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Abstract 

We describe a procedure (called the TEP 
procedure) that, given a multi-output  circuit M, 
builds another multi-output circuit M* that is toggle 
equivalent to M. The TEP procedure can be used in 
the following two scenarios. First, since for single-
output circuits toggle equivalence means functional 
equivalence, the TEP procedure can be used in 
“ regular”  logic synthesis. Second, the TEP 
procedure enables a powerful synthesis method 
called  LS_TE (Logic Synthesis preserving Toggle 
Equivalence).  Given a circuit N and its partitioning 
into subcircuits Ni , LS_TE builds an optimized 
circuit N* by replacing subcircuits Ni with their 
toggle equivalent counterparts N*

i . The replacement 
of Ni with N*

i is done by the TEP procedure. We give 
results of  optimizing single-output circuits by the 
TEP procedure  and some preliminary results of 
using the TEP procedure in LS_TE.  These results  
show the promise of the TEP procedure and LS_TE. 
 
 

1. Introduction 
 

In [4], a  new method of logic synthesis was 
introduced. We refer to this method as LS_TE, which 
stands for Logic Synthesis preserving Toggle 
Equivalence.  As shown in Figure 1, assume that a 
partitioning of N into subcircuits Ni, i=1, 2,…, k is 
specified.  The main idea of LS_TE  is to optimize N 
by replacing  each subcircuit Ni with a toggle 
equivalent  counterpart N*

i, i=1,2,..,k.   
Let us consider how LS_TE works by the 

example of Figure 1 where circuit N is partitioned 
into four subcircuits N1,..,N4. First, subcircuits N1 and 
N2 are replaced with their toggle equivalent 
counterparts N*

1 and N*
2. Then the relations 

CF(N1, N
*
1)  and CF(N2, N

*
2) betweens outputs of N1 

and N*
1 and N2 and N*

2 are computed. (These 
relations are called correlation functions (CF)). Then 
a single-output subcircuit N*

3 that is toggle equivalent 
to the single-output subcircuit N3 under the 
constraints specified by CF(N1, N

*
1) and CF(N2, N

*
2) 

is built.  Since toggle equivalence for single output 

circuits means functional equivalence (modulo 
complement), outputs y1 and y*

1 are functionally 
equivalent (modulo complement).  Finally single-
output subcircuit N4 is replaced with a single-output 
toggle equivalent subcircuit N*

4, which makes outputs 
y2 and y*

2 functionally equivalent (modulo 
complement). So the optimized circuit N* consisting 
of subcircuits N*

1,..,N
*
4 is functionally equivalent to 

N modulo complement of its outputs. 
The advantage of LS_TE is twofold (at least). 

First, LS_TE is scalable. The complexity of LS_TE 
is linear in the number of subcircuits Ni and 
exponential in the size of the largest subcircuit Ni or 
N*

i, i=1,..,k. Since the number of subcircuits toggle 
equivalent to Ni is huge even if Ni is very small,  
LS_TE can  explore a very large search space and 
still have linear complexity. Second,  LS_TE can 
escape local minima that would trap a solution 
obtained by a traditional logic synthesis procedure 
(Section 3). 
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Figure 1. Optimization of circuit N  by LS_TE 

 
Unfortunately, [4] did not provide a specific 

procedure  that, given a subcircuit Ni, would build a 
toggle equivalent subcircuit N*

i.  The main 
contribution of this paper is the introduction of such 
a procedure which we refer to as the Toggle 
Equivalence Preserving (TEP) logic optimization 
procedure. In the TEP procedure, we use a non-trivial 
convergence scheme that makes this procedure 
structure-agnostic. That is if a circuit M′  toggle 
equivalent to an original circuit M is built by the TEP 
procedure,  the topology  of M′  is not limited to that 
of M. This important feature of TEP is discussed in 
Section 3.  



In the formulation of LS_TE given in [4], circuit 
N to be optimized is partitioned into subcircuits Ni, 
i=1,..,k However, LS_TE can be also applied if, for 
example, subcircuits Ni share internal gates. Suppose, 
for instance, that subcircuits N3 and N4 of Figure 1 
share internal gates. Then when building subcircuit 
N*

4 toggle equivalent to N4, one can reuse the logic of 
N*

3 (assuming that N*
3 was synthesized before N*

4). 
Such logic sharing can be done by the TEP procedure 
(slightly modified). However, a discussion of this 
topic is beyond the scope of this paper. 

As we mentioned above, for single-output 
Boolean functions, toggle equivalence is the same as 
functional equivalence modulo negation. So, besides 
enabling LS_TE, the TEP procedure can be used in 
traditional logic synthesis.  In order to compare the 
TEP procedure with traditional logic synthesis, the 
focus in this paper is on optimization of single-output 
functions. Even though the vast optimization 
flexibility of the TEP procedure can not be invoked 
for single-output functions, it still has the advantage 
of being structure-agnostic. As a consequence, for 
many single-output  circuits the TEP procedure found 
better solutions than SIS [9].  Our initial results also 
show that for multiple output circuits (where the vast 
optimization flexibility can be exploited), the LS_TE 
procedure gave significant improvements over SIS 

The rest of this paper is organized as follows. 
Section  2 discusses related previous work, including 
a comparison and contrasting of LS_TE and TEP 
with SPFDs [1][10][12]. In Section 3, we emphasize 
some important features of LS_TE and TEP 
procedure. Section 4 provides definitions.  Section 5 
details our TEP procedure. In Section 6, we report 
results of our experiments. Section Error! Reference 
source not found. concludes the paper, with some 
directions for future work in this topic. 

 

2. Previous work 
 

Multi-level logic synthesis can be performed 
using algebraic means such as factorization [2], 
kernelling [2][11] etc. Although  these techniques are 
fast, being algebraic, they explore only a limited 
portion of the  optimization space. Other techniques 
like ODC [6][7] and CODC [8] perform don't care 
based optimization, but they do not modify the 
structure of the circuit. (Sometimes a node gets 
removed as a result of don't care based optimization. 
However, such an occurrence is rare.) Toggle 
equivalence is different from the algebraic 
techniques, since it explores the ''Boolean'' options in 
the search space, while it differs from multi-level 

don't care based techniques since it does not restrict 
itself to the original circuit topology.  

Sets of Pairs of Functions to be Distinguished 
(SPFDs) were introduced in [1][10][12] as a new way 
to do logic optimization. One should distinguish 
between SPFDs as a means to express circuit 
flexibility and concrete methods for computing 
SPFDs.  The main difference between LS_TE and the 
method for computing SPFDs of [10][12] is that 
LS_TE is scalable. The method for computing SPFDs 
of  [10][12] is unscalable because SPFDs are built   
by computing non-local relations between points of 
the circuit.   Besides, when computing SPFDs by the 
method of [10][12] one has to follow the circuit 
topology.  On the other hand, computations in LS_TE 
are local because they involve only subcircuits Ni and 
N*

i
  (and correlation functions relating their inputs).   

Besides,   LS_TE preserves only the  high-level 
structure of the circuit (because subcircuits Ni and N*

i 
are connected in the same way) but the topology of 
subcircuits Ni and N*

i can be vastly different. 
The “ language”  of SPFDs is  sufficient to 

express the notions of toggle implication and 
equivalence that we use in the paper. For example, to 
test that circuits M and M′ are toggle equivalent one 
can build SPFDs of M and M′  and check them for 
graph isomorphism. However, toggle equivalence of 
M and M′  can be computed much more efficiently  
without building their SPFDs (by performing two 
SAT-checks). Moreover, the formulation of the TEP 
procedure in terms of SPFDs is hard at best. An 
SPFD is a  relation between  input assignments  while 
the TEP procedure operates on output assignments 
and the same pair of output assignments (i.e. the 
same toggle) may be caused by an exponential 
number of pairs of input assignments. In a sense, the 
problem is that the definition of SPFDs was tailored 
to facilitate their computation from outputs to inputs, 
while in LS_TE and TEP procedure  computations go 
in the opposite direction. 

 

3. Importance of LS_TE and the 
TEP procedure 
 

In this section, we emphasize two important 
features of LS_TE and the TEP procedure.  In 
Subsection 3.1, we show that LS_TE, in terms of 
equivalent transformations, can make moves that 
increase the size of  intermediate circuits. This allows 
LS_TE to escape local minima that would trap a 
solution built by a  traditional method of logic 
synthesis. In Subsection 3.2 we discuss the 



importance of the novel convergence scheme of the 
TEP procedure. 

 

3.1 Escaping local minima in LS_TE 
 

Given a circuit N, a typical synthesis 
transformation is to replace a multi-output subcircuit 
N′ of N with a functionally equivalent subcircuit N″ 
such that |N″ | < |N′ |. (Here |M| is the size of circuit 
M.) The size of N′  is kept small for complexity 
reasons. Suppose there is no transformation 
decreasing the size of N such that |N′ | < p. This 
means that circuit N is stuck in a local minimum. To 
escape this minimum, one needs to make equivalent 
transformations that affect subcircuits of N larger 
than p. But how does one make such transformations 
in  a scalable manner?   

LS_TE answers the question above. Let N be 
partitioned into subcircuits N1,..,Nk. By replacing 
subcircuits Ni, i=1,.,k with toggle equivalent 
counterparts N*

i  LS_TE makes a single equivalent 
transformation that may encompass the entire circuit 
N (then the subcircuit N′ we replace with an 
equivalent one is N itself). If the size of subcircuits Ni 
is small, this transformation can be done efficiently.  
Note that LS_TE can optimize N even if |Ni| < p, 
i=1,.,k. The reason is that replacement of Ni with N*

i 
is not an equivalent transformation. So LS_TE can 
get N out of a local minimum even by making 
transformations of “small scope” . 

Suppose N implements the expression x2 < 100 
as shown in Figure 2. Here subcircuit N1 implements 
y=square(x) and subcircuit N2 implements y < 100. 
(Let assume that the number n of bits in x is small 
enough to be handled efficiently.) LS_TE can 
optimize N as follows. First N1 is replaced with an 
optimized subcircuit N*

1 toggle equivalent to N1 (e.g. 
N*

1 may implement the function abs(x) which is the 
simplest function toggle equivalent to square(x)).  
Then output relation CF(N1,N

*
1) is computed (as 

described in [4]). After that a subcircuit N*
2 toggle 

equivalent to N2 under constraint CF(N1, N
*
1) is built. 

(If N*
1 implements y∗∗∗∗=abs(x), then N*

2 implements 
y∗∗∗∗< 100 modulo negation.) Note that N can not be 
optimized much by replacing N1 with a functionally 
equivalent subcircuit N*

1 (for example, N1 can be an 
optimal implementation of square(x)).  At the same 
time, LS_TE can dramatically optimize N because it 
can  replace N1 with a toggle equivalent subcircuit. 

The replacement of N1 with N*
1 can be 

“simulated”  as an equivalent transformation as shown 
in Figure 2 (on the right). Here R*

1 is a re-encoding 
circuit such that N1 = R*

1(N
*
1). (The second step of 

LS_TE is “simulated”  as replacing N*
1 and R*

1 with 

N*
2.) Note that even though N1

* is much smaller than 
N1 it may be the case that |N1| < |N*

1|+ |R*
1|. In other 

words, the reason why LS_TE can escape local 
minima is that it may make transformations that 
temporarily increase the circuit size. (A discussion of 
this topic can be found in  [5].) 

 

 

Figure 2. Optimization of expression x2 < 100 
by LS_TE 

 

3.2 Novel convergence scheme of the 
TEP procedure 
 

As we mentioned above, the importance of the 
TEP procedure is due to its enabling  LS_TE. 
However, the  TEP procedure is also important in its 
own right. Given a single-output circuit N, the TEP 
procedure can build a functionally equivalent circuit 
N* with  a completely different topology. (So it can be 
used in “regular”  logic synthesis without any relation 
to LS_TE.)  This property is extremely important for 
at least three reasons. First, N may not have any 
topology to reuse (e.g. if N is specified as the truth 
table or is represented implicitly). Second, N may 
contain some non-local redundancy, which makes 
reusing  its topology unreasonable. Third, one may 
need to implement N using a particular library of 
gates (e.g. in technology mapping) and the current 
topology of N may be not good for these library.  

In the current synthesis methods, if the topology 
of N can not be reused for some reason, a new circuit 
N* is obtained from  a very limited space of 
implementations (N* may be further optimized using 
local transformations). For example, in SIS [9], if N 
is represented as the truth table, first, a circuit N* 
equivalent to N is synthesized as a sum-of-products 
(which is a very limited class of circuits). Then by 
local transformations a multi-level circuit is obtained 
from N*.  (Another approach would be to build a 
circuit N* of multiplexers (i.e. build a BDD  [3]) 
equivalent to N and then optimize it using some local 
transformations. BDDs is another example of a 
restricted class of circuits.) 



The reason why current methods have to restrict 
the class of implementations considered when 
changing the topology of N is the “convergence 
problem”. Suppose we build a circuit N* that does not 
use the topology of N. Then  we have to make sure 
that the network of gates being built “converges”  to a 
circuit equivalent to N.  The TEP procedure solves 
this problem by introducing a very simple and 
general convergence scheme. Namely, it builds a 
sequence of circuits N 1, N 2,… such that a) N i+1 
toggles strictly less than N i and b) every circuit of 
this sequence toggles at least as much at the original 
circuit N. Here N 1 is an “empty circuit”  consisting 
only of inputs of N. In other words,  the TEP 
procedure builds a sequence of circuits that 
monotonically lose toggles until a circuit N m toggle 
equivalent to N is built.  The TEP procedure also 
restricts the class of implementations it considers 
since it requires that only  primary outputs of N i are 
allowed to feed the  gates of N i+1 that are not in N i. 
However, this is a mild restriction  in comparison to 
ones used by existing methods.  So,  the TEP 
procedure can select an optimized implementation 
from a very general class of multi-level circuits. 

 

4. Preliminaries and terminology 
 

In this section, we recall the notion of toggle 
equivalence and its properties.  All the propositions 
given in this paper are either proven in [4], or can be 
easily derived from them. 
 

4.1 Toggle equivalence of Boolean 
functions 
 

Definition 1. Let f:{ 0,1} n  → { 0,1} m be an m-output 
Boolean function. Then, given y′′′′ = f(x′′′′ ) and y″″″″ = 
f(x″″″″), the pair (y′′′′, y″″″″ ) is a toggle if y′′′′ ≠ y″″″″. 
Definition 2. Let f1 and f2 respectively be two  m-
output and k-output Boolean functions with the same 
set of variables.  Functions  f1 and f2  are called toggle 
equivalent if  f1(x′′′′) ≠ f1 (x″″″″)  ⇔   f2(x′′′′) ≠ f2(x″″″″). 
Circuits N1 and N2 implementing toggle equivalent 
functions f1 and f2  are called toggle equivalent 
circuits.  

Proposition 1. Let f1:{ 0,1} n  → { 0,1} m and f2 { 0,1} n 
→ { 0,1} k be  m-output and k-output Boolean 
functions of the same set of variables. Let f1 be f2  
toggle equivalent. Then there is an invertible  
function H such that  f1(x)=H(f2(x)) and 
f2(x)=H-1(f1(x)). 

Proposition 2. Let f1 and f2 be toggle equivalent 
single output Boolean functions. Then f1=f2 or f1=~f2. 

Definition 3.  Let N be a circuit. Let Y be the set of 
all variables of N. Let Sat(N) be the CNF expression 
for N,  such that Sat(N)=1 iff the assignment y to Y is 
consistent within the circuit N. For example, if  N 
consists of just one AND gate w = x1 ∧ x2, then 
SAT(N) = (~x1  ∨  ~x2  ∨ w)∧  (x1 ∨ ~w) ∧  (x2 ∨ ~w). 
Proposition 3. Let N1 and N2 be two toggle 
equivalent circuits, with variables Y1 and Y2 
respectively. Let the output variables of N1 and N2 be 
Z1 and Z2  respectively.  Then the function  H*(Z1,Z2) 
specifying the one-to-one mapping H between the 
output vectors produced by N1 and N2 can be 
obtained from Sat(N1) ∧ Sat(N2) by existentially 
quantifying away the variables of (Y1 ∪ Y2)\ (Z1 ∪ 
Z2). (Then H*(z1, z2) =1 iff there is an input vector x 
such that N1(x)=z1 and N2(x)=z2.)  

4.2 Implication of toggling 
 

In this subsection, we introduce the notion of 
implication of toggling and describe how toggle 
equivalence and implication of toggling can be 
tested. 
Definition 4. Let f1: { 0,1} n → { 0,1} m  and  f1: { 0,1} n 
→ { 0,1} k  respectively be two m-output and k-output 
Boolean functions with the same set of input 
variables. Toggling of f1 implies toggling of  f2 iff for 
any pair of input variable assignments x′ and x″,   
f1(x′′′′) ≠ f1 (x″″″″) �   f2(x′′′′) ≠ f2(x″″″″). 

Definition 5. Let f1 and f2 be multi-output Boolean 
functions. Toggling of f1 strictly implies toggling of 
f2 if  toggling of f1 implies toggling of f2 and there is 
a pair of  assignments  x′ and x″ such that f1(x′′′′)=f1 
(x″″″″)  while   f2(x′′′′) ≠ f2(x″″″″). We will denote by f1 ≤≤≤≤  f2   
(respectively f1  <  f2)  the fact that toggling of 
function f1 implies toggling of  (respectively strictly 
implies toggling of)  f2.  Let circuits N1 and N2 
implement functions f1 and f2 respectively. We will 
denote by N1 ≤ N2 (respectively  N1 < N2) the fact that 
f1 ≤≤≤≤  f2   (respectively f1  <  f2). 

 
Proposition 4. Boolean functions f1 and f2 are toggle 
equivalent iff f1 ≤≤≤≤  f2  and  f2≤≤≤≤  f1. 

 

4.3 Testing for Implication of Toggling. 
 
 Let N1 and N2 be two Boolean circuits to be checked 
for implication of  toggling. Let X be the set of input 
variables of N1 and N2, while  Y1 and Y2 are 



respectively the sets of variables of N1 and N2. Let  Z1 
and Z2 be the sets of output variables of N1 and  N2  
respectively. Also, assume N*

1 and N*
2  are copies of 

N1  and N2, with output variables Y*
1 and Y*

2  
respectively, and  input variables X* . Then  N1 ≤ N2 
holds iff the function  S(N1, N2) is unsatisfiable, 
where S(N1, N2) = SAT(N1) ∧ SAT(N2) ∧ SAT(N*

1) ∧  
SAT(N*

2) ∧  (Y1 ≠ Y*
1) ∧ (Y2 = Y*

2). 
Based on this, we can make the following three 

comments.  1) To test if N1 ≤ N2, we simply test the 
satisfiability of S(N1, N2). If it is  unsatisfiable (i.e. a 
constant zero), we conclude that N1 ≤ N2. 2) If  
S(N1, N2) is satisfiable, it means that there exists a 
pair of input vectors x  and x* for which circuit N1 
toggles, while N2 does not. 3) Let S(N1, N2) be 
satisfiable. If we removed all  toggles  from N1 that 
“are not in”  N2, we would have N1 ≤ N2. In other 
words, given two circuits N1 and N2, we can define a 
function find_toggle_setdifference(N1, N2) = 
ALLSAT(S(N1, N2)) which returns toggles of N1 that 
are not matched by toggles of N2. This is the set of 
toggles that must be removed from N1. If the resulting 
set ALLSAT(N1, N2) is too large, its  manageable 
subset  can be used. 

From Proposition 4, it follows that checking for 
toggle equivalence reduces to two satisfiability 
checks (henceforth called SAT checks).  

 

4.4 Correlation function 
 

In this section, we briefly introduce the notion of 
correlation function, to extend definitions of toggle 
implication and toggle equivalence to the case when 
functions f1  and f2  have different sets of input 
variables. 
Definition 6. Let X  and Y be two disjoint sets of 
Boolean variables (the number of variables in X and 
Y may be different).  A function CF(X, Y) is called a 
correlation function  if there are subsets  SX ⊆ 
{ 0,1} ||X| and SY ⊆ { 0,1} ||Y|   such  that CF(X, Y) 
specifies a bijective mapping  M: SX → SY.  Namely, 
CF(x, y)=1  iff x ∈ SX, y ∈ SY and y = M(x).  

Definition 7. Let  Boolean functions f1 and f2 have 
different sets of  variables (X and Y  respectively) that 
are related by a correlation function CF(X, Y).  f1 and 
f2 are said to be toggle equivalent under input 
constraint CF(X1,Y), if for any pairs (x, y) and (x′′′′, y′′′′) 
of input vectors such that CF(x, y)= CF(x′′′′, y′′′′ )=1,  it 
is true that  f1(x) ≠ f1(x′′′′ ) ⇔ f2(y) ≠ f2(y′′′′).  
(Definition of toggle implication can be reformulated 
in a similar manner).  

In LS_TE, the output relation between toggle 
equivalent subcircuits N 

i and N*
i is computed    by 

existentially quantifying from SAT(Ni) ∧ SAT(N*
i) ∧ 

Constr(inp_vars(Ni),inp_vars(N*
i)) all but output 

variables of N 
i and N*

i [4].  If Ni and N*
i are 

subcircuits of the first topological level (and so have 
identical sets of input variables), then 
Constr(inp_vars(Ni), inp_vars(N*

i)) just describes 
equivalence of corresponding variables.  Since toggle 
equivalence of Ni and N*

i means one-to-one mapping 
between output assignments, their output relation is a 
correlation function. In general, Constr(inp_vars(Ni), 
inp_vars(N*

i)) is the conjunction of correlation 
functions that are  output relations of  all the 
subcircuits Nj, N

*
j feeding Ni, N

*
i. For the sake of 

simplicity, in Section 5, when describing the TEP 
procedure, we assume that circuit N1 and its toggle 
equivalent counterpart N2 have identical sets of 
variables.  
 

5. TEP procedure 
 

The TEP procedure produces the circuit N2 
(given a combinational circuit N1) in a topological 
manner from inputs to outputs. These operations are 
illustrated in  

Figure 3. The circuit N2 is built up as a sequence 
of circuits N2

1, N2
2, …, N2

m. Each circuit N2
i specifies 

a cut Ci of N2 consisting of the primary outputs of N2
i. 

In this way, the sequence of cuts Ci that are produced, 
are topologically ordered. This means that for a pair 
of cuts Ci and Cp such that i < p no path from a 
primary input to a primary output of N2 can traverse 
Cp before Ci, although Ci and Cp may have common 
nodes.  Then,  if a node in Cp toggles for a given pair 
of input vectors, then there must be at least one node 
in Ci that toggles as well. So just from the fact that Ci 
and Cp are topologically ordered it follows that N2

p ≤ 
N2

i. 
 

… .

… .N 1

… .

… .N 2

N 2
1

N 2
2

N 2
3

N 2
m

…
.

N 2

C 1

C 2

C 3

 
 

Figure 3. Sequence of  circuits N2
i constructed 

by TEP 

The TEP procedure starts with N2
1 = ∅ i.e. with  

an empty circuit which allows all possible toggles. As 
a result, N1 ≤ N2

1 (which is trivially true since the set 



of inputs forms a cut of N1). At each successive step, 
N2

i+1 is created from N2
i such that N2

i+1 < N2
i.  The 

invariant that the TEP procedure maintains at each 
step is  N1 ≤ N2

i+1 < N2
i. In other words, the TEP 

procedure selectively removes one or more toggles in 
each step, until it is true that N2

m ≤ N1. At this step, 
since N1 ≤ N2

m, N2
m is toggle equivalent to N1, and the 

procedure returns the circuit N2
m.  

 
TEP(N1) 
{ if (is_constant(N1)) return “constant”  ; 
 N2

current = ∅; 
 while(true)  
   { if (N2

current ≤ N1) return N2
current  ; 

     N2
current = discard_toggles(N2

current, N1); 
     N2

current = remove_redundant_outputs(N2
current); 

   } }  
 
Figure 4. Pseudocode of the TEP procedure 

It is not hard to see that the TEP procedure has 
the desirable property of convergence. Since N2

1 has 
all toggles, and N2

i+1 < N2
i, the sequence of circuits 

N2
1, N2

2,…, N2
m must converge to a circuit that is 

toggle equivalent to N1. 
The pseudocode of the TEP procedure is shown 

in Figure 4. To start with, we test if the input circuit 
N1 is a constant, in which case the TEP procedure 
reports this fact. The sequence of circuits N2

i 
mentioned earlier is built in the while loop.  This 
sequence starts with an empty circuit N2

current, which 
allows all possible toggles.  In the while loop, we first 
check if N2

current ≤ N1. If so, N2
current is toggle 

equivalent with N1 (since N1 ≤ N2
current by 

construction) and we return N2
current as the resulting 

circuit N2. If N2
current ≤ N1 does not hold, then a new 

circuit N2
current is generated, such that it has at least 

one less toggle than the previous N2
current . This 

operation is performed by the function 
discard_toggles, which is described in the next 
subsection.  Finally, redundant outputs of N2

current  are 
removed in the function remove_redundant_outputs.  
An output of N2

current is redundant if, after its removal 
from N2

current, the condition N1 ≤  N2
current still holds.  

Note that for each test for implication of toggling 
(i.e each “≤”check), we utilize the SAT-based 
algorithm described in subsection 4.3. 

 

5.1 Discard toggles from N2
i 

 

Figure 5 describes the pseudocode of the 
discard_toggles procedure used by the TEP 
procedure ( Figure 4). The procedure  
discard_toggles consists of two parts. The 

procedures remove_toggles and  add_toggles are 
explained in detail in the following subsections. In 
both these procedures, toggle removal and addition is 
done with AND gates, with their inputs appropriately 
complemented. 
 
discard_toggles(N2

current, N1) 
{  R* = find_toggle_setdifference(N2

current, N1); 
  (N2

temp, R) = remove_toggles(R*, N2
current); 

  D = find_toggle_setdifference(N1, N2
temp); 

  N2
new_current = add_toggles(R, D, N2

current, N2
temp); 

  return N2
new_current ;}  

 
Figure 5.  Pseudocode of the discard_toggles 
procedure 

The find_toggle_setdifference(N2
current, N1) 

routine was sketched in subsection 4.3. The heuristics 
of remove_toggles and add_toggles are aimed at 
minimizing the size of N2. 
 
5.1.1 Procedure remove_toggles. The function 
remove_toggles adds an AND gate G to N2

current, to 
remove at least one toggle in the set R* that is 
computed  in line 1 of the discard_toggles procedure.  
(R* specifies either the complete set of  additional 
toggles that are present in N2

current and are not 
required in N1 or a manageable subset of this set.) 
The resulting circuit is called N2

temp, and the set of 
toggles  of R* actually removed are referred to as R.  

Recall that each circuit N2
i specifies a cut Ci of 

N2 (consisting of the primary outputs of N2
i.) Suppose 

the circuit N2
current specifies the cut Ccurrent. Then the 

AND gate G above may have as its inputs, any of the 
nodes on Ccurrent. After the addition of the AND gate 
G, the new cut Cnew is formed from Ccurrent by a) 
adding to Ccurrent the node corresponding to the output 
of G; b) eliminating from Ccurrent the nodes that are 
toggling inputs of G. 

Suppose the cut Ccurrent consists of the set of 
nodes Y. Suppose that r = (y, y')  is a toggle from the 
set R*. Let Y1 and Y2 form a partition of Y, such that 
Y1 (Y2) corresponds to the components of y and y'  
which are different (same). In other words, Y1 (Y2) 
corresponds to the nodes of Y that have different 
(same) values for the toggle r = (y, y').  

To remove the toggle r, we add an AND gate G. 
We consider two cases. 
Case i): If  Y1= 1, then gate G has two inputs. One of 
these inputs is specified by the variable of Y1, and 
another input is chosen from Y2. All possible 
polarities of the second input are considered as well. 
The   configuration for which  G(y) = G(y')=0 and 
that removes the largest number of toggles of R* is 
selected.  



Case ii): if  Y1 > 1, then gate G has |Y1| inputs. These 
inputs   are connected  to the variables in Y1, with 
appropriate   polarity selection to guarantee that G(y) 
= G(y') = 0.  

In both cases, the construction of gate G 
guarantees that G(y)=G(y')=0. After adding the gate 
G, we form the cut Cnew by removing from Ccurrent all 
the nodes in Y1 and adding the output of G. Then, the 
toggle r =(y, y') is removed from the nodes of Cnew. 
The circuit resulting from this operation is called 
N2

temp.   
 

5.1.2 Procedure add_toggles. Unfortunately, 
adding the gate G (described in the previous 
subsection) may sometimes remove certain toggles 
that are required in N1. As a consequence, we have to 
perform a ''clean-up'' step, and add these toggles back 
into the design.  

We begin with computing D, the set of toggles 
that need to be added. D is computed by 
find_toggle_setdifference(N1, N2

temp). The objective 
is to add minimum number of AND gates  that re-
introduce all toggles from D, and at the same time 
minimize the number of toggles that get re-introduced 
from R. It is not hard to prove that one can always re-
introduce a toggle from the set D, by using a 2-input 
AND gate H,  with appropriately selected inputs and 
input polarities, without re-introducing a toggle from 
the set R.  The proof is omitted due to space 
constraints.   

Once again, we have two cases to consider, 
analogous to those in the previous subsection: 
Case i): When the gate  G added by remove_toggles 
was a 2-input gate, with |Y1| = 1,  then one of the 
inputs of H is the same as the node in Y1. The other  
input of H is selected from among nodes in Y2. All 
possible nodes and  polarities are explored to 
maximize the weighted cost function n1+p∗n2. Here, 
n1 is the number of toggles of  R   prevented from 
being re-introduced, n2 is the number of toggles of D 
re-introduced and   p is the weight parameter (that 
was set to 1 in our experiments). We add only those 
gates for which n1 is 1 or more. 
Case ii): If  |Y1| > 1 , then select the first input of H 
from Y1, and  the second from Y, except the input 
already chosen as the first leg.   The cost function to 
select inputs and their polarities is identical to the one 
explained in Case i above. 

After each AND gate added to the circuit, the set 
D is recomputed. The routine add_toggles continues 
to add AND gates until the set D reduces to ∅. At 
this point  the resulting circuit N2

new_current is returned. 
It satisfies the property that N1 ≤ N2

new_current < 
N2

current. Note that for a single gate added in 

remove_toggles,  zero, one  or more AND gates 
could be added in the following call of  add_toggles. 

 

6. Experimental results 
 

Our preliminary implementation of the TEP 
procedure is in SIS [9]. We performed various 
experiments to compare TEP with traditional logic 
synthesis commands. The experiments were 
performed on a 3 GHz Xeon CPU, with 2GB of 
memory.  

Table 1.  Results for optimizing arithmetic 
expressions 

script.rugged collapse, 
script.rugged 

TEP BDD Exper #bits 

time 

(s) 

#gates 

time (s) #gates time (s) #gates time (s)

x2 < C 10  3  590  0.5  28  5  20  0.01   

x2 < C 14  34  1,361  95  44  17  21  0.25   

x2 < C 16  94  1,808  2,151  52  54  46  0.9   

x2 < C 27  35  7,037  >10h  -  282  50  Mem  

x2 < C 30  56  8,681  >10h  -  525  57  Mem  

C1∗x < C2 16  24  1,054  121  15  14  19  0.07   

C1∗x < C2 18  39  1,201  1,659  17  25  28  0.11   

C1∗x < C2 38  37  6,709  >10h  -  497  58  Mem  

C1∗x < C2 50  136  10,483  >10h  -  2,183  66  Mem  

 

Table 1 provides the results of applying TEP 
procedure and SIS for optimizing circuits 
implementing  the  expressions x2  < C  and C1∗x < 
C2 for different word sizes. (In contrast to the 
example of  Subsection 3.1, the expressions above 
were optimized as one circuit i.e. by one call of the 
TEP procedure.)  In all experiments, the value of C 
was chosen to be 200 (the results do not change much 
if one varies C). C1 and C2 were set to decimal value 
11111. The two expressions above can be reduced to 
much simpler expressions x < C′ and x < C″ 
respectively where C′ is equal to sqrt(C) and C″ is 
equal to C2/C1. The objective of this experiment was 
to show that since TEP is structure-agnostic it can be 
used to simplify “ non-local”  redundancy.  Note that 
although optimization of these expressions can be 
easily done manually, one can give examples of non-
local redundancies that are much harder  to find 
manually or by a program. Any logic synthesis 
procedure that changes the original circuit's structure 
locally (like SPFDs or don't care based 
optimizations)  can easily get trapped in a local 
minimum. Note that only for smaller values of C, C1 
and C2, it is possible to build ROBDDs. For the 
experiments in Table 1, we  set the threshold of R* at 
10 as explained in sections 5.1 and 4.3 i.e. R* 
contained only 10 (out of a huge number of) toggles 



to be removed. The reason why the TEP procedure 
worked  so well with such a small subset R* was that 
by adding an AND gate to remove a toggle of R* 
explicitly, we may implicitly remove a huge number 
of toggles that were “skipped”  in R*. 

The first column in Table 1 represents the 
expression being simplified, while the second column 
represents the word size. Columns 3 and 4 represent 
the runtime and number of gates returned by 
script.rugged. Columns 5 and 6 represent the runtime 
and number of gates returned by collapse followed 
by script.rugged. The corresponding results for TEP 
are provided in Columns 7 and 8, while Column 9 
represents the time taken to build a ROBDD (using 
the nanotrav package in CUDD). The notation 
''Mem'' indicates a memory out condition. In all 
cases, the number of gates refers to the number of 
gates required after optimization and decomposition 
using AND2 and inverter gates. 

We observe that the script.rugged requires 
significantly more gates than TEP. This is because 
script.rugged performs only local changes of the 
circuit and so  SIS gets stuck in a local minimum. 
TEP, on the other hand, uses  only the functionality 
of the circuit and so produces a dramatically smaller 
circuit.  We may run collapse before script.rugged,  
to allow SIS to re-structure the logic better. However 
for all but the smallest word widths, collapse fails. 
Similarly, the ROBDD computation fails for large 
word widths, while TEP optimizes these circuits with 
less than 66 gates.  Interestingly, the arithmetic 
expressions we used  turned out to have “ local 
redundancies”  (however, in general, global 
redundancy of a circuit does not “ translate”  into local 
redundancies). So redundancy removal in SIS [9] can 
optimize them with comparable results by taking 
about two orders of magnitude more time than the 
TEP procedure. 

Table 2 shows  the results of running a 
commercial tool (CT) on circuits produced by 
script.rugged and the TEP procedure. We used 
single-output circuits extracted from MCNC 
benchmarks. The objective of the experiment was to 
show that even for very small circuits, TEP  can 
achieve better optimization. (The other reason for 
targeting small subcircuits is that  in LS_TE, the TEP 
procedure is used for optimizing subcircuits N i of 
circuit N that are assumed to be small.) The first 
column of Table 2 shows names of circuits and the 
output number (in parentheses). The second column 
provides the number of inputs in the single output 
circuits. Columns 3 and 4 provide the mapped area 
and delay for the output of script.rugged mapped by 

CT, while Columns 5 and 6 provide these numbers 
for the TEP output mapped by CT. The standard cell 
library had 38 gates, implemented in a 0.18µ process.  
The licensing agreement for CT requires us not to 
identify its name.  The results of Table 2 indicate that 
TEP based circuits, after mapping,  result in a 12.5% 
area improvement, and a 1.6% delay penalty over 
circuits optimized with script.rugged before mapping 
with CT. The TEP results improve on the 
script.rugged results for 85% of the examples in 
terms of area, and for 45% of the examples in terms 
of delay.  

The objective of the experiment summarized in 
Table 3 was to provide  a brief demonstration of the 
ability  of LS_TE. The LS_TE method was used to 
optimize two-stage circuits. Both stages correspond 
to standard benchmark circuits, with the second stage 
being a single output circuit. The outputs  of the first 
stage are inputs to the second. MCNC benchmarks 
rd84 and squar5 were used as the first stage circuits. 
The second stage circuits are single-output circuits 
extracted from MCNC benchmarks (second column). 
Columns 3 through 6 give the number of gates in 
optimized circuits and runtimes for optimization by 
script.rugged and LS_TE. 

 
Table 2. Optimization of single-output circuits  

script.rugged→CT TEP→CT Circuits #in-
puts area delay(ps) area delay(ps)  

b12(3)  4  83.635  77  62.727  73   
i5(37)  5  130.679  75  114.999  106   

s_opt(6)  3  151.589  102  151.588  87   
pm1(10)  8  182.952  120  156.815  109   
squar5(1)  5  250.905  118  156.815  105   

misex2(15)  5  177.725  128  156.816  113   
x4(34)  8  224.771  124  172.497  142   
x3(64)  5  250.906  110  224.769  121   
5xp1(5)  4  308.405  163  229.996  164   

squar5(3)  5  491.356  169  235.223  143   
i7(10)  5  282.268  126  235.224  146   

apex7(35)  8  360.675  149  245.678  165   
b9(1)  7  282.270  134  245.679  150   
ttt2(7)  5  224.769  131  250.905  121   

apex1(43)  8  266.587  110  256.134  129   
apex6(51)  7  392.040  178  277.042  183   

ttt2(4)  6  266.586  136  297.950  127   
i7(28)  6  444.312  161  308.405  142   

qpcle(4)  8  392.040  160  423.402  139   
sqrt8ml(3)  8  3183.359 652  2299.966 584   

 
When optimizing a circuit N of Table 3, TEP is 

used twice.  We first replace the stage 1 circuit N1 
with its toggle equivalent counterpart N*

1, using TEP. 
After this  the correlation function relating outputs of 
N1 and N*

1 is computed  as described in [4]. (One 



needs to compute the correlation function because N1 
is a multi-output circuit.) Using the correlation 
function, the second stage circuit N2 is replaced with 
a toggle equivalent counterpart N*

2, using TEP a 
second time. The composition of circuits  N*

1 and N*
2 

form a circuit  N* functionally equivalent to N 
modulo negation.   Since we assume that N1 and N2 
were designed independently, any output encoding 
for N1 is in a sense as good as the original one. So the 
heuristics of TEP that aim at finding a toggle 
equivalent counterpart of  N1 that is as small as 
possible makes sense. 

Note that the number of gates resulting from 
TEP optimization is significantly smaller than for 
SIS. In fact, on average, TEP requires 50.5% fewer 
gates than script.rugged.  Our current TEP 
implementation is unoptimized, and we have efforts 
underway to improve the runtimes of TEP.  
 

Table 3. Optimization of two-stage circuits by 
LS_TE 

script.rugged TEP stage 1 stage 2 

# 
gates  

time(s) # 
gates  

time(s)  

rd84  5xp1(5 138  0.8  53  62   
rd84  alu2(5) 78  0.5  47  62   
rd84  b12(3) 101  0.6  37  62   

squar5 alu4(1) 43  0.1  23  3.4   
squar5 b12(2) 42  0.1  20  2.7   
squar5 c8(11)  28  0.1  17  2.2   

 

7. Conclusions 
 
We have presented a new toggle equivalence 
preservation based procedure (TEP) for logic 
synthesis. This TEP procedure can be used in the 
scenario shown in Figure 1. The idea is to re-
synthesize a circuit N (consisting of subcircuits Ni), in 
a manner that the high-level partitioning structure of 
N is retained. Each subcircuit Ni is re-synthesized into 
a design N*

i , using the TEP procedure. This re-
synthesis  explores a huge optimization flexibility 
since the outputs of Ni are re-encoded by TEP. This 
TEP procedure was formulated for multi-output 
circuits. The TEP procedure is structure-agnostic, 
unlike existing logic optimization procedures. Also, it 
is able to explore all possible output encodings 
efficiently during synthesis. For single-output 
circuits, toggle equivalence is the same as functional 
equivalence  modulo negation. Therefore, we tested 
TEP on single-output circuits, to enable a fair 

comparison with existing synthesis approaches, 
although the full power of TEP is exhibited for multi-
output circuits. The preliminary implementation of 
TEP is done in SIS, using a SAT-based computation. 
First results show encouraging improvements over 
SIS When the full power of TEP is utilized (for 
multi-output circuits) we expect yet further 
improvements. 
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