
On Bridging Simulation and Formal Verification

Eugene Goldberg

Cadence Berkeley Labs, USA, 1995 University Ave., Suite 460, Berkeley, California,
94704, phone: (510)-647-2825, fax: (510)-486-0205, egold@cadence.com

Abstract. Simulation and formal verification are two complementary
techniques for checking the correctness of hardware and software designs.
Formal verification proves that a design property holds for all points of
the search space while simulation checks this property by probing the
search space at a subset of points. A known fact is that simulation works
surprisingly well taking into account the negligible part of the search
space covered by test points. We explore this phenomenon by the exam-
ple of the satisfiability problem (SAT). We believe that the success of
simulation can be understood if one interprets a set of test points not
as a sample of the search space, but as a “prover” that can rigorously
prove unsatisfiability of CNF formulas. We introduce the notion of a suf-
ficient test set of a CNF formula which is a test set that has “enough
power” to prove the unsatisfiability of this formula. We show how suffi-
cient test sets can be built. We discuss applications of “tight” sufficient
test sets in manufacturing testing and functional verification and give
some experimental results.

1 Introduction

Development of new methods of hardware and software verification is in growing
demand due to ever-increasing design complexity. Simulation and formal verifi-
cation are two complementary verification techniques. Given a design property
ξ, formal verification proves that ξ holds for every point of the search space.
Simulation verifies ξ by testing a small subset of the search space. The main
drawback of formal verification is its unscalability while an obvious flaw of sim-
ulation is its inability to prove that ξ holds for every point of the search space.
Nevertheless, the main bulk of verification is currently done by simulation: it is
scalable and works surprisingly well even though the set of test points (further
referred to as the test set) comprises a negligible part of the search space.
We study why simulation is so effective on the example of the satisfiability

problem (SAT). In terms of SAT, formal verification is to prove that a CNF
formula F (x1,.., xn) is unsatisfiable at every point p ∈ {0,1}n. On the other
hand, simulation is to give some “guarantee” that F is unsatisfiable by testing
it at a (small) set of points from {0,1}n. (Local search algorithms pioneered
in [5, 6] can be viewed as solving SAT by “simulation”. While these algorithms
target satisfiable formulas, in this paper, we are mostly interested in applying
simulation to unsatisfiable formulas.) We believe that the success of simulation

can be explained if one interprets a test set not as a sample of the search space
but as a prover that can rigorously prove the unsatisfiability of CNF formulas.

We introduce a procedure Sat(T ,F ,L) that proves unsatisfiability of a CNF
formula F using a test set T as a “prover”. Here L is a set of “lemma” clauses (or
just lemmas for short). If for some point p ∈ T , F (p) is equal to 1, Sat(T ,F ,L)
reports that F is satisfiable. Otherwise, Sat(T,F ,L) either proves that F is un-
satisfiable or reports failure. A test set T is called sufficient for a CNF formula
F , if there is a set of lemma clauses L for which Sat(T ,F ,L) proves unsatisfiabil-
ity of F . The set of lemma clauses L1,. . . ,Lk is ordered and the last clause Lk is
empty. The procedure Sat(T ,F ,L) takes a clause Li and checks if F implies Li. If
it succeeds in proving this implication, Li is added to F . (Otherwise, Sat(T ,F ,L)
reports failure.) Then Sat(T ,F ,L) starts processing clause Li+1. The implication
check above is based on computing a stable set of points (SSP) [4]. Namely, in
this paper, we describe an efficient procedure that, given a set of points T and
a CNF formula F ′, checks if a subset of T is an SSP for F ′. This procedure is
used by Sat(T ,F ,L) to check if F → Li. So, in a sense, the test set T is used by
Sat(T ,F ,L) as a “prover”.

The fewer lemmas a sufficient test set T “needs” for proving unsatisfiability of
F by Sat(T ,F ,L), the higher the “quality” of T is. If the set L of lemma clauses
consists only of an empty clause, Sat(T ,F ,L) succeeds in proving unsatisfiability
of F only if T contains an SSP. So an SSP is the most powerful “prover”. In [3],
we introduced the notion of a point image of resolution proof R that a CNF
formula is unsatisfiable. We show in this paper that if the clauses of L are the
resolvents of R, the procedure Sat(T ,F ,L) succeeds if T is a point image of R.
A point image of a resolution proof is, in a sense, the weakest “prover”.

Sufficiency of a test set T with respect to an unsatisfiable CNF formula F
makes this set “complete” in some sense. However, such completeness alone does
not make T good for detecting small variations of F . In this paper, we introduce
“tight” sufficient test sets that are “sensitive” to formula variations and show
how such test sets can be built.

Given a CNF formula F , one can build a (tight) sufficient test set T as a point
image of a resolution proof R that F is unsatisfiable. One can get a stronger test
set by rarifying the proof R (i.e. by removing some resolvents from R). The idea
is that rarification of R makes it harder to prove F → C (where C is a remaining
resolvent of R) using a test set as a prover. So one has to build a stronger test
set T . In particular, if one removes from R all resolvents but an empty clause,
the test set turns into an SSP of F . By varying the degree of rarification of R
one can find the required trade-off between the size and the quality of T .

There are at least two areas of application of our theory. The first area is
generation of manufacturing tests. In terms of SAT, the task of manufacturing
testing is as follows. Given an unsatisfiable CNF formula F , one needs to find a
set T of points that can detect if F becomes satisfiable after a small variation
(“fault”). The second area is functional verification. In terms of SAT, functional
verification is either to prove unsatisfiability of a CNF formula F or to get some
“guarantee” that F is unsatisfiable. (In other words, functional verification is

the superset of formal verification and simulation.) Interestingly, in functional
verification there is an application of sufficient test sets similar to the one men-
tioned above (i.e. finding a test set detecting if a variation makes F satisfiable).
However, in the case of functional verification, a variation of F describes not a
manufacturing fault but a small design change.
A sufficient test set may occupy a negligible part of the search space. (For

example, a point image of a resolution proof is at most two times the size of the
proof.) This fact sheds light on why simulation works so well. The notion of a
sufficient test set can be also used to explain the success of corner case driven
test generation. Currently, tests exercising design “corner cases” is one of the
key contributors to the good performance of simulation. Intuitively, these kind
of tests are most likely to be a part of a sufficient test set. We substantiate these
intuition in Section 6. We show that a tight sufficient test set extracted from a
“natural” resolution proof that two copies of a circuit are functionally equivalent
contains all the tests for detecting stuck-at faults[1]. On the one hand, such tests
are ubiquitous in circuit testing. On the other hand, they are exactly aimed at
exercising corner cases of circuit behavior.
This paper is structured as follows. Section 2 describes a procedure for check-

ing if a set of points contains an SSP of a CNF formula. In Section 3, we describe
the procedure Sat(T ,F ,L) and introduce the notion of a sufficient test set. Gen-
eration of tight sufficient test sets is described in Section 4. In Section 5, we
discuss the specifics of testing formulas describing circuits. Sections 6 and 7 de-
scribe application of sufficient test sets in manufacturing testing and functional
verification. We give some experimental results in Section 8 and conclude by
Section 9.

2 Checking if Test Set Contains SSP

In this section, we give some basic definitions, recall the notion of a stable set of
points (SSP) [4] and introduce a procedure that checks if a set of points contains
a stable subset.
Basic definitions. Let F be a CNF formula (i.e. conjunction of dis-

junctions of literals) over a set X of Boolean variables. The satisfiability problem
(SAT) is to find a complete assignment p (called a satisfying assignment) to
the variables of X such that F (p) = 1 or to prove that such an assignment does
not exist. If F has a satisfying assignment, F is called satisfiable. Otherwise,
F is unsatisfiable. A disjunction of literals is further referred to as a clause. A
complete assignment to variables of X will be also called a point of the Boolean
space {0,1}|X|. A point p satisfies clause C, if C(p)=1. If C(p)=0, p is said
to falsify C. Denote by Vars(C) and Vars(F) the set of variables of C and F ,
respectively. We will call a complete assignment p ∈ {0,1}|X| a test for F . We
will call a set of points T ⊆ {0,1}|X| a test set for F .
Stable set of points. Let a point p ∈ {0,1}|X| falsify a clause C of

k literals. Denote by Nbhd(p,C) the set of k points obtained from p by flip-
ping the value of one of k variables of C. For example, let X={x1,.., x5} and

C = x2 ∨ x3 ∨ x5 and p=(x1=0, x2=0, x3=0, x4=1, x5=1). (Note that C(p)=0.)
Then Nbhd(p,C) ={p1, p2, p3} where p1 = (.., x2=1,..), p2=(.., x3=1,..), p3

= (. . . , x5=0). (For each p i , the skipped assignments are the same as in p.)

Let a CNF formula F over a set X of Boolean variables consist of clauses
C1,. . . ,Cs. Let T = {p1,. . . ,pm} be a non-empty set of points from {0,1}

|X| such
that F (pi)=0, i=1,..,m. Let g: T → F be a function mapping each point p i of
T to a clause Cj of F such that the clause Cj = g(pi) is falsified by p i. The set
T is called a stable set of points (SSP) of F with respect to a function g, if
for each pi ∈ T , Nbhd(pi,g(pi)) ⊆ T .

Proposition [4]. Let F={C1,..,Cs} be a CNF formula over a set X of
Boolean variables. Formula F is unsatisfiable iff there is a set T of points from
{0,1}|X| and a function g: T → F such that T is an SSP with respect to g.

Checking if test set contains SSP. Given a set of points T and
a CNF formula F , the procedure of Figure 1 checks if there is subset of T that
is an SSP of F with respect to some function g. For every point p of T it checks

Stable subset check(T ,F)
{removed=true;
while (removed)
{removed=false;
for (every point p ∈ T)
if (no clause(p,F ,T))
{T = T\ {p};
removed=true;
break;}}

if (T 6= ∅) return (stable)
else return(unstable);}

if there is a clause C of F such that Nbhd(p,C) ⊆
T (the function no clause(p,F ,T)). If such a
clause does not exist, p is removed from T and
every point of T is checked again. (The reason
for starting over again is as follows. Even if in
the previous iterations a point p∗ was not re-
moved from T , after removing p, the situation
may change for p∗.) This repeats until no point
is removed from T , which may happen only in
two cases. a) T is empty (and so it does not con-
tain a stable subset). b) The remaining points

Figure 1. Checking if T contains an SSP

of T form an SSP. The complexity of this procedure is |T |2∗|F|∗|X|. On the
other hand, as we show in [2] (a more detailed version of the current paper) the
complexity of the procedure that checks if T itself is an SSP is |T |∗|F|∗|X|.

3 Procedure Sat(T ,F ,L) and Sufficient Test Sets

In this section, we describe a procedure Sat(T ,F ,L) that uses a test set T to
prove that a CNF formula F is unsatisfiable. We also introduce the notion of a
sufficient test set and describe how sufficient test sets can be obtained.

SAT(T,F,L) procedure The pseudocode of the procedure Sat(T ,F ,L)
is shown in Figure 2. Here L is a set of “lemma” clauses L1,.., Lk where the

Sat(T ,F ,L)
{if (satisfy(T ,F)) return(sat)
for (i=1,..,k))
{if (implies(T ,F ,Li)==false)
return(unknown)

F = F ∪ {Li} }}
return(unsat);}

clause Lk is empty. First, Sat(T,F,L) checks
if a point p of T satisfies F . If such a
point exists, Sat(T ,F ,L) reports that F is
satisfiable. Then Sat(T ,F ,L) processes the
clauses of L in the order they are numbered.
For every lemma clause Li of L, this proce-
dure checks if F implies Li, by calling

Figure 2. Pseudocode of procedure SAT(T ,F ,L)

the function implies(T ,F ,Li). If it succeeds in proving this implication, Li is
added to F . To check if F implies Li, the function implies(T ,F ,Li) uses the
procedure Stable subset check of Figure 1 as follows. First, the subformula FLi

is obtained from F by making the assignments setting all the literals of Li to 0.
Formula F implies Li iff FLi

is unsatisfiable. To check if FLi
is unsatisfiable, the

procedure Stable subset check(TLi
,FLi

) is called by the function implies(T ,F ,Li)
where TLi

is the subset of points of T falsifying Li. This procedure checks if the
set TLi

contains a subset that is an SSP with respect to FLi
. The complexity of

Sat(T ,F ,L) is |T |2 ∗ |F | ∗ |X| ∗ |L| where X is the set of variables of F and |L|
is the number of lemma clauses. (In [2], we give a version of Sat(T ,F ,L) that is
linear in |T | but needs more information than the procedure of Figure 2.)

Sufficient test sets. We will say that a test set T is sufficient for F ,
if there is a set L of lemma clauses such that Sat(T ,F ,L) succeeds in proving
the unsatisfiability of F . That is, T is a sufficient test set for F , if it has enough
“power” to show that F is unsatisfiable by proving a sequence of lemmas L.

In general, the fewer lemma clauses are in the set L, the larger test set T is
necessary for Sat(T ,F ,L) to succeed. In particular, if L contains only an empty
clause, then Sat(T ,F ,L) succeeds only if T contains an SSP. On the other hand,
as we show below, if L consists of the resolvents of a resolution proof R that F
is unsatisfiable, Sat(T, F, L) succeeds even if T is “just” a point image of R.

The notion of a point image of a resolution proof R was introduced in [3]. A
set of points T is called a point image of R if for any resolution operation of
R over clauses C ′ and C ′′, there are points p′,p′′ ∈ T satisfying the following
two conditions: a) C ′(p′)= C ′′(p′′)=0; b) p′,p′′ are different only in the variable
in which clauses C ′ and C ′′ are resolved. Such two points are called a point
image of the resolution operation over C ′ and C ′′.

Let C be the resolvent of C ′ and C ′′. Let the set L of lemma clauses consist
of the resolvents of R. Then C is in L. When the Sat(T ,F ,L) procedure gets
to proving that C is implied by the current formula F , clauses C ′ and C ′′ have
been already added to F . Let FC be the formula obtained from F for checking
if F implies C (by making the assignments setting the literals of C to 0). In FC ,
clauses C ′ and C ′′ turn into unit clauses xi and xi (where xi is the variable in
which C ′ and C ′′ are resolved). Then the points p′,p′′ form an SSP with respect
to these unit clauses and hence with respect to FC . So the procedure Sat(T ,F ,L)

succeeds if L consists of the resolvents of a proof R and T is a point image of R.
A point image is the “weakest” sufficient test set, because it is able to prove only
the weakest lemmas (that the resolvent of C ′ and C ′′ is implied by C ′ ∧ C ′′).
Generation of sufficient test sets. Given a CNF formula F , one

can build its sufficient test set as a point image T of a resolution proof R that
F is unsatisfiable. Building T is very simple. For every pair of clauses C ′ and
C ′′ whose resolvent is in R one just needs to find a point image of the resolution
operation over C ′ and C ′′. The union of point images of all resolution operations
forms a point image of R (and so a sufficient test set for F). Note that the size
of such a point image is twice the size of R at most.
As we mentioned above, a point image of a resolution proof R is the “weak-

est” sufficient test set. However, one can always get a “stronger” test set by
“rarifying” R. The idea is to remove some resolvents from R and use the re-
maining clauses as the set L of lemmas. Then for every clause Li of L we build
an SSP Si for FLi

thus proving that F → Li . (We assume that the lemma
clauses L1,.., Li−1 “proven” before Li have been added to F .) A procedure for
building an SSP is described in [4]. Since some resolvents of R are missing, now
one may need more than two points to prove that F → Li. The set T = S1∪
.. ∪Sk where k = |L| forms a sufficient test set that is “stronger” than a point
image of R (because T can prove more “complex” lemmas). If one removes from
R all the resolvents but an empty clause, T turns into an SSP.

4 Tight Sufficient Test Sets

The fact that a test set T is sufficient for a CNF formula F means that T is
“complete” in some sense. However, this completeness alone does not make T
a high-quality test set. In practical applications, one needs to generate test sets
that are “sensitive” to small variations F that make it satisfiable. So, given
a satisfiable formula F ′ obtained from F by a “small” change, we want T to
contain a point p that satisfies F ′ and so “detects” this change. This can be
done by making sufficient test sets “tight”. Informally, a sufficient test set T is
tight if every point p of T falsifies as few clauses of the original formula F as
possible. (Ideally, every point p of T should falsify only one original clause). If p
falsifies only clause Ci of F , then p may detect a “variation” of F that includes
disappearance of Ci from F (or adding to Ci a literal satisfied by p).
One can give a more “high-level” explanation of why a sufficient test set T of

F should be tight. In general, we want T to be unique for F and so “unusable” by
other CNF formulas. Then if F changes, T will be either insufficient (if F remains
unsatisfiable) or with great probability will contain a satisfying assignment (if
F becomes satisfiable).
Let us consider building a tight point image T of a resolution proof R. Let

C be the resolvent of C ′ and C ′′. When looking for two points p′,p′′ forming a
point image of the resolution operation over clauses C ′ and C ′′ (and so forming
an SSP of subformula FC) we have freedom in assigning variables of F that
are not in C ′ and C ′′. To make the test set T tight, these assignments should

be chosen to minimize the number of clauses falsified by p′,p′′. Note that since
p′,p′′ are different only in one variable (in which C ′ and C ′′ are resolved), picking
one point, say p′, completely determines the point p′′. This poses the following
problem. It is possible that no matter how well one picks the point p′ to falsify
only one clause of F , the corresponding point p′′ falsifies many clauses of F .
In [2], we describe a solution to the problem above. Namely we describe a

version of the procedure Sat(T ,F ,L) that slightly “relaxes” the definition of a
sufficient test set. In this version, in points p′,p′′, only the parts consisting of
the assignments of the variables of Vars(C ′) ∪ Vars(C ′′) have to be at Hamming
distance 1 (i.e. one just needs to guarantee that both p′,p′′ falsify the resolvent
of C ′ and C ′′). Assignments to the variables that are not in C ′ and C ′′ can
be done independently in p′,p′′. In [2], we also describe how one can build a
tight sufficient test set extracted from a “rarified” resolution proof (that was
introduced in subsection “Generation of sufficient test sets” of Section 3) i.e.
how to build tight sufficient tests sets that are stronger than those obtained
from resolution proofs.

5 Circuit Testing

So far we have studied the testing of general CNF formulas. In this section, we
consider the subproblem of SAT called Circuit-SAT. In this subproblem, CNF
formulas describe combinational circuits. We discuss some specifics of testing
formulas of Circuit-SAT.
Circuit-SAT. Let N be a single-output combinational circuit. Let FN

be a CNF formula specifying N and obtained from it in a regular way. That is
for every gate Gi,i=1,..,k of the circuit N , a CNF formula F (Gi) specifying Gi

is formed and FN = F (G1) ∧ . . . ∧ F (Gk). For example, if Gi is an AND gate
implementing vi = vm ∧ vn (where vi, vm,vn describe the output and inputs of
Gi), F (Gi) is equal to (vm ∨ vn ∨ vi)∧ (vm ∨ vi)∧ (vn ∨ vi). Let variable z de-
scribe the output of N . Then the formula FN ∧ z (where z is just a single-literal
clause) is satisfiable iff there is an assignment to input variables of N for which
the latter evaluates to 1. We will refer to testing the satisfiability of FN ∧ z as
Circuit-SAT.

Specifics of testing Circuit-SAT formulas. Let N(Y ,H,z) be
a circuit where Y , H are the set of input and internal variables respectively.
Let FN ∧ z be a CNF formula describing an instance of Circuit-SAT. Let p be
a test as we defined it for SAT (i.e. a complete assignment to the variables of
Y ∪ H ∪ {z}. We will denote by inp(p) the input part of p that is the part
consisting of the assignments of p to the variables of Y .
The main difference between the definition of a test as a complete assignment

p that we used so far and the one used in circuit testing is that in circuit
testing the input part of p is called a test. (We will refer to inp(p) as a circuit
test.) The reason for that is as follows. Let N(Y ,H, z) be a circuit and FN ∧ z

be the CNF formula to be tested for satisfiability. A complete assignment p

can be represented as (y ,h ,z∗) where y , h are complete assignments to Y , H
respectively and z∗ is an assignment to variable z. Denote by F the formula
FN ∧ z. If F (p)=0, then no matter how one changes assignments h , z

∗ in p, the
latter falsifies a clause of F . (So, in reality, inp(p) is a cube specifying a huge
number of complete assignments.) Then instead of enumerating the complete
assignments to Vars(F) one can enumerate the complete assignments to the
set Y of input variables. In our approach, however, using cubes is unacceptable
because the complexity of Sat(T ,F ,L) is proportional to the size of T .
Note that, given a sufficient test set T= {p1,. . . ,pm}, one can always form

a circuit test set inp(T)= {y1,. . . ,yk}, k ≤ m, consisting of input parts of the
points from T . (Some points of T may have identical input parts, so inp(T) may
be smaller than T .) In the case of manufacturing testing, transformation of T
into inp(T) is “mandatory”. In this case, a hardware implementation of a circuit
N is tested and usually one has access only to the input variables of N . (In the
case of functional verification, one deals with a software model of N and so any
variable of F can be assigned an arbitrary value.)
A point pi of T has an interesting interpretation in Circuit-SAT if the value

of z is equal to 1 in p i. Let F
′ be the subset of clauses of FN falsified by pi. (For

a tight test set, F ′ consists of a very small number of clauses, most likely one
clause.) Suppose N has changed and this change can be simulated by removing
the clauses of F ′ from FN or by adding to every clause of F

′ a literal satisfied by
pi . Then if one applies the assignments of inp(p i) to the input variables of the
changed circuit, the latter evaluates to 1. In other words, the “internal” part of
pi describes what change (“fault”) needs to be brought into circuit N to make
inp(pi) a circuit test that ”detects” that N became satisfiable.

6 Manufacturing Testing

We showed above how a tight sufficient test set can be built from a resolution
proof (possibly “rarified”). In this section, we describe how one can use tight
sufficient test sets for manufacturing testing. In terms of SAT, the objective of
manufacturing testing is to detect a variation (“fault”) of an unsatisfiable F that
makes the latter satisfiable. Usually, to reduce the size of test set, a fault model
(e.g. the stuck-at fault model [1]) is specified. Then a set of tests detecting all
testable faults of this model is generated. An obvious flaw of this approach is
that one has to foresee what kind of faults may occur in the circuit. Nevertheless
some fault models (especially a stuck-at fault model) are widely used in industry.
The reason for such popularity is that a set of tests detecting all testable stuck-at
faults also detects a great deal of faults of other types.
In this section, we show how one can use tight sufficient test sets for manu-

facturing testing of a circuit N . The idea is to build a resolution proof R that a
property ξ of N holds and then use R (possibly “rarified”) to build a tight suf-
ficient test set T . This test set is meant to detect faults that break the property
ξ. Importantly, such a test set is fault model independent. Every point p i of T
can be trivially transformed to a circuit test by taking the input part of p i.

The most “fundamental” property of a circuit is self-equivalence. In this
section, we show that a tight sufficient test set T for the formula specifying self-
equivalence of N contains tests for detecting stuck-at faults. (In [2] we show that
on the one hand, inp(T) contains tests for detecting all testable stuck-at faults ,
on the other hand, inp(T) is “stronger” than a set of tests detecting all testable
stuck-at faults.) This result offers a good explanation of why test sets detecting
stuck-at faults work so well for other types of faults.

Further exposition is structured as follows. First we describe a circuit (called
a miter) that is used for equivalence checking. Then we give the definition of
a stuck-at fault in circuit N . After that we show how one can build a test
detecting a stuck-at fault using a formula F describing checking self-equivalence
of N . Finally, we show that a tight point image of a “natural” resolution proof
that F is unsatisfiable contains such tests.

Manufacturing tests and self-equivalence check. Fig. 3 shows
a circuit M (called a miter) composed of two s-input, q-output circuits N ′ and
N ′′. Here Gi is an XOR gate and G is an OR gate. The circuit M evaluates
to 1 iff N ′ and N ′′ produce different output assignments for the same input as-
signment. So N ′ and N ′′ are functionally equivalent iff the CNF formula FM ∧ z
is unsatisfiable (here FM specifies the functionality of M and z is the output
variable of M).

Suppose that we want to generate a set of

G

1

z

….

….

y

1

y

s

N’
 N”

….
 ….

G

m

G

….

Z’
1
 Z”

1

Z’
q
 Z”

q

Fig. 3. Miter M of circuits N ′

and N ′′

manufacturing tests for a circuit N . We can
do this as follows. First we build the miter
M of two copies of N . (In this case, N ′ and
N ′′ of Figure 3 are just copies of N having
the same input variables and separate sets of
internal variables.) After that we construct
a proof R that the formula F = FM ∧ z

is unsatisfiable and then use R to build a
tight sufficient test set T . The idea is that
being tight, T can be used for detection of
variations of F describing appearance of a
fault in one of the copies of N .

Stuck-at faults. A stuck-at fault in
a circuit N , describes the situation when a line in N is stuck at constant value
0 or 1. Let Gi(vm,vk) be a gate of N . Then appearance of a stuck-at-1 fault φ
on the input line vm of Gi, means that for every assignment to the inputs of N
the value of vm remains 1. (Suppose that the output of gate Gm described by
variable vm, in addition to an input of Gi, feeds an input of some other gate Gp.
In the single stuck-at fault model we use in this paper, only the input vm of Gi

or Gp is assumed to be stuck at constant value.) Let Gi be an AND gate. Then
the functionality of Gi can be described by CNF F (Gi) = (vm ∨ vk ∨ vi)∧ (vm ∨
vi) ∧ (vk ∨ vi) where vi describes the output of Gi. The fault φ above can be
simulated by removing the clause vm ∨ vi from F (Gi) (it is satisfied by vm=1)
and removing the literal vm from the clause vm ∨ vk ∨ vi of F (Gi).

Construction of tests detecting stuck-at-faults. Suppose the
stuck-at-1 fault φ above occurred in the copy N ′ of N (i.e. it occurred on the
input line v′m of the AND gate Gi(v

′
m,v

′
k) of N

′). Let us show how this fault can
be detected using the formula F=FM ∧ z. Let p be an assignment falsifying the
clause v′m ∨ v

′
i of F (G

′
i) and satisfying every other clause of F . Then the input

assignment inp(p) is a circuit test detecting φ. Indeed, since p satisfies all the
clauses of F but v′m ∨ v

′
i, then N

′′ (the correct copy of N) and N ′ (the faulty

copy) produce different output assignments. Besides, since p falsifies v′m∨v
′
i and

satisfies the clause v′k∨v
′
i the assignments to the variables of G

′
i are v

′
m=0,v

′
k=1,

v′i=1. That is the output of G
′
i has exactly the value, that would have been

produced if v′m got stuck at 1. If there is no point p falsifying v′m ∨ v′i and
satisfying the rest of the clauses of F , the stuck-at-1 fault φ is untestable (i.e.
the input/output behavior of N does not change in the presence φ).

Extracting a tight sufficient test set from a “natural”
resolution proof. A “natural” proof Rnat that F is unsatisfiable is to de-
rive clauses describing functional equivalence of corresponding internal points of
N ′ and N ′′. These clauses are derived in topological order. First, the clauses de-
scribing the equivalence of outputs of corresponding gates at topological level 1
(whose inputs are inputs of N ′ and N ′′) are derived. Then using the equivalence
clauses relating outputs of gates of topological level 1, the equivalence clauses
relating outputs of corresponding gates of level 2 are derived and so on.

When building Rnat, we resolve clauses F (G
′
i(v

′
m, v

′
k)) and F (G′′

i (v
′′
m, v

′′
k))

describing corresponding gates G′
i and G

′′
i of N

′ and N ′′ and equivalence clauses
EQ(v′m,v

′′
m), EQ(v

′
k,v

′′
k) relating inputs of G

′
i and G

′′
i . Here EQ(v

′
m,v

′′
m)=(v

′
m ∨

v′′m) ∧ (v
′
m ∨ v

′′
m) if v

′
m and v′′m are internal variables. If v′m and v′′m are input

variables of N ′ and N ′′ they denote the same input variable and EQ(v′m, v
′′
m)

≡ 1. By resolving clauses of F (G′
i(v

′
m, v

′
k)) ∧ F (G′′

i (v
′′
m, v

′′
k)) ∧ EQ(v

′
m,v

′′
m) ∧

EQ(v′k,v
′′
k) we generate new equivalence clauses EQ(v

′
i,v

′′
i) relating the outputs

of G′
i and G

′′
i . Let p1 and p2 be a tight point image of the resolution operation

over clauses C1 and C2 performed when deriving clauses of EQ(v
′
i,v

′′
i) . Let, say

C1, be a clause of F (G
′
i) , p1 falsify C1 and satisfy F \ {C1}. Then, using the

reasoning we applied in the previous subsection, one can show that inp(p1) is
a circuit test detecting the stuck-at-fault corresponding to disappearance of C1

from F . More detailed description of building a tight point image of R and its
relation to stuck-at fault tests is given in [2]. In particular, we show that the set
inp(Tnat) where Tnat is a tight point image of Rnat contains tests detecting all
testable stuck-at faults. On the other hand, inp(Tinp) may have to contain tests
that detect the same stuck-at-fault “in different ways”. So, inp(Tinp) is stronger
than a test set detecting testable all stuck-at faults.

Brief discussion. The size of Rnat and hence the size of Tnat is linear
in the size of N . Moreover, since different points of Tnat may have identical
input parts, the size of inp(Tnat) may be considerably smaller than that of Tnat.
Importantly, Tnat is not “meant” to detect stuck-at or any other type of faults.
The fact that Tnat does contain such tests indicates that tight test sets extracted
from resolution proofs can be successfully used in manufacturing testing.

One can always get a stronger test set (that detects more faults of various
kinds) by “rarifying” the proof R. Suppose, for example, that a subcircuit K
of circuit N is particularly prone to faults and requires some “extra” testing.
This can be achieved, for example, by dropping all the resolvents of R that were
generated from clauses FK′ and FK′′ when obtaining the equivalence clauses
EQ(v′i,v

′′
i). Here EQ(v

′
i,v

′′
i) relate the outputs of K

′ and K ′′ in N ′ and N ′′ and
FK are the clauses specifying the functionality of subcircuit K. Let C be a clause
of EQ(v′i,v

′′
i). Then an SSP S of the subformula FC (here FC is the CNF formula

built to check if F implies C) will contain more points then the part of a point
image of R corresponding to resolution operations over clauses of FK′ and FK′′ .
So a test set containing S will provide better testing of the subcircuit K.

7 Functional Verification

At first glance, building a sufficient test set based on a proof that a formula F
is unsatisfiable does not make sense in functional verification (i.e. checking the
unsatisfiability of F either formally or by simulation). Indeed, if we have a proof
that F is unsatisfiable, there is no need to test F by “simulation”. However, as
we show below, there are scenarios under which tight sufficient test sets can be
used to generate high-quality test sets. Here we assume that a CNF formula F
specifies some property ξ of a circuit N . Unsatisfiability of F means that ξ holds
for this circuit. One more assumption is that proving the unsatisfiability of F
is hard or takes too much time and we would like to test ξ by simulation. We
sketch two (out of many) ways to improve the quality of this simulation that are
based on application of our theory of sufficient tests sets.
Testing a modified circuit. Suppose we managed to generate a res-

olution proof R that ξ holds. Suppose we have to make a small change in N and
would like to know if the property ξ holds for the new circuit N ′. Then instead
of generating a new proof we can use R to build a tight sufficient test set T and
then apply the input parts of points of T to test N ′.
Testing property ξ under assumptions. Suppose that we can

not prove the unsatisfiability of F but succeeded in proving the unsatisfiability
of F ∧H where H is a CNF formula consisting of assumption clauses. Then the
property ξ is proved to hold for every point p for whichH(p) = 1. A trivial way to
use this fact is to “randomly” generate points p for which H(p)=0 trying to find
one for which F evaluates to 1. (Generation of “random” assignments that satisfy
some constraints is a widely-used technique now.) However one can do better by
making use of the resolution proof R found when proving unsatisfiability F ∧H.
The idea is to build a tight point image T of R of a special kind. When generating
a point p of T it is allowed to falsify an arbitrary number of clauses of H. At the
same time the number of clauses of F falsified by p is supposed to be kept to
minimum. If a point satisfying all the clauses of F is found, then ξ does not hold.
The difference of this approach from just looking for a point for which H(p)=0
and F (p)=1 is as follows. When building a point image of a resolution operation
some value assignments of p are mandatory. So the search of a counterexample

p is “guided” by resolutions of R. This search is “complete” in the sense that
when “attacking” (i.e. falsifying) assumptions of H we take into account every
situation in which an assumption clause (or its descendant) was used in R.

8 Experimental Results

In this section, we describe application of tight sufficient test sets to circuit test-
ing. In the experiments we compared the quality of circuit tests (i.e. complete
assignments to input variables) generated randomly and extracted from tight
sufficient test sets. Given a circuit N , a tight sufficient test set T was extracted
from a resolution proof R that a CNF formula F describing equivalence check-
ing of two copies of N is unsatisfiable. (The exact procedure for obtaining T
from R and many more experimental results are given in [2]. Resolution proofs
were generated by the SAT-solver FI [3].) To form a circuit test set from T we
randomly picked a subset of the set inp(T) (where inp(T) consists of the input
parts of the points from T).
Table 1 shows experimental results for four circuits of a MCNC benchmark

set. All circuits consist of two-input AND and OR gates inputs of which may
be negated. The columns 2-4 give the number of inputs, outputs and gates of
a circuit. The fifth column shows the size of the proof R (in the number of
resolution operations) that

two copies of circuit N areName #inp #out #gates #proof #point
image T

c432 36 7 215 10,921 5,407
c499 41 32 414 59,582 27,903
cordic 23 2 93 1,443 808
i2 201 1 233 1,777 1,435

Table 1. The size of circuits, proofs and
point images

equivalent. The last column gives
the size of a tight point image
of R (in the number of points.)
Let F be a CNF formula

describing equivalence check-
ing of two copies N ′ and N ′′

of a circuit N . Here F = FM ∧
z where z is the variable de-
scribing the output of the miter

M of N ′ and N ′′ (as shown in Figure 3).
The fault we used in experiments was to add a literal to a clause of FM . This

fault is more “subtle” than a stuck-at fault in which an entire clause is removed
from FM . Although the literal appearance fault does not exactly correspond to
an existing model of a manufacturing fault, in [2] we give its interpretation from
a“technological” point of view. Literal appearance in a clause of FM can be also
used to “simulate” small design changes that are hard to detect in functional
verification.
Let s be a circuit test (i.e. an assignment to the input variables of N). To

check if φ is detected by s we make the assignments specified by s in FM and
run Boolean Constraint Propagation (BCP) for FM . If z gets assigned 1 (or 0)
during BCP, then s detects (respectively does not detect) φ.
In general however, running BCP may not result in deducing the value of z.

The reason is that adding a literal to a clause of FM is not a “functional fault”.

For example, let the C = v′i ∨ v
′
j ∨ v

′
k be a clause of the CNF F (G′

k) describing
the functionality of the AND gate G′

k(v
′
i, v

′
j) Suppose that φ is to add literal

v′m to C. Normally, if v′i=1,v
′
j=1, the value vk=1 is derived from the clause C.

However, if the value of v′m becomes equal to 1 during BCP (before the variable
v′k is assigned), then the clause v

′
i∨v

′
j∨v

′
k∨v

′
m is satisfied without assigning 1 to

v′k. So the output of the gate G
′
k remains unspecified under the input assignment

s. In this case, we run a SAT-solver trying to assign values to the unassigned
variables to satisfy F (and so set z to 1). If such an assignment exists (does not
exist), s is considered to detect (not to detect) φ.

Table 2 shows the resultsName #tests SIS rand extr. from
#flts #flts inp(T)

#flts

c432

58 86 69.7(65) 79.7 (76)
100 - 77.1 (72) 86.7 (78)
200 - 88.7(85) 95.5 (90)

c499

93 90 78.7 (70) 85.9(83)
200 - 86.9 (84) 91.2 (89)
400 - 91 (88) 95.2 (92)

cordic

43 84 28.5 (23) 81.6 (74)
100 - 36.6 (29) 94.2 (87)
200 - 54.8 (36) 99 (98)

i2

221 71 7.8 (3) 66.4 (62)
400 - 9.2 (6) 74.6 (69)
600 - 11.6 (10) 82.4 (80)

Table 2. Circuit testing

of fault testing for the circuits
of Table 1. In every experiment
we generated 100 testable faults
(i.e. every fault made F satis-
fiable). The second column of
Table 2 gives the size of a test
set. The third column gives the
result for a test set detecting
all stuck-at faults in N . This
test set was generated by the
logic synthesis system SIS [7].
Since we could not vary the
size of the test set produced
by SIS, only one test set was
used per circuit. For example,
for the circuit c432, a test set
of 58 tests was generated by

SIS. These tests were able to detect 86 out of 100 faults of literal appearance.
The fourth column contains the results of fault detection using circuit tests gen-
erated randomly. In every experiment we used 10 test sets and computed the
average result.The value in parentheses shows the worst result out of 10. For
example, for the circuit c432, in the first experiment (first line of Table 2) we
generated 10 test sets, each consisting of 58 tests. On average, 69.7 faults were
detected, 65 faults being the worst result out of 10.

The fifth column contains the result of fault detection using circuit tests
extracted from the set inp(T) where T is a point image of a proof R that F is
unsatisfiable. Namely, we randomly extracted a particular number of tests from
inp(T). The corresponding sizes of T are given in Table 1. In every experiment we
also generated 10 test sets of a particular size and we give the average value and
the worst result out of 10. For example, in the first experiment, for the circuit
c432, 10 test sets of 58 tests each were extracted from inp(T). The average
number of detected faults was 79.7 and the worst result was 76 faults.

One can draw at least three conclusions from Table 2. First, the quality of
a test set extracted from a resolution proof depends on proof quality. As we
mentioned above, tests detecting stuck-at faults is a part of inp(Tnat) where

Tnat is a point image of a natural resolution proof Rnat. Table 2 shows that
these tests performed better than tests extracted from proofs found by FI (that
are significantly larger). Second, even though tests detecting the stuck-at faults
have high quality, they do not detect all literal appearance faults. Third, tests
extracted from a point image T of a resolution proof R perform better than
random tests. For circuits c432, c499 that are “shallow” (i.e. have few levels
of logic) and have relatively large number of outputs (7 and 32 respectively)
tests extracted from resolution proofs performed only slightly better. (Testing
of shallow circuits with many outputs is “easy”) . However, for circuits cordic
and i2 that are also shallow but have only 2 and 1 outputs respectively tests
extracted from resolution proofs significantly outperformed random tests.

9 Conclusion

In this paper, we develop a theory of sufficient test sets. The essence of our
approach is to interpret a set of tests not as a sample of the search space but
as a formal “prover”. We believe that this theory can have many applications.
One obvious application is generation of high-quality tests. We show that such
tests can be extracted from resolution proofs. One more interesting direction for
research is extending the notion of stable sets of points (which is the foundation
of our approach) to domains other than propositional logic. This may lead to
developing new methods of generating high quality test sets for more complex
objects like sequential circuits or even programs.

References

1. M. Abramovici, M.A.Breuer, A.D.Friedman. Digital Systems Testing and Testable

Design. 672 p.Sep. 1994, Wiley-IEEE Press
2. E.Goldberg. On bridging simulation and formal verification. Tech-
nical Report CDNL-TR-2006-1225, December 2006 (available at
http://eigold.tripod.com/papers/ssim.pdf)

3. E.Goldberg. Determinization of resolution by an algorithm operating on complete

assignments. SAT-2006, LNCS 4121, pp.90-95.
4. E. Goldberg. Testing Satisfiability of CNF Formulas by Computing a Stable Set of

Points, CADE 2002, LNCS, vol 2392,pp.161-180.
5. B. Selman H. Levesque, D. Mitchell. 1992. A New Method for Solving Hard Satis-

fiability Problems. AAAI-92, pp. 440-446.
6. B.Selman, H.A.Kautz. and B.Cohen. Noise strategies for improving local search.

AAAI-94, Seattle, pp. 337-343, 1994.
7. E.Sentovich et. al. SIS: A system for sequential circuit synthesis. Technical report,
University of California at Berkeley, 1992. Memorandum No. UCB/ERL M92/41

