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Abstract

This paper addressesthe problem of combinational
equivalencechecking (CEC) which forms one of the key
componentsof thecurrentverificationmethodologyfor dig-
ital systems.A numberof recentlyproposedBDD based
approacheshavemetwith considerablesuccessin thisarea.
However, thegrowinggapbetweenthecapabilityof current
solvers and the complexity of verificationinstancesneces-
sitatestheexploration of alternative, bettersolutions.This
paper revisits the applicationof Satisfiability(SAT) algo-
rithms to the combinationalequivalencechecking (CEC)
problem. We argue that SAT is a more robust and flexi-
ble engineof Booleanreasoningfor the CEC application
than BDDs, which havetraditionally beenthe methodof
choice. Preliminaryresultson a simpleframework for SAT
basedCEC showa speedupof up to two orders of mag-
nitudecomparedto state-of-the-artSAT basedmethodsfor
CECandalsodemonstratethat evenwith this simplealgo-
rithm anduntunedprototypeimplementationit is onlymod-
eratelyslowerandsometimesfasterthana state-of-the-art
BDD basedmixedenginecommercial CECtool. WhileSAT
basedCEC methodsneedfurther research and tuning be-
fore they cansurpassalmosta decadeof research in BDD
basedCEC,therecentprogressis verypromisingandmer-
its continuedresearch.

1 Intr oduction

Combinationalequivalencechecking(CEC)is oneof the
mostwidely usedformal techniquesin the verificationof
digital circuits. While, theoreticallythe problemis coNP-
Hard,practicalinstancesof theproblemaremoretractable.
Currentdesignmethodologyensuresthat the two combi-
nationalcircuitsbeingchecked for equivalencehave a fair
degreeof structuralandfunctionalsimilarity [1]. In recent
�
This work wassupportedin part by the California MICRO program

andindustrialsponsorsCadence,SynopsysandFujitsu.

yearsseveralapproachesto CEChavebeenproposedwhich
exploit the above property. While thesetechniqueshave
significantlyadvancedthe stateof the art in CEC, the in-
herentcomplexity of theproblemandthegrowing sizeand
complexity of digital systemscontinuesto motivatefurther
research.

Most of thesuccessfulprogramsfor CECusea combi-
nationof variousengines,with Binary DecisionDiagrams
(BDDs) [3] asthemainworkhorse.Althougha few of the
proposedapproachesuseBooleanSatisfiability(SAT) [14]
or SAT-like engines(viz. ATPG methods[2], recursive
learning[11]) asthe principal engine,thesemethodshave
not beenpopular. Consequently, theuseof SAT in current
CECis largelyancillarytoBDDs;e.g.it is usedtoeliminate
falsenegativesor to choosecandidatepairsfor deducingin-
termediaterelationships[4].

This papermakesa casefor theuseof SAT methodsin
CEC.Thereareseveralreasonsfor pursuingthis line of re-
search.First, therehave beensignificantadvancesin SAT
algorithms[15, 19]. Second,while it hasbeenclaimedthat
BDDs arerelatively moreefficient for CEC, neitherhasa
quantitativecomparisonbeenpublishednor thereasonsfor
purportedinefficiency of SAT algorithmsanalyzedin detail.
Third, asdiscussedin moredetail in Section3, SAT algo-
rithmshaveseveralinherentfeatureswhichBDDslack,that
canpotentiallymake thema moreflexible androbustcore
technologyfor theapplicationunderstudy. This raisesthe
following questions:

� Is theperceivedinefficiency of SAT algorithmsin CEC
anecessaryconsequenceof theuseof SAT algorithms
perseor is it anartifactof theparticularSAT algorithm
usedandtheway it wasusedin theCECframework?

� Is it possibleto bridgetheefficiency gapbetweenSAT
basedandBDD basedCEC tools by usingmoreso-
phisticatedSAT algorithmsthatarecurrentlyavailable
and/orby fine-tuningtheimplementationof thetool1?

1It is noteworthy thatBDD basedtoolsdraw uponover adecadeof re-
searchin variableorderingandefficient implementationof BDD packages,



This paperaddressestheseissues. The main contribu-
tionsof thiswork canbesummarizedasfollows:� We presenta detailedanalysisof the featuresof SAT

algorithmsandBDDs in the context of CECto argue
thatSAT basedalgorithmscanbea moreflexible and
robustcoretechnologyfor thisapplication.

� We presenta simple CEC framework drawing from
a numberof previously proposedCEC methodolo-
gies[2, 4, 21] aswell asourown insightsinto applying
SAT for CEC.This framework worksentirelyoff SAT
algorithmsasthecoreengine.

� We make a direct quantitative comparisonbetweena
preliminaryimplementationof our tool anda stateof
the art BDD basedmixed enginefor CEC [4], and
assessthe performancegapbetweenBDD basedand
SAT basedcheckers.

� We offer insightsinto several avenuesfor improving
the performanceof the above SAT basedtool to po-
tentiallymake it evenbetterthanthestateof theart in
BDD basedcheckers.

Briefly, theexperimentsreportedin Section5 show that
ourcheckeroutperformsstate-of-the-artSAT basedtoolsby
over two ordersof magnitude.Moreover, even thecurrent
prototypeimplementationis only moderatelyslower (a fac-
tor of 2-3) andsometimesfasterthanstateof theart BDD-
basedmixed-enginecheckers. This paperis intendedasa
proof of conceptto show how SAT basedtechniquescan
effectively remedythe inherentproblemsassociatedwith
BDD basedmethods.We advocatethatoncesuitablytuned
andapplied,SAT basedtechniquescanmoreactivelycom-
plementandevenreplaceBDDsin CECwhile significantly
advancingthestateof theart in thisarea.

Therestof thepaperis organizedasfollows. Section2
discussesprevious efforts in the areasof BDD basedand
SAT basedCEC. In Section3 we provide argumentsand
illustrationsto show how SAT basedmethodscan poten-
tially beamoreflexible androbusttool for Booleanreason-
ing in CEC. Section4 describesour proposedSAT based
CECframework. We presentexperimentalresultscompar-
ing our methodwith severalexisting SAT basedCECtools
aswell asa state-of-the-artBDD basedmixedengineCEC
tool in Section5. Section6 concludesthepaperwith a dis-
cussionof several avenuesfor improving the performance
of theproposedCECframework.

2 PreviousApproaches

Most of the recentlyproposedapproachesfor CEC [1,
2, 4, 10, 11, 14, 16, 17] operateunderthe following gen-

aswell ashighly tunedimplementationsof CECpackages,while precious
little hasbeendonein this respectfor SAT in CECapplications.

eral framework. Thesimilarity betweenthe two circuits is
exploitedto deducespecificsuccinctrelationships(equiva-
lences,implications,replacabilityrelationship)betweenin-
ternalnodes(calledcutpoints[10]) of the two circuits be-
ing checkedfor equivalence.Using theserelationshipsthe
overall equivalencecheckis performedasa setof smaller
equivalencechecks.Briefly, acutpointisaninternalnodeof
onecircuit thatis provento befunctionallyrelatedto oneor
moreinternalnodesof the othercircuit througha specific
succinctrelationship(usually equivalenceor equivalence
moduloinversion). The algorithm proceedsby sweeping
the two circuits (or the miter [2]) from inputs to outputs,
deducingnew cutpointsfrom previouslydeducedcutpoints,
until the primary outputsareproved equivalentor a mis-
comparingpatternis found. Negatives(eitherfalseor true)
encounteredduring this process,as a result of functional
constraintsbetweeninternalcircuit nodes,areresolvedby
attemptingto justify themtowardstheprimaryinputs.

Overall, this methodologycomprisesa DeductionEn-
gine to derive internal nodecorrespondencesand a Justi-
fication Enginewhich eliminatesfalsenegatives or iden-
tifies true negatives. In many of the proposedworks on
CEC[7, 10, 16], BDDs areusedin both thedeductionen-
gineaswell asthejustificationengine.Recently, Burchand
Singhal[4] haveproposeda methodologywhereBDDsare
the primary deductionengineaswell as part of the justi-
ficationengine.RandomizedSAT algorithms,modifiedto
work off theBDDsareusedto supplementBDD basedjus-
tification. Evenmorerecently, ParuthiandKuehlmann[17]
haveproposedatighterintegrationof BDDsandSAT based
methodsfor CEC.They proposeusinganinterleavedcom-
binationof BDDs and a SAT solver as the deductionen-
gine. However, BDDs continueto bea majorpart of their
deductionengine.Moreovertheir methodof usingtheSAT
solver in overall flow is fairly orthogonalto our proposed
approach.

Therehave beena few attemptsto useSAT basedalgo-
rithms to performthe entireequivalencecheck. Brand[2]
proposeda cutpoint basedmethodologybasedon repla-
cability relationshipswhich werederived usingan ATPG
tool. HANNIBAL [11] usedrecursive learning to derive
implicationswhichwerethenusedby anATPGtool to per-
form theequivalencecheck.More recently, Marques-Silva
et. al. [13] proposedusinga recursive learningbasedpre-
processortoderiveequivalencerelationshipswhicharesub-
sequentlyusedby a generalpurposeSAT solver to perform
theverificationtask.While thesemethodsoffer aninnova-
tive alternative to BDD basedmethods,they have not be-
comethemethodof choicefor CEC;it is generallybelieved
thatSAT basedmethodsarenot asefficient asBDD based
methods.However, we believe that this is not a necessary
consequenceof usingSAT methodsvs. BDDs but rathera
resultof thespecificSAT algorithmsusedandtheway they



havebeenappliedin theoverallmethodology. Thiswork is
apreliminaryattemptto validatethisclaim.

A numberof otherapproaches(see[4, 8] for a morede-
tailed survey) addressingthe CEC problemhave appeared
in theliterature.However, they areomittedfrom theabove
survey sincethey arenot directly relevant to the focusof
thispaper.

3 SAT Vs. BDDs in CEC

Let ��� and �	� denotethetwo combinationalcircuitsbe-
ing checkedfor equivalence.For easeof expositionwe as-
sumethat both circuits have a single primary output, de-
notedby 
 � and 
 � respectively, andanidenticalsetof pri-
mary inputs,denotedby ������ ��� � ��������� ����� . Let � denote
an equivalencecut. Note that an equivalencecut carries
a topologicalinterpretationon � � and � � (it partitionsthe
inputsof � � and � � from theiroutputs)aswell asasetinter-
pretation(it is a setof variablesforming thephysicalcut in
thecircuits ��� and �	� ). In the following we useboth these
interpretationsinterchangeably.

As describedin Section2, BDDshavebeensuccessfully
usedasthecoreequivalencedeductionenginein a number
of programsfor CEC[4, 10, 16]. Thereasonfor thissuccess
is theability of BDDs to compactlyrepresentthecomplete
Booleanspaceof reasonablylargefunctions(variablesup-
portof up to 15-20variablesor evengreater).

However, SAT algorithmshave an inherentadvantage
overBDDs in Booleanreasoning,undera givensetof con-
straints.BDDs have no meansof performingBooleancon-
straint propagation (BCP), a featurethat is integral to all
branchandbound(or DLL [5]) basedSAT solvers. Since
branchingbasedSAT solvers explore eachassignmentto
thevariablesof theformulaoneby one,BCPor “examining
the logical consequencesof eachassignment”,is a natural
componentof suchanalgorithm. Thus,suchanalgorithm
canactuallywork with (branchon) only a smallportionof
thegivenBooleanformulawhile still beingableto examine
thelogicalconsequencesof thisbranchingontheremaining
variablesat a negligible additionalexpense(theexpenseof
BCP).Ontheotherhand,BDDswork byconstructingarep-
resentationof theentire Booleanspaceof a specifiedsetof
outputvariables,in termsof a specifiedsetof input vari-
ables.Theonly way to introduceadditionalvariablesis to
explicitly constructBDDs of thosefunctionsas well and
connectthemto theexisting BDDs by somelogical opera-
tion, viz. conjunctionor existentialquantification.For the
currentapplicationi.e. CEC,thissinglefeaturegivesaSAT
basedalgorithmseveral operationaladvantages.Properly
harnessed,thesecan translateinto significantgainsin the
overallefficiency androbustnessof thetool. Someof these
arediscussedbelow.
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Figure 1. False Negatives can be resolved by
local BCP

3.1 Locality and robustnessof cutpoint resolution

In orderto deduceaninternalequivalence02130�4 a typ-
ical BDD baseddeductionenginehasto build BDDs of 0
and 0 4 in termsof a commonsetof cutpoints 5 Y,Y’ 6 such
that 075 Y 6�80 4 5 Y’ 6 . In order to determinea suitableset5 Y,Y’ 6 suchmethods[4, 16, 21] resorttoahostof heuristics
to resolvecutpointsbackwardstill a suitablecut is found.
Suchan approachis inherentlyunrobust sincethereis no
goodcriteriontodeterminethe“right cut” to learnanequiv-
alencefrom. Thus,oftensuchanapproachcomesup with
aset 5 Y,Y’ 6 muchlargerandfartheraway thanis neededto
learntheequivalence.Thekey point is that the inability to
learn 091:0 4 from a givencut 5 Y,Y’ 6 is dueto thepresence
of certainfalsenegativesonthethiscut. Oftenit is possible
to resolve thesethroughlocalBCPor a fairly “local branch
andboundsearch”by a SAT algorithm.

Example3.1 Considerthe circuit of Figure 1 where the
signals ; and ;<4 are not equivalentin terms of the cut�=�>�?0 � 0 4 � �+@��BA��+C but are actuallyglobally equivalentin
termsof the signals @��BA��+C 2. Themiscomparingpatterns
(e.g. 0D�>0 4 �FE �B@ �HG �BA �8E �+C �IE ) can beeasilyre-
solvedby a SAT procedure throughlocal BCP, while oper-
ating fromthecut � , but a BDD basedapproach operating
in termsof the samecut would not be able to deducethe
equivalence;J1K; 4 .

3.2 Useof previously deducedequivalences

To thebestof ourknowledgeall cutpointbasedmethods
immediatelymerge nodesthat are deducedas equivalent.

2sucha situationis frequentlyproducedby simpleoperationssuchas
factoringandre-substitutionin logic optimization
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Figure 2. Previousl y deduced equiv alences as
shallo w witnesses of false negatives

With BDD basedmethodsthereis probablyno benefitin
doing otherwise. However, with SAT basedmethodsit is
possibleto simply addthededucedequivalenceasa clause
or constraintto theoverallformulawithoutmergingthetwo
nodesandbenefitfrom it.

Example3.2 Considertheexampleof Figure 2 where the
currentcutpointfrontier � hasanunobservableassignment�W5YXZ6 which preventsusfromlearningequivalences0Q1[0 4
aswell as ;\1]; 4 fromthecut � . Oncewehaveexpended
somebranching effort in backjustifyingthis falsenegative
for learning 0^1_0 4 wecanaddin 0`130 4 asa localwitness
of �W5YXZ6 (andnot merge 0 � 0 4 ) so that whentrying to learn
;a1_;<4 this falsenegativecanbejustifiedwith nobranching
effort (sincethis assignmentwill immediatelyviolate 0_10 4 ).
Thesamereasoningappliestonotmergingequivalencesbe-
hindthecurrentcutpoint-frontiersothatthey canbeusedas
shallowwitnessesof unobservableassignmentswhentrying
to backjustifyfalsenegativestowardstheprimaryinputs.

3.3 Learning moregeneralrelationships

In almostall BDD basedcutpoint methodsthe notion
of cutpointscorrespondsto equivalencerelationships(or
equivalencemodulo inversion)in termsof the circuit pri-
mary inputs. Suchrelationshipscanbe naturallyobtained
by BDD pointercomparisons.However, usingSAT meth-
odsit is possibleto work with a muchmoregeneralnotion
of cutpoints.Onesuchgeneralization[2] proposedtheno-
tion of replacabilityof gateswhere0 canbereplacedwith ;
if f onreplacing0 with thegateXb�30dc; theredoesnotex-
ist a testfor thestuck-at-0fault at theoutputof X . Thisand
a numberof othervariationsof this notioncanbe realized
by slightly modifying theSAT problemposedto thesolver.
However, for simplicity wehavechosennot to exercisethis
degreeof freedomin thiswork.

4 ProposedMethodology

Our overall framework is similar to mostcutpointbased
methodsasdescribedin Section2. The key differenceis
that we useSAT proceduresaloneto accomplishboth the
deductionandthe justificationphases.As in [10] the two
circuitsto becheckedfor equivalencearedecomposedinto
a network of two input AND gates,allowing inversionson
the edges. This decomposednetwork is usedas the base
data-structure.Currently, the deductionprocedureis re-
strictedto deducingequivalences( 0`1K; ) andequivalences
modulocomplementation( 0`1 ; ). Thus,for thepurposeof
thisexpositionwereferto thecutastheequivalencecut. All
deducedrelationshipsaretaggedonto therespective gates.
Thuseachnode(gate),0 hasassociatedwith it a(potentially
NULL) setof nodes,calledits equivalenceclass. Thisis the
setof nodeswhich have beendeducedasbeingequivalent
to 0 .

Ourmethodologyis implementedthroughacombination
of two SAT engineswhichwork in tandemin aninterleaved
fashion.Thefirst engineis aninexpensive,DLL baseden-
ginedesignedto catchmostof the“easyto prove” equiva-
lencesin the“vicinity” of theequivalencecut. Thesecond
engineusesa moreadvancedgeneralpurposeSAT solver
(in ourcasetheGRASP[15] solver)to deducetherelatively
moredifficult equivalences.Thetwo enginesaredescribed
below.

4.1 Segmentsweepingbaseddeduction

This engineis designedto catchall equivalencepairs5Y0 � 0 4 6 suchthatthecardinalityof thecombinedsupportof
0 and 0 4 in termsof the currentequivalencecut, � is less
thansomespecifiedparametere . The intuition behindthis
engineis similar to motivationof thenodehashingscheme
[10]. It is roughly analogousto building BDDs, in terms
of thecurrentcut,of all thosenodeswhosesupportsize(in
termsof � ) is lessthan e anddeducingall equivalencesthat
can be deducedfrom theseBDDs. However, for reasons
discussedin Section3 our methodis muchmorepowerful
thaneithertheBDD schemesor hashing,evenif thehashing
is generalizedon thelinesof [6].

Let � denotethecutpointfrontier. A segment f of this
cut,is asubsetof cutpoints(aswell astheirequivalentcoun-
terparts)of � . Let Base5 f 6 denoteall thosegates(vari-
ables),lying in front of the cut � in circuits � � and � � ,
whosesupportin termsof � is a subsetof the segment f .
Considera pair of variables0 � 0 4dg Base5 f 6 . Theequiva-
lencedeductionprocedureis basedon the following prin-
ciple. Undereachassignmentto the variablesof f , each
variableof Base5 f 6 takes a Booleanvalue ( G or E ). If 0
and 0 4 assumethesameBooleanvalueundereachof theseh	i jZi

assignments,then 0K1>0 4 “globally”, i.e. in termsof



theprimaryinputs.Similarly, if 0lk1m0 4 (globally) thenthe
following resultfollows.

Proposition4.1 Givensegment f of cut � and two vari-
ables0 � 0 4ng Base5 f 6 , if 0ok1:0 4 (globally) thenthere exists
a Booleanvalueassignmentp to the variablesof f such
that 075 f 5qp�6r6-k�30 4 5 f 5Yp/6s6 .

In factthispropositioncanbefurtherstrengthenedby the
additionof thefollowing additionalcondition.

Proposition4.2 Givensegment f of cut � and two vari-
ables0 � 0 4ng Base5 f 6 , if 0ok1:0 4 (globally) thenthere exists
a Booleanvalueassignmentp to thevariablesof f andan
assignmentt to theprimaryinputs � such that f 5q��5YtZ6r6u�3p
and 075 f 5qp�6r6-k�30 4 5 f 5Yp/6s6 .

Basedon Proposition4.1 equivalencerelationshipsare
deducedby constructingand manipulating equivalence
classesasfollows.Givenasegmentf of cut � thevariables
Base5 f 6 arefirstputinto asingleequivalenceclass,v . Then
eachof the

h�i jZi
assignmentsto f is exploredoneby one

with the associatedvaluesof the variablesBase5 f 6 under
eachassignment,usingBooleanvaluepropagationthrough
thecircuits. Supposeunderthefirst assignmentto f , vari-
ables v�� evaluateto E whereasvariablesv7w evaluateto G ,
wherev wx� v �Wy v , v w7z v � �3v and v w7{ v � �}| . Thenthe
equivalenceclassv is split into two sub-classes,v w and v � .
Thisprocessis repeatedfor eachcurrentequivalenceclass,
after eachassignment(andvaluepropagation)to f . After
exploring all

h�i jZi
assignmentsto the segment,if two vari-

ables0 and 0�4 lie in acommonequivalenceclass,it follows
from Proposition4.1that 0^1_0 4 holdsglobally.

Usingtheresultof Proposition4.2theabovestrategy can
be improved considerably. First, when branchingon the
segmentvariables(i.e. exploring the

h	i jZi
possibleassign-

mentsto segmentvariables)completeBooleanvalueprop-
agationis doneaftereachvariableassignment.Thepropa-
gationis carriedboth in front of andbehindthecut, using
the functional gatelevel circuit descriptionas well as all
previously deducedequivalencerelationships.Thecurrent
branchis terminatedassoona conflict is encountered.Sec-
ondly, the equivalenceclassesare split if and only if the
branchingdoesn’t terminatein aconflict. Theabovededuc-
tion procedurebasedonbranchingona singlesegmentand
splitting equivalenceclassesis calleda segmentdeduction
run.

Giventhecurrentequivalencecut, f , thelocaldeduction
of equivalencesis accomplishedthroughasequenceof seg-
mentdeductionruns,eachwith a new segmentdrawn fromf . At theendof theserunswecaninformallyguaranteethat
all equivalences,deduciblefrom thecurrentcut andwithin
a certainneighborhoodof it, havebeendeduced.In ourex-
perimentsasegmentsizeof ~ providedagoodcompromise
betweendeductionpowerandefficiency.

4.2 Global hypothesisbaseddeduction

While theabove procedureworks fairly well in regions
of thecircuit whereequivalencesareabundantanddensely
scattered,it cannotbegeneralizedtohandleall equivalences
for thefollowing reasons:
� Thedistributionof equivalencesis highly non-uniform

for difficult verificationinstances.Henceit is impos-
sible to determinea goodvalueof thesegmentsizea
priori, in theabsenceof whichthealgorithmdoesa lot
of wastedwork.

� In somecases,especiallyarithmeticcircuits,missing
evena few equivalencescanmake anappreciabledif-
ferenceto thedifficulty of theremainingsub-problem.

Weconcurwith theview of [4] ontheissuethatfor more
difficult equivalencesoneneedsarobustapproachto gener-
atecandidatepairsof cut-pointsto verify (we referto these
asglobalhypothesis) andarobustmechanismfor verifying
thesepairsthatdoesnot work off a preset“hard” threshold
on the amountof effort to invest in verifying a particular
pair.

Our framework for global hypothesisgenerationand
proving, draws on techniques[2, 4, 21] and is similar to
theoneusedin [4]. Thekey differenceis thata singleSAT
algorithm is usedbothfor proving equivalentpairsaswell
asidentifying truenegatives3. Thealgorithmpseudocode
is shown in Algorithm 1.

Algorithm 1 GlobalHypothesisDeduction
GenerateInitGlobalHypothesisClasses
while Outputs Unresolved & Not DeducedSufficient
New Equivs.do5Y0�� � 0���6 = ChooseHypothesis

Status= ResolveHypothesis(0�� � 0�� )
if Status= “TRUE NEGATIVE” then

RefineGlobalHypothesisClasses
if Outputsin differentclassesthen

returnUNEQUAL, test
end if

else
MergeEquivClasses(0 ��� 0 � )
if Outputsin thesameEquivClassthen

returnEQUAL
end if

end if
endwhile

The GenerateInitGlobalHypothesisClasses routine
picks up all nodesin the transitive fanoutof the current

3[4] usedBDDs for the proving equivalencesandheuristicallycom-
binedit with a randomizedSAT algorithmimplementedon the BDDs to
identify someof thetruenegatives



cut-pointfrontier andclusterstheminto GlobalHypothesis
Classesby running32-bitparallelsimulationon thecircuit.
Nodeswith identical signaturesunder this simulation lie
in the sameglobal hypothesisclass. The simulationcan
be performedwith purely random vectors or any other
“interesting” set of vectors. This function is usedonly
whenglobal equivalencedeductionis invoked for the first
time.

ChooseHypothesisselectsa pair of nodes,0 ��� 0 � , be-
longing to the two circuits from a global hypothesisclass,
suchthat thepair is topologicallyclosestto thecurrentcut
frontier. This hypothesisis resolved by invoking a SAT
solveron theformuladenoting0 � cD0 � . All previouslyde-
ducedequivalencesarepartof this formula. If the formula
is unsatisfiablethen 0���1�0�� andhencethecorresponding
equivalenceclasses4 aremerged. If the formula is satisfi-
able,thesolutionreturnedprovidesavectorto simulateand
refinei.e. to split thecurrentglobalhypothesisclasses(rou-
tineRefineGlobalHypothesisClasses).

Thisprocessiteratestill theprimaryoutputsareresolved
or a certainnumber(this is a parameterto thealgorithm)of
new cutpointsarededuced.After this thecutpointfrontier
is advancedandsegmentsweepingis initiatedagain,return-
ing to globalhypothesisdeductionwhensegmentsweeping
givesup.

5 Experimental Results

We presentexperimentalresults basedon a prelimi-
naryimplementationof ourproposedmethodologyfor SAT
basedCEC. It has beenimplementedin C and usesthe
GRASP SAT solver [15] for the global hypothesisbased
deductionphase(Section4.2). Our resultsarereportedon
a167MHz SunUltra Sparc-1with 256Mbytesof memory.
Ourcurrentinterfaceto GRASPis throughfiles5 but there-
portedruntimesdo not includethefile I/O timessincethis
can easily be removed througha betterintegrationof the
tools.As mentionedearlier, themainobjective is to present
a realisticassessmentof a SAT basedCECtool, ratherthan
to presentanoptimizedandcompleteequivalencechecker.

Wepresenttwo setsof results.Thefirst setcomparesour
methodagainstthefollowing four toolswhich in our opin-
ion representthestateof theart in SAT basedcombinational
equivalencechecking.

1. RL GRASP [14] : An implementationof GRASP
augmentedwith RecursiveLearning[12].

2. RL CGRASP [13] : An implementationof GRASP
augmentedwith Recursive Learningaswell a frame-
work for exploiting circuit topology.

4i.e. theequivalencestaggedto eachnodeasexplainedearlierin this
section

5GRASPis written in C++ whereasour tool is in C

3. HANNIB AL [11] : A CEC tool using Recursive
Learninganda testgenerator.

4. Implication Graph basedmethod [20]: Presentsa
tunedandoptimizedimplementationof abacktracking
SAT algorithm that employs someelementsof non-
local implicationsand recursive learning. The algo-
rithmsareimplementedonaspecializeddata-structure
calledthe implicationgraph.

Thecomparative resultspresentedin Figure3 show the
resultsof verifying theISCAS’85benchmarksagainsttheir
irredundantversions.Thesebenchmarksarerelatively easy
instancesof combinationalverification. They arealsothe
only commonsetof benchmarkson which theabove tools
havereportedresults.Theresultsof RL CGRASPwereob-
tainedby runningthepublicly availableversionof thetool
onourmachine,usingoptimizedsettingswhich theauthors
[13] kindly provided.SinceRL GRASPwasnot available
we usedtheruntimenumbersfrom [14] appropriatelyscal-
ing for architecturaldifferences.The resultsfor HANNI-
BAL aretheoriginalnumbersfrom thepaper[11] sincewe
wereunableto find suitablescalingdatafor theSparcELC
stationusedby theauthorsin thoseexperiments.Theresults
of [20] arethenumbersfrom theoriginalpaperreportedon
aDECAlphaStation

h ~?Gx�B� �+�r� , which is a machinecompa-
rablein performanceto our own. Although,a directexact
valueto valuecomparisonis neitherfair nor intended,the
resultsof Figure3 clearlydemonstratethatourmethodcon-
sistentlyoutperformsall the other techniques.Especially
noteworthy is thefactthaton thethreehardestinstancesof
theset,namelyC5315, C3540 andC7552 our method
outperformsall the other methodsby over two ordersof
magnitude.

The secondset of resultsprovide a comparisonon a
much more difficult set of instanceswith a state-of-the-
art BDD basedmixed enginecombinationalequivalence
checker [4]. Figure4 reportsresultson verifying someof
theMCNC91circuitsagainstaversionoptimizedby agen-
eral purposelogic optimizationscript,script.rugged
from SIS[18]. Theresultsof [4] arereportedon thesame
machineasours. It is noteworthy that even with our cur-
rent untunedand prototypeimplementationour runtimes
are mostly comparableto that of [4], sometimesa factor
of 2-3slower. HoweverC3540is anexamplewhereoural-
gorithmis in factfasterthan[4]. Interestinglyenough,this
is anexamplewith a fairly non-uniformdistributionof cut-
points,someof whicharefairly hardto deduce.Webelieve
the runtimediscrepancy canbeeasilymadeup andin fact
betteredby theimprovementslistedin Section6.

6 Conclusionsand Future Dir ections

We have revisitedtheapplicationof Satisfiability(SAT)
algorithmsto CEC.We arguedthecasefor SAT asa more



Circuit RL GRASP RL CGRASP HANNIBAL ImplicationGraphMethod[20] OurMethod
(secs) (secs) (secs) (secs) (secs)

C432 2.8 3.6 3 1.3 0.7
C499 6.8 8.8 6 1.4 1.17
C1355 18.0 27.4 19 7.0 2.37
C1908 94.8 153.0 26 19.5 3.87
C2670 56.4 74.6 231 24.1 4.46
C3540 4006 2560 2057 791.0 38.94
C5315 445.4 476.6 797 33.4 6.96
C6288 109.6 43.6 48 8.9 5.04
C7552 2124 2868 4724 570.1 23.11

Figure 3. Verifying original vs. irredundant cir cuits

Circuit MixedEngine[4] OurMethod
(secs) (secs)

C432 – 2.14
C499 – 0.92
C1355 – 1.1
C1908 – 5.90
C2670 3.5 4.93
C3540 25.7 20.98
C5315 5.3 27.45
C6288 12.1 14.52
C7552 12.7 35.18

Figure 4. Verifying original vs. optimiz ed cir -
cuits

robustandflexibleengineof Booleanreasoningfor theCEC
applicationthanBDDs. We presenteda simpleframework
for SAT basedCEC andreportedresultson a preliminary
implementation.The resultsshow a speedupof up to two
ordersof magnitudecomparedto state-of-the-artSAT based
methodsfor CEC.They alsodemonstratethatevenwith this
simplealgorithmanduntunedprototypeimplementationit
is only moderatelyslowerandsometimesfasterthanastate-
of-the-artBDD-basedmixed-enginecommercialCECtool.

Thereareseveralavenuesfor improvementof thecurrent
algorithmandimplementation:
� Variable ordering in the SAT solver: It is well

known that variable ordering can affect the perfor-
manceof SAT solvers,tremendously6. Currently, we
have experimentedwith only a few staticvariableor-
dering schemeswith GRASP. More experimentation
in thisdirectioncouldprovidesubstantialspeedups.

� Better implementation of our CEC framework:
The currentdata-structureand routinesare designed

6just asBDD variableorderingaffectsthesizeof BDDs

for flexibility of rapid algorithm prototyping rather
than optimality of the specificproposedframework.
Oncerewritten and tunedfor efficiency, thesecould
easilyspeedup the time spentoutsidethecalls to the
SAT solver at leastby a factorof 2-5. This time con-
tributes30-70%of theoverall reportedtime.

� Mor e effective use of Initial Vector Simulation:
Currently the 32-bit parallel vector simulation,used
for pruning the hypothesisset,works with randomly
generatedvectors. However, simulatinga more in-
telligent set of vectorscould substantiallycut down
the numberof calls to the SAT solver andboostper-
formanceproportionally. One idea to do this is to
makeuseof testvectorsthatareroutinelygeneratedfor
simulatingdesigns,during the designprocess.These
could be “interesting” vectorsproposedby the de-
signeror theATPGtestsetfor oneor bothof thecir-
cuitsbeingchecked.

� Sharing effort between individual hypothesis
checks: Oneof thereasonsfor theefficiency of BDD
basedmethodsis their ability to re-usepreviouswork
by storingpartof theBooleansearchspacein theform
of the BDD itself. While our currentmethodmakes
use of previously done work by storing and using
previouslydeducedequivalencesasshallow witnesses
of conflicts(Section3), a moredirectsharingof effort
betweenindividual SAT calls, somewhat along the
linesof [9] couldsubstantiallyimproveperformance.

� Usingan impr ovedSAT solver: As researchin SAT
solvers producesbetter algorithmsand implementa-
tionsperformanceof theproposedframework will im-
prove.

While it is clearthatSAT basedCECmethodsneedfur-
ther researchandapplicationbasedtuningbeforethey can
surpassalmostadecadeof researchin BDD basedcombina-



tional verification,SAT basedmethodsfor verificationare
certainlyapromisingoptionandmerit continuedresearch.
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