
Solving SAT By Computing A Stable Set Of Points
In Clusters

Eugene Goldberg
email: eu.goldberg@gmai.com

Abstract—Earlier we introduced the notion of a stable set of
points (SSP). We proved that a CNF formula is unsatisfiable
iff there is a set of points (i.e. complete assignments) that is
stable with respect to this formula. Experiments showed that
SSPs for CNF formulas of practical interest are very large. So
computing an SSP for a CNF formula point by point is, in
general, infeasible. In this report1, we show how an SSP can be
computed in “clusters”, each cluster being a large set of points
that are processed “simultaneously”. The appeal of computing
SSPs is twofold. First, it allows one to better take into account
formula structure and hence, arguably, design more efficient
SAT algorithms. Second, SAT solving by SSPs facilitates parallel
computing.

I. INTRODUCTION

In [5], [7], we introduced the notion of a stable set of points
(SSP) for CNF formulas. (By points here we mean complete
assignments.) We showed that to prove F unsatisfiable it
suffices to construct an SSP for F . If F is satisfiable, no SSP
exists. The appeal of SSPs is twofold. First, they are formula
specific, which allows one to exploit formula structure (e.g.
formula symmetries). Second, an SSP can be viewed as a proof
of unsatisfiability where different parts of this proof are related
weakly. This facilitates parallel computing.

Even though for some classes of formulas there are poly-
nomial size SSPs, in general, SSPs are exponential in formula
size. A simple procedure for building an SSP “point by point”
was given in [5]. Experiments showed that the number of
points in an SSP grew very large even for small CNF formulas.
This implies that building an SSP point by point is, in general,
impractical. To address this problem, it was suggested in [5],
[7] to compute an SSP “in clusters” thus processing many
points simultaneously. In this report, we describe computing
SSPs in clusters in greater detail.

The contribution of this report is fourfold. First, we in-
troduce the notion of a stable set of clusters (SSC). The
latter represents an SSP implicitly and can be computed much
more efficiently. Although we introduce only the notion of
clusters consisting of points, the stability of more complex
objects (like clusters of clusters of points) can be studied.
Second, we describe how the notion of an SSC works in testing

1The idea of computing SSPs in clusters was first presented in the technical
report [6]. Since the latter is only available on the author’s website we decided
to publish a new version to make it more accessible. In this publication we
introduced many changes. In particular, we changed the procedure Gen SSC
where clusters are represented by cubes to make it more practical. We
also presented an example of how Gen SSC works. Besides, we added a
discussion of how computing SSPs in clusters benefits parallel SAT solving.

the satisfiability of symmetric formulas (in particular, pigeon-
hole formulas). Third, we show how one can build an SSC
where clusters are specified by cubes. Fourth, we argue that
computing an SSC facilitates parallel SAT solving.

This report is structured as follows. Section II recalls the
notion of SSPs and gives relevant definitions. In Section III,
we introduce the notion of a stable set of clusters. Sec-
tion IV describes how a stable set of clusters is computed
for symmetric formulas. In Section V we present Gen SSC ,
a procedure for computing a stable set of clusters where
clusters are cubes. A discussion of Gen SSC is presented in
Section VI. Sections VII and VIII provide some background
and conclusions.

II. RECALLING STABLE SETS OF POINTS

In this section, we recall the notion of SSP introduced in [5]
and give relevant definitions.

A. Definitions

Definition 1: Denote by B the set {0, 1} of values taken
by a Boolean variable. Let X be a set of Boolean variables.
An assignment to X is a mapping X ′ 7→ B where X ′ ⊆ X .
If X ′ = X this assignment is called a complete one. We
will denote by B|X| the set of complete assignments to X .
A complete assignment to the variables of X is also called a
point of B|X|.

Definition 2: A literal of a Boolean variable x is either x
itself or its negation. A disjunction of literals is called a clause.
A formula that is a conjunction of clauses is said to be in the
conjunctive normal form (CNF). A clause C is called satisfied
by an assignment p if C(p) = 1. Otherwise, the clause C is
called falsified by p. The same applies to a CNF formula and
an assignment p.

Definition 3: Let F be a CNF formula. The satisfiability
problem (SAT for short) is to find an assignment satisfying
all the clauses of F . This assignment is called a satisfying
assignment.

Definition 4: Let p ∈ B|X| be a point (i.e., a complete
assignment to X) falsifying a clause C. The 1-neighborhood
of p with respect to C (written Nbhd(p, C)) is the set of
points satisfying C that are at Hamming distance 1 from p.

It is not hard to see that the number of points in Nbhd(p, C)
equals that of literals in C.

Example 1: Let C = x1 ∨ x3 ∨ x4 be a clause spec-
ified in the Boolean space of 4 variables x1 . . . , x4. Let
p = (x1 = 0, x2 = 1, x3 = 1, x4 = 0) be a point falsifying

ar
X

iv
:2

50
7.

13
28

2v
1

 [
cs

.L
O

]
 1

7
Ju

l 2
02

5

https://arxiv.org/abs/2507.13282v1

C. Then Nbhd(p, C) consists of the following three points:
p1=(x1 = 1, x2 = 1, x3 = 1, x4 = 0), p2 = (x1 =0, x2 =
1,x3 = 0,x4 = 0), p3 = (x1 = 0, x2 = 1, x3 = 1, x4 = 1).
Points p1, p2, p3 are obtained from p by flipping the value
of variables x1, x3, x4 respectively.

Definition 5: Given a formula F , denote by Vars(F) the
set of its variables. Denote by Z(F) the set of complete
assignments to Vars(F) falsifying F . If F is unsatisfiable,
Z(F) = B|X| where X = Vars(F).

Definition 6: Let F be a CNF formula and P be a subset
of the set of falsifying points Z(F). A function g mapping
P to F is called a transport function if, for every p ∈ P ,
the clause g(p) is falsified by p. In other words, a transport
function g : P 7→ F is meant to assign each point p ∈ P a
clause of F that is falsified by p. We call the mapping P 7→ F
above a transport function because it allows one to introduce
some kind of “movement” of points in the Boolean space.

Definition 7: Let P be a nonempty subset of Z(F) where
F is a CNF formula. The set P is called stable with respect
to F and a transport function g : P 7→ F , if ∀p ∈ P ,
Nbhd(p, g(p)) ⊆ P . Henceforth, if we just say that a set
of points P is stable with respect to a CNF formula F , we
mean that there is a transport function g : P 7→ F such that
P is stable with respect to F and g.

Example 2: Consider an unsatisfiable CNF formula F con-
sisting of 7 clauses: C1 = x1∨x2, C2 = x2∨x3, C3 = x3∨x4,
C4 = x4 ∨ x1, C5 = x1 ∨ x5, C6 = x5 ∨ x6, C7 = x6 ∨ x1.
Clauses of F are composed of the six variables x1, . . . , x6. Let
P = {p1, . . . , p14} where p1 = 000000,p2 = 010000,p3 =
011000,p4 = 011100,p5 = 111100,p6 = 111110,p7 =
111111,p8 = 011111,p9 = 011011,p10 = 010011,p11 =
000011,p12 = 100011,p13 = 100010,p14 = 100000. (Val-
ues of variables are specified in the order variables are num-
bered. For example, p4= (x1=0, x2=1, x3=1, x4=1, x5 =
0, x6 = 0). The set P is stable with respect to the transport
function g specified as: g(p1)=C1, g(p2)=C2, g(p3)=C3,
g(p4) = C4, g(p5) = C5, g(p6) = C6, g(p7) = C7,
g(p8) = C4, g(p9) = C3, g(p10) = C2, g(p11) = C1,
g(p12) = C7, g(p13) = C6, g(p14) = C5. It is not hard to
see that g indeed is a transport function i.e. for any point
pi of P it is true that C(pi) = 0 where C = g(pi). Besides,
every point pi of P satisfies the condition Nbhd(p, g(p)) ⊆ P
of Definition 7. Consider, for example, point p10 = 010011.
The value of g(p10) is C2 where C2 = x2 ∨ x3. The value
of Nbhd(p10, C2) is {p11 = 000011,p9 = 011011}. So, the
latter is a subset of P .

Proposition 1: . If there is a set of points that is stable with
respect to a CNF formula F , then F is unsatisfiable.

The proof of this proposition is given in [7]. The reverse of
Proposition 1 is true too i.e., for every unsatisfiable formula F
there is an SSP. A trivial SSP is B|X| where X = |Vars(F)|.

B. Procedure For Building SSP

In this subsection, we recall a simple procedure introduced
in [5], [7] that generates an SSP point by point. We will refer
to it as Gen SSP . The pseudocode of Gen SSP is shown

in Figure 1. Gen SSP accepts a CNF formula F and returns
either a satisfying assignment or an SSP proving F unsat-
isfiable. Gen SSP maintains two sets of points: Boundary
and Body . The set Boundary (respectively Body) consists of
the reached points whose neighborhood points have not been
generated yet (respectively are already generated).

Gen SSP(F) {
1 pinit := gen point(F)
2 Body = ∅,Boundary = {pinit}
3 while (Boundary ̸= ∅) {
4 p := pick next point(Boundary)
5 Boundary := Boundary \ {p}
6 Body := Body ∪ {p}
7 H = falsified clauses(F,p)
8 if (H = ∅) return(p, ∅) // p is a satisf. assign.
9 C := pick clause(H) // g(p) := C
10 NewPnts :=Nbhd(p, C)\ (Body ∪ Boundary)
11 Boundary := Boundary ∪NewPnts}
12 return(nil ,Body) // Body is an SSP, since Boundary = ∅

Fig. 1. Generation of SSP

The set Boundary is initialized with a point pinit while
Body is originally empty (lines 1-2). Then, in a while loop
(lines 3-11), Gen SSP does the following. It picks a point
p of Boundary to explore its neighborhood, removes p from
Boundary and adds it to Body (lines 4-6). Then it computes
the set H of clauses of F falsified by p. If H is empty, p
is a satisfying assignment. So, Gen SSP returns p and an
empty set indicating that no SSP is built (line 8). Otherwise, a
clause C ∈ H is picked as the value of the transport function
g at p in line 9 (Gen SSP builds g on the fly). The points
of Nbhd(p, C) that are not in Body yet and not already in
Boundary are added to Boundary (lines 10-11).

If the set Boundary is empty, it means that for every point
p ∈ Body , the property Nbhd(p, g(p)) ⊆ Body holds. So,
Body is an SSP and hence F is unsatisfiable (line 12).

III. COMPUTING A STABLE SET OF CLUSTERS

In this section, we introduce the notion of a stable set of
clusters of points. As we mentioned earlier, experiments show
that computing an SSP point by point is impractical. Building
a stable set of clusters can be viewed as a way to speed up
SSP computing by processing many points at once.

Definition 8: Let F be a CNF formula and P be a subset of
Z(F). Let g be a transport function Z(F) 7→ F . Denote by
Nbhd(P, g) the union of sets Nbhd(p, g(p)), p ∈ P for all
the points of P . In other words, Nbhd(P, g) is the union of the
1-neighborhoods for all points p ∈ P where Nbhd(p, g(p))
is computed with respect to the clause g(p).

Definition 9: Let F be a CNF formula and P1, . . . , Pk be
subsets of Z(F). Let gi be a transport function Pi 7→ F , i =
1, . . . , k. Suppose that for every Pi, i = 1, .., k the property
Nbhd(Pi, gi)⊆P1∪· · ·∪Pk holds. Then the set {P1, . . . , Pk}
will be called a stable set of clusters (SSC) with respect to F
and transport functions g1, . . . , gk. (Here we refer to a subset
Pi as a cluster of points.)

Proposition 2: Let F be a CNF formula and P1, . . . , Pk

be a stable set of clusters with respect to F and transport
functions g1, .., gk. Then P1 ∪ · · · ∪Pk is an SSP and so F is
unsatisfiable.

A proof of this proposition is given in the appendix. The
same applies to all new propositions introduced in this paper.

Remark 1: Note that if P is an SSP for F , any set of k
subsets Pi ⊆ P forms an SSC if P1 ∪ · · · ∪Pk = P . However
we are interested only in clusters that make computing an SSC
efficient. Intuitively, such efficiency can be achieved if every
cluster Pi is formed from the points that are somehow related
to each other. More specifically, every cluster is supposed
to satisfy the following two properties. First, Pi has a short
description regardless of its size e.g., if Pi is exponential in
|Vars(F)|. (One can think of Pi as a set of low Kolmogorov
complexity.) Second, the 1-neighborhood of Pi with respect
to the transport function gi can be easily computed.

The notion of SSC is important for a few reasons. Suppose
for the unsatisfiable formulas of some class there is an SSC
with a polynomial number of clusters (in formula size). Then
one can have an efficient procedure for testing the satisfiability
of the formulas of this class. We substantiate this idea by the
example of pigeon-hole formulas. Another reason for studying
SSCs is that they expose a deep relation between models and
formulas. So, one can get a better understanding of the existing
SAT algorithms (e.g. those based on clause learning).

In this report, we consider only a two-level “hierarchy”
of clusters, namely, clusters consisting of points. However,
one can introduce more complex hierarchies (e.g., clusters of
clusters of points and so on).

IV. TESTING SATISFIABILITY OF SYMMETRIC FORMULAS

In this section, we show the relation between permutational
symmetries of a formula and its SSCs. In Subsection IV-A, we
recall the previous results on SSPs for symmetric formulas.
Subsection IV-B shows that the procedure for solving sym-
metric formulas introduced in [7] can be actually interpreted
as building an SSC. Finally, in Subsection IV-C, we consider
SSCs for pigeon-hole formulas.

A. Stable sets of points for symmetric formulas

Definition 10: Let X be a set of Boolean variables. A
permutation π defined on the set X is a bijective mapping
of X onto itself.

Definition 11: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let p = (x1, . . . , xn) be a point of B|X|. Let
π be a permutation of X . Denote by π(p) the point
(π(x1), . . . , π(xn)).

Definition 12: Let F = {C1, . . . , Ck} be a CNF for-
mula. Let π be a permutation of Vars(F). Denote by π(Ci)
the clause obtained from Ci by replacing each variable
xm ∈ Vars(Ci) with the variable π(xm). Denote by π(F)
the set of clauses {π(C1), . . . , π(Ck)}

Definition 13: Let F be a CNF formula and π be a
permutation of Vars(F). Formula F is called symmetric with

respect to π if π(F) consists of the same clauses as F (i.e.,
each clause π(Ci) of π(F) is identical to a clause Cm of F).

Definition 14: Let X be a set of Boolean variables and G be
a group of permutations of X . Denote by symm(p, p′, G)
the following binary relation between points of B|X|. A pair
of points (p,p′) is in symm(p,p′, G) iff there is π ∈ G such
that p′ = π(p).The relation symm(p,p′, G) is an equivalence
one and so it breaks B|X| into equivalence classes.

Definition 15: Points p and p′ of B|X| are called symmetric
with respect to a group G of permutations of X if they are in
the same equivalence class of symm(p,p′, G).

Proposition 3: Let X be a set of Boolean variables and p
be a point of B|X|. Let C be a clause falsified by p. Let π be
a permutation of X . Then for each point p′ of Nbhd(p, C)
there is a point π(p′) of Nbhd(π(p), π(C)).)

The proof is given in [7].
Definition 16: Let F be a CNF formula that is symmetric

with respect to a group G of permutations of X = Vars(F).
Let P be a set of points of B|X| falsifying F . The set P is
called stable modulo symmetry G with respect to F and a
transport function g : P 7→ F if for each point p ∈ P , every
point p′ of Nbhd(p, g(p)) is either in P or there is a point
p′′ of P that is symmetric to p′.

Proposition 4: Let F be a CNF formula, P be a set of points
of B|X|, X = Vars(F), that falsify F . Let g : P 7→ F be
a transport function. If P is stable modulo symmetry G with
respect to F and g, then F is unsatisfiable.

The proof is given in [7].

B. Stable sets of clusters for symmetric formulas

Proposition 4 is proved in [7] via extending the set of
points P by adding the points symmetric to those of P . The
transportation function g is also extended as follows. If p ∈ P
and p′ = π(p), then g(p′) is equal to π(g(p)) (In other words,
for symmetric points, the extended transport function g assigns
symmetric clauses.) It is shown in [7] that this extended set of
points is actually an SSP for F with respect to the extended
transport function g.

Importantly, one can give a different interpretation of the
extension of P above. Let P = {p1, . . . ,ps}. Let E(pi) be
the equivalence class of the symmetry relation symm(p,p′, G)
consisting of the points of B|X| that are symmetric to pi. Then
the set of clusters E(p1), . . . , E(ps) form an SSC because
E(p1) ∪ · · · ∪ E(ps) is exactly the extended set of points
described above and so this set is stable. (Note that if points
pi and pj of P are symmetric, then E(pi) = E(pj).)

Sets E(pi) meet the two requirements to clusters specified
by Remark 1 of Section III. On one hand, each cluster is
an equivalence class of the relation symm(p,p′, G) and so
the set of points of E(pi) can be easily described. On the
other hand, the set Nbhd(E(pi), g) (where g is the transport
function extended from the original function P 7→ F as
described before) is easy to compute. According to Propo-
sition 3, Nhbd(π(p), π(C)) and Nbhd(p, C) consist of points
symmetric under π. Let Nbhd(pi, C) = {pi1 , . . . ,pim} (here

C is the clause g(pi)). Then Nbhd(E(pi), g)=E(pi1)∪· · ·∪
E(pim).

The procedure for building an SSC for a CNF formula F
with symmetry G is essentially identical to the procedure
of [7] for building a set P that is stable with respect to
F modulo symmetry G. In turn, the procedure of [7] is
different from the one shown in Figure 1 only in one line of
code (line 11). Namely, when building a set of points stable
modulo symmetry G this procedure does not add to Boundary
a point p′ of Nbhd(p, C) if Total contains a point that is
symmetric to p′. Eventually this procedure builds a set of
points P = {p1, . . . ,pm} that is stable with respect to F
modulo symmetry G.

Importantly, one can interpret the procedure of [7] as build-
ing an SSC equal to {E(p1), . . . , E(pm)}. This procedure
just uses points pi of P as representatives of clusters E(pi).
Suppose, for instance, that a point p′ of Nbhd(p, C) is not
added to Boundary because it is symmetric to a point p′′ of
Total. In terms of SSCs this just means that E(p′) = E(p′′)
and so the cluster E(p′) has already been “visited”.

C. Stable sets of clusters for pigeon-hole formulas

In this subsection, we illustrate the power of SSCs by the
example of pigeon-hole formulas. These are unsatisfiable CNF
formulas that describe the pigeon-hole principle. Namely, if
n > m, then n pigeons cannot be placed in m holes so that
no two pigeons occupy the same hole. In [8] A. Haken showed
that pigeon-hole formulas have only exponential size proofs
in the resolution proof system, which makes them hard for
the SAT-solvers based on resolution. Since the pigeon-hole
principle is symmetric with respect to a permutation of holes
or pigeons, pigeon-hole formulas are highly symmetric.

Let PH (n,m) denote a CNF formula encoding the pigeon-
hole principle above. Let G denote the permutational sym-
metry of PH (n,m). In [7] we showed that there is a set of
points P = {p1, . . . ,p2m+1} that is stable for PH (n,m)
modulo symmetry G. Denote by S(n,m) the union of the
equivalence classes E(pi), i = 1, . . . , 2m + 1 of the relation
symm(p,p′, G). The fact that P is stable modulo symmetry
G means that S(n,m) is an SSP for PH (n,m). On the other
hand, this fact means that PH (n,m) has an SSC consisting
of 2m+1 clusters E(pi). The size of E(pi) is exponential in
m and hence S(n,m) is exponential in m too. However, the
size of the SSC above in terms of clusters is linear in m.

V. COMPUTING SSCS USING CUBES AS CLUSTERS

In this section, we introduce Gen SSC , a SAT procedure
that builds a special class of SSCs where clusters are cubes.
Subsections V-A and V-B provide some definitions and an
example of how Gen SSC operates. In Subsection V-C, we
present the pseudocode of Gen SSC .

A. A few more definitions and examples

Definition 17: Let X = {x1, . . . , xn} be a set of Boolean
variables. A cube P of B|X| is a subset of B|X| that can be
represented as B1×· · ·×Bn, where Bi is a non-empty subset

of B and ′×′ means the Cartesian product. The components
Bi equal to {0} or {1} are called literal components of P .

Definition 18: We will say that a cube P satisfies (respec-
tively falsifies) a clause C if every point p ∈ P satisfies
(respectively falsifies) C.

Definition 19: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let P = B1 × · · · ×Bn be a cube of B|X| and Bi

be equal to {0, 1}. Let P ′, P ′′ be the cubes obtained from P
by replacing the set Bi with sets {0} and {1} respectively.
We will say that cubes P ′ and P ′′ are obtained from P by
splitting on the variable xi.

Definition 20: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let C be a clause, Vars(C) ⊆ X . Denote by
Unsat(C) the set of all points of B|X| that falsify C. It
is not hard to see that Unsat(C) is a cube of B|X|.

Example 3: Let C = x2 ∨ x4 and X = {x1, x2, x3, x4}.
Then Unsat(C) equals {0, 1} × {0} × {0, 1} × {1}. In other
words, Unsat(C) consists of all the points of B|X| for which
x2 = 0 and x4 = 1. So, the second and fourth components of
Unsat(C) are literal components.

Definition 21: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let p be a point of B|X|. Denote by Nbhd(p, xi)
the neighborhood of p in direction xi, i.e. the one-element set
{p′} where the point p′ is obtained from p by flipping the
value of xi in p.

From Definition 4 and Definition 21, it follows that
Nbhd(p, C) is the union of Nbhd(p, xi) for all the variables
of the clause C.

Definition 22: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let P = B1 × · · · ×Bn be a cube of B|X| and Bi

be equal to {0} or {1}. Denote by Nbhd(P, xi) the union
of Nbhd(p, xi) for all the points p of P . It is not hard to see
that Nbhd(P, xi) is the cube obtained from P by replacing
Bi with the set {0, 1} \ Bi. We will call Nbhd(P, xi) the 1-
neighborhood cube of P in direction xi.

Definition 23: We will say that a cube P falsifies a clause
C if P ⊆ Unsat(C). (Obviously, in this case, every point of
P falsifies C.)

Definition 24: Let X = {x1, . . . , xn} be a set of Boolean
variables. Let P be a cube of B|X| and C be a clause falsified
by P . Denote by Nbhd(P,C) the set of 1-neighborhood
cubes Nbhd(P, xi) in every direction xi ∈ Vars(C).

Note that cubes satisfy the two requirements to clusters
specified in Remark 1 of Section III. On one hand, the set
of points contained in a cube P can be succinctly described.
On the other hand, if a clause C is falsified by P , the 1-
neighborhood Nbhd(P,C) is the union of a small number of
cubes. So it can be easily computed.

Definition 25: Clauses C ′, C ′′ are called resolvable on a
variable x if they have the opposite literals of only one variable
and this variable is x. The clause C is said to be obtained by
resolution of C ′, C ′′ on x if it consists of all the literals of
C ′, C ′′ but those of x. The clause C is also called the resolvent
of C ′, C ′′ on x.

Definition 26: Let P = B1 × .. × Bn be a cube of B|X|

where X={x1, .., xn}. We will represent P as a conjunction

of literals where the i-th literal component of P corresponds
to the literal l(xi) of this conjunction and vice versa. Namely,

• Bi = {0} ⇔ l(xi) = xi.
• Bi = {1} ⇔ l(xi) = xi.

For every assignment p ∈ P this conjunction evaluates to 1
and vice versa.

Example 4: Let P = {0, 1}×{0}×{0, 1}× 1 be a cube of
B|X| where X = {x1, x2, x3, x4}. Then P can be specified
by the conjunction x2∧x4. For the sake of simplicity we will
omit the sign ′∧′. Then the cube P is specified as x2 x4.

Definition 27: Let C ′, C ′′ be two clauses resolvable on a
variable xi ∈ X . Let P ′, P ′′ be two cubes of B|X| that falsify
C ′ and C ′′ respectively. (This implies that the i-th component
of P ′ and P ′′ is {b} and {b} respectively where b ∈ {0, 1}.)
Let C be the resolvent of C ′ and C ′′ on xi. A cube P is said
to be obtained by merging P ′, P ′′ on xi if

• P ′ ⊆ P and P ′′ ⊆ P
• P falsifies C

Example 5: Let X={x1, . . . , x8} and C ′ = x1∨x3∨x7 and
C ′′ = x1∨x7. Let P ′ = x1 x3 x5 x7 x8 and P ′′ = x1 x3 x5 x7

be cubes of B|X| falsifying the clauses C ′ and C ′′ respectively.
Let P = x3 x5 x7. Note that P ′ ⊆ P and P ′′ ⊆ P . Besides,
P falsifies the resolvent C = x3 ∨ x7 of C ′ and C ′′. So P
can be viewed as obtained by merging P ′ and P ′′ on x1.
Note that, in general, a cube satisfying the two conditions of
Definition 27 is not unique. For instance, the cube P = x3 x7

satisfies Definition 27 as well.
Definition 28: Let P be a cube and A be a set of

cubes {P1, . . . , Pk}. We will say that P is covered by A
if P ⊆ Union(A) where Union(A) = P1 ∪ · · · ∪ Pk. That
is the set of points specified by P is a subset of the set of
points specified by A.

B. An example of how Gen SSC operates

In this subsection, we give an example of how Gen SSC
operates. Consider the formula F (X) =C1 ∧ · · · ∧C5 where
C1 = x2 ∨ x3, C2 = x1 ∨ x2, C3 = x1 ∨ x2 ∨ x3,
C4 = x3 ∨ x4, C5 = x3 ∨ x4, X = {x1, x2, x3, x4}.

A fragment of the execution trace of Gen SSC applied to F
is shown in Fig. 2. (Appendix II provides the complete trace
where building an SSC for F is finished proving the latter
unsatisfiable.) Like Gen SSP , Gen SSC maintains the sets
Body and Boundary. The difference is that these sets consist
of cubes rather than points. Gen SSC starts with picking
an initial cube of the set Boundary (line 1). Assume that
Gen SSC picks the cube P1 equal to x2 x3 as the initial
cube. P1 falsifies the clause C1 = x2 ∨ x3. So, Gen SSC
adds g(P1) := C1 to the definition of the transport function
g. At this point, Body = ∅ and Boundary = {P1} (line 2).

Then Gen SSC computes Nbhd(P1, C1) i.e., the neigh-
borhood of P1 with respect to C1 (lines 3-5). It consists of
the cubes P2 = x2 x3 and P3 = x2 x3 obtained from P1 by
negating the literals of x2 and x3 respectively. P1 is moved
from Boundary to Body and P2, P3 are added to Boundary.

initialize:
1 P1 = x2 x3, g(P1) = C1 = x2 ∨ x3

2 Body = ∅,Boundary = {P1}
compute Nbhd(P1, C1):
3 P2 = Nbhd(P1, x2) = x2 x3

4 P3 = Nbhd(P1, x3) = x2 x3

5 Body = {P1},Boundary = {P2, P3}
splitting P2 on x1

6 P ′
2 = x1 x2 x3, g(P ′

2) = C2 = x1 ∨ x2

7 P ′′
2 = x1 x2 x3, g(P ′′

2) = C3 = x1 ∨ x2 ∨ x3

8 Body = {P1}, Boundary = {P ′
2, P

′′
2 , P3}

merging cubes P ′
2, P

′′
2 :

9 Merge(P ′
2, P

′′
2 , x1) = P2 = x2 x3

10 C6 = Res(C2, C3, x1) = x2 ∨ x3

11 Body = {P1},Boundary = {P2, P3},
12 F = F ∧ C6, g(P2) = C6

compute Nbhd(P2, C6):
13 Nbhd(P2, x2) = x2 x3 = P1 and P1 ∈ Body
14 P4 = Nbhd(P2, x3) = x2 x3

15 Body = {P1, P2},Boundary = {P3, P4},
...................................

Fig. 2. A fragment of an execution trace of Gen SSC

Assume Gen SSC picks P2 to replace it in Boundary
with the 1-neighborhood cubes. Since P2 does not falsify any
clause of F , Gen SSC cannot immediately compute the 1-
neighborhood of P2. So, Gen SSC splits it on x1 replacing
P2 with cubes P ′

2 = x1 x2 x3 and P ′′
2 = x1 x2 x3 (lines 6-8).

Note that P ′
2 falsifies C2 and P ′′

2 falsifies C3.
To compute the 1-neighborhood of P2, Gen SSC merges

P ′
2 and P ′′

2 on x1. This merging reproduces P2 and generates
a new clause falsified by it (lines 9-12). It is not hard to show
that P2 indeed satisfies Definition 27. First, P ′

2 ⊆ P2 and
P ′′
2 ⊆ P . Second, P2 falsifies the new clause C6 obtained by

resolving C2 and C3 (falsified by P ′
2 and P ′′

2 respectively).
Now Gen SSC is able to compute Nbhd(P2, C6) (lines

13-15). The 1-neighborhood cube in direction x2 is covered
by Body since this cube equals to P1 and P1 ∈ Body . So, it is
not added to Boundary. On the other hand, Nbhd(P2, x3) is
a new cube P4 that is added to Boundary. As we mentioned
above, the rest of the execution trace is given in Appendix II.

C. Procedure for building an SSC using cubes as clusters

In this subsection, we present the pseudocode of Gen SSC
(Figure 3). Gen SSC accepts a formula F and returns a
satisfying assignment or an SSC proving F unsatisfiable. As
we mentioned above, like Gen SSP , Gen SSC maintains
sets Boundary and Body. Here Boundary (respectively Body)
is the set of cubes whose 1-neighborhood cubes have not been
generated yet (respectively are already added to Boundary).
Gen SSC starts with producing a cube Pinit (line 1) to

initialize the set Boundary (line 2). Body is initially empty.
An SSC is built in a while loop (lines 3-22). First, a cube P
is picked and removed from Boundary (lines 4-5). Then the
set H of clauses falsified by P is formed i.e., for every clause
C of H , it is true that P ⊆ Unsat(C) (line 6).

After that, Gen SSC checks if H is empty (line 7). If so,
there are the two possibilities below. First, for every clause C
of F it is true that Unsat(C)∩P = ∅. This means that every

Gen SSC (F) {
1 Pinit := gen cube(F)
2 Body = ∅,Boundary = {Pinit}
3 while (Boundary ̸= ∅) {
4 P := pick next cube(Boundary)
5 Boundary := Boundary \ {P}
6 H = falsified clauses(F, P)
7 if (H = ∅) {
8 if (satisfies(P, F)) // every p ∈ P satisfies F
9 return(P, ∅)
10 x := pick var(P, F)
11 (P ′, P ′′) := split cube(P, x)
12 Boundary := Boundary ∪ uncov(P ′, P ′′,Total)
13 continue }
14 (C′, P ′,Merged) := merge cubes(P,Boundary , F)
15 if (|Merged | > 1) { // merging is successful
16 Boundary := (Boundary \Merged) ∪ {P ′}
17 F := F ∧ C′

18 continue }
19 C := pick clause(H) // g(P) := C
20 NewCubes := uncov(Nbhd(P,C),Total)
21 Boundary := Boundary ∪NewCubes
22 Body := Body ∪ {P}}
23 return(nil ,Body) // Body is an SSC => F is unsatisfiable

Fig. 3. Generation of SSC

point p ∈ P satisfies F (line 8). So, Gen SSC returns P and
an empty SSC (line 9). The second possibility is that there
are clauses C of F such that Unsat(C)∩P ̸= ∅, but none of
them is falsified by the cube P . In that case, Gen SSC splits
the cube P (lines 10-11) on a variable x into cubes P ′ and
P ′′. Both cubes are tested by the function uncov, if they are
covered by Total (see Definition 28) i.e., whether P ′ or P ′′ is a
subset of Union(Total). Here Total = Body∪Boundary
and Union(Total) is the union of the cubes of Total. If P ′

or P ′′ is not covered by Total, it is added to Boundary (line
12). Checking if P ′ or P ′′ is covered can be done by a regular
SAT-solver (see the discussion of Subsection VI-B).

If H is not empty, Gen SSC invokes the procedure
merge cubes (line 14). It tries to merge the cube P with other
cubes of Boundary to reduce the size of the latter. To this end,
merge cubes applies multiple merge operations described by
Definition 27. It returns a) the subset Merged of Boundary
consisting of the merged cubes including the cube P and b)
a cube P ′ obtained by merging the cubes of Merged and c)
a new clause C ′ falsified by P ′ that is obtained by resolving
clauses of F falsified by cubes of Merged . If merge cubes
succeeds, |Merged | > 1. Then the merged cubes are removed
from Boundary , P ′ is added to Boundary (line 16) and C ′

is added to F (line 17). Then a new iteration begins.

If merge cubes fails, Gen SSC picks a clause C of H
(line 19) and forms the set of cubes Nbhd(P,C). The function
uncov discards every cube of Nbhd(P,C) covered by Total
(line 20). The cubes of Nbhd(P,C) that have not been
discarded are added to Boundary (line 21). Finally, P is added
to Body and a new iteration of the loop begins.

If Boundary is empty, then Body is an SSC. Gen SSC
returns the latter as a proof that F is unsatisfiable (line 23).

VI. DISCUSSION OF Gen SSC

In this section, we discuss Gen SSC . In Subsection VI-A
we give propositions stating that Gen SSC is sound and
complete. Subsection VI-B discusses potential improvements
of Gen SSC . In Subsection VI-C, we argue that Gen SSC
facilitates parallel solving.

A. Gen SSC is sound and complete

Gen SSC terminates when it builds a cube P satisfying
every clause of F (line 9) or when the set Boundary is
empty (line 23). The latter means that the set of points
Union(Body) forms an SSP. In the first case F is correctly
reported as satisfiable and in the second case it is properly
identified as unsatisfiable. So, the proposition below holds. (As
mentioned earlier, proofs of the new propositions are given in
the appendix.)

Proposition 5: If Gen SSC terminates, it returns the correct
answer i.e., Gen SSC is sound.

One can also show that Gen SSC is complete. Here
is a high-level explanation why. The function ξ =
|Union(Body)| + |F | cannot decrease its value during the
operation of Gen SSC . That is ξ either grows or keeps
its value unchanged. For instance, if Gen SSC moves a
cube from Boundary to Body the value of ξ increases. The
same occurs after a new clause is generated and added to F
when Gen SSC merges cubes of Boundary. In the proof of
completeness of Gen SSC we show that the number of steps
where ξ preserves its value is finite. This observation and the
fact that the range of ξ is finite too implies that Gen SSC
always terminates. Hence, the proposition below holds.

Proposition 6: Gen SSC terminates for every CNF formula
i.e., Gen SSC is complete.

B. Improvements to Gen SSC

The main flaw of the version of Gen SSC described in
Fig. 3 is as follows. Let P ∗ be either a cube obtained by
splitting a cube of Boundary or a 1-neighborhood cube of a
cube of Boundary. To find out if P ∗ needs to be added to
Boundary, Gen SSC checks if Total covers P ∗ (lines 12 and
20). That is, if P ∗ is a subset of Union(Body ∪ Boundary).
This check can be performed by an “auxiliary” SAT solver
based on conflict clause learning [10], [11]. The problem
however is that such a check can be computationally hard.

There are at least two methods to address this problem.
The first method is to make the auxiliary SAT solving easy
by checking only if P ∗ is covered by a small subset of
Body ∪ Boundary . For instance, this subset may include
only cubes sharing literal components with P ∗. The other
method is to combine regular SAT solving based on conflict
clause learning and computing an SSC [3]. This method avoids
auxiliary SAT solving at the expense of building an SSC
specifying a larger SSP. Importantly, even if Gen SSC builds
an SSC specifying the trivial SSP equal to B|X|, the SAT
algorithm remains “local” since it does not produce a “global”
certificate of unsatisfiability i.e., an empty clause. So, in a
sense, the size of the SSP specified by SSC does not matter.

C. Parallel SAT computing

Creating efficient algorithms of parallel SAT solving is a
tall order [9]. One of the main problems here is that the SAT
procedures used in practice prove unsatisfiability by resolution.
A resolution proof can be viewed as global in the sense that
a) it has a global goal (derivation of an empty clause) and
b) different parts of the proof strongly depend on each other.
This makes resolution procedures hard to parallelize.

On the other hand, an SSP can be viewed as a local proof.
Given a formula F , one just needs to find a set of points
P and a transport function g : P 7→ F such that a local
property holds. Namely, for every point p ∈ P , the relation
Nbhd(p, C) ⊆ P holds where C = g(p). Note that in contrast
to a resolution proof, generation of an SSP does not have
a global goal. So, arguably, building an SSP is easier to
parallelize. Importantly, constructing an SSC produces a local
proof as well since one simply builds an SSP implicitly (via
clusters of points). So, one can argue that generating an SSC
facilitates parallel computing too.

VII. SOME BACKGROUND

In this section, we briefly discuss the relation of SSPs and
SAT algorithms based on local search (Subsection VII-A)
and, in particular, the derandomized version of the Shöning
procedure (Subsection VII-B). Besides, we relate SSCs with
two “local” proof systems we introduced earlier (Subsec-
tion VII-C).

A. Local search procedures

SAT algorithms based on local search have been a subject
of study for a long time. First, local search was applied only
to satisfiable formulas. Papadimitriou showed [12] that a very
simple stochastic local search procedure finds a satisfying as-
signment of a 2-CNF formula in polynomial time. Then, a few
practical SAT-algorithms based on stochastic local search were
developed and successfully applied to more general classes
of satisfiable CNF formulas [14]. In [13] a new powerful
stochastic algorithm for solving satisfiable CNF formulas was
introduced by Shöning. Later, a derandomized version of that
algorithm was developed that achieved the best known upper
bound on complexity of solving k-SAT [2]. We will refer to
this procedure as Schn der where Schn stands for Shöning and
der for derandomized. Importantly, Schn der can be applied
to both satisfiable and unsatisfiable CNF formulas.

On the one hand, SSPs can be related to local search
algorithms. In particular, the Gen SSP procedure recalled in
Subsection II-B looks similar to Schn der (see the the next
subsection). On the other hand, the definition of an SSP is
algorithm independent, which makes SSPs a very appealing
object of study and separates them from the local search
algorithms. This distinction becomes more conspicuous in this
report where we consider the notion of a stable set of clusters.
For example, the Gen SSC procedure where clusters are
cubes of points (see Section V) does not look like a local
search procedure at all.

B. Schn der and SSPs

In this subsection, we compare Schn der and Gen SSP
computing an SSP point by point. Let F be a formula to
check for satisfiability. Schn der consists of two steps. First,
Schn der computes a set of Boolean balls covering the entire
search space B|X| where X = Vars(F). A Boolean ball with
a center p and radius r is the set of all points p′ such that 0 ≤
distance(p,p′) ≤ r. (Here, distance specifies the Boolean
distance.) Second, for every Boolean ball, Schn der runs a
procedure Search(F,p, r) that checks if this ball contains a
satisfying assignment.
Gen SSP can be viewed [1] as a version of Schn der

covering the space B|X| with balls of radius r = 1. Indeed,
given a point p and a clause C falsified by p, check-
ing the 1-neighborhood Nbhd(p, C) mimics what the call
Search(F,p, 1) does. The main difference between Gen SSP
and Schn der is that, in contrast to the latter, the Boolean balls
of the former talk to each other. This allows Gen SSP to
claim F to be unsatisfiable as soon as the set of visited balls
becomes stable. Importantly, the idea of reaching the stability
of talking Boolean balls can be extended to a huge variety of
clusters of points (see Remark 1). Moreover, as we mentioned
earlier, one can extend the notion of stability to multi-level
clusters (e.g. clusters of clusters of points). The clustering of
points serves here two purposes. First, it allows one to speed
up SAT solving. Second, it facilitates exploiting the structure
of the formula at hand by making clusters formula-specific.

C. Relation to proof systems NE and NER

In [4], we introduced two “local” proof systems, NE and
NER. These proof systems are based on the fact that if a
CNF formula F is satisfiable, there always exists a satisfying
assignment p that satisfies only one literal of some clause C of
F . (In terms of this report, p is located in Nbhd(Unsat(C), C)
i.e., in the 1-neighborhood of C with respect to the cube
Unsat(C)). The idea of either proof system is to explore the
1-neighborhood of all the clauses of F . The difference between
NE and NER is that the latter allows one to use resolution to
generate new clauses.

Let F be equal to C1 ∧ · · · ∧ Ck. One can show that
Gen SSC generates proofs similar to those of NE and
NER if the set Boundary is initialized with the cubes
Unsat(Ci), i = 1, . . . , k. More precisely, NE is similar to
Gen SSC without the option of merging cubes of Boundary
(and thus without the option of resolving clauses) and NER
is similar to Gen SSC if cube merging is allowed. The main
flaw of NE and NER is that if F contains a small unsatisfiable
subset of clauses, a proof in NE and NER still involves all
clauses of F . (The notion of an SSP was actually designed to
address this flaw of NE and NER.) On the other hand, in the
case above, Gen SSC can produce an SSC that involves only
a small fraction of clauses of F .

VIII. CONCLUSIONS

Earlier we introduced the notion of a stable set of points
(SSP) for a CNF formula F . (Here, a point is a complete

assignment to the variables of F .) A CNF formula F is
satisfiable if and only if it has a stable set of points. In
this paper we present the notion of a stable set of clusters
(SSC) of points. The main goal of using SSCs is to speed
up the construction of an SSP for F by processing many
points at once. We give two methods of computing SSCs. In
the first method, clusters are specified by equivalence classes
describing permutational symmetries of F . This method is an
example of an algebraic approach to SAT solving. Importantly,
one can extend the notion of a stable set of two-level clusters
(i.e., clusters of points) to multi-level ones (e.g., clusters
of clusters of points). In the second method, clusters are
represented by cubes. In contrast to the first method that can
be applied only to formulas with permutational symmetries,
this method can be used for any CNF formulas. In addition
to direct SAT solving, the second method can be employed
for better understanding and improving the performance of
existing SAT algorithms based on resolution.

REFERENCES

[1] E. Dantsin. A private communication.
[2] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-

padimitriou, P. Raghavan, and U. Schöning. A deterministic (2−2/(k+
1))n algorithm for k-sat based on local search. Theoretical Computer
Science, 289(1):69–83, 2002.

[3] E. Goldberg. SAT solving by efficient computing of a stable set of
clusters (a tentative title). A technical report to be published.

[4] E. Goldberg. Proving unsatisfiability of CNFs locally. J. Autom. Reason.,
28(4):417–434, 2002.

[5] E. Goldberg. Testing satisfiability of CNF formulas by computing a
stable set of points. In Proc. of CADE-02, pages 161–180, 2002.

[6] E. Goldberg. Solving satisfiability problem by computing stable sets
of points in clusters. Technical Report CDNL-TR-2005-1001, Cadence
Berkeley Labs, 2005.

[7] E. Goldberg. Testing satisfiability of CNF formulas by computing a
stable set of points. Annals of Mathematics and Artificial Intelligenc,
43(1-4):2005, January 65-89.

[8] A. Haken. The intractability of resolution. Theoretical Computer
Science, 39:297–308, 1985.

[9] Y. Hamadi and C. Wintersteiger. Seven challenges in parallel sat solving.
AAAI’12, page 2120–2125. AAAI Press, 2012.

[10] J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for
satisfiability. In ICCAD-96, pages 220–227, 1996.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient sat solver. In DAC-01, pages 530–535, New
York, NY, USA, 2001.

[12] C. H. Papadimitriou. On selecting a satisfying truth assignment. In
32nd Annual Symposium of Foundations of Computer Science, pages
163–169, Oct 1991.

[13] T. Schöning. A probabilistic algorithm for k-sat and constraint satisfac-
tion problems. In 40th Annual Symposium on Foundations of Computer
Science, pages 410–414, 1999.

[14] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving
local search. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (Vol. 1), AAAI ’94, page 337–343.

APPENDIX I
PROOFS OF PROPOSITIONS

Proposition 2: Let F be a CNF formula and P1, . . . , Pk

be a stable set of clusters with respect to F and transport
functions g1, .., gk. Then P1 ∪ · · · ∪Pk is an SSP and so F is
unsatisfiable.

Proof: Denote by P the set P1 ∪ · · · ∪ Pk. Let g be a
transport function such that for every p ∈ Z(F), it is true that
g(p) = C, where C ∈ F and C = gi(p), 1 ≤ i ≤ k. In

other words, g assigns to p the same clause that is assigned to
p by a function gi (picked arbitrarily from g1, . . . , gk). Then
P is an SSP with respect to F and the transport function g.
Indeed, let p be a point of P and gi be a transport function
such that g(p) = gi(p) = C. Since {P1, . . . , Pk} is an SSC,
then Nbhd(Pi, gi) ⊆ P . Hence Nbhd(p, gi(p)) ⊆ P and so
Nbhd(p, g(p)) ⊆ P .

Proposition 5: If Gen SSC terminates, it returns the correct
answer i.e., Gen SSC is sound.

Proof: Let F be a CNF formula to test for satisfiability.
Gen SSC returns the answer satisfiable (line 9 of Fig. 3)
only if an assignment satisfying F is found. So the answer
satisfiable is always correct.

Now we show that if Gen SSC reports that F is unsatis-
fiable (line 23), the set Body is an SSC for F . So the answer
unsatisfiable is also always correct. Let P be a cube of Body
and C be the clause assigned to P by the transport function
g i.e., g(P) = C and P falsifies C. Originally, P appears in
the set Boundary and is moved to Body only when the cubes
of Nbhd(P,C) are generated (lines 19-22).

Let P ′ be an arbitrary cube of Nbhd(P,C). Let us show
that P ′ will be covered by the final set Body and so the latter
is an SSC for F . Indeed, if P ′ is not covered by the current
set Body ∪ Boundary , it is added to Body and hence it will
be present in the final set Body. If P ′ is covered by the set
Body ∪ Boundary , there are two cases to consider. If P ′ is
covered by Body alone, this means that every point of P ′ is
already in Union(Body). So P ′ will be covered by the final set
Body. If P ′ is not covered by Body, then some points of P ′

are present only in the current set Boundary. Since eventually
Boundary becomes empty, the cubes containing those points
of P ′ will be moved to Body. So, again, P ′ will be covered
by the final set Body.

Proposition 6: Gen SSC terminates for every CNF formula
i.e., Gen SSC is complete.

Proof: Assume the contrary i.e., Gen SSC does not
terminate on a CNF formula F . Consider the function
ξ = |Union(Body)| + |F |. Note that ξ cannot reduce its
value. That is, in every iteration of the loop of Gen SSC ,
this value either stays the same or increases due to the growth
of |Union(Body)| and/or |F |. Since the maximum value of ξ
is 2n+3n (where n = |Vars(F)|), Gen SSC can have only a
finite set of iterations of the loop in which ξ grows. Since, by
our assumption, Gen SSC does not terminate, there exists an
infinite sequence of iterations in which ξ preserves its value.
Let us show that this is not the case.

The value of ξ does not change only when the cube
P picked from Boundary is split or when every cube of
Nbhd(P,C) is covered by Total. (Recall that Total = Body ∪
Boundary .) In the first case, P is replaced in Boundary with
two cubes of a smaller size. In the second case, P is just
removed from Boundary. The number of splits performed on
a cube and its descendants is bound by 2n. So, the total number
of splits of the cubes of Boundary is limited by 3n ∗2n where
3n is the upper bound on |Boundary | (because 3n is the total
number of different cubes of n variables). The total number of

initialize:
1 P1 = x2 x3, g(P1) = C1 = x2 ∨ x3

2 Body = ∅,Boundary = {P1}
compute Nbhd(P1, C1):
3 P2 = Nbhd(P1, x2) = x2 x3

4 P3 = Nbhd(P1, x3) = x2 x3

5 Body = {P1},Boundary = {P2, P3}
splitting P2 on x1

6 P ′
2 = x1 x2 x3, g(P ′

2) = C2 = x1 ∨ x2

7 P ′′
2 = x1 x2 x3, g(P ′′

2) = C3 = x1 ∨ x2 ∨ x3

8 Body = {P1}, Boundary = {P ′
2, P

′′
2 , P3}

merging cubes P ′
2, P

′′
2 :

9 Merge(P ′
2, P

′′
2 , x1) = P2 = x2 x3

10 C6 = Res(C2, C3, x1) = x2 ∨ x3

11 Body = {P1},Boundary = {P2, P3}
12 F = F ∧ C6, g(P2) = C6

compute Nbhd(P2, C6):
13 Nbhd(P2, x2) = x2 x3 = P1 and P1 ∈ Body
14 P4 = Nbhd(P2, x3) = x2 x3

15 Body = {P1, P2},Boundary = {P3, P4},
..
splitting P3 on x4:
16 P ′

3 = x2 x3 x4, g(P ′
3) = C4 = x3 ∨ x4

17 P ′′
3 = x2 x3 x4, g(P ′′

3) = C5 = x3 ∨ x4

18 Body = {P1, P2}, Boundary = {P ′
3, P

′′
3 , P4}

merging cubes P ′
3, P

′′
3 :

19 P3 = Merge(P ′
3, P

′′
3 , x4) = P3 = x2 x3

20 C7 = Res(C4, C5, x4) = x3

21 Body = {P1, P2},Boundary = {P3, P4},
22 F = F ∧ C7, g(P3) = C7

compute Nbhd(P3, C7):
23 Nbhd(P3, C7) = x2 x3 = P1 and P1 ∈ Body
24 Body = {P1, P2, P3},Boundary = {P4},
compute Nbhd(P4, C7):
25 Nbhd(P4, C7) = x2 x3 = P2 and P2 ∈ Body
26 Body = {P1, P2, P3, P4},Boundary = ∅
finish:
27 return Body

Fig. 4. Example of how Gen SSC operates

iterations that remove a cube from Boundary without adding it
to Body is also limited by 3n. So, the total number of iterations
that do not change the value of ξ is limited by (2n + 1) ∗ 3n.
Before this limit is exceeded, an event below takes place.

• A cube obtained by splitting satisfies all clauses of F
and Gen SSC terminates.

• A cube of Nbhd(P,C) that is not covered by Total is
added to Body thus increasing the value of ξ.

• A new clause is produced and added to F when merging
cubes of Boundary, which increases the value of ξ.

• Boundary becomes empty and Gen SSC terminates
reporting that Body is an SSC and thus F is unsatisfiable.

In every case above, Gen SSC either terminates or the value
of ξ increases. So, Gen SSC cannot have an infinite sequence
of iterations where ξ does not change its value. Hence,
Gen SSC always terminates.

APPENDIX II
AN EXAMPLE OF HOW Gen SSC OPERATES

In this appendix, we complete the example of Subsec-
tion V-B. Namely, we describe the part of the execution
trace after the dotted line (lines 16-27, Fig. 4). At this point,
Body = {P1, P2} and Boundary = {P3, P4}.
Gen SSC picks P3 = x2 x3 from Boundary and splits it

on variable x4 (lines 16-18). The reason for splitting is that
P3 does not falsify any clause of F . On the other hand, the
cubes P ′

3 and P ′′
3 produced by splitting falsify clauses C4 and

C5 respectively. P3 is replaced in Boundary with P ′
3 and P ′′

3 .
Then Gen SSC merges cubes P ′

3 and P ′′
3 to generate the

cube P3 again (lines 19-22). But now a new clause C7 = x3 is
added to F that is falsified by P3. The clause C7 is produced
by resolving clauses C4 and C5 falsified by P ′

3 and P ′′
3 . The

cubes P ′
3, P

′′
3 are replaced in Boundary with P3.

Gen SSC picks the cube P3 again but now it is able to
compute its 1-neighborhood with respect to the clause C7

(lines 23-24). Since C7 has only one literal, Nbhd(P3, C7)
consists of only one cube. Since this cube equals P1 that is
already in Body, P3 is just moved from Boundary to Body
without adding anything to the former.

Finally, Gen SSC picks P4, the last cube of Bound-
ary. Since P4 falsifies C7, Gen SSC computes the 1-
neighborhood of the former with respect to the latter. This
1-neighborhood consists of the cube equal to P2 that is already
in Body. So, Gen SSC just moves P4 to Body.

At this point the set Boundary is empty. This means that the
current set Body is an SSC and F is unsatisfiable. Gen SSC
returns Body as a proof of unsatisfiability (line 27).

	Introduction
	Recalling Stable Sets Of Points
	Definitions
	Procedure For Building SSP

	Computing A Stable Set Of Clusters
	Testing Satisfiability Of Symmetric Formulas
	Stable sets of points for symmetric formulas
	Stable sets of clusters for symmetric formulas
	Stable sets of clusters for pigeon-hole formulas

	Computing SSCs Using Cubes As Clusters
	A few more definitions and examples
	An example of how Gen_SSC operates
	Procedure for building an SSC using cubes as clusters

	Discussion Of Gen_SSC
	Gen_SSC is sound and complete
	Improvements to Gen_SSC
	Parallel SAT computing

	Some Background
	Local search procedures
	Schn_der and SSPs
	Relation to proof systems NE and NER

	Conclusions
	References
	Appendix I: Proofs Of Propositions
	Appendix II: An example of how Gen_SSC operates

