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Abstract

This paper addressesthe problem of combinational
equivalencecheking (CEC) which forms one of the key
componentsf thecurrentverificationmethodolgyfor dig-
ital systems.A numberof recentlyproposedBDD based
appmoaceshavemetwith consideablesucces thisarea.
However, thegrowinggapbetweerthecapabilityof current
solves and the compleity of verificationinstancemeces-
sitatesthe exploration of alternative bettersolutions. This
paper revisits the application of Satisfiability (SAT) algo-
rithms to the combinationalequivalencecheding (CEC)
problem. We argue that SAT is a mote robust and flexi-
ble engineof Booleanreasoningfor the CEC application
than BDDs, which havetraditionally beenthe methodof
choice Preliminaryresultson a simpleframevork for SAT
basedCEC showa speedupof up to two orders of mag-
nitudecompaedto state-of-the-arSAT basedmethoddor
CECandalsodemonstatethat evenwith this simplealgo-
rithm anduntunedprototypeimplementatiorit is only mod-
erately slowerand sometimeg$asterthan a state-of-the-art
BDD basedmixedenginecommecial CECtool. While SAT
basedCEC methodseedfurther reseach and tuning be-
fore they can surpassalmosta decadeof reseach in BDD
basedCEC,therecentprogressis very promisingand mer
its continuedreseach.

1 Intr oduction

Combinationakquialencechecking({CEC)is oneof the
mostwidely usedformal techniquesn the verification of
digital circuits. While, theoreticallythe problemis coNP-
Hard, practicalinstance®f theproblemaremoretractable.
Currentdesignmethodologyensureshat the two combi-
nationalcircuits being checled for equivalencehave a fair
degreeof structuralandfunctionalsimilarity [1]. In recent
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yearsseveralapproachet CEChave beenproposedvhich
exploit the above property While thesetechniqueshave
significantly advancedthe stateof the art in CEC, the in-
herentcompleity of the problemandthe growing sizeand
compleity of digital systemsontinuego motivatefurther
research.

Most of the successfuprogramsfor CEC usea combi-
nationof variousengineswith Binary DecisionDiagrams
(BDDs) [3] asthe mainworkhorse.Althougha few of the
proposedhpproachesiseBooleanSatisfiability (SAT) [14]
or SAT-like engines(viz. ATPG methods[2], recursve
learning[11]) asthe principal engine,thesemethodshave
not beenpopular Consequentlythe useof SAT in current
CECislargelyancillaryto BDDs;e.qg.it is usedo eliminate
falsenegativesor to choosecandidatgairsfor deducingn-
termediateelationshipg4].

This papermakesa casefor the useof SAT methodsn
CEC.Therearesereralreasongor pursuingthisline of re-
search.First, therehave beensignificantadvancesn SAT
algorithmg[15, 19]. Secondwhile it hasbeenclaimedthat
BDDs arerelatively more efficient for CEC, neitherhasa
guantitatve comparisorbeenpublishednor thereasongor
purportednefficiengy of SAT algorithmsanalyzedn detail.
Third, asdiscussedn moredetailin Section3, SAT algo-
rithmshave severalinherenfeaturesvhich BDDs lack, that
canpotentiallymake thema moreflexible androbustcore
technologyfor the applicationunderstudy This raisesthe
following questions:

e Isthepercevedinefficiency of SAT algorithmsin CEC
anecessargonsequencef theuseof SAT algorithms
perseorisit anartifactof theparticularSAT algorithm
usedandtheway it wasusedin the CECframavork?

e Isit possibleto bridgetheefficiency gapbetweerSAT
basedand BDD basedCEC tools by using more so-
phisticatedSAT algorithmsthatarecurrentlyavailable
and/orby fine-tuningtheimplementatiorof thetool'?

11t is notavorthy thatBDD basedoolsdrav uponover a decadeof re-
searchn variableorderingandefficientimplementatiorof BDD packages,



This paperaddressetheseissues. The main contritu-
tionsof thiswork canbe summarizedsfollows:

e We presenta detailedanalysisof the featuresof SAT
algorithmsandBDDs in the contet of CECto amgue
that SAT basedalgorithmscanbe a moreflexible and
robustcoretechnologyfor this application.

e We presenta simple CEC framework drawing from
a number of previously proposedCEC methodolo-
gies[2, 4, 21] aswell asourown insightsinto applying
SAT for CEC.Thisframavork worksentirely off SAT
algorithmsasthe coreengine.

e We malke a direct quantitatve comparisorbetweena
preliminaryimplementatiorof our tool anda stateof
the art BDD basedmixed enginefor CEC [4], and
assesshe performancegap betweenBDD basedand
SAT baseccheclers.

o We offer insightsinto several avenuesfor improving
the performanceof the abose SAT basedtool to po-
tentially make it evenbetterthanthe stateof theartin
BDD basectcheclers.

Briefly, the experimentgeportedin Section5 shav that
ourchecleroutperformsstate-of-the-alS AT basedoolsby
over two ordersof magnitude.Moreover, eventhe current
prototypeimplementations only moderatelyslower (afac-
tor of 2-3) andsometimedasterthanstateof theart BDD-
basedmixed-enginecheclers. This paperis intendedasa
proof of conceptto shov how SAT basedtechniquescan
effectively remedythe inherentproblemsassociatedvith
BDD basednethodsWe adwocatethatoncesuitablytuned
andapplied,SAT basedechniquesanmoreactivelycom-
plementandevenreplaceBDDsin CECwhile significantly
adwancingthe stateof theartin thisarea.

The restof the paperis organizedasfollows. Section2
discussegprevious efforts in the areasof BDD basedand
SAT basedCEC. In Section3 we provide argumentsand
illustrationsto shav how SAT basedmethodscan poten-
tially beamoreflexible androbusttool for Booleanreason-
ing in CEC. Section4 describesour proposedSAT based
CECframework. We presenexperimentalresultscompar
ing our methodwith severalexisting SAT basedCECtools
aswell asa state-of-the-arBDD basedmnixedengineCEC
toolin Section5. Section6 concludeghe paperwith a dis-
cussionof several avenuesfor improving the performance
of the proposedCECframawork.

2 Previous Approaches

Most of the recentlyproposedapproachesor CEC|1,
2, 4,10, 11, 14, 16, 17] operateunderthe following gen-

aswell ashighly tunedimplementationef CEC packageswhile precious
little hasbeendonein thisrespecfor SAT in CECapplications.

eralframavork. The similarity betweerthe two circuitsis
exploitedto deducespecificsuccinctrelationshipgequiva-
lencesjmplications,replacabilityrelationshipbetweerin-
ternalnodes(called cutpoints[10Q]) of the two circuits be-
ing checledfor equivalence.Using theserelationshipghe
overall equivalencecheckis performedasa setof smaller
equivalencechecks Briefly, acutpointis aninternalnodeof
onecircuit thatis provento befunctionallyrelatedto oneor
moreinternalnodesof the other circuit througha specific
succinctrelationship(usually equivalenceor equivalence
moduloinversion). The algorithm proceedsby sweeping
the two circuits (or the miter [2]) from inputsto outputs,
deducingnew cutpointsfrom previously deducedtutpoints,
until the primary outputsare proved equivalentor a mis-
comparingpatternis found. Negatives(eitherfalseor true)
encounterediuring this processas a result of functional
constraintsbetweeninternalcircuit nodes,areresohed by
attemptingto justify themtowardsthe primaryinputs.

Overall, this methodologycomprisesa DeductionEn-
gine to derive internal node correspondenceand a Justi-
fication Engine which eliminatesfalse negatives or iden-
tifies true negatives. In mary of the proposedworks on
CEC]|7, 10, 16], BDDs areusedin boththe deductionen-
gineaswell asthejustificationengine.RecentlyBurchand
Singhal[4] have proposeda methodologywhereBDDs are
the primary deductionengineas well as part of the justi-
fication engine. RandomizedAT algorithms,modifiedto
work off theBDDs areusedto supplemenBDD basedus-
tification. Evenmorerecently ParuthiandKuehlmanr{17]
have proposedtighterintegrationof BDDsandSAT based
methodsfor CEC. They proposeusinganinterleaved com-
bination of BDDs anda SAT solver asthe deductionen-
gine. However, BDDs continueto be a major part of their
deductiorengine.Moreovertheir methodof usingthe SAT
solver in overall flow is fairly orthogonalto our proposed
approach.

Therehave beena few attemptsto useSAT basedalgo-
rithmsto performthe entire equivalencecheck. Brand[2]
proposeda cutpoint basedmethodologybasedon repla-
cability relationshipswhich were derived usingan ATPG
tool. HANNIBAL [11] usedrecusive learningto derive
implicationswhichwerethenusedby anATPGtool to per
form the equivalencecheck. More recently Marques-Sila
et. al. [13] proposedisinga recursve learningbasedpre-
processoto derive equivalencerelationshipsvhicharesub-
sequentlyusedby a generalpurposeSAT solverto perform
the verificationtask. While thesemethodoffer aninnova-
tive alternatve to BDD basedmethodsthey have not be-
comethemethodof choicefor CEC;it is generallybelieved
that SAT basedmethodsarenot asefficientasBDD based
methods.However, we believe that this is not a necessary
consequencef using SAT methodsvs. BDDs but rathera
resultof thespecificSAT algorithmsusedandtheway they



have beenappliedin theoverallmethodology Thiswork is
apreliminaryattemptto validatethis claim.

A numberof otherapproacheéseg[4, 8] for amorede-
tailed surwey) addressinghe CEC problemhave appeared
in the literature. However, they areomittedfrom theabove
suney sincethey are not directly relevant to the focus of
this paper

3 SAT Vs.BDDsin CEC

Let C; andC, denotethetwo combinationakircuits be-
ing checledfor equivalence.For easeof expositionwe as-
sumethat both circuits have a single primary output, de-
notedby o, ando. respectiely, andanidenticalsetof pri-
maryinputs,denotedoy I = {i1,42,...i,}. Lety denote
an equivalencecut. Note that an equivalencecut carries
a topologicalinterpretationon C; and(C- (it partitionsthe
inputsof C; andC» from their outputsaswell asasetinter
pretation(it is a setof variablesforming the physicalcutin
thecircuitsC; andCs.). In thefollowing we useboththese
interpretationsnterchangeably

As describedn Section2, BDDs have beensuccessfully
usedasthe coreequivalencaleductionenginein a number
of programdor CECJ4, 10, 16]. Thereasorfor thissuccess
is the ability of BDDsto compactlyrepresenthe complete
Booleanspaceof reasonablyarge functions(variablesup-
portof upto 15-20variablesor evengreater).

However, SAT algorithmshave an inherentadwvantage
over BDDsin Booleanreasoningundera givensetof con-
straints.BDDs have no meansof performingBooleancon-
straint propagation (BCP), a featurethatis integral to all
branchandbound(or DLL [5]) basedSAT solvers. Since
branchingbasedSAT solvers explore eachassignmento
thevariablesof theformulaoneby one,BCPor “examining
thelogical consequencesf eachassignment”js a natural
componenbf suchanalgorithm. Thus,suchan algorithm
canactuallywork with (branchon) only a smallportion of
thegivenBooleanformulawhile still beingableto examine
thelogical consequencesf this branchingontheremaining
variablesat a nggligible additionalexpense(the expenseof
BCP).Ontheotherhand BDDswork by constructingarep-
resentatiorof the entire Booleanspaceof a specifiedsetof
outputvariables,in termsof a specifiedsetof input vari-
ables. The only way to introduceadditionalvariablesis to
explicitly constructBDDs of thosefunctionsaswell and
connectthemto the existing BDDs by somelogical opera-
tion, viz. conjunctionor existentialquantification.For the
currentapplicationi.e. CEC, thissinglefeaturegivesa SAT
basedalgorithm several operationaladvantages.Properly
harnessedthesecan translateinto significantgainsin the
overall efficiency androbustnes®f thetool. Someof these
arediscussedbelow.

Figure 1. False Negatives can be resolved by
local BCP

3.1 Locality androbustnessf cutpoint resolution

In orderto deduceaninternalequivalencer = z’ atyp-
ical BDD baseddeductionenginehasto build BDDs of z
andz’ in termsof a commonsetof cutpoints(Y,Y’) such
thatz(Y) = 2'(Y’). In orderto determinea suitableset
(Y,Y") suchmethodg4, 16, 21] resortto ahostof heuristics
to resolvecutpointsbackwardstill a suitablecut is found.
Suchan approachs inherentlyunrolust sincethereis no
goodcriterionto determinghe“right cut” to learnanequi-
alencefrom. Thus,often suchan approactcomesup with
aset(Y,Y’) muchlargerandfartheraway thanis neededo
learnthe equivalence.The key pointis thattheinability to
learnz = 2’ from agivencut(Y,Y’) is dueto the presence
of certainfalsenegativesonthethis cut. Oftenit is possible
to resohe thesethroughlocal BCP or afairly “local branch
andboundsearchmy a SAT algorithm.

Example 3.1 Considerthe circuit of Figure 1 whee the
signalsy and ¢’ are not equivalentin terms of the cut
¥ = {z,2'}, a,b, c but are actually globally equivalentin
termsof the signalsa, b, ¢ 2. The miscomparingpatterns
(eg z =2 =1,a = 0,b = 1,c = 1) canbeeasilyre-
solvedby a SAT procedue throughlocal BCR while oper
ating fromthe cut), but a BDD basedapproach opemating
in termsof the samecut would not be able to deducethe
equivalence = y'.

3.2 Useof previously deducedequivalences

To the bestof ourknowledgeall cutpointbasednethods
immediatelymerge nodesthat are deducedas equivalent.

2sucha situationis frequentlyproducedby simpleoperationssuchas
factoringandre-substitutionn logic optimization
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Figure 2. Previousl y deduced equiv alences as
shallo w witnesses of false negatives

With BDD basedmethodsthereis probablyno benefitin
doing otherwise. However, with SAT basedmethodsit is
possibleto simply addthe deducedequivalenceasa clause
or constrainto theoverallformulawithoutmergingthetwo
nodesandbenefitfrom it.

Example 3.2 Considerthe exampleof Figure 2 whee the
currentcutpointfrontier« hasanunobservablassignment
1(z) which preventsus fromlearningequivalences = z’
aswellasy = ' fromthecuty. Oncewe haveexpended
somebranding effort in badjustifyingthis false negative
for learningz = 2’ wecanaddin z = z' asalocalwitness
of ¥(z) (andnot meige z, z') sothat whentrying to learn
y = y' thisfalsenegativecanbejustifiedwith nobranching
effort (sincethis assignmenwill immediatelyviolate z =
z').

Thesameaeasoningpplieso notmemgingequivalencede-
hindthe currentcutpoint-frontiersothatthey canbeusedas
shallowwitnessesf unobserableassignmentahentrying
to backjustifyfalsenegativestowardsthe primaryinputs.

3.3 Learning more generalrelationships

In almostall BDD basedcutpoint methodsthe notion
of cutpointscorresponddo equialencerelationships(or
equialencemoduloinversion)in termsof the circuit pri-
mary inputs. Suchrelationshipscanbe naturally obtained
by BDD pointercomparisonsHowever, using SAT meth-
odsit is possibleto work with a muchmoregenerahotion
of cutpoints.Onesuchgeneralizatiorj2] proposedhe no-
tion of replacabilityof gatesvherez canbereplacedvith y
iff onreplacingz with thegatez = z @y theredoesnotex-
ist atestfor the studk-at-Ofault at the outputof z. Thisand
a numberof othervariationsof this notion canbe realized
by slightly modifying the SAT problemposedo the solver.
However, for simplicity we have chosemotto exercisethis
degreeof freedomin this work.

4 ProposedMethodology

Our overallframework is similar to mostcutpointbased
methodsasdescribedn Section2. The key differenceis
that we use SAT proceduresloneto accomplishboth the
deductionandthe justification phases.As in [10] the two
circuitsto bechecledfor equivalencearedecomposethto
a network of two input AND gatesallowing inversionson
the edges. This decomposedetwork is usedasthe base
data-structure. Currently the deductionprocedureis re-
strictedto deducingequivalenceér = y) andequivalences
modulocomplementatiofw = 7). Thus,for the purposeof
thisexpositionwereferto thecutastheequivalenceut All
deducedelationshipsaretaggedontothe respectie gates.
Thuseachnode(gate),x hasassociatewith it a(potentially
NULL) setof nodescalledits equivalencelass Thisisthe
setof nodeswhich have beendeducedasbeingequivalent
toz.

Ourmethodologys implementedhroughacombination
of two SAT enginesvhichworkin tandenin aninterleaved
fashion.Thefirst engineis aninexpensve, DLL baseden-
ginedesignedo catchmostof the “easyto prove” equiva-
lencesin the“vicinity” of the equivalencecut. The second
engineusesa more advancedgeneralpurposeSAT solver
(in ourcasehe GRASP[15] solver)to deduceherelatively
moredifficult equivalencesThetwo enginesaredescribed
below.

4.1 Segmentsweepingbaseddeduction

This engineis designedto catchall equivalencepairs
(z, ") suchthatthe cardinalityof the combinedsupportof
z andz' in termsof the currentequivalencecut, ¢ is less
thansomespecifiedparametek. Theintuition behindthis
engineis similar to motivationof the nodehashingscheme
[1Q]. It is roughly analogougo building BDDs, in terms
of the currentcut, of all thosenodesvhosesupportsize(in
termsof ) is lessthank anddeducingall equivalenceghat
can be deducedfrom theseBDDs. However, for reasons
discussedn Section3 our methodis muchmore powerful
thaneithertheBDD schemesr hashinggevenif thehashing
is generalizeanthelinesof [6].

Let ¢y denotethe cutpointfrontier. A sggmentg of this
cut,is asubsetbf cutpointgaswell astheirequivalentcoun-
terparts)of ¢). Let Bas€¢) denoteall thosegates(vari-
ables),lying in front of the cut 4 in circuits C; and C,,
whosesupportin termsof v is a subsetof the sggmentd.
Considera pair of variablesz, 2’ € Basd¢). The equiva-
lencedeductionprocedures basedon the following prin-
ciple. Undereachassignmento the variablesof ¢, each
variableof Bas€¢) takesa Booleanvalue (0 or 1). If z
andz’ assumehe sameBooleanvalueundereachof these
2/¢l assignmentghenz = z’ “globally”, i.e. in termsof



the primaryinputs. Similarly, if z Z z' (globally) thenthe
following resultfollows.

Proposition4.1 Givensegment¢ of cut ¢ and two vari-
ablesz, z' € Basdg), if z Z ' (globally) thenthere exists
a Booleanvalue assignment: to the variablesof ¢ sud

thatz(¢(a)) # z'(4(a))-

In factthis propositioncanbefurtherstrengthenetly the
additionof thefollowing additionalcondition.

Proposition4.2 Givensement¢ of cut ¢ and two vari-
ablesz, z' € Basdg), if z Z z' (globally) thenthere exists
a Booleanvalueassignment to thevariablesof ¢ andan
assignmenp to theprimaryinputs! sucthat¢(I(p)) = a

andz(¢(a)) # o' (4())-

Basedon Proposition4.1 equivalencerelationshipsare
deducedby constructingand manipulating equivalence
classesasfollows. Givenaseggmentg of cutsy) thevariables
Basd¢) arefirstputinto asingleequivalenceclassI'. Then
eachof the 2/¢/ assignmentso ¢ is explored oneby one
with the associatedialuesof the variablesBasd¢) under
eachassignmentsingBooleanvaluepropagatiorthrough
the circuits. Supposainderthe first assignmento ¢, vari-
ablesT’; evaluateto 1 whereasvariablesl'y evaluateto 0,
wherel'g,I'1 CT',ToUT'y =T andl NIy = 0. Thenthe
equivalenceclassl is splitinto two sub-classeqd;, andI';.
This processs repeatedor eachcurrentequivalenceclass,
after eachassignmentandvalue propagation}o ¢. After
exploring all 2/¢! assignmentso the segment, if two vari-
ablesz andz’ lie in acommonequivalenceclassit follows
from Propositiod.1thatz = =’ holdsglobally.

Usingtheresultof Propositiord.2theabove stratgyy can
be improved considerably First, when branchingon the
segmentvariables(i.e. exploring the 2/% possibleassign-
mentsto segmentvariables)completeBooleanvalue prop-
agationis doneaftereachvariableassignmentThe propa-
gationis carriedbothin front of andbehindthe cut, using
the functional gatelevel circuit descriptionas well asall
previously deducedequialencerelationships.The current
branchis terminatedassoona conflictis encounteredSec-
ondly, the equivalenceclassesare split if andonly if the
branchingdoesnt terminatan a conflict. Theabove deduc-
tion procedurébasecdbn branchingon a singlesegmentand
splitting equivalenceclassess calleda sgmentdeduction
run.

Giventhe currentequivalencecut, ¢, thelocaldeduction
of equivalencegss accomplishedhrougha sequencef sey-
mentdeductionruns,eachwith a new sggmentdravn from
¢. At theendof theserunswe caninformally guarante¢hat
all equivalencesdeduciblefrom the currentcut andwithin
acertainneighborhoodaf it, have beendeducedln our ex-
perimentsaa segmentsizeof 5 provideda goodcompromise
betweerdeductionpower andefficiency.

4.2 Global hypothesisbhaseddeduction

While the above procedurevorks fairly well in regions
of the circuit whereequivalencesareabundantanddensely
scatteredit cannotegeneralizedo handleall equivalences
for thefollowing reasons:

e Thedistributionof equivalencess highly non-uniform
for difficult verificationinstances.Henceit is impos-
sible to determinea goodvalue of the sggmentsizea
priori, in theabsencef whichthealgorithmdoesalot
of wastedwork.

e In somecasesgspeciallyarithmeticcircuits, missing
evenafew equivalencexanmake anappreciableif-
ferenceto the difficulty of theremainingsub-problem.

We concurwith theview of [4] ontheissuethatfor more
difficult equivalence®neneedsarobustapproacho gener
atecandidatepairsof cut-pointsto verify (we referto these
asglobal hypothesiysandarobustmechanisnfor verifying
thesepairsthatdoesnot work off apreset‘hard” threshold
on the amountof effort to investin verifying a particular
pair.

Our framework for global hypothesisgenerationand
proving, draws on techniqueq2, 4, 21] andis similar to
theoneusedin [4]. Thekey differenceis thata single SAT
algorithm is usedbothfor proving equivalentpairsaswell
asidentifying true negatives’. The algorithmpseudocode
is shavnin Algorithm 1.

Algorithm 1 GlobalHypothesiDeduction
GeneratelnitGlobalHypothesisClasses
while Outputs Unresohed & Not DeducedSufiicient
New Equivs.do

(z1,z2) = ChooseHypothesis
Status= ResoheHypothesist;, z2)
if Status= “TRUE_NEGATIVE” then
RefineGlobalHypothesisClasses
if Outputsin differentclasseshen
returnUNEQUAL, test
end if
else
MergeEquvClassesf:, z2)
if OQutputsin thesameEquivClassthen
returnEQUAL
end if
end if
endwhile

The GeneratelnitGlobalHypothesisClasses routine
picks up all nodesin the transitive fanoutof the current

3[4] usedBDDs for the proving equialencesand heuristicallycom-
binedit with a randomizedSAT algorithmimplementecn the BDDs to
identify someof thetruenggatves



cut-pointfrontier andclusterstheminto Global Hypothesis
Classesy running32-bit parallelsimulationon thecircuit.
Nodeswith identical signaturesunder this simulationlie
in the sameglobal hypothesisclass. The simulationcan
be performedwith purely random vectorsor any other
“interesting” set of vectors. This function is usedonly
whenglobal equivalencedeductionis invoked for the first
time.

ChooseHypothesisselectsa pair of nodes,z1, 22, be-
longingto the two circuits from a global hypothesislass,
suchthatthe pair is topologicallyclosestto the currentcut
frontier. This hypothesisis resohed by invoking a SAT
solverontheformuladenotingz; @ z2. All previouslyde-
ducedequialencesarepartof this formula. If the formula
is unsatisfiablehenz; = x5 andhencethe corresponding
equivalenceclasse$ are meged. If the formulais satisfi-
able,thesolutionreturnedorovidesavectorto simulateand
refinei.e. to splitthecurrentglobalhypothesiclassegrou-
tine RefineGlobalHypothesisClassgs

This processteratedill theprimaryoutputsareresohed
or acertainnumber(thisis a parameteto thealgorithm)of
new cutpointsarededuced.After this the cutpointfrontier
is advancedandsggmentsweepings initiatedagain return-
ing to globalhypothesisieductionvhensegmentsweeping
givesup.

5 Experimental Results

We presentexperimentalresults basedon a prelimi-
naryimplementatiorof our proposednethodologyfor SAT
basedCEC. It hasbeenimplementedin C and usesthe
GRASP SAT solwer [15] for the global hypothesishased
deductionphase(Section4.2). Our resultsarereportedon
a167MHz SunUltra Sparc-lwith 256 Mbytesof memory
Ourcurrentinterfaceto GRASPIs throughfiles® but there-
portedruntimesdo notincludethefile I/O timessincethis
can easily be removed througha betterintegration of the
tools. As mentionecearlier themainobjectiveis to present
arealisticassessmemf a SAT basedCECtool, ratherthan
to presentin optimizedandcompleteequivalencechecler.

We presentwo setsof results.Thefirst setcomparesur
methodagainsthe following four toolswhichin our opin-
ionrepresenthestateof theartin SAT basedcombinational
equialencechecking.

1. RL_.GRASP [14] : An implementationof GRASP
augmentedvith RecusivelLearning[12].

2. RL_.CGRASP [13] : An implementatiorof GRASP
augmentedvith Recursie Learningaswell a frame-
work for exploiting circuit topology

4i.e. theequivalencestaggedto eachnodeasexplainedearlierin this
section
5GRASPIs writtenin C++whereasurtool isin C

3. HANNIBAL [11] : A CEC tool using Recursie
Learningandatestgeneratar

4. Implication Graph basedmethod [20]: Presenta
tunedandoptimizedimplementatiorof abacktracking
SAT algorithm that emplo/s someelementsof non-
local implicationsand recursve learning. The algo-
rithmsareimplementedn aspecializediata-structure
calledtheimplicationgraph

The comparatie resultspresentedn Figure3 shaw the
resultsof verifying the ISCAS’85benchmarksgainstheir
irredundanwversions.Thesebenchmarkarerelatively easy
instancef combinationalverification. They arealsothe
only commonsetof benchmark®n which the above tools
havereportedresults. Theesultsof RL_CGRASP wereob-
tainedby runningthe publicly availableversionof the tool
onourmachineusingoptimizedsettingswvhichtheauthors
[13] kindly provided. SinceRL _GRASP wasnot available
we usedthe runtimenumberdsrom [14] appropriatelyscal-
ing for architecturaldifferences.The resultsfor HANNI-
BAL aretheoriginalnumberdrom thepaper11] sincewe
wereunableto find suitablescalingdatafor the SparcELC
stationusedby theauthorsn thoseexperimentsTheresults
of [20] arethenumbersrom theoriginal papemreportedon
aDEC Alpha Station250%/2%¢, which is amachinecompa-
rablein performanceo our own. Although, a direct exact
valueto value comparisoris neitherfair nor intended the
resultsof Figure3 clearlydemonstratéhatour methodcon-
sistentlyoutperformsall the othertechniques. Especially
notewvorthy is thefactthaton the threehardesinstance®f
the set,namelyC5315, C3540 andC7552 our method
outperformsall the other methodsby over two ordersof
magnitude.

The secondset of resultsprovide a comparisonon a
much more difficult setof instanceswith a state-of-the-
art BDD basedmixed engine combinationalequivalence
checler [4]. Figure4 reportsresultson verifying someof
the MCNC91 circuitsagainst versionoptimizedby agen-
eral purposelogic optimizationscript,scri pt. rugged
from SIS[18]. Theresultsof [4] arereportedon the same
machineasours. It is notevorthy that even with our cur
rent untunedand prototypeimplementationour runtimes
are mostly comparableo that of [4], sometimesa factor
of 2-3 slower. However C3540is anexamplewhereour al-
gorithmis in factfasterthan[4]. Interestinglyenoughthis
is anexamplewith afairly non-uniformdistribution of cut-
points,someof which arefairly hardto deduce We believe
theruntimediscrepang canbe easilymadeup andin fact
betteredby theimprovementdistedin Section6.

6 Conclusionsand Futur e Dir ections

We have revisited the applicationof Satisfiability (SAT)
algorithmsto CEC. We arguedthe casefor SAT asamore



Circuit | RL.GRASP | RL_.CGRASP| HANNIBAL | ImplicationGraphMethod[20] | OurMethod
(secs) (secs) (secs) (secs) (secs)
C432 2.8 3.6 3 1.3 0.7
C499 6.8 8.8 6 14 1.17
C1355 18.0 27.4 19 7.0 2.37
C1908 94.8 153.0 26 19.5 3.87
C2670 56.4 74.6 231 24.1 4.46
C3540 4006 2560 2057 791.0 38.94
C5315 445.4 476.6 797 334 6.96
C6288 109.6 43.6 48 8.9 5.04
C7552 2124 2868 4724 570.1 23.11
Figure 3. Verifying original vs. irredundant circuits
Circuit | MixedEngine[4] | OurMethod for flexibility of rapid algorithm prototyping rather
(secs) (secs) than optimality of the specific proposedframenork.
C432 - 2.14 Oncerewritten and tunedfor efficiengy, thesecould
C499 - 0.92 easilyspeedup thetime spentoutsidethe callsto the
C1355 - 11 SAT solwer at leastby a factorof 2-5. This time con-
C1908 - 5.90 tributes30-70%o0f the overallreportedime.
C2670 35 4.93
C3540 25.7 20.98 e More effective use of Initial Vector Simulation:
C5315 5.3 27.45 Currently the 32-bit parallel vector simulation, used
C6288 12.1 14.52 for pruningthe hypothesisset, works with randomly
C7552 12.7 35.18 generatedvectors. However, simulatinga more in-

Figure 4. Verifying original vs. optimiz ed cir-
cuits

robustandflexible engineof Boolearreasonindgor theCEC
applicationthanBDDs. We presentea simpleframeawvork
for SAT basedCEC andreportedresultson a preliminary
implementation.The resultsshov a speedumf up to two
ordersof magnitudecomparedo state-of-the-arSAT based
methodgor CEC.They alsodemonstratéhatevenwith this
simplealgorithmand untunedprototypeimplementatiorit
is only moderatelysloverandsometimegasterthana state-
of-the-artBDD-basednixed-enginecommercialCECtool.
Thereareseveralavenuegor improvemenbf thecurrent
algorithmandimplementation:

e Variable ordering in the SAT solver: It is well
known that variable ordering can affect the perfor
manceof SAT solvers,tremendousl§. Currently we
have experimentedvith only a few static variable or-
dering schemesvith GRASP More experimentation
in this directioncould provide substantiabpeedups.

e Better implementation of our CEC framework:
The currentdata-structureand routinesare designed

SjustasBDD variableorderingaffectsthe sizeof BDDs

telligent set of vectorscould substantiallycut down
the numberof calls to the SAT solver and boostper
formanceproportionally Oneideato do this is to
malke useof testvectorghatareroutinelygeneratedor
simulatingdesignsduring the designprocess.These
could be “interesting” vectors proposedby the de-
signeror the ATPG testsetfor oneor both of the cir-
cuitsbeingchecled.

e Sharing effort between individual hypothesis
checks: Oneof thereasondor the efficiency of BDD
basedmethodss their ability to re-usepreviouswork
by storingpartof theBooleansearchspacan theform
of the BDD itself. While our currentmethodmakes
use of previously done work by storing and using
previously deducedquivalencesasshallov withesses
of conflicts(Section3), amoredirectsharingof effort
betweenindividual SAT calls, someavhat along the
linesof [9] couldsubstantiallyimprove performance.

e Usingan improved SAT solver: As researchin SAT
solvers producesbetter algorithmsand implementa-
tionsperformancef the proposedrameavork will im-
prove.

While it is clearthat SAT basedCEC methodseedfur-
therresearctandapplicationbaseduning beforethey can
surpassimostadecadef researclin BDD basedcombina-



tional verification, SAT basedmethodsfor verificationare
certainlya promisingoptionandmerit continuedresearch.
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