
 Toggle Equivalence Preserving (TEP) Logic Optimization

Eugene Goldberg
Cadence Design Systems
egold@cadence.com

 Kanupriya Gulati
Texas A& M University
kanu.gulati@gmail.com

 Sunil Khatri
Texas A&M University
sunilkhatri@tamu.edu

Abstract

We describe a procedure (called the TEP
procedure) that, given a multi-output circuit M,
builds another multi-output circuit M* that is toggle
equivalent to M. The TEP procedure can be used in
the following two scenarios. First, since for single-
output circuits toggle equivalence means functional
equivalence, the TEP procedure can be used in
“ regular” logic synthesis. Second, the TEP
procedure enables a powerful synthesis method
called LS_TE (Logic Synthesis preserving Toggle
Equivalence). Given a circuit N and its partitioning
into subcircuits Ni , LS_TE builds an optimized
circuit N* by replacing subcircuits Ni with their
toggle equivalent counterparts N*

i . The replacement
of Ni with N*

i is done by the TEP procedure. We give
results of optimizing single-output circuits by the
TEP procedure and some preliminary results of
using the TEP procedure in LS_TE. These results
show the promise of the TEP procedure and LS_TE.

1. Introduction

In [4], a new method of logic synthesis was
introduced. We refer to this method as LS_TE, which
stands for Logic Synthesis preserving Toggle
Equivalence. As shown in Figure 1, assume that a
partitioning of N into subcircuits Ni, i=1, 2,…, k is
specified. The main idea of LS_TE is to optimize N
by replacing each subcircuit Ni with a toggle
equivalent counterpart N*

i, i=1,2,..,k.
Let us consider how LS_TE works by the

example of Figure 1 where circuit N is partitioned
into four subcircuits N1,..,N4. First, subcircuits N1 and
N2 are replaced with their toggle equivalent
counterparts N*

1 and N*
2. Then the relations

CF(N1, N
*
1) and CF(N2, N

*
2) betweens outputs of N1

and N*
1 and N2 and N*

2 are computed. (These
relations are called correlation functions (CF)). Then
a single-output subcircuit N*

3 that is toggle equivalent
to the single-output subcircuit N3 under the
constraints specified by CF(N1, N

*
1) and CF(N2, N

*
2)

is built. Since toggle equivalence for single output

circuits means functional equivalence (modulo
complement), outputs y1 and y*

1 are functionally
equivalent (modulo complement). Finally single-
output subcircuit N4 is replaced with a single-output
toggle equivalent subcircuit N*

4, which makes outputs
y2 and y*

2 functionally equivalent (modulo
complement). So the optimized circuit N* consisting
of subcircuits N*

1,..,N
*
4 is functionally equivalent to

N modulo complement of its outputs.
The advantage of LS_TE is twofold (at least).

First, LS_TE is scalable. The complexity of LS_TE
is linear in the number of subcircuits Ni and
exponential in the size of the largest subcircuit Ni or
N*

i, i=1,..,k. Since the number of subcircuits toggle
equivalent to Ni is huge even if Ni is very small,
LS_TE can explore a very large search space and
still have linear complexity. Second, LS_TE can
escape local minima that would trap a solution
obtained by a traditional logic synthesis procedure
(Section 3).

N

N*i is obtained
from N i by TEP

N1 N2

N3 N4

N*

N*1 N*2

N*3 N*4

y1 y2 y*2y*1

Figure 1. Optimization of circuit N by LS_TE

Unfortunately, [4] did not provide a specific

procedure that, given a subcircuit Ni, would build a
toggle equivalent subcircuit N*

i. The main
contribution of this paper is the introduction of such
a procedure which we refer to as the Toggle
Equivalence Preserving (TEP) logic optimization
procedure. In the TEP procedure, we use a non-trivial
convergence scheme that makes this procedure
structure-agnostic. That is if a circuit M′ toggle
equivalent to an original circuit M is built by the TEP
procedure, the topology of M′ is not limited to that
of M. This important feature of TEP is discussed in
Section 3.

In the formulation of LS_TE given in [4], circuit
N to be optimized is partitioned into subcircuits Ni,
i=1,..,k However, LS_TE can be also applied if, for
example, subcircuits Ni share internal gates. Suppose,
for instance, that subcircuits N3 and N4 of Figure 1
share internal gates. Then when building subcircuit
N*

4 toggle equivalent to N4, one can reuse the logic of
N*

3 (assuming that N*
3 was synthesized before N*

4).
Such logic sharing can be done by the TEP procedure
(slightly modified). However, a discussion of this
topic is beyond the scope of this paper.

As we mentioned above, for single-output
Boolean functions, toggle equivalence is the same as
functional equivalence modulo negation. So, besides
enabling LS_TE, the TEP procedure can be used in
traditional logic synthesis. In order to compare the
TEP procedure with traditional logic synthesis, the
focus in this paper is on optimization of single-output
functions. Even though the vast optimization
flexibility of the TEP procedure can not be invoked
for single-output functions, it still has the advantage
of being structure-agnostic. As a consequence, for
many single-output circuits the TEP procedure found
better solutions than SIS [9]. Our initial results also
show that for multiple output circuits (where the vast
optimization flexibility can be exploited), the LS_TE
procedure gave significant improvements over SIS

The rest of this paper is organized as follows.
Section 2 discusses related previous work, including
a comparison and contrasting of LS_TE and TEP
with SPFDs [1][10][12]. In Section 3, we emphasize
some important features of LS_TE and TEP
procedure. Section 4 provides definitions. Section 5
details our TEP procedure. In Section 6, we report
results of our experiments. Section Error! Reference
source not found. concludes the paper, with some
directions for future work in this topic.

2. Previous work

Multi-level logic synthesis can be performed
using algebraic means such as factorization [2],
kernelling [2][11] etc. Although these techniques are
fast, being algebraic, they explore only a limited
portion of the optimization space. Other techniques
like ODC [6][7] and CODC [8] perform don't care
based optimization, but they do not modify the
structure of the circuit. (Sometimes a node gets
removed as a result of don't care based optimization.
However, such an occurrence is rare.) Toggle
equivalence is different from the algebraic
techniques, since it explores the ''Boolean'' options in
the search space, while it differs from multi-level

don't care based techniques since it does not restrict
itself to the original circuit topology.

Sets of Pairs of Functions to be Distinguished
(SPFDs) were introduced in [1][10][12] as a new way
to do logic optimization. One should distinguish
between SPFDs as a means to express circuit
flexibility and concrete methods for computing
SPFDs. The main difference between LS_TE and the
method for computing SPFDs of [10][12] is that
LS_TE is scalable. The method for computing SPFDs
of [10][12] is unscalable because SPFDs are built
by computing non-local relations between points of
the circuit. Besides, when computing SPFDs by the
method of [10][12] one has to follow the circuit
topology. On the other hand, computations in LS_TE
are local because they involve only subcircuits Ni and
N*

i
 (and correlation functions relating their inputs).

Besides, LS_TE preserves only the high-level
structure of the circuit (because subcircuits Ni and N*

i
are connected in the same way) but the topology of
subcircuits Ni and N*

i can be vastly different.
The “ language” of SPFDs is sufficient to

express the notions of toggle implication and
equivalence that we use in the paper. For example, to
test that circuits M and M′ are toggle equivalent one
can build SPFDs of M and M′ and check them for
graph isomorphism. However, toggle equivalence of
M and M′ can be computed much more efficiently
without building their SPFDs (by performing two
SAT-checks). Moreover, the formulation of the TEP
procedure in terms of SPFDs is hard at best. An
SPFD is a relation between input assignments while
the TEP procedure operates on output assignments
and the same pair of output assignments (i.e. the
same toggle) may be caused by an exponential
number of pairs of input assignments. In a sense, the
problem is that the definition of SPFDs was tailored
to facilitate their computation from outputs to inputs,
while in LS_TE and TEP procedure computations go
in the opposite direction.

3. Importance of LS_TE and the
TEP procedure

In this section, we emphasize two important
features of LS_TE and the TEP procedure. In
Subsection 3.1, we show that LS_TE, in terms of
equivalent transformations, can make moves that
increase the size of intermediate circuits. This allows
LS_TE to escape local minima that would trap a
solution built by a traditional method of logic
synthesis. In Subsection 3.2 we discuss the

importance of the novel convergence scheme of the
TEP procedure.

3.1 Escaping local minima in LS_TE

Given a circuit N, a typical synthesis
transformation is to replace a multi-output subcircuit
N′ of N with a functionally equivalent subcircuit N″
such that |N″ | < |N′ |. (Here |M| is the size of circuit
M.) The size of N′ is kept small for complexity
reasons. Suppose there is no transformation
decreasing the size of N such that |N′ | < p. This
means that circuit N is stuck in a local minimum. To
escape this minimum, one needs to make equivalent
transformations that affect subcircuits of N larger
than p. But how does one make such transformations
in a scalable manner?

LS_TE answers the question above. Let N be
partitioned into subcircuits N1,..,Nk. By replacing
subcircuits Ni, i=1,.,k with toggle equivalent
counterparts N*

i LS_TE makes a single equivalent
transformation that may encompass the entire circuit
N (then the subcircuit N′ we replace with an
equivalent one is N itself). If the size of subcircuits Ni
is small, this transformation can be done efficiently.
Note that LS_TE can optimize N even if |Ni| < p,
i=1,.,k. The reason is that replacement of Ni with N*

i
is not an equivalent transformation. So LS_TE can
get N out of a local minimum even by making
transformations of “small scope” .

Suppose N implements the expression x2 < 100
as shown in Figure 2. Here subcircuit N1 implements
y=square(x) and subcircuit N2 implements y < 100.
(Let assume that the number n of bits in x is small
enough to be handled efficiently.) LS_TE can
optimize N as follows. First N1 is replaced with an
optimized subcircuit N*

1 toggle equivalent to N1 (e.g.
N*

1 may implement the function abs(x) which is the
simplest function toggle equivalent to square(x)).
Then output relation CF(N1,N

*
1) is computed (as

described in [4]). After that a subcircuit N*
2 toggle

equivalent to N2 under constraint CF(N1, N
*
1) is built.

(If N*
1 implements y∗∗∗∗=abs(x), then N*

2 implements
y∗∗∗∗< 100 modulo negation.) Note that N can not be
optimized much by replacing N1 with a functionally
equivalent subcircuit N*

1 (for example, N1 can be an
optimal implementation of square(x)). At the same
time, LS_TE can dramatically optimize N because it
can replace N1 with a toggle equivalent subcircuit.

The replacement of N1 with N*
1 can be

“simulated” as an equivalent transformation as shown
in Figure 2 (on the right). Here R*

1 is a re-encoding
circuit such that N1 = R*

1(N
*
1). (The second step of

LS_TE is “simulated” as replacing N*
1 and R*

1 with

N*
2.) Note that even though N1

* is much smaller than
N1 it may be the case that |N1| < |N*

1|+ |R*
1|. In other

words, the reason why LS_TE can escape local
minima is that it may make transformations that
temporarily increase the circuit size. (A discussion of
this topic can be found in [5].)

Figure 2. Optimization of expression x2 < 100
by LS_TE

3.2 Novel convergence scheme of the
TEP procedure

As we mentioned above, the importance of the
TEP procedure is due to its enabling LS_TE.
However, the TEP procedure is also important in its
own right. Given a single-output circuit N, the TEP
procedure can build a functionally equivalent circuit
N* with a completely different topology. (So it can be
used in “regular” logic synthesis without any relation
to LS_TE.) This property is extremely important for
at least three reasons. First, N may not have any
topology to reuse (e.g. if N is specified as the truth
table or is represented implicitly). Second, N may
contain some non-local redundancy, which makes
reusing its topology unreasonable. Third, one may
need to implement N using a particular library of
gates (e.g. in technology mapping) and the current
topology of N may be not good for these library.

In the current synthesis methods, if the topology
of N can not be reused for some reason, a new circuit
N* is obtained from a very limited space of
implementations (N* may be further optimized using
local transformations). For example, in SIS [9], if N
is represented as the truth table, first, a circuit N*
equivalent to N is synthesized as a sum-of-products
(which is a very limited class of circuits). Then by
local transformations a multi-level circuit is obtained
from N*. (Another approach would be to build a
circuit N* of multiplexers (i.e. build a BDD [3])
equivalent to N and then optimize it using some local
transformations. BDDs is another example of a
restricted class of circuits.)

The reason why current methods have to restrict
the class of implementations considered when
changing the topology of N is the “convergence
problem”. Suppose we build a circuit N* that does not
use the topology of N. Then we have to make sure
that the network of gates being built “converges” to a
circuit equivalent to N. The TEP procedure solves
this problem by introducing a very simple and
general convergence scheme. Namely, it builds a
sequence of circuits N 1, N 2,… such that a) N i+1
toggles strictly less than N i and b) every circuit of
this sequence toggles at least as much at the original
circuit N. Here N 1 is an “empty circuit” consisting
only of inputs of N. In other words, the TEP
procedure builds a sequence of circuits that
monotonically lose toggles until a circuit N m toggle
equivalent to N is built. The TEP procedure also
restricts the class of implementations it considers
since it requires that only primary outputs of N i are
allowed to feed the gates of N i+1 that are not in N i.
However, this is a mild restriction in comparison to
ones used by existing methods. So, the TEP
procedure can select an optimized implementation
from a very general class of multi-level circuits.

4. Preliminaries and terminology

In this section, we recall the notion of toggle
equivalence and its properties. All the propositions
given in this paper are either proven in [4], or can be
easily derived from them.

4.1 Toggle equivalence of Boolean
functions

Definition 1. Let f:{ 0,1} n → { 0,1} m be an m-output
Boolean function. Then, given y′′′′ = f(x′′′′) and y″″″″ =
f(x″″″″), the pair (y′′′′, y″″″″) is a toggle if y′′′′ ≠ y″″″″.
Definition 2. Let f1 and f2 respectively be two m-
output and k-output Boolean functions with the same
set of variables. Functions f1 and f2 are called toggle
equivalent if f1(x′′′′) ≠ f1 (x″″″″) ⇔ f2(x′′′′) ≠ f2(x″″″″).
Circuits N1 and N2 implementing toggle equivalent
functions f1 and f2 are called toggle equivalent
circuits.

Proposition 1. Let f1:{ 0,1} n → { 0,1} m and f2 { 0,1} n
→ { 0,1} k be m-output and k-output Boolean
functions of the same set of variables. Let f1 be f2
toggle equivalent. Then there is an invertible
function H such that f1(x)=H(f2(x)) and
f2(x)=H-1(f1(x)).

Proposition 2. Let f1 and f2 be toggle equivalent
single output Boolean functions. Then f1=f2 or f1=~f2.

Definition 3. Let N be a circuit. Let Y be the set of
all variables of N. Let Sat(N) be the CNF expression
for N, such that Sat(N)=1 iff the assignment y to Y is
consistent within the circuit N. For example, if N
consists of just one AND gate w = x1 ∧ x2, then
SAT(N) = (~x1 ∨ ~x2 ∨ w)∧ (x1 ∨ ~w) ∧ (x2 ∨ ~w).
Proposition 3. Let N1 and N2 be two toggle
equivalent circuits, with variables Y1 and Y2
respectively. Let the output variables of N1 and N2 be
Z1 and Z2 respectively. Then the function H*(Z1,Z2)
specifying the one-to-one mapping H between the
output vectors produced by N1 and N2 can be
obtained from Sat(N1) ∧ Sat(N2) by existentially
quantifying away the variables of (Y1 ∪ Y2)\ (Z1 ∪
Z2). (Then H*(z1, z2) =1 iff there is an input vector x
such that N1(x)=z1 and N2(x)=z2.)

4.2 Implication of toggling

In this subsection, we introduce the notion of
implication of toggling and describe how toggle
equivalence and implication of toggling can be
tested.
Definition 4. Let f1: { 0,1} n → { 0,1} m and f1: { 0,1} n
→ { 0,1} k respectively be two m-output and k-output
Boolean functions with the same set of input
variables. Toggling of f1 implies toggling of f2 iff for
any pair of input variable assignments x′ and x″,
f1(x′′′′) ≠ f1 (x″″″″) � f2(x′′′′) ≠ f2(x″″″″).

Definition 5. Let f1 and f2 be multi-output Boolean
functions. Toggling of f1 strictly implies toggling of
f2 if toggling of f1 implies toggling of f2 and there is
a pair of assignments x′ and x″ such that f1(x′′′′)=f1
(x″″″″) while f2(x′′′′) ≠ f2(x″″″″). We will denote by f1 ≤≤≤≤ f2
(respectively f1 < f2) the fact that toggling of
function f1 implies toggling of (respectively strictly
implies toggling of) f2. Let circuits N1 and N2
implement functions f1 and f2 respectively. We will
denote by N1 ≤ N2 (respectively N1 < N2) the fact that
f1 ≤≤≤≤ f2 (respectively f1 < f2).

Proposition 4. Boolean functions f1 and f2 are toggle
equivalent iff f1 ≤≤≤≤ f2 and f2≤≤≤≤ f1.

4.3 Testing for Implication of Toggling.

 Let N1 and N2 be two Boolean circuits to be checked
for implication of toggling. Let X be the set of input
variables of N1 and N2, while Y1 and Y2 are

respectively the sets of variables of N1 and N2. Let Z1
and Z2 be the sets of output variables of N1 and N2
respectively. Also, assume N*

1 and N*
2 are copies of

N1 and N2, with output variables Y*
1 and Y*

2
respectively, and input variables X* . Then N1 ≤ N2
holds iff the function S(N1, N2) is unsatisfiable,
where S(N1, N2) = SAT(N1) ∧ SAT(N2) ∧ SAT(N*

1) ∧
SAT(N*

2) ∧ (Y1 ≠ Y*
1) ∧ (Y2 = Y*

2).
Based on this, we can make the following three

comments. 1) To test if N1 ≤ N2, we simply test the
satisfiability of S(N1, N2). If it is unsatisfiable (i.e. a
constant zero), we conclude that N1 ≤ N2. 2) If
S(N1, N2) is satisfiable, it means that there exists a
pair of input vectors x and x* for which circuit N1
toggles, while N2 does not. 3) Let S(N1, N2) be
satisfiable. If we removed all toggles from N1 that
“are not in” N2, we would have N1 ≤ N2. In other
words, given two circuits N1 and N2, we can define a
function find_toggle_setdifference(N1, N2) =
ALLSAT(S(N1, N2)) which returns toggles of N1 that
are not matched by toggles of N2. This is the set of
toggles that must be removed from N1. If the resulting
set ALLSAT(N1, N2) is too large, its manageable
subset can be used.

From Proposition 4, it follows that checking for
toggle equivalence reduces to two satisfiability
checks (henceforth called SAT checks).

4.4 Correlation function

In this section, we briefly introduce the notion of
correlation function, to extend definitions of toggle
implication and toggle equivalence to the case when
functions f1 and f2 have different sets of input
variables.
Definition 6. Let X and Y be two disjoint sets of
Boolean variables (the number of variables in X and
Y may be different). A function CF(X, Y) is called a
correlation function if there are subsets SX ⊆
{ 0,1} ||X| and SY ⊆ { 0,1} ||Y| such that CF(X, Y)
specifies a bijective mapping M: SX → SY. Namely,
CF(x, y)=1 iff x ∈ SX, y ∈ SY and y = M(x).

Definition 7. Let Boolean functions f1 and f2 have
different sets of variables (X and Y respectively) that
are related by a correlation function CF(X, Y). f1 and
f2 are said to be toggle equivalent under input
constraint CF(X1,Y), if for any pairs (x, y) and (x′′′′, y′′′′)
of input vectors such that CF(x, y)= CF(x′′′′, y′′′′)=1, it
is true that f1(x) ≠ f1(x′′′′) ⇔ f2(y) ≠ f2(y′′′′).
(Definition of toggle implication can be reformulated
in a similar manner).

In LS_TE, the output relation between toggle
equivalent subcircuits N

i and N*
i is computed by

existentially quantifying from SAT(Ni) ∧ SAT(N*
i) ∧

Constr(inp_vars(Ni),inp_vars(N*
i)) all but output

variables of N
i and N*

i [4]. If Ni and N*
i are

subcircuits of the first topological level (and so have
identical sets of input variables), then
Constr(inp_vars(Ni), inp_vars(N*

i)) just describes
equivalence of corresponding variables. Since toggle
equivalence of Ni and N*

i means one-to-one mapping
between output assignments, their output relation is a
correlation function. In general, Constr(inp_vars(Ni),
inp_vars(N*

i)) is the conjunction of correlation
functions that are output relations of all the
subcircuits Nj, N

*
j feeding Ni, N

*
i. For the sake of

simplicity, in Section 5, when describing the TEP
procedure, we assume that circuit N1 and its toggle
equivalent counterpart N2 have identical sets of
variables.

5. TEP procedure

The TEP procedure produces the circuit N2
(given a combinational circuit N1) in a topological
manner from inputs to outputs. These operations are
illustrated in

Figure 3. The circuit N2 is built up as a sequence
of circuits N2

1, N2
2, …, N2

m. Each circuit N2
i specifies

a cut Ci of N2 consisting of the primary outputs of N2
i.

In this way, the sequence of cuts Ci that are produced,
are topologically ordered. This means that for a pair
of cuts Ci and Cp such that i < p no path from a
primary input to a primary output of N2 can traverse
Cp before Ci, although Ci and Cp may have common
nodes. Then, if a node in Cp toggles for a given pair
of input vectors, then there must be at least one node
in Ci that toggles as well. So just from the fact that Ci
and Cp are topologically ordered it follows that N2

p ≤
N2

i.

… .

… .N 1

… .

… .N 2

N 2
1

N 2
2

N 2
3

N 2
m

…
.

N 2

C 1

C 2

C 3

Figure 3. Sequence of circuits N2
i constructed

by TEP

The TEP procedure starts with N2
1 = ∅ i.e. with

an empty circuit which allows all possible toggles. As
a result, N1 ≤ N2

1 (which is trivially true since the set

of inputs forms a cut of N1). At each successive step,
N2

i+1 is created from N2
i such that N2

i+1 < N2
i. The

invariant that the TEP procedure maintains at each
step is N1 ≤ N2

i+1 < N2
i. In other words, the TEP

procedure selectively removes one or more toggles in
each step, until it is true that N2

m ≤ N1. At this step,
since N1 ≤ N2

m, N2
m is toggle equivalent to N1, and the

procedure returns the circuit N2
m.

TEP(N1)
{ if (is_constant(N1)) return “constant” ;
 N2

current = ∅;
 while(true)
 { if (N2

current ≤ N1) return N2
current ;

 N2
current = discard_toggles(N2

current, N1);
 N2

current = remove_redundant_outputs(N2
current);

 } }

Figure 4. Pseudocode of the TEP procedure

It is not hard to see that the TEP procedure has
the desirable property of convergence. Since N2

1 has
all toggles, and N2

i+1 < N2
i, the sequence of circuits

N2
1, N2

2,…, N2
m must converge to a circuit that is

toggle equivalent to N1.
The pseudocode of the TEP procedure is shown

in Figure 4. To start with, we test if the input circuit
N1 is a constant, in which case the TEP procedure
reports this fact. The sequence of circuits N2

i
mentioned earlier is built in the while loop. This
sequence starts with an empty circuit N2

current, which
allows all possible toggles. In the while loop, we first
check if N2

current ≤ N1. If so, N2
current is toggle

equivalent with N1 (since N1 ≤ N2
current by

construction) and we return N2
current as the resulting

circuit N2. If N2
current ≤ N1 does not hold, then a new

circuit N2
current is generated, such that it has at least

one less toggle than the previous N2
current . This

operation is performed by the function
discard_toggles, which is described in the next
subsection. Finally, redundant outputs of N2

current are
removed in the function remove_redundant_outputs.
An output of N2

current is redundant if, after its removal
from N2

current, the condition N1 ≤ N2
current still holds.

Note that for each test for implication of toggling
(i.e each “≤”check), we utilize the SAT-based
algorithm described in subsection 4.3.

5.1 Discard toggles from N2
i

Figure 5 describes the pseudocode of the
discard_toggles procedure used by the TEP
procedure (Figure 4). The procedure
discard_toggles consists of two parts. The

procedures remove_toggles and add_toggles are
explained in detail in the following subsections. In
both these procedures, toggle removal and addition is
done with AND gates, with their inputs appropriately
complemented.

discard_toggles(N2

current, N1)
{ R* = find_toggle_setdifference(N2

current, N1);
 (N2

temp, R) = remove_toggles(R*, N2
current);

 D = find_toggle_setdifference(N1, N2
temp);

 N2
new_current = add_toggles(R, D, N2

current, N2
temp);

 return N2
new_current ;}

Figure 5. Pseudocode of the discard_toggles
procedure

The find_toggle_setdifference(N2
current, N1)

routine was sketched in subsection 4.3. The heuristics
of remove_toggles and add_toggles are aimed at
minimizing the size of N2.

5.1.1 Procedure remove_toggles. The function
remove_toggles adds an AND gate G to N2

current, to
remove at least one toggle in the set R* that is
computed in line 1 of the discard_toggles procedure.
(R* specifies either the complete set of additional
toggles that are present in N2

current and are not
required in N1 or a manageable subset of this set.)
The resulting circuit is called N2

temp, and the set of
toggles of R* actually removed are referred to as R.

Recall that each circuit N2
i specifies a cut Ci of

N2 (consisting of the primary outputs of N2
i.) Suppose

the circuit N2
current specifies the cut Ccurrent. Then the

AND gate G above may have as its inputs, any of the
nodes on Ccurrent. After the addition of the AND gate
G, the new cut Cnew is formed from Ccurrent by a)
adding to Ccurrent the node corresponding to the output
of G; b) eliminating from Ccurrent the nodes that are
toggling inputs of G.

Suppose the cut Ccurrent consists of the set of
nodes Y. Suppose that r = (y, y') is a toggle from the
set R*. Let Y1 and Y2 form a partition of Y, such that
Y1 (Y2) corresponds to the components of y and y'
which are different (same). In other words, Y1 (Y2)
corresponds to the nodes of Y that have different
(same) values for the toggle r = (y, y').

To remove the toggle r, we add an AND gate G.
We consider two cases.
Case i): If Y1= 1, then gate G has two inputs. One of
these inputs is specified by the variable of Y1, and
another input is chosen from Y2. All possible
polarities of the second input are considered as well.
The configuration for which G(y) = G(y')=0 and
that removes the largest number of toggles of R* is
selected.

Case ii): if Y1 > 1, then gate G has |Y1| inputs. These
inputs are connected to the variables in Y1, with
appropriate polarity selection to guarantee that G(y)
= G(y') = 0.

In both cases, the construction of gate G
guarantees that G(y)=G(y')=0. After adding the gate
G, we form the cut Cnew by removing from Ccurrent all
the nodes in Y1 and adding the output of G. Then, the
toggle r =(y, y') is removed from the nodes of Cnew.
The circuit resulting from this operation is called
N2

temp.

5.1.2 Procedure add_toggles. Unfortunately,
adding the gate G (described in the previous
subsection) may sometimes remove certain toggles
that are required in N1. As a consequence, we have to
perform a ''clean-up'' step, and add these toggles back
into the design.

We begin with computing D, the set of toggles
that need to be added. D is computed by
find_toggle_setdifference(N1, N2

temp). The objective
is to add minimum number of AND gates that re-
introduce all toggles from D, and at the same time
minimize the number of toggles that get re-introduced
from R. It is not hard to prove that one can always re-
introduce a toggle from the set D, by using a 2-input
AND gate H, with appropriately selected inputs and
input polarities, without re-introducing a toggle from
the set R. The proof is omitted due to space
constraints.

Once again, we have two cases to consider,
analogous to those in the previous subsection:
Case i): When the gate G added by remove_toggles
was a 2-input gate, with |Y1| = 1, then one of the
inputs of H is the same as the node in Y1. The other
input of H is selected from among nodes in Y2. All
possible nodes and polarities are explored to
maximize the weighted cost function n1+p∗n2. Here,
n1 is the number of toggles of R prevented from
being re-introduced, n2 is the number of toggles of D
re-introduced and p is the weight parameter (that
was set to 1 in our experiments). We add only those
gates for which n1 is 1 or more.
Case ii): If |Y1| > 1 , then select the first input of H
from Y1, and the second from Y, except the input
already chosen as the first leg. The cost function to
select inputs and their polarities is identical to the one
explained in Case i above.

After each AND gate added to the circuit, the set
D is recomputed. The routine add_toggles continues
to add AND gates until the set D reduces to ∅. At
this point the resulting circuit N2

new_current is returned.
It satisfies the property that N1 ≤ N2

new_current <
N2

current. Note that for a single gate added in

remove_toggles, zero, one or more AND gates
could be added in the following call of add_toggles.

6. Experimental results

Our preliminary implementation of the TEP
procedure is in SIS [9]. We performed various
experiments to compare TEP with traditional logic
synthesis commands. The experiments were
performed on a 3 GHz Xeon CPU, with 2GB of
memory.

Table 1. Results for optimizing arithmetic
expressions

script.rugged collapse,
script.rugged

TEP BDD Exper #bits

time

(s)

#gates

time (s) #gates time (s) #gates time (s)

x2 < C 10 3 590 0.5 28 5 20 0.01

x2 < C 14 34 1,361 95 44 17 21 0.25

x2 < C 16 94 1,808 2,151 52 54 46 0.9

x2 < C 27 35 7,037 >10h - 282 50 Mem

x2 < C 30 56 8,681 >10h - 525 57 Mem

C1∗x < C2 16 24 1,054 121 15 14 19 0.07

C1∗x < C2 18 39 1,201 1,659 17 25 28 0.11

C1∗x < C2 38 37 6,709 >10h - 497 58 Mem

C1∗x < C2 50 136 10,483 >10h - 2,183 66 Mem

Table 1 provides the results of applying TEP
procedure and SIS for optimizing circuits
implementing the expressions x2 < C and C1∗x <
C2 for different word sizes. (In contrast to the
example of Subsection 3.1, the expressions above
were optimized as one circuit i.e. by one call of the
TEP procedure.) In all experiments, the value of C
was chosen to be 200 (the results do not change much
if one varies C). C1 and C2 were set to decimal value
11111. The two expressions above can be reduced to
much simpler expressions x < C′ and x < C″
respectively where C′ is equal to sqrt(C) and C″ is
equal to C2/C1. The objective of this experiment was
to show that since TEP is structure-agnostic it can be
used to simplify “ non-local” redundancy. Note that
although optimization of these expressions can be
easily done manually, one can give examples of non-
local redundancies that are much harder to find
manually or by a program. Any logic synthesis
procedure that changes the original circuit's structure
locally (like SPFDs or don't care based
optimizations) can easily get trapped in a local
minimum. Note that only for smaller values of C, C1
and C2, it is possible to build ROBDDs. For the
experiments in Table 1, we set the threshold of R* at
10 as explained in sections 5.1 and 4.3 i.e. R*
contained only 10 (out of a huge number of) toggles

to be removed. The reason why the TEP procedure
worked so well with such a small subset R* was that
by adding an AND gate to remove a toggle of R*
explicitly, we may implicitly remove a huge number
of toggles that were “skipped” in R*.

The first column in Table 1 represents the
expression being simplified, while the second column
represents the word size. Columns 3 and 4 represent
the runtime and number of gates returned by
script.rugged. Columns 5 and 6 represent the runtime
and number of gates returned by collapse followed
by script.rugged. The corresponding results for TEP
are provided in Columns 7 and 8, while Column 9
represents the time taken to build a ROBDD (using
the nanotrav package in CUDD). The notation
''Mem'' indicates a memory out condition. In all
cases, the number of gates refers to the number of
gates required after optimization and decomposition
using AND2 and inverter gates.

We observe that the script.rugged requires
significantly more gates than TEP. This is because
script.rugged performs only local changes of the
circuit and so SIS gets stuck in a local minimum.
TEP, on the other hand, uses only the functionality
of the circuit and so produces a dramatically smaller
circuit. We may run collapse before script.rugged,
to allow SIS to re-structure the logic better. However
for all but the smallest word widths, collapse fails.
Similarly, the ROBDD computation fails for large
word widths, while TEP optimizes these circuits with
less than 66 gates. Interestingly, the arithmetic
expressions we used turned out to have “ local
redundancies” (however, in general, global
redundancy of a circuit does not “ translate” into local
redundancies). So redundancy removal in SIS [9] can
optimize them with comparable results by taking
about two orders of magnitude more time than the
TEP procedure.

Table 2 shows the results of running a
commercial tool (CT) on circuits produced by
script.rugged and the TEP procedure. We used
single-output circuits extracted from MCNC
benchmarks. The objective of the experiment was to
show that even for very small circuits, TEP can
achieve better optimization. (The other reason for
targeting small subcircuits is that in LS_TE, the TEP
procedure is used for optimizing subcircuits N i of
circuit N that are assumed to be small.) The first
column of Table 2 shows names of circuits and the
output number (in parentheses). The second column
provides the number of inputs in the single output
circuits. Columns 3 and 4 provide the mapped area
and delay for the output of script.rugged mapped by

CT, while Columns 5 and 6 provide these numbers
for the TEP output mapped by CT. The standard cell
library had 38 gates, implemented in a 0.18µ process.
The licensing agreement for CT requires us not to
identify its name. The results of Table 2 indicate that
TEP based circuits, after mapping, result in a 12.5%
area improvement, and a 1.6% delay penalty over
circuits optimized with script.rugged before mapping
with CT. The TEP results improve on the
script.rugged results for 85% of the examples in
terms of area, and for 45% of the examples in terms
of delay.

The objective of the experiment summarized in
Table 3 was to provide a brief demonstration of the
ability of LS_TE. The LS_TE method was used to
optimize two-stage circuits. Both stages correspond
to standard benchmark circuits, with the second stage
being a single output circuit. The outputs of the first
stage are inputs to the second. MCNC benchmarks
rd84 and squar5 were used as the first stage circuits.
The second stage circuits are single-output circuits
extracted from MCNC benchmarks (second column).
Columns 3 through 6 give the number of gates in
optimized circuits and runtimes for optimization by
script.rugged and LS_TE.

Table 2. Optimization of single-output circuits

script.rugged→CT TEP→CT Circuits #in-
puts area delay(ps) area delay(ps)

b12(3) 4 83.635 77 62.727 73
i5(37) 5 130.679 75 114.999 106

s_opt(6) 3 151.589 102 151.588 87
pm1(10) 8 182.952 120 156.815 109
squar5(1) 5 250.905 118 156.815 105

misex2(15) 5 177.725 128 156.816 113
x4(34) 8 224.771 124 172.497 142
x3(64) 5 250.906 110 224.769 121
5xp1(5) 4 308.405 163 229.996 164

squar5(3) 5 491.356 169 235.223 143
i7(10) 5 282.268 126 235.224 146

apex7(35) 8 360.675 149 245.678 165
b9(1) 7 282.270 134 245.679 150
ttt2(7) 5 224.769 131 250.905 121

apex1(43) 8 266.587 110 256.134 129
apex6(51) 7 392.040 178 277.042 183

ttt2(4) 6 266.586 136 297.950 127
i7(28) 6 444.312 161 308.405 142

qpcle(4) 8 392.040 160 423.402 139
sqrt8ml(3) 8 3183.359 652 2299.966 584

When optimizing a circuit N of Table 3, TEP is

used twice. We first replace the stage 1 circuit N1
with its toggle equivalent counterpart N*

1, using TEP.
After this the correlation function relating outputs of
N1 and N*

1 is computed as described in [4]. (One

needs to compute the correlation function because N1
is a multi-output circuit.) Using the correlation
function, the second stage circuit N2 is replaced with
a toggle equivalent counterpart N*

2, using TEP a
second time. The composition of circuits N*

1 and N*
2

form a circuit N* functionally equivalent to N
modulo negation. Since we assume that N1 and N2
were designed independently, any output encoding
for N1 is in a sense as good as the original one. So the
heuristics of TEP that aim at finding a toggle
equivalent counterpart of N1 that is as small as
possible makes sense.

Note that the number of gates resulting from
TEP optimization is significantly smaller than for
SIS. In fact, on average, TEP requires 50.5% fewer
gates than script.rugged. Our current TEP
implementation is unoptimized, and we have efforts
underway to improve the runtimes of TEP.

Table 3. Optimization of two-stage circuits by
LS_TE

script.rugged TEP stage 1 stage 2

gates

time(s) #
gates

time(s)

rd84 5xp1(5 138 0.8 53 62
rd84 alu2(5) 78 0.5 47 62
rd84 b12(3) 101 0.6 37 62

squar5 alu4(1) 43 0.1 23 3.4
squar5 b12(2) 42 0.1 20 2.7
squar5 c8(11) 28 0.1 17 2.2

7. Conclusions

We have presented a new toggle equivalence
preservation based procedure (TEP) for logic
synthesis. This TEP procedure can be used in the
scenario shown in Figure 1. The idea is to re-
synthesize a circuit N (consisting of subcircuits Ni), in
a manner that the high-level partitioning structure of
N is retained. Each subcircuit Ni is re-synthesized into
a design N*

i , using the TEP procedure. This re-
synthesis explores a huge optimization flexibility
since the outputs of Ni are re-encoded by TEP. This
TEP procedure was formulated for multi-output
circuits. The TEP procedure is structure-agnostic,
unlike existing logic optimization procedures. Also, it
is able to explore all possible output encodings
efficiently during synthesis. For single-output
circuits, toggle equivalence is the same as functional
equivalence modulo negation. Therefore, we tested
TEP on single-output circuits, to enable a fair

comparison with existing synthesis approaches,
although the full power of TEP is exhibited for multi-
output circuits. The preliminary implementation of
TEP is done in SIS, using a SAT-based computation.
First results show encouraging improvements over
SIS When the full power of TEP is utilized (for
multi-output circuits) we expect yet further
improvements.

8. References

[1] R.Brayton, Understanding SPFDs: A new method for
specifying flexibility. In Proc. of the International
Workshop on Logic Synthesis (Tahoe City, CA), May
1997.

[2] R.Brayton and C.McMullen. The Decomposition and
Factorization of Boolean Expressions. In Proc. IEEE
International Symposium on Circuits and Systems,
pp.49-54, May. 1982.

[3] R.Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Computers,
Vol. C - 35, No. 8, August, 1986, pp. 677 - 691.

[4] E.Goldberg. On equivalence checking and logic
synthesis of circuits with a common specification.
GLSVLSI, Chicago, April 17-19, 2005, pp.102-107,
http://eigold.tripod.com/papers/glsvlsi-2005.pdf.

[5] E.Goldberg Escaping Local Minima in Logic
Synthesis, IWLS-2007, San Diego 2007.

[6] H. Savoj and R.Brayton. The Use of Observability
and External Don’ t Cares for the Simplification of
Multi-Level Networks. DAC,1990, pp.297-301.

[7] H. Savoj, R.Brayton, and H.Touati. Extracting Local
Don’ t Cares for Network Optimization, ICCAD,1991,
pp.514-517.

[8] H.Savoj. Don’ t Cares in Multi-Level Network
Optimization. PhD thesis, University of California
Berkeley, Electronics research laboratory, May 1992.

[9] E.M. Sentovich et. al. SIS: A system for sequential
circuit synthesis. Technical report, University of
California at Berkeley, 1992. Memorandum No.
UCB/ERL M92/41.

[10] S.Sinha, R.K.Brayton. Implementation and use of
SPFDs in optimizing Boolean networks. ICCAD-
1998, pp. 103-110.

[11] J.Vasudevamurthy and J.Rajski. A Method for
Concurrent Decomposition and Factorization of
Boolean Expressions, ICCAD,1990, pp.510-513.

[12] S.Yamashita, H.Sawada, A.Nagoya. A new method to
express functional permissibilities for LUT based
FPGAs and its applications. ICCAD,1996, pp.254-
261.

