-QSAT derives correct atomic D-sequents.
• D-sequents obtained by the join operation are correct.
• DS-QSAT correctly reports satisfiability when every clause is either satisfied

or proved redundant in the current subspace because D-sequents stating
redundancy of variables are correct.

• New clauses added to the current formula are obtained by resolution and so
are correct. So DS-QSAT correctly reports unsatisfiability when an empty
clause is derived.

6 DS-QSAT on Compositional Formulas

In this section, we consider the performance of DS-QSAT on compositional for-
mulas. We will say that a satisfiability checking algorithm is compositional
if its complexity is linear in the number of subformulas forming a compositional
formula. We prove that DS-QSAT with lazy backtracking is compositional and
argue that DPLL-based SAT-solvers are not.

We say that a formula F (X) is compositional if it can be represented
as F1(X1) ∧ . . . ∧ Fk(Xk) where Xi ∩ Xj = ∅, i 6= j. The motivation for our
interest in such formulas is as follows. As we mentioned in Section 3, a practical
formula F typically can be represented as F1(X1, Y1)∧ . . .∧Fk(Xk, Yk) where Xi

are internal variables of Fi and Yi are communication variables. One can view
compositional formulas as a degenerate case where |Yi| = 0, i = 1, . . . k and so
Fi do not talk to each other. Intuitively, an algorithm that does not scale well
even when |Yi| = 0 will not scale well when |Yi| > 0.

From now on, we narrow down the definition of compositional for-
mulas as follows. We will call formula F1(X1) ∧ . . . ∧ Fk(Xk) compositional if
Xi ∩ Xj = ∅, i 6= j and all subformulas Fi, i = 1, . . . , k are equivalent modulo
variable renaming/negation. That is Fj can be obtained from Fi by renaming
some variables of Fi and then negating some variables of the result of variable
renaming.

Proposition 2. Let F (X) = F1(X1)∧ . . .∧Fk(Xk) be a compositional formula.
Let T be the search tree built by DS-QSAT with lazy backtracking when checking
the satisfiability of F . The size of T is linear in k no matter how decision vari-
ables are chosen. (A variable v ∈ X is a decision one if no clause of F that is
unit in the current subspace contains v.)

Proof. We will call a D-sequent r → {v} limited to subformula Fi if (Vars(r)∪
{v}) ⊆ Vars(Fi). The idea of the proof is to show that every D-sequent derived
by DS-QSAT is limited to a subformula Fi. Then the size of T is limited by
|X| · 2d where d = |Vars(F1)| = . . . = |Vars(Fk)|. Indeed, when DS-QSAT flips
the value of a variable v, only variables whose D-sequents depend on v reappear
in the right branch of v. Since all D-sequents derived by DS-QSAT are limited
to a subformula, the D-sequents depending on v are limited to subformula Fi

such that v ∈ Vars(Fi). This means that the number of variables that reappear
in the right branch is limited by d. So the number of nodes of a right branch of
T cannot be larger than 2d. Hence the size of T cannot be larger than |X| · 2d
where |X| is the maximum possible depth of T .

Now let us prove that every D-sequent derived by DS-QSAT is indeed lim-
ited to a subformula Fi. Since subformulas Fi,Fj , i 6= j do not share variables,
for any non-empty resolvent clause C, it is true that Vars(C) ⊆ Vars(Fi) for
some i. Then any atomic D-sequent built for a monotone variable v (see Subsec-
tion 5.4) is limited to the formula Fi such that v ∈ Vars(Fi). DS-QSAT builds
an atomic D-sequent of another type when a clause C produced by resolution
on branching variable v is falsified in the current subspace. This D-sequent
has the form r → {v} where r is the shortest assignment falsifying C. Since
(Vars(C) ∪ {v}) ⊆ Vars(Fi) where Fi is the subformula containing v, such a
D-sequent is limited to Fi. Finally, a D-sequent obtained by joining D-sequents
limited to Fi is limited to Fi �

Let SAT ALG be a DPLL-based algorithm with clause learning. SAT ALG can-
not solve compositional formulas F1∧ . . .∧Fk in the time linear in k for an arbi-
trary choice of decision variables. Since every resolvent clause can have only vari-
ables of one subformula Fi, the total number of clauses generated by SAT ALG is
linear in k. However, the time SAT ALG has to spend to derive one clause is
also linear k. When a conflict occurs, SAT ALG backtracks to the decision level
that is relevant to the conflict and is the closest to the conflict level. In the worst
case, SAT ALG has to undo assignments of all k subformulas. So in the worst
case, the complexity of SAT ALG is quadratic in k.

Notice that the DP procedure is compositional because clauses of different
subformulas cannot be resolved with each other. However, as we mentioned in
the introduction, this procedure is limited to one global variable order in which
variables are eliminated. This limitation is the main reason why the DP proce-
dure is outperformed by DPLL-based solvers. On the contrary, DS-QSAT is a
branching algorithm that can use different variable orders in different branches
(and DPLL-based SAT-solvers are a special case of DS-QSAT). So the machin-
ery of D-sequents allows one to enjoy the flexibility of branching still preserving
the compositionality of the algorithm.

7 Skipping Right Branches

DS-QSAT (F ,q,Ω){
.....

16 if (Ωasym = ∅) return(F,Ω0);
16.1 if (decision var(q0, v, F))
16.2 if (no new falsif clause(q0, F)){
16.3 S := branch var Dseq(F, v, q);
16.4 Ω:= recomp Dseqs(Ω0, S, q0, F);
16.5 return(F,Ω ∪ {S}); }
17 recover vars clauses(F,Ωasym);

....
21 return(F,Ω);}

Fig. 6. modified DS-QSAT procedure

In this section, we describe an opti-
mization technique that can be used
for additional pruning the search
tree built by DS-QSAT. We will re-
fer to this technique as SRB (Skip-
ping Right Branches). The essence of
SRB is that in some situations, DS-
QSAT can use the D-sequents pro-
duced in the left branch of a variable
v to build D-sequents that do not de-
pend on v without exploration of the
right branch of v.

This section is structured as follows. Subsection 7.1 gives pseudocode of the
modification of DS-QSAT with SRB. Generation of D-sequents that do not de-
pend on the current branching variable is explained in Subsection 7.2. Some
notions introduced in [8] are recalled in Subsection 7.3. These notions are used
in Subsection 7.4 to prove that the D-sequents derived by the modified part of
DS-QSAT are correct.

7.1 Modified DS-QSAT

The modification of DS-QSAT due to adding the SRB technique is shown in
Figure 6 (lines 16.1-16.5). SRB works as follows. Suppose that DS-QSAT has
backtracked from the the left branch of v. Let q be the set of assignments made
by DS-QSAT before variable v. We will follow the assumption of Figure 2 that
the first value assigned to v is 0. In such a case, DS-QSAT of Figure 2 just
explores the right branch v = 1 (line 19). The essence of DS-QSAT with SRB
is that if a condition described below is satisfied, the right branch is skipped.
Instead, DS-QSAT does the following. First, it builds a correct D-sequent of the
branching variable v depending only on assignments to q (line 16.3). Then, every
D-sequent r → {w} of Ω0 where r contains assignment (v = 0) is recomputed
(line 16.4).

Let q0 denote assignment q extended by (v = 0). The condition under which
the SRB technique is applicable is that no clause of F having literal v (i.e. the
positive literal of variable v) is falsified by q0. This means that every clause with
literal v is either satisfied by q or has a variable that is redundant in subspace
q0. This condition is checked on line 16.2.

The SRB technique is used in the modification of DS-QSAT shown in Figure 6
only if v is a decision variable (line 16.1). The reason is as follows. Suppose that
this is not the case, i.e. v is in a unit clause C of Fq. In this case, in the left
branch (respectively right branch), DS-QSAT assigns v the value that satisfies C
(respectively falsifies C). But since DS-QSAT immediately backtracks if a new
clause gets falsified in the right branch, pruning the left branch in this case does
not save any work.

7.2 D-sequents generated by modified DS-QSAT

Let F (X) be a CNF formula. Let q be a partial assignment to variables of X.
Let v be a variable of X \Vars(q). Let q0 denote the assignment q ∪ {(v = 0)}.
Let Ω0 be a set of D-sequents active in the subspace specified by q0. Let every
clause of F that has literal v is either satisfied by q or has a variable whose
redundancy is stated by a D-sequent of Ω0.

The procedure branch var Dseq of Figure 6 generates D-sequent r → {v} such
that for every clause C containing literal v

• C is satisfied by r or

• C contains a variable w whose redundancy is stated by a D-sequent s → {w} of
Ω0 and s ≤ (r ∪ {(v = 0)}.

The procedure recomp Dseqs of Figure 6 works as follows. For every D-
sequent e → {w} of Ω0 such that e contains assignment (v = 0), recomp Dseqs
generates a D-sequent e′ → {w} . The assignment e′ is obtained from e by re-
placing assignment (v = 0) with the assignments of r of the D-sequent r → {v} gen-
erated for the branching variable v.

7.3 Recalling some notions

In this subsection, we recall some notions introduced in [8] that are used in
the proofs of Subsection 7.4. Let F (X) be a CNF formula. We will refer to a
complete assignment to variables of X as a point. A point p is called a Z-
boundary point of F if

• p falsifies F

• every clause of F falsified by p contains a variable of Z

• Z is minimal i.e. no proper subset of Z satisfies the property above

A Z-boundary point p is called Y -removable in F where Z ⊆ Y ⊆ X if p
cannot be turned into an assignment satisfying F by changing values of variables
of Y . If a Z-boundary point is Y -removable, then one can produce a clause C
that is a) falsified by p; b) implied by F and c) does not have any variables of
Z. After adding C to F , p is not a Z-boundary point anymore, hence the name
removable.

We will call a Y -removable point just removable if Y = X. It is not hard
to see, that every Z-boundary point of a satisfiable (respectively unsatisfiable)
formula F is unremovable (respectively removable).

Proposition 3. Let F (X) be a CNF formula and q be a partial assignment to
variables of X. A set of variables Z is not redundant in ∃X[F] in subspace q, if
and only if there is a Z-boundary point of Fq that is removable in F .

The proof of this proposition is given in [8].

7.4 Correctness of D-sequents generated by modified DS-QSAT

Proposition 4. The D-sequent generated by procedure branch var Dseq of Fig-
ure 6 described in Subsection 7.2 is correct.

Proof. Assume the contrary i.e. D-sequent r → {v} does not hold. From Propo-
sition 3. it follows that there is a {v}-boundary point p such that r ≤ p. This also
means that F is unsatisfiable. Indeed, if F is a satisfiable, then every variable of
F is already redundant and so any D-sequent holds r → {v} .

Let us assume that v is equal to 0 in p. If v equals 1 in p, one can always
flip the value of v obtaining the point that is either a {v}-boundary point or a
satisfying assignment (Lemma 1 of [8]). Since the assumption we made implies
that F is unsatisfiable, flipping the value of v produces a {v}-boundary point.

Let G be the set clauses falsified by point p. Let C be a clause of G. Since p is
a {v}-boundary point, then C contains literal v. Note that under the assumption
of the proposition to be proved, if a clause of F with literal v is not satisfied
by r, this clause has to contain a redundant variable w such that D-sequent
s → {w} of Ω0 holds and s ≤ (r ∪ {(v = 0)}. Let Z be a minimal set of
variables of X that are present in clauses of G and whose redundancy is stated
by D-sequents of Ω0. Then p is a Z-boundary point of F . Since F is unsatisfiable,
this point is removable. Then from Proposition 3 it follows that the variables of
Z are not in redundant in Fr′ where r′ = r ∪ {(v = 0)}. Contradiction.

Proposition 5. The D-sequents generated by the recomp Dseqs procedure of
Figure 6 described in Subsection 7.2 are correct.

Proof. Assume the contrary i.e. the D-sequent e′ → {w} obtained from a D-
sequent e → {w} of Ω0 does not hold. This means that there is a {w}-boundary
point p such that e′ ≤ p. It also means that F is unsatisfiable. Let us consider
the following two cases.

• Variable v is assigned 0 in p. Then there is a removable {w}-boundary point
in subspace e and so the D-sequent e → {w} of Ω0 does not hold. Contra-
diction.

• Variable v is assigned 1 in p. Let p′ be the point obtained from p by flipping
the value of v. Let G and G′ be the clauses of F falsified by p and p′

respectively. Denote by G′′ the set of clauses G′ \G. This set consists only of
clauses having literal v because these are the only new clauses that may get
falsified after flipping the value of v from 1 to 0. Then using reasoning similar
to that of Proposition 4, one concludes that every clause of G′′ contains a
variable u such that D-sequent s → {u} of Ω0 holds and s ≤ (r∪{(v = 0)})
where r is the assignment of the D-sequent r → {v} generated for the
branching variable v. Let Z be a minimal set of such variables. Then any
clause of G′ either contains variable w or a variable of Z. Hence p′ is a
(Z ∪ {w})-boundary point. Since our assumption implies unsatisfiability of
F , this boundary point is removable. Let g be equal to e′ ∪ {(v = 0)}. Note
that since r ≤ e′ and g contains assignment (v = 0) every variable of Z is

redundant in Fg. On the one hand, since e ≤ g, variable w is redundant in
Fg as well. So the variables of Z ∪ {w} are redundant in Fg. On the other
hand, g ≤ p′ and so Fg contains a (Z ∪ {w})-boundary point p′ that is
removable in F . From Proposition 3, it follows that variables of (Z ∪ {w})
are not redundant in Fg. Contradiction.

8 Experiments

In this section, we compare DS-QSAT with some well-known SAT-solvers on two
sets of compositional and non-compositional formulas. In experiments, we used
the optimization technique described in Section 7. Although, using this technique
was not crucial for making our points, it allowed to improve the runtimes of DS-
QSAT.

Obviously, this comparison by no way is comprehensive. Our objective here
is as follows. In Subsection 5.2, we argued that DPLL-based SAT-solvers is a
special case DS-QSAT when it uses eager backtracking. One may think that
due to great success of modern SAT-solvers, this version of DS-QSAT is simply
always the best. In this section, we show that is not the case. We give an example
of meaningful formulas where the opposite strategy of lazy backtracking works
much better. This result confirms the theoretical prediction of Section 6.

Table 1. Solving compositional formulas

#copi- #vars #clauses minisat rsat picosat ds-qsat
es ×103 ×103 ×103 (s.) (s.) (s.) (s.)

5 80 170 9.1 5.1 4.2 0.7
10 160 340 110 28 20 1.6
20 320 680 917 143 80 3.3
40 640 1,360 > 1hour 621 305 7.2
80 1,280 2,720 > 1hour 2,767 1,048 15

The results of experiments
with the first set of formulas
are shown in Tables 1, 2 and
3 This set consists of composi-
tional formulas F1(X1) ∧ . . . ∧
Fk(Xk) whereXi∩Xj = ∅. Every
subformula Fi is obtained by re-
naming/negating variables of the
same satisfiable CNF formula de-

scribing a 2-bit multiplier. Since every subformula Fi is satisfiable, then formula
F1 ∧ . . . ∧ Fk is satisfiable too for any value of k.

Table 2. Statistics of Picosat and DS-
QSAT on compositional formulas

#co- picosat ds-sat
pies #cnfl. #dec. #impl. #cnfl. #dec. #impl.
×103 ×103 ×106 ×106 ×103 ×103 ×103

5 0.8 3 12 0.8 25 62
10 1.5 10 39 1.5 50 122
20 3.0 40 144 3.2 100 245
40 5.5 138 489 6.5 199 493
80 9.7 443 1,533 13.0 399 985

In the DIMACS format that we
used in experiments, a variable’s name
is a number. In the formulas of Ta-
ble 1, the variables were named so
that the DIMACS names of vari-
ables of different subformulas Fi in-
terleaved. The objective of negating
variables was to make sure that if an
assignment s to the variables of Xi

satisfies Fi, the same assignment of
the corresponding variables of Xj is

unlikely to satisfy Fj .
In Table 1, we compare DS-QSAT with Minisat (version 2.0), RSat (ver-

sion 2.01) and Picosat (version 913) on compositional formulas. These formu-

las are different only in the value of k. The first three columns of this table
show the value of k, the number of variables and clauses in thousands. The last
four columns show the time taken by Minisat, RSat,Picosat and DS-QSAT to
solve these formulas (in seconds). DS-QSAT significantly outperforms these three
SAT-solvers. As predicted by Proposition 2, DS-QSAT shows linear complexity.
On the other hand, the complexity of each of the three SAT-solvers is propor-
tional to m · k2 where m is a constant.

Table 2 provides some statistics of the performance of Picosat and DS-
QSAT on the formulas of Table 1. The second, third and fourth columns give the
number of conflicts (in thousands), number of decision and implied assignments
(in millions) for Picosat. In the following three columns, the number of conflict
nodes of the search tree, number of decision and implied assignments (in thou-
sands) are given for DS-QSAT. The results of Table 2 show that the numbers
of conflicts of Picosat and those of conflict nodes of DS-QSAT are compara-
ble. Besides, for both programs the dependence of these numbers on k is linear.
However, the numbers of decision and implied assignments made by Picosat and
DS-QSAT differ by three orders of magnitude. Most importantly, the number
of assignments made by DS-QSAT (both decision and implied) grows linearly
with k. On the other hand, the dependence of the number of assignments made
by Picosat on k is closer to quadratic for both decision and implied assignments.

Table 3 provides some additional statistics characterizing the performance of
DS-QSAT on the formulas of Table 1. The second column specifies the maximum
number of conflict variables that appeared on a path of the search tree. A variable
v is a conflict one if after making an assignment to v a new clause of F gets
falsified. This column shows that DS-QSAT kept branching even after thousands
of conflicts occurred on the current path.

Table 3. More statistics
of DS-QSAT for compo-
sitional formulas

#vars max #assgn. max
×103 confl vars in right

vars sol. (%) branch
80 505 2 14
160 1,027 0.1 14
320 1,956 1 14
640 3,795 1 14

1,280 7,351 0.2 14

DS-QSAT reports that a formula is satisfiable
when the current assignment q does not falsify a
clause of F and every variable of F that is not as-
signed in q is proved redundant. The third column
of Table 3 gives the value of |Vars(q)|/|Vars(F)| (in
percent) at the time DS-QSAT proved satisfiability.
Informally, this value shows that DS-QSAT estab-
lished satisfiability of F knowing only a very small
fragment of a satisfying assignment. The last col-
umn of Table 3 shows the maximum number of non-
redundant unassigned variables that appeared in a
right branch of the search tree. The number of vari-

ables in subformulas Fi we used in experiments was equal to 16. As we showed in
Proposition 2, in the search tree built by DS-QSAT for a compositional formula,
the number of free variables that may appear in a right branch is bounded by
|V (Fi)| i.e by 16. Our experiments confirmed that prediction. The fact that the
size of right branches is so small means that when solving a formula F of Table 1,
DS-QSAT dealt only with very small fragments of F .

Table 4. Solving non-compositional formulas

#sub- #vars minisat rsat picosat ds-qsat ds-qsat*
form. ×103 (s.) (s.) (s.) (s.) (s.)
×103

5 75 5.0 3.2 3.6 5.1 0.4
10 150 34 21 15 13 1.0
20 300 548 79 57 30 2.3
40 600 >1hour 430 231 57 5.9
80 1,200 >1hour 1,869 859 127 19

Generally speaking, the prob-
lems with compositional formu-
las can be easily fixed by solving
independent subformulas sepa-
rately. Such subformulas can be
found in linear time by looking
for strongly connected compo-
nents of a graph relating clauses
that share a variable. To elimi-
nate such a possibility we con-

ducted the second experiment. In this experiment, we compared DS-QSAT and
the three SAT-solvers above on non-compositional formulas. Those formulas were
obtained from the same subformulas Fi obtained from a CNF formula specify-
ing a 2-bit multiplier by renaming/negating variables. However, now, renaming
was done in such a way that every pair of subformulas Fi,Fi+1, i = 1, . . . , k − 1
shared exactly one variable. So now formulas F = F1(X1)∧ . . .∧Fk(Xk) we used
in experiments did not have any independent subformulas. Table 4 shows the
results of the second experiment (all formulas are still satisfiable). The first two
columns of Table 4 specify the value of k (i.e. the number of subformulas Fi)
and the number of variables of F in thousands. The next four columns give the
runtimes of Minisat, RSat, Picosat and DS-QSAT in seconds. These runtimes
show that DS-QSAT still outperforms these three SAT-solvers and scales better.

The last column of Table 4 illustrates the ability of D-sequents to take into ac-
count formula structure. In this column, we give the runtimes of DS-QSAT when
it first branched on communication variables (i.e. ones shared by subformulas
Fi). So in this case, DS-QSAT had information about formula structure. The re-
sults show that the knowledge of communication variables considerably improved
the performance of DS-QSAT.

Table 5. Statistics of DS-QSAT for
non-compositional formulas
#vars max #assgn. max max max
×103 confl vars in right right right

vars sol. branch branch branch*
(%) (%)

75 461 4 338 0.5 11
150 903 1 475 0.3 11
300 1,765 1 571 0.2 11
600 3,512 2 773 0.1 11

1,200 7,029 1 880 0.1 11

Table 5 gives some statistics describ-
ing the performance of DS-QSAT on the
formulas of Table 4. The second and
third columns of Table 5 are similar to
the corresponding columns of Table 3.
A lot of conflicts occurred on a path of
the search tree built by DS-QSAT and
by the time DS-QSAT reported satisfia-
bility, only a small fragment of a satisfy-
ing assignment was known. The fourth
column shows the maximum size of a

right branch of the search tree built by DS-QSAT (in terms of the number of
non-redundant variables). The next column gives the ratio of the maximum
size of a right branch and the total number of variables (in percent). Notice,
that now the maximum size of right branches is much larger than in the case
of compositional formulas. Nevertheless, again, DS-QSAT dealt only with very
small fragments of the formula. The last column gives the maximum size of

right branches when DS-QSAT first branched on communication variables. Such
structure-aware branching allowed DS-QSAT to dramatically reduce the size of
right branches, which explains why DS-QSAT had much faster runtimes in this
case (shown in the last column of Table 4).

Although DS-QSAT performed well on the formulas we used in experiments,
lazy backtracking is too extreme to be successful on a more general set of bench-
marks. Let F be a formula to be checked for satisfiability. Let a clause C of F
be falsified by the current assignment and Z be the set of unassigned variables.
At this point, any variable v ∈ Z is redundant due to C being falsified. Lazy
backtracking essentially assumes that by keeping branching in the presence of
the conflict one will find a better explanation of redundancy of v. A less dras-
tic approach is as follows. Once clause C gets falsified, a D-sequent r → Z ′ is
derived where r is the shortest assignment falsifying C and Z ′ consists of some
variables of Z that are related to clause C. For example, if C is in a subformula
G of F specifying a design block it may make sense to form Z ′ of the unassigned
variables of G.

9 Background

In 1960, Davis and Putnam introduced a QSAT-solver that is now called the DP
procedure [3]. Since it performed poorly even on small formulas, a new algorithm
called the DPLL procedure was introduced in 1962 [2]. Two major changes
were made in the DPLL procedure in comparison to the DP procedure. First,
the DPLL procedure employed branching and could use different variable order
in different branches. Second, it changed the semantics of variable elimination
that the DP procedure was based on. Instead, the semantics of elimination of
unsatisfiable assignments was introduced. The DPLL procedure backtracks as
soon as it finds out that the current partial assignment cannot be extended
to a satisfying assignment. Such eager backtracking is a characteristic feature
of SAT-solvers i.e. algorithms proving satisfiability by producing a satisfying
assignment.

The first change has been undoubtedly a great step forward. The DP proce-
dure eliminates variables in one particular global order which makes this proce-
dure very inefficient. The second change however has its pros and cons. On the
one hand, DPLL has a very simple and natural semantics, which facilitated the
great progress in SAT-solving seen in the last two decades [15,18,16,11,6,17,1].
On the other hand, as we argued before, the necessity to generate a satisfying
assignment to prove satisfiability deprived DPLL-based SAT-solvers of powerful
transformations preserving equisatisfiability rather than functional equivalence.

Generally speaking, transformations preserving equisatisfiability are routinely
used by modern algorithms, but their usage is limited one way or another. For
example such transformations are employed in preprocessing where some vari-
ables are resolved out [5] or redundant clauses are removed [13]. However, such
transformations have a limited scope: they are used just to simplify the original
formula that is then passed to a DPLL-based SAT-solver. Second, transforma-

tions preserving equisatisfiability are ubiquitous in algorithms on circuit formulas
e.g. in ATPG algorithms [4]. Such algorithms often exploit the fact that a gate
becomes unobservable under some partial assignment r. In terms of variable re-
dundancy, this means that the variable v specifying the output of this gate is
redundant in subspace r. Importantly, this redundancy is defined with respect
to a formula where assignments to non-output variables do not matter. Such
variables can be viewed as existentially quantified and the discarding of clauses
containing redundant non-output variables does not preserve functional equiva-
lence. However, such transformations are restricted only to formulas generated
off circuits and do not form a complete calculus. Typically, these transformations
are used in the form of heuristics.

The machinery of D-sequents was introduced in [8,9]. In turn, the notion
of D-sequents and join operation were inspired by the relation between variable
redundancy and boundary point elimination [10,12]. In [8,7], we formulated a
method of quantifier elimination called DDS (Derivation of D-Sequents). Since
QSAT is a special case of the quantifier elimination problem, DDS can be used
to check satisfiability. However, since DDS employs eager backtracking, such
an algorithm is a SAT-solver rather than a QSAT-solver. In particular, as we
showed in [8], the complexity of DDS on compositional formulas is quadratic in
the number k of subformulas, while the complexity of DS-QSAT is linear in k.

10 Conclusion

The results of this paper lead to the following three conclusions.

1) DPLL-based procedures have scalability issues. These issues can be observed
even on compositional formulas i.e. on formulas with a very simple structure.
Arguably, the root of the problem, is that DPLL-procedures are designed to
prove satisfiability by producing a satisfying assignment. This deprives such
procedures from using powerful transformations that preserve equisatisfiability
rather than functional equivalence.

2) D-sequents are an effective tool for building scalable algorithms. In particular,
the algorithm DS-QSAT we describe in the paper scales well on compositional
formulas. The reason for such scalability is that DS-QSAT scarifies the ability to
generate satisfying assignments to tap into the power of transformations preserv-
ing only equisatisfiability. The essence of transformations used by DS-QSAT is
to discard large portions of the formula that are proved to be redundant in
the current subspace. The results of experiments with DS-QSAT on two simple
classes of compositional and non-compositional formulas show the big promise
of algorithms based on D-sequents.

3) In this paper, we have only touched the tip of the iceberg. A great deal of
issues needs to be resolved to make QSAT-solving by D-sequents practical.

11 Acknowledgment

This work was funded in part by NSF grant CCF-1117184.

References

1. A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
2. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.

Communications of the ACM, 5(7):394–397, July 1962.
3. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the ACM, 7(3):201–215, July 1960.
4. R. Drechsler, T. Juntilla, and I.Niemelä. Non-Clausal SAT and ATPG. In Handbook

of Satisfiability, volume 185, chapter 21, pages 655–694. IOS Press, 2009.
5. N. Eén and A. Biere. Effective preprocessing in sat through variable and clause

elimination. In SAT, pages 61–75, 2005.
6. N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages 502–518, Santa

Margherita Ligure, Italy, 2003.
7. E.Goldberg and P.Manolios. Quantifier elimiantion by dependency sequents. Ac-

cepted for publication at FMCAD-2012.
8. E.Goldberg and P.Manolios. Quantifier elimination by dependency sequents. Tech-

nical Report arXiv:1201.5653v2 [cs.LO], 2012.
9. E.Goldberg and P.Manolios. Removal of quantifiers by elimination of boundary

points. Technical Report arXiv:1204.1746v2 [cs.LO], 2012.
10. E. Goldberg. Boundary points and resolution. In SAT-09, pages 147–160, Swansea,

Wales, United Kingdom, 2009. Springer-Verlag.
11. E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Discrete

Appl. Math., 155(12):1549–1561, 2007.
12. Eugene Goldberg and Panagiotis Manolios. Sat-solving based on boundary point

elimination. In Haifa Verification Conference, volume 6504 of Lecture Notes in
Computer Science, pages 93–111, 2010.

13. Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In
TACAS, pages 129–144, 2010.

14. N. Kayal M. Agrawal and N. Saxena. Primes is in P. Annals of Mathematics,
160(2):781–793, 2004.

15. J. Marques-Silva and K. Sakallah. Grasp—a new search algorithm for satisfiability.
In ICCAD-96, pages 220–227, Washington, DC, USA, 1996.

16. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering
an efficient sat solver. In DAC-01, pages 530–535, New York, NY, USA, 2001.

17. K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver description. Technical
Report D–153, Autom. Reas. Group, Comp. Sci. Depart., UCLA, 2007.

18. H. Zhang. Sato: An efficient propositional prover. In CADE-97, pages 272–275,
London, UK, 1997. Springer-Verlag.

	Checking Satisfiability by Dependency Sequents
	Eugene Goldberg, Panagiotis Manolios

