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Abstract 
In this report we revisit the theory introduced in [2].  We 

formulate it in terms of correlation functions so showing that the 
introduction of filtering functions is not necessary. We also 
describe an algorithm of equivalence checking for circuits with a 
known specification that is based on computation of  correlation 
functions  only  (no filtering functions are computed). 

1. Introduction 
 

This report is simply a rewrite of  paper [2] that presented 
some results on complexity of equivalence checking of circuits 
with a common specification.  The results  of [2] were formulated 
in terms of correlation and filtering functions. In this report, we 
show that the introduction of filtering functions is not necessary 
and the theory of [2] can be formulated in terms of correlation 
functions only. This also applies to publications [3] and  [4] in 
which the introduction of filtering functions can be avoided 
either. (Papers [2] and [4] are available online from the web page 
http://eigold.tripod.com/papers.html. ) 

In the report we follow the structure of paper [2] with the 
following exceptions. To reduce the repetition of text we omitted 
material presented in Sections 1, 5 and 6 of [2].  The major 
changes are made in section 4 which presents the main result. In 
particular, we added subsection 4.4 in which we  explain why 
filtering functions can be dropped. Finally we added a section 
describing an algorithm for equivalence checking of circuits N1, 
N2 with a known common specification S (Section 5). This 
algorithm is  identical to that of  [4] with the following two 
exceptions. We formulate this algorithm in terms of correlation 
functions only  (filtering functions are not used).  We emphasize 

the fact that for this algorithm the specification S does not have to 
be represented explicitly. The algorithm only needs to know the 
partitioning of N1 and N2 into subcircuits that are implementations 
of blocks of S. 
 

2. Common Specification of Boolean Circuits 
 

In this section, we introduce the notion of a  common 
specification of Boolean circuits.  Let S be a combinational circuit 
of multi-valued blocks (further referred to as a specification) 
specified by a directed acyclic graph H.  The sources and sinks of 
H correspond to primary inputs and outputs of S. Each non-source  
node of H corresponds to a multi-valued block  computing a 
multi-valued function of multi-valued arguments.  Each node of n 
of H is associated with a multi-valued variable A. If n is a source  
of H , then the corresponding variable specifies values taken by 
the corresponding primary input  of S.  If n is a non-source node 
of S then the corresponding variable describes the values taken by 
the output of the block specified by n. If n is a source 
(respectively a sink), then the corresponding variable is called a 
primary input variable (respectively primary output variable). 
We will use the notation C=G(A,B) to indicate that a) the output 
of a block G is associated with a variable C; b) the function 
computed by the block G is G(A,B); c) only two nodes of H are 
connected to the node n in H and these nodes are associated with 
variables A and B. 

Denote by D(A) the domain of the variable A  associated 
with a node of H.  The value of |D(A)| is called the multiplicity of 
A.  If the multiplicity of  every variable A of S is equal to 2 then S 
is a Boolean circuit. 



Now we describe how a Boolean circuit N can be produced 
from a specification S  by encoding the multi-valued variables. Let  
D(A)={ a1,…,at}  be the domain of a variable A of S. Denote by 
q(A) a Boolean encoding of the values of D(A)  that  is a mapping 
q:D(A)→{ 0,1} m . Denote by length(q(A)) the number of bits in q 
that is the value of m. The value of q(ai),  ai ∈ D(A)  is called the 
code of ai.  Given an encoding q of length m of a variable  A 
associated with a block  of S, denote by v(A) the set of m coding 
Boolean variables. 

In the following exposition we make the  assumptions 
below.  
Assumption 1.  Each gate of a Boolean circuit and each block 
of a specification has two inputs and one output. 
Assumption 2. The multiplicity of each primary input (or 
output) variable  of a specification is a power of 2. 
Assumption 3.  If A is a primary input (or output) variable of a 
specification, then  length(q(A))=log2(|D(A)|) 
Assumption 4.  If a1 and a2 are values  of a variable A  of a 
specification  and a1  ≠ a2 , then q(a1) ≠ q(a2). 
Assumption 5. If A and B are two different variables of a 
specification , then v(A) ∩ v(B)  = ∅. 
Remark 1.  From Assumption 2, Assumption 3, and Assumption 
4 it follows that if  A is a primary input (or output) variable, a 
mapping q:D(A)→{ 0,1} m

  is bijective. In particular, any 
assignment to the variables of v(A) is a code of  some value          
a ∈ D(A). 
Definition 1. Given a Boolean circuit I, denote by Inp(I) 
(respectively Out(I)) the set of variables associated with primary 
inputs  (respectively primary outputs) of I. 
Definition 2.  Let X1 and X2 be sets of Boolean variables and     
X

2
 ⊆ X

1
. Let y be an assignment to the variables of X

1
. Denote by 

proj(y,X2) the projection of y on X2 i.e. the part of y that consists of 
the assignments to the variables of X

2
. 

Definition 3. Let C=G(A,B)  be a block of  specification S.  Let 
q(A),q(B),q(C) be encodings of variables A,B, and C respectively. 
A Boolean circuit I is said to implement the block G if the 
following three conditions hold: 
1) The set Inp(I) is a subset of v(A) ∪ v(B). 
2) The set Out(I) is equal to v(C). 
3) If the set of values assigned to v(A) and v(B) form codes q(a) 
and q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z’ )=q(c). 
Here z’  is the projection of the assignment z=(q(a),q(b)) on Inp(I),    
I(z’ ) is the value taken by I at z’ ,      and c=G(a,b). 
Remark 2.   The reason why Inp(I) may not include all the 
variables of v(A) and/or  v(B) is that the function G(A,B) may not 
distinguish some values of A or B. (G(A,B) does not distinguish, 
say, values a1,a2 ∈ D(A), if for any b ∈ D(B), G(a1,b)=G(a2,b).)   
So to implement G(A,B) the circuit I may need only a subset of 
variables of v(A) ∪ v(B). This said, for the sake of simplicity, we 
will write I(q(a),q(b)) meaning  I(q’ (a),q’ (b)), q’ (a)= 
proj(q(a),Inp(I)) and q’ (b)=proj(q(b),Inp(I)). 
Definition 4. Let S be a multi-valued circuit. A Boolean circuit 
N  is said to implement the specification S, if it is built according 
to the following  two rules. 
1) Each block G of S  is replaced with an implementation  I of 
G. 
2) Let the output of block G1 (specified by variable R) be 
connected to an input of block G2 (specified by the same variable 

R) in S. Then the outputs of the circuit I1 implementing G1 are 
properly connected to inputs of circuit I2 implementing G2. 
Namely, the primary output of I1 specified by a Boolean variable x 
∈ v(R) is connected to the input of I2 specified by the same 
variable of v(R) if x ∈ Inp(I2).  

In Fig. 1a a specification of three blocks is shown. The 
functionality of two  different implementations of the block 
C=G1(A,B) (Fig. 1b) are shown in Fig. 1c and 1d. Here 
D(A)={ a0,a1} , D(B)={ b0,b1,b2,b3}  and D(C)={ c0,c1,c2} . Since A 
and B are primary input variables, they are encoded with a 
minimum length encoding and q1(A)=q2(A) and q1(B)=q2(B) 
where  q1(a0)=0, q1(a1)=1, q1(b0)=00, q1(b1)=01, q1(b2)=10, 
q1(b3)=11. Finally, the encodings q1(C) and q2(C) are q1(c0)=00, 
q1(c1)=10, q1(c2)=01 and  q2(c0)=100, q2(c1)=010, q2(c2)=001. 
Remark 3.   Let N  be an implementation of a specification S. 
Let p be the largest number of gates used in an implementation of  
a multi-valued block  of S  in N. We will say that S is a 
specification of granularity p for N. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A specification and the functionality of two  
implementations of a block 

Definition 5. The topological level of a block G in a 
specification S is the length of the longest path from a primary 
input of S to G. (The length of a path is measured in the number of 
blocks on it. The topological level of a primary input is assumed to 
be 0.) Denote by level(G) the topological level of G in S. 

A B C 
a0 b0 c0 

a0 b1 c1 

a0 b2 c1 

a0 b3 c0 

a1 b0 c1 

a1 b1 c2 

a1 b2 c2 

a1 b3 c0 
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q1(A) q1(B) q1(C) 
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1 1 0 1 1 
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q2(A) q2(B) q2(C) 

0 0 0 1 0 0 

0 0 1 0 1 0 

0 1 0 0 1 0 

0 1 1 1 0 0 

1 0 0 0 1 0 

1 0 1 0 0 1 

1 1 0 0 0 1 

1 1 1 1 0 0 

 

C=G1(A,B) 

(a) (b) 

(c) (d) 

      I1(q1(A),q1(B))       I2(q2(A),q2(B)) 



Let N be an implementation of a specification S. From 
Assumption 4 it follows that for any value assignment h to the 
input variables of N there is a unique set of values (x1,…,xk), 
where xi ∈ D(Xi) such that h=(q(x1),…,q(xk)). That is there is one-
to-one correspondence between assignments to primary inputs of 
S and N.  The same applies to primary outputs of S and N. 
 

Definition 6. Let N  be an implementation of S. Given a Boolean 
vector y of assignments to the primary inputs of N, the 
corresponding vector Y=(x1,..,xk), xi ∈ D(Xi) such that 
y=(q(x

1
),…,q(x

k 
)) is called the pre-image of y. 

Proposition 1. Let N be a circuit implementing specification S. 
Let I(G)  be the implementation of a block C=G(A,B) of S in N .  
Let y be a value assignment to the primary input variables of N 
and Y be the pre-image of y. Then  the values of primary outputs 
of I(G) form the code q(c) where c is the value taken by the output 
of G when the inputs of S  take the values specified by Y. 
 

Proof.  The proposition can be proven by induction in topological 
levels of variables of the specification S.  According to Remark 1, 
the proposition holds for the variables of topological level 0 
(primary input variables of S).  Let C=G(A,B)  be a block of S and 
level(G)=n, n>0. Let I(G) be the implementation of G in N.  By 
the induction hypothesis, values taken by the variables of v(A) and 
v(B) in N under the input assignment y should be q(a) and q(b) 
respectively. Here a and b are values of variables A and B under 
the input assignment Y. Then from Definition 3 it follows that the 
outputs of  I(G) take the values of  q(C) where c=G(a,b) .        
Proposition 2.  Let N1, N2 be circuits implementing a 
specification S.  Let each primary input (or output) variable X of S 
have the same encoding in N1 and N2. Then Boolean circuits N1 
and N2 are functionally equivalent. 
Proof. Let y be an arbitrary assignment to input variables of N1  
and N2. Since the encodings of primary input variables of S in N1 
and N2 are the same, then the pre-image Y of y for N1 and N2 is the 
same.  Let C be a primary output variable of S associated with a 
block G. From Proposition 1 it follows that the values taken by 
the implementations I1(G) and I2(G) of G in N1 and N2 are equal 
to q1(c) and q2(c) respectively. Here c is the value taken by the 
output of G under input assignment Y and q1 and q2 are encodings 
of the primary output variable C in N1 and N2. Since C has the 
same encoding in N1 and N2, then q1(c) = q2(c).                          
Definition 7.  Let N1, N2 be two functionally equivalent Boolean 
circuits. Let N

1
, N

2
  implement a specification S  so that for every 

primary input (output) variable X encodings q1(X) and q2(X) (used 
when producing N

1
 and N

2
 respectively) are identical. Then N is 

called a common specification (CS) of N1 and N2. 
Definition 8. Let S  be a CS of N1,N2.  Let p1 (respectively p2) be 
the granularity of S with respect to N

1
 (respectively  N

2
). Then we 

will say that S is a CS of  N1,N2 of granularity p  = max(p1,p2). 
Definition 9. Given two functionally equivalent Boolean circuits 
N1, N2,  S  is called the finest common specification if it has the 
smallest granularity p among all the CSs of N

1
 and N

2
. 

 

 

 

3. Equivalence Checking as SAT 
 

Since in this report we formulate the complexity of 
equivalence checking in terms of  resolution proofs, we recall a 
common way of reducing equivalence checking  to the 
satisfiability problem. 
Definition 10. A disjunction of literals of Boolean variables not 
containing two literals of the same variable is called a clause. A 
conjunction of clauses is called a conjunctive normal form 
(CNF). 

Definition 11. Given a CNF F, the satisfiability problem (SAT) 
is to find a value assignment to the variables of F for which F 
evaluates to 1 (also called a satisfying assignment) or to prove 
that such an assignment  does not exist. A clause K of F is said to 
be satisfied by a value assignment y if K(y)=1. 

The standard conversion of an equivalence checking 
problem into an instance of SAT is performed in two steps. Let N1 
and N2 be Boolean circuits to be checked for equivalence. At the 
first step of this conversion, a circuit M called a miter [1] is 
formed from N1 and N2. The miter M is obtained by 1) identifying 
the corresponding primary inputs of N1 and N2; 2) XORing each 
pair of corresponding primary outputs of N1 and N2; 3) ORing  the 
outputs of the added XOR gates.  So the miter of N1 and N2 
evaluates to 1 if and only if for some input assignment a primary 
output of N1 and the    corresponding output of N2 evaluate to 
different values. Therefore, the problem of checking the 
equivalence of N1 and N2 is equivalent to testing the satisfiability 
of the miter of N1 and N2.  

At the second step of conversion, the satisfiability of the 
miter is reduced to that of a CNF formula F. This formula is a 
conjunction of CNF formulas F1,..,Fn specifying the functionality 
of the gates of M  and a  one-literal clause that is satisfied only if 
the output of M is set to 1. The CNF Fi specifies the i-th gate gi of 
M. Any assignment to the variables of Fi that is inconsistent with 
the functionality of gi falsifies a clause of Fi (and vice versa, a 
consistent assignment satisfies all the clauses of Fi.) For instance,  
the AND gate y=x1x2 is specified by the following three clauses  
~x1 ∨ ~x2 ∨ y,  x1 ∨ ~y,  x2 ∨ ~y. 
 

4. Equivalence Checking in General  
Resolution 
 
In this section, we prove some results about the complexity of 
equivalence checking of circuits with a CS of granularity p.  The 
main idea of the proof is that if S is a CS of  N1 and N2, then their 
equivalence checking reduces to computing the correlation 
function for encodings q1(C),q2(C) of each variable C of S. The 
two main properties of correlation functions are that  
• They can be  built based only on the information about the 

topology of S and about “assignment”  of gates of N1 and N2  
to blocks of S. 

• The correlation function for encodings q1(C),q2(C) of the 
variable C  specifying the output of a block G(A,B) can be 
computed “ locally”  from the correlation functions of 
encodings of variables A and B and CNFs specifying 
implementations I1(G) and I2(G). So these functions can be 
computed in topological order  starting with inputs and 
proceeding to outputs. 



 

4.1 Class M(p) and general resolution 
 

Definition 12. Given a constant p,  a CNF formula F is a 
member of the class M(p) if and only if it satisfies the following 
two conditions. 
• F is the CNF formula (obtained by the procedure described 

in Section 3) specifying the miter of a pair of functionally 
equivalent circuits N1,N2.  

• N1,N2 has a CS of granularity p. 
Definition 13. Let K and K’  be clauses having opposite literals 
of a variable (say variable x) and there is only one such variable. 
The resolvent of K , K’  in variable x is the clause that contains all 
the literals of K and K’  but the positive (i.e. literal x) and negative 
(i.e. literal ~x) literals of x. The operation of producing the 
resolvent of K and K’  is called resolution. 
Definition 14.  General resolution is a proof system of 
propositional logic that has only one inference rule. This rule is to 
resolve two existing clauses to produce a new one. Given a CNF 
formula F, a proof L(F) of unsatisfiability of F in the general 
resolution system consists of a sequence of resolutions resulting in 
the derivation of an empty clause (i.e. a clause without literals). 

    General resolution is complete, which means that given an 
unsatisfiable formula F there is always a proof L(F) that derives 
an empty clause.  
Definition 15. Let F be a set of clauses. Denote by supp(F) the 
set of variables whose literals occur in clauses of F. 

The following Proposition 3 and also Propositions 4,5,6 
proved in subsections 4.2, 4.3 are used in the proof of Proposition 
7 that is the main result of this paper. 
Proposition 3. Let F be a set of clauses that implies a clause K. 
Then there is a  sequence of resolutions of at most 3|supp(F)| steps that 
results in the derivation of  a clause that implies K. 
Proof.  Denote by F’  the formula that is obtained from F by 
making the assignments that set the literals of K to 0 (and 
removing the satisfied clauses and the literals set to 0). It is not 
hard to see that F’  is unsatisfiable since it implies an empty 
clause.  So there is a resolution proof L(F’ ) that results in 
deducing an empty clause.  Then  by replacing each clause of F’  
involved in L(F’ ) with its “parent”  clause  from F we get  a 
sequence of resolutions resulting in deducing  a clause that 
implies K. The number of resolvents in L(F’ )  cannot be more 
than 3|supp(F’)| (i.e. the total number of clauses of |supp(F’ )|   
variables)  and so it cannot be more than 3|supp(F)|.     
 

4.2 Correlation functions 
 

Definition 16. Let S be a CS of circuits N1 and N2 and C be 
a variable of S. A function Cf (v1(C),v2(C)) is called a 
correlation function  for encodings q1 and q2 of  the values 
of C  (used when producing N1 and N2) if : 

• supp(Cf ) ⊆  v1(C) ∪ v2(C) . 

• Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C) 
such that  z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise 
Cf(z1, z2)=0.  

From now on we will say that Cf(v1(C),v2(C)) is the 
correlation function for the variable C meaning that it is the 
correlation function for encodings q1(C),q2(C) of the variable C. 

Remark 4.  If C is a primary input variable of S, then 
Cf(v1(C),v2(C)) ≡ Eq(v1(C),v2(C)). The function Eq(z1, z2) is equal 
to 1 iff z1=q1(c), z2 = q2(c), where c ∈ D(C) and q1(c) = q2(c). 
Otherwise , Eq(v1(C),v2(C)) is equal to 0. Indeed, as it follows 
from  Remark 1, sets v1(C) and v2(C) have the same number of 
coding variables and any assignment to v1(C) or v2(C) is the code 
of a value c ∈ D(C).  Besides,  from the definition of  CS it 
follows that q1(C)=q2(C).  So every “permissible”  assignment 
(x,y) to the variables of v1(C),v2(C) can be represented as  
(q1(c),q2(c)), were c ∈ D(C) and q1(c) = q2(c). 
 

Proposition 4.  Let S be a CS of circuits N1,N2. Let  
C=G(A,B) be a block of S. Let F be the CNF formula specifying 
the miter of N

1
,N

2
 built as described in Section 3. Let F(I

1
(G)) and 

F(I2(G))  be the part of F specifying the implementation I1(G) and 
I

2
(G) of G in N

1
 and N

2
 respectively.  Then P  implies 

Cf(v1(C),v2(C)). Here P = Correlation ∧ Implementation and, 
Correlation = Cf(v

1
(A),v

2
(A)) ∧ Cf(v

1
(B),v

2
(B)), Implementation = 

F(I1(G)) ∧ F(I2(G)).  
Proof.  To prove that P implies Cf(v1(C),v2(C)) one needs to show 
that any assignment that sets P to 1 also sets Cf(v1(C),v2(C)) to 1. 
It is not hard to see that the support of all the functions of the 
expression P → Cf(v1(C),v2(C))  is a subset of supp(F(I1(G)) ∪   
supp(F(I2(G)).   Let h=(x1, x2, y1, y2, z1, z2)  be an assignment that 
sets P to 1 where  x1, x2, y1, y2, z1, z2  are assignments to v1(A), 
v2(A), v1(B), v2(B), v1(C), v2(C) respectively. Then h has to set to 1 
all the functions the conjunction of which forms P. Since h has to 
set the function Correlation to 1, then x1=q1(a), x2=q2(a) where 
a∈ D(A) and y1=q1(b) , y2=q2(b), where b ∈ D(B). So 
h=(q1(a),q2(a), q1(b),q2(b), z1, z2). Since h sets the function 
Implementation to 1, then z1 has to be equal to q1(c), c=G(a,b) and 
z2 has to be equal to q2(c). So h is equal to 
(q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it sets the 
correlation function Cf(v1(C),v2(C)) to 1.    
 

4.3 Complexity of formulas from M(p) 
 

Proposition 5.  Let A,B,C  be Boolean functions and  A ∧ B→ 
C. Then for any function A’  such that A’  → A, it is true that        
A’  ∧ B→ C. 
Proof.  Let x be an assignment that sets A’  ∧ B to 1. Then A’ (x)=1 
and B(x)=1. Since A’  → A, then A(x)=1. Then A(x) ∧ B(x) = 1 and 
so C(x)=1.   
Proposition 6. Let X

1
 and X

2
 be sets of Boolean variables, 

F(X1,X2)  and H(X2)  be CNF formulas and F  imply H. Then in at 
most  3|supp(F)|  resolution steps one can derive a CNF formula H’  
that implies H(X2)  such that supp(H’ ) ⊆ supp(H). 
Proof.  Let K be a clause of H. From Proposition 3 it follows that 
in at most 3|supp(F)| steps one can  derive a clause K’  that implies K. 
Since K’→ K, then  supp(K’ ) ⊆ supp(K). So in at most |H| ∗ 
3|supp(F)|  steps, where |H| is the number of clauses in H, one can 
derive a CNF H’  implying H such that supp(H’ ) ⊆ supp(H).  (The 
fact that H’  implies H follows from Proposition 5.) However, if 



one does not produce the same resolvent twice, the total number 
of resolution steps when  deriving  H’  cannot be more than 3|supp(F)|  
(because it is the total number of clauses of |supp(F)| variables). 
  
Proposition 7.  Let F be a formula of M(p) specifying the miter 
of circuits N1,N2 obtained from a CS S of granularity p. The 
unsatisfiability of F can be proven by a resolution proof of no 
more than d∗n∗36p resolution steps where n is the number of 
blocks in S  and d  is a constant. 

Proof. From Proposition 4 it follows that one can deduce 
correlation functions for all the variables of S starting with blocks 
of topological level 1 and proceeding in topological order.  
Indeed, let C=G(A,B) be a block of topological level 1. Then A 
and B are primary input variables and the correlation functions for 
them are equal to Eq(v1(A),v2(A)) and Eq(v1(B),v2(B)) respectively 
(see Remark 4). The correlation function Cf(v1(C),v2(C)) is 
implied by P =F(I1(G))  ∧ F(I2(G)) ∧ Eq(v1(A),v2(A)) ∧ 
Eq(v1(B),v2(B)).   So a function implying Cf(v1(C),v2(C)) can be 
derived from P by resolution. From Proposition 5 it follows that 
to apply Proposition 4, instead of the function Cf(v1(C),v2(C)), 
one can use any function implying it. After correlation functions 
are computed for all the variables of level 1, the same procedure 
can be applied to variables of topological level 2 and so on. If S 
consists of n blocks, then in n steps one can deduce correlation 
functions for the primary output variables of S. At each step the 
correlation function is computed for a variable C=G(A,B) of S. 
The complexity of this step is no more than 36p.  Indeed, the 
support of all functions mentioned in Proposition 4 needed for  
computing Cf(v1(C),v2(C)) is a subset of A=supp(F(I1(G))) ∪ 
supp(F(I2(G))). The total  number of gates in I1(G) and I2(G) is 
bounded by 2p, each gate having 2 inputs and 1 output. So the 
total number of variables in A cannot be more than 6p. Then from 
Proposition 6 it follows that in at most 36p steps one can deduce 
CNFs implying Cf(v1(C),v2(C)). Then the total number of 
resolution steps one needs to deduce functions implying the 
correlation functions  for the primary output variables of S  is 
bounded by n∗36p. 

Now we show that from the correlation functions for primary 
output variables of S, one can deduce an empty clause in  the 
number of resolution steps linear in n∗p.  Let C be a primary 
output variable specifying the output of a block G of N. Let I1(G) 
and I2(G) be the implementations of G in N1 and N2 respectively. 
Let |D(C)|=2k (By Assumption 2 the multiplicity of C is a power 
of 2.) Then length(q1(C))= length(q2(C))=k. (By  Assumption 3, 
values of S are encoded by a minimal length encoding.)   

Now we show that there is always a correlation function 
Cf(v1(C),v2(C)) that implies the CNF  consisting of k pairs of two 
literal clauses specifying the equivalence of corresponding outputs 
of I1(G) and I2(G). Let f1 and f2 be two Boolean variables of v1(C) 
and v2(C) respectively that specify corresponding outputs of N1 
and N2. Since S is a CS of N1 and N2, then q1(C)=q2(C). So any 
assignment q1(c),q2(c) to v1(C) and v2(C) that satisfies 
Cf(v1(C),v2(C)) also satisfies clauses K’=f1 ∨ ~f2 and K” =~f1 ∨ f2. 
So K’  and K”  are implied by Cf(v1(C),v2(C)) and so clauses 
implying them can be deduced by the procedure described in the 
proof of Proposition 4. (The resolution steps one needs to deduce 
equivalence clauses are already counted in  the expression n∗36p)  

Using each pair of equivalence clauses  K’  and K”  (or 
clauses implying them)  and the clauses specifying the gate 

g=XOR(f1,f2) of the miter, one can deduce  a single literal clause 
~g. This clause requires  setting the output of this XOR gate to 0. 
Each such a clause can be deduced in the number of resolutions 
bounded by a constant and the total number of such clauses 
cannot be more than n∗p. Finally, from these unit clauses and the 
clauses specifying the final OR gate of the miter, the empty clause 
can be deduced in the number of resolutions bounded by n∗p. So 

the empty clause is deduced in no more than n∗36p + d’∗n∗p 
steps where d’  is a constant. Finally, one can pick a 
constant d such  n∗36p + d’∗n∗p ≤ d∗n∗36p         
Remark 5. The essence of the resolution proof described in 
Proposition 7 is to compute correlation functions “ inductively”  
moving from inputs to outputs. It is not hard to see that this 
computation is not restricted to general resolution. Indeed , all the 
terms of the expression P=Cf(v1(A), v2(A)) ∨ Cf(v1(B), v2(B)) ∨ 
F(I1(G)) ∨ F(I2(G)) are just functions and so can be represented in 
any possible way (i.e. not only as CNF formulas). Besides, 
Proposition 7 can be proven in terms of existential quantification 
introduced by  Definition 17. Indeed, from Proposition 8 below it 
follows that Cf(v1(C),v2(C)) (or a function implying it) can be 
obtained from P by existentially quantifying away all the variables 
except those of v1(C) ∪ v2(C). Existential quantification of a 
function  can be done in many ways, for example, by using BDDs.  
So, summarizing, Proposition 7 can be formulated and proven in 
terms of functions and existential quantification i.e.  
independently of a proof system. 
Definition 17. Let f be a Boolean function. We will say that 
function f*  is obtained from f by existentially quantifying away 
Boolean variable x if f*  = f(…,x=0,…) ∨  f(…,x=1,….). 
Proposition 8.  Let X1 and X2 be two disjoint sets of Boolean 
variables.  Let F(X

1
,X

2
) and H(X

2
) be two Boolean functions and F 

imply H. Let F*(X1 \ { x} , X2) be obtained from F(X1,X2) by 
existentially quantifying away the variable x. Then F*(X

1
\ { x} ,X

2
) 

also  implies H(X2). 

Proof.  Denote by X′1 the set X1\{ x} . Let  (z, z1′,z2) be a boolean 
vector representing an assignment to the variables of X1 ∪ X2. 
Here z is a Boolean value assigned to the variable x and z1′, z2 are 
Boolean vectors representing assignments to the variables of X′1 

and X2 respectively. Suppose that F*(z1′, z2) = 1. According to 
Definition 17, F*(X′1,X2) = F(0, X′1,X2) ∨ F(1, X′1,X2) and so 
either F(0, z1′, z2) or F(0, z1′, z2) has to be equal to 1. Since 
F(x,X′1,X2) implies H(X2) then H(z2) = 1. So  from F*=1 it follows 
that H=1. Hence F* implies H. 

Remark 6. In Proposition 7 we give  a worst case estimate for 
the complexity of correlation function computation. In practice, 
this complexity can be much lower. In a sense, the best way to 
interpret the theory developed in this section is that the 
complexity of equivalence checking of circuits N1,N2 with a CS S 
is linear in the number of blocks in S.  
Remark 7.  In this report, for the sake of clarity,  we assumed 
that   every block of  a specification  has two inputs and one 
output (Assumption 1). However,  one can easily extend 
Proposition 7 to the case of a specification S where a block may 
have an aribtrary (but finite) number of inputs. (We still assume 
that every gate of circuits N1 and N2 implementing S have two 
inputs and one output).  Indeed, let  G be a block of S with n 
inputs and let C, A1,.., An be variables associated with its output 



and n inputs respecitvely. Then one can prove (in the same 
manner as in Proposition 4) that correlation  function 
Cf(v1(C),v2(C)) is implied  by the expression P = Correlation ∧ 
Implementation. Here Implementation= F(I1(G)) ∨ F(I2(G)) is the 
same as in Proposition 4  and  Correlation = Cf(v1(A1), v2(A1)) ∧ 
… ∧Cf(v1(An), v2(An)). So to compute the correlation function for 
the output of an n-input block one needs to compute n correlation 
functions corresponding to n input variables.  Other than that, the 
proof of Proposition 7 does not change. 
 

4.4 A few words about filtering functions 
 

In subsection 4.3, we reproduced the result of [2] without 
introducing filtering functions. To make things even more clear, 
in this subsection we give an informal explanation of why filtering 
functions can be dropped. We also explain under what 
circumstances filtering functions might come useful.  

Here is the definition of filtering functions from [2]. 

Definition 18. Let N  be an implementation of a specification S. 
Let C  be a variable of S associated with the output of a block G. 
A function Ff  is called a filtering  function if: 

• supp(Ff )  ⊆  v(C). 

• If an assignment z to the variables of  v(C) is a code q(c), c ∈ 
D(C),  then Ff(z)=1. Otherwise, Ff(z)=0. 

Let N1 and N2 be circuits with a CS S. Let v1(C) and v2(C) be 
the coding variables of the variable C of S corresponding to the 
implementations I1(G) and I2(G) in N1 and N2 respectively. From  
Definition 18 of filtering functions and Definition 16 of 
correlation functions   it follows that   

Ff(v1(C)) ∧ Ff(v2(C)) ∧ Cf(v1(C),v2(C)) = Cf(v1(C),v2(C)).  

On the other hand, in Proposition 7 of [2] (used to prove the main 
result i.e. Proposition 8) filtering functions Ff(v1(C)) ∧ Ff(v2(C)) 
appear only in conjunction with the correlation function 
Cf(v1(C),v2(C)). So filtering functions can be removed from the 
proof. 

The reason why  filtering functions appeared in [2] was that 
originally the definition of correlation functions used in the 
manuscript was as follows. 

Definition 19. Let S be a CS of circuits N1 and N2 and C be a 
variable of S. A function Cf  is called a correlation function  for 
encodings q1 and q2 of  the values of C  (used when obtaining N1 
and N

2
) if : 

• supp(Cf ) ⊆  v1(C) ∪ v2(C) . 

• Cf(z1, z2)=0 for any assignment z1 to v1(C) and z2 to v2(C) 
such that  z1=q1(c) and z2=q2(c* ) where c,c* ∈ D(C) and 
c≠c*.  

It is not hard to see that  Definition 19, only partially defines 
Cf.  Definition 19 can be viewed is a relaxation of Definition 16, 
meaning that the correlation function specified by the latter is an 
implementation of the correlation function specified by the 
former. If correlation functions are specified by Definition 19, 
then to prove Proposition 7 one needs filtering functions. 
(Because now Ff(v1(C)) ∧ Ff(v2(C)) ∧ Cf(v1(C),v2(C)), in general,  

is not equivalent to  Cf(v1(C),v2(C)).)  Later, the definition of 
correlation functions was changed to the one used in [2] which 
made filtering functions redundant. 

Definition 16 is preferable from a “ theoretical”  point of view 
because it reduces the number of objects  employed in our theory. 
However, in practical implementations of the algorithm of 
equivalence checking described in Section 5, the use of  filtering 
and correlation functions specified by Definition 18 and 
Definition 19 respectively, instead of correlation functions 
specified by Definition 16, may make sense.  The reason is that 
Definition 16 mixes up two unary and one binary relation 
specified over the set of output assignments of subcircuits I1(G) 
and I2(G). On the other hand, in practical applications one may 
want to compute them separately. (The unary relations are 
specified  by the filtering functions Ff(v1(C)) and Ff(v2(C)) that 
single out output assignments of I1(G) and I2(G) that are codes of 
C. The binary relation is given by the correlation function 
Cf(v1(C),v2(C)) specified by  Definition 19. ) 

 

 

5. Algorithm of Equivalence Checking with a 
Known Specification 
 

In this  section we describe an algorithm for equivalence 
checking of circuits with a known specification.  This algorithm is 
identical to the one introduced in [4] with a few exceptions. First, 
we formulate this algorithm in terms of correlation functions only 
(omitting filtering functions). Second, we emphasize the fact that 
this equivalence checking procedure needs only an implicit 
representation of a CS  of circuits N1, N2. This representation is 
given as a partitioning of N1, N2  into subcircuits.  

In Section 4 we considered equivalence checking in general 
resolution that is a non-deterministic proof system. This means 
that this proof is guided by an oracle that  points to the next pair 
of clauses to be resolved.  Now we summarize the results of 
Section 4 in a deterministic procedure  of equivalence checking of 
circuits N1 and N2 with a CS S of granularity p. The idea is that if 
a CS S of N1 and N2 is known, then S itself can be viewed as an 
oracle. This oracle is powerful enough to make equivalence 
checking of N1 and N2 efficient.  (However, if S is unknown it is 
unlikely that there is an efficient algorithm for equivalence 
checking of N1 and N2 even if there exists a  CS of  N1,N2 of small 
granularity.) 

For the sake of simplicity, we will assume that all the primary 
input and output variables of S are binary. (A more general case 
implied by Assumption 2 and Assumption 3 is not much different 
but makes explanation more wordy.) We will also assume that N1 
and N2 have only one primary output.  Besides, we give the 
description of the algorithm that is independent of the proof 
system (see Remark 5).  

Note that in the proof of Proposition 7 we never used an 
explicit representation of blocks of S. We only needed to know 
how gates of N1 and N2 are assigned to subcircuits that  are 
implementations of blocks of S. So in the algorithm description 
shown in Figure 2,  a k-block specification S of N1,N2  is 
represented implicitly as a partitioning of these two circuits into k 
subcircuits N1

1,..,N1
k, N2

1,..,N2
k . We assume that N1

i and N2
i are 

implementations of the same block of specification S. We also 



assume that subcircuits are numbered in the topological order of 
blocks in S.  That is if i > j, then the topological level of the block 
implemented by N1

i is greater or equal to the topological level of 
the block implemented by  N1

j. 
 

 
/* -------------------------- 
   Part(N1)= { N1

1,..,N1
k} , 

   Part(N2)= { N2
1,..,N2

k}   
-----------------------------*/  

check_for_equivalence(N1, N2, Part(N1),Part(N2)) 
{   
  /* check that specification is correct “ topolgically”  */ 
  if (check_partitionins(Part(N1),Part(N2)) == ‘ incorrect’ ) 
       return(‘unsolved’ ); 
   
 /* compute correlation functions */ 
  for (i=1; i <= k ; i++) 
     { Correlation = comp_inp_corr_func(N1

i,N2
i); 

      Cf(N1
i, N2

i) =  comp_out_corr_func(N1
i,N2

i, Correlation); 
     }  
    
/* check the correlation function of the last pair of subcircuits */    
   if (Cf(N1

k, N2
k)  implies  equivalence_ function) 

           return(‘equivalent’ ); 
   else 
            return(‘unsolved’ ); 
 
}  
 
 Figure 2. Pseudocode of equivalence checking algorithm 
 

The pseudocode of our algorithm for equivalence checking is 
given in Figure 2. The procedure check_partitions checks that 
specification S represented by Part(N1),Part(N2) is correct 
topologically. Namely, it checks that if outputs of subcircuit N1

i 
are (not) connected to inputs of subcircuit N1

j, then outputs of 
subcircuit N2

i should (not) be connected to inputs of N2
j. If this is 

not true, the check_partitions procedure returns  result ‘ incorrect’ .  
In the main loop we compute the correlation functions 

Cf(N1
i,N2

i) in topological order. (Note that in Figure 2 we denote 
correlation function differently to emphasize the fact that 
specification S is represented implicitly. Here Cf(N1

i,N2
i) denotes 

what we previously denoted as Cf(v1(C),v2(C)) where C is the 
variable associated with the output of the block of S implemented 
by N1

i and N2
i.).  

Before computing  Cf(N1
i,N2

i) the procedure 
comp_inp_corr_func forms the expression Correlation. This 
expression is a conjunction of  
• the correlation functions corresponding to subcircuits whose 

outputs are connected to inputs of N1
i  and N2

i. 
• the correlation functions corresponding to the primary inputs 

of N1 and N2 (if any) that are in the fanin of  N1
i or N2

i.  

If, for example, inputs of N1
i are connected only to outputs of 

subcircuits N1
j and N1

m (and so inputs of N2
i are connected only to 

outputs of N2
j and N2

m), then Correlation = Cf(N1
j,N2

j) ∧ 
Cf(N1

m,N2
m).  On the other hand, if an input x1 of N1

i is a primary 
input of N1 (and so the corresponding input x2 of N2 is a primary 
input of N2), then in the conjunction of terms specifying 
Correlation there is term Eq(x1,x2) describing the equivalence of 
x1 and x2.  

The function comp_out_corr_func computes the correlation 
function Cf(N1

i,N2
i) by existentially quantifying the function 

P=Implementation ∧ Correlation. The function Implementation = 
F(N1

i) ∧ F(N2
i) describes consistent assignments to the variables 

of N1
i  and N2

i. The function Cf(N1
i,N2

i) is obtained from P by 
existentially quantifying away all the variables of N1

i and N2
i 

except the ones corresponding to outputs of N1
i and N2

i. 
Finally, the algorithm checks if the correlation function of 

subcircuits N1
k and N2

k (whose primary outputs are primary 
outputs of N1 and N2) implies the equivalence function. If yes, 
then N1 and N2 are equivalent. Otherwise, the algorithm returns 
the ‘unsolved’  answer. 

The complexity of the algorithm shown in Figure 2 is the same 
as in general resolution i.e. d∗n∗36p where d is a constant.  That is 
for the class of formulas M(p) with the fixed value of p, the 
complexity of this algorithm is linear in circuit size. 
 

6. Conclusions 
 

In this report, we prove the results of paper [2]  without using 
the notion of filtering functions. This allows us to simplify the 
formulation of our theory for equivalence checking of circuits 
with a common specification. Besides, we give a modified 
description of the algorithm for equivalence checking of circuits 
with a known specification. In this description we use only 
correlation functions (omitting fitering functions) and emphasize 
the fact that CS is represented implicitly. 
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