
Equivalence Checking of Dissimilar Circuits II

Cadence Berkeley Labs

1995 University Ave.,Suite 460, Berkeley, California,94704

phone: (510)-647-2825, fax: (510)-486-0205

CDNL-TR-2004-0830

August 2004

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract
In this report we revisit the theory introduced in [2]. We

formulate it in terms of correlation functions so showing that the
introduction of filtering functions is not necessary. We also
describe an algorithm of equivalence checking for circuits with a
known specification that is based on computation of correlation
functions only (no filtering functions are computed).

1. Introduction

This report is simply a rewrite of paper [2] that presented
some results on complexity of equivalence checking of circuits
with a common specification. The results of [2] were formulated
in terms of correlation and filtering functions. In this report, we
show that the introduction of filtering functions is not necessary
and the theory of [2] can be formulated in terms of correlation
functions only. This also applies to publications [3] and [4] in
which the introduction of filtering functions can be avoided
either. (Papers [2] and [4] are available online from the web page
http://eigold.tripod.com/papers.html.)

In the report we follow the structure of paper [2] with the
following exceptions. To reduce the repetition of text we omitted
material presented in Sections 1, 5 and 6 of [2]. The major
changes are made in section 4 which presents the main result. In
particular, we added subsection 4.4 in which we explain why
filtering functions can be dropped. Finally we added a section
describing an algorithm for equivalence checking of circuits N1,
N2 with a known common specification S (Section 5). This
algorithm is identical to that of [4] with the following two
exceptions. We formulate this algorithm in terms of correlation
functions only (filtering functions are not used). We emphasize

the fact that for this algorithm the specification S does not have to
be represented explicitly. The algorithm only needs to know the
partitioning of N1 and N2 into subcircuits that are implementations
of blocks of S.

2. Common Specification of Boolean Circuits

In this section, we introduce the notion of a common
specification of Boolean circuits. Let S be a combinational circuit
of multi-valued blocks (further referred to as a specification)
specified by a directed acyclic graph H. The sources and sinks of
H correspond to primary inputs and outputs of S. Each non-source
node of H corresponds to a multi-valued block computing a
multi-valued function of multi-valued arguments. Each node of n
of H is associated with a multi-valued variable A. If n is a source
of H , then the corresponding variable specifies values taken by
the corresponding primary input of S. If n is a non-source node
of S then the corresponding variable describes the values taken by
the output of the block specified by n. If n is a source
(respectively a sink), then the corresponding variable is called a
primary input variable (respectively primary output variable).
We will use the notation C=G(A,B) to indicate that a) the output
of a block G is associated with a variable C; b) the function
computed by the block G is G(A,B); c) only two nodes of H are
connected to the node n in H and these nodes are associated with
variables A and B.

Denote by D(A) the domain of the variable A associated
with a node of H. The value of |D(A)| is called the multiplicity of
A. If the multiplicity of every variable A of S is equal to 2 then S
is a Boolean circuit.

Now we describe how a Boolean circuit N can be produced
from a specification S by encoding the multi-valued variables. Let
D(A)={ a1,…,at} be the domain of a variable A of S. Denote by
q(A) a Boolean encoding of the values of D(A) that is a mapping
q:D(A)→{ 0,1} m . Denote by length(q(A)) the number of bits in q
that is the value of m. The value of q(ai), ai ∈ D(A) is called the
code of ai. Given an encoding q of length m of a variable A
associated with a block of S, denote by v(A) the set of m coding
Boolean variables.

In the following exposition we make the assumptions
below.
Assumption 1. Each gate of a Boolean circuit and each block
of a specification has two inputs and one output.
Assumption 2. The multiplicity of each primary input (or
output) variable of a specification is a power of 2.
Assumption 3. If A is a primary input (or output) variable of a
specification, then length(q(A))=log2(|D(A)|)
Assumption 4. If a1 and a2 are values of a variable A of a
specification and a1 ≠ a2 , then q(a1) ≠ q(a2).
Assumption 5. If A and B are two different variables of a
specification , then v(A) ∩ v(B) = ∅.
Remark 1. From Assumption 2, Assumption 3, and Assumption
4 it follows that if A is a primary input (or output) variable, a
mapping q:D(A)→{ 0,1} m

 is bijective. In particular, any
assignment to the variables of v(A) is a code of some value
a ∈ D(A).
Definition 1. Given a Boolean circuit I, denote by Inp(I)
(respectively Out(I)) the set of variables associated with primary
inputs (respectively primary outputs) of I.
Definition 2. Let X1 and X2 be sets of Boolean variables and
X

2
 ⊆ X

1
. Let y be an assignment to the variables of X

1
. Denote by

proj(y,X2) the projection of y on X2 i.e. the part of y that consists of
the assignments to the variables of X

2
.

Definition 3. Let C=G(A,B) be a block of specification S. Let
q(A),q(B),q(C) be encodings of variables A,B, and C respectively.
A Boolean circuit I is said to implement the block G if the
following three conditions hold:
1) The set Inp(I) is a subset of v(A) ∪ v(B).
2) The set Out(I) is equal to v(C).
3) If the set of values assigned to v(A) and v(B) form codes q(a)
and q(b) respectively where a ∈ D(A), b ∈ D(B), then I(z’)=q(c).
Here z’ is the projection of the assignment z=(q(a),q(b)) on Inp(I),
I(z’) is the value taken by I at z’ , and c=G(a,b).
Remark 2. The reason why Inp(I) may not include all the
variables of v(A) and/or v(B) is that the function G(A,B) may not
distinguish some values of A or B. (G(A,B) does not distinguish,
say, values a1,a2 ∈ D(A), if for any b ∈ D(B), G(a1,b)=G(a2,b).)
So to implement G(A,B) the circuit I may need only a subset of
variables of v(A) ∪ v(B). This said, for the sake of simplicity, we
will write I(q(a),q(b)) meaning I(q’ (a),q’ (b)), q’ (a)=
proj(q(a),Inp(I)) and q’ (b)=proj(q(b),Inp(I)).
Definition 4. Let S be a multi-valued circuit. A Boolean circuit
N is said to implement the specification S, if it is built according
to the following two rules.
1) Each block G of S is replaced with an implementation I of
G.
2) Let the output of block G1 (specified by variable R) be
connected to an input of block G2 (specified by the same variable

R) in S. Then the outputs of the circuit I1 implementing G1 are
properly connected to inputs of circuit I2 implementing G2.
Namely, the primary output of I1 specified by a Boolean variable x
∈ v(R) is connected to the input of I2 specified by the same
variable of v(R) if x ∈ Inp(I2).

In Fig. 1a a specification of three blocks is shown. The
functionality of two different implementations of the block
C=G1(A,B) (Fig. 1b) are shown in Fig. 1c and 1d. Here
D(A)={ a0,a1} , D(B)={ b0,b1,b2,b3} and D(C)={ c0,c1,c2} . Since A
and B are primary input variables, they are encoded with a
minimum length encoding and q1(A)=q2(A) and q1(B)=q2(B)
where q1(a0)=0, q1(a1)=1, q1(b0)=00, q1(b1)=01, q1(b2)=10,
q1(b3)=11. Finally, the encodings q1(C) and q2(C) are q1(c0)=00,
q1(c1)=10, q1(c2)=01 and q2(c0)=100, q2(c1)=010, q2(c2)=001.
Remark 3. Let N be an implementation of a specification S.
Let p be the largest number of gates used in an implementation of
a multi-valued block of S in N. We will say that S is a
specification of granularity p for N.

Figure 1. A specification and the functionality of two
implementations of a block

Definition 5. The topological level of a block G in a
specification S is the length of the longest path from a primary
input of S to G. (The length of a path is measured in the number of
blocks on it. The topological level of a primary input is assumed to
be 0.) Denote by level(G) the topological level of G in S.

A B C
a0 b0 c0

a0 b1 c1

a0 b2 c1

a0 b3 c0

a1 b0 c1

a1 b1 c2

a1 b2 c2

a1 b3 c0

A B F

C K

E

G1 G2

G3

q1(A) q1(B) q1(C)

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

q2(A) q2(B) q2(C)

0 0 0 1 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 1 0 0

C=G1(A,B)

(a) (b)

(c) (d)

 I1(q1(A),q1(B)) I2(q2(A),q2(B))

Let N be an implementation of a specification S. From
Assumption 4 it follows that for any value assignment h to the
input variables of N there is a unique set of values (x1,…,xk),
where xi ∈ D(Xi) such that h=(q(x1),…,q(xk)). That is there is one-
to-one correspondence between assignments to primary inputs of
S and N. The same applies to primary outputs of S and N.

Definition 6. Let N be an implementation of S. Given a Boolean
vector y of assignments to the primary inputs of N, the
corresponding vector Y=(x1,..,xk), xi ∈ D(Xi) such that
y=(q(x

1
),…,q(x

k
)) is called the pre-image of y.

Proposition 1. Let N be a circuit implementing specification S.
Let I(G) be the implementation of a block C=G(A,B) of S in N .
Let y be a value assignment to the primary input variables of N
and Y be the pre-image of y. Then the values of primary outputs
of I(G) form the code q(c) where c is the value taken by the output
of G when the inputs of S take the values specified by Y.

Proof. The proposition can be proven by induction in topological
levels of variables of the specification S. According to Remark 1,
the proposition holds for the variables of topological level 0
(primary input variables of S). Let C=G(A,B) be a block of S and
level(G)=n, n>0. Let I(G) be the implementation of G in N. By
the induction hypothesis, values taken by the variables of v(A) and
v(B) in N under the input assignment y should be q(a) and q(b)
respectively. Here a and b are values of variables A and B under
the input assignment Y. Then from Definition 3 it follows that the
outputs of I(G) take the values of q(C) where c=G(a,b) .
Proposition 2. Let N1, N2 be circuits implementing a
specification S. Let each primary input (or output) variable X of S
have the same encoding in N1 and N2. Then Boolean circuits N1
and N2 are functionally equivalent.
Proof. Let y be an arbitrary assignment to input variables of N1
and N2. Since the encodings of primary input variables of S in N1
and N2 are the same, then the pre-image Y of y for N1 and N2 is the
same. Let C be a primary output variable of S associated with a
block G. From Proposition 1 it follows that the values taken by
the implementations I1(G) and I2(G) of G in N1 and N2 are equal
to q1(c) and q2(c) respectively. Here c is the value taken by the
output of G under input assignment Y and q1 and q2 are encodings
of the primary output variable C in N1 and N2. Since C has the
same encoding in N1 and N2, then q1(c) = q2(c).
Definition 7. Let N1, N2 be two functionally equivalent Boolean
circuits. Let N

1
, N

2
 implement a specification S so that for every

primary input (output) variable X encodings q1(X) and q2(X) (used
when producing N

1
 and N

2
 respectively) are identical. Then N is

called a common specification (CS) of N1 and N2.
Definition 8. Let S be a CS of N1,N2. Let p1 (respectively p2) be
the granularity of S with respect to N

1
 (respectively N

2
). Then we

will say that S is a CS of N1,N2 of granularity p = max(p1,p2).
Definition 9. Given two functionally equivalent Boolean circuits
N1, N2, S is called the finest common specification if it has the
smallest granularity p among all the CSs of N

1
 and N

2
.

3. Equivalence Checking as SAT

Since in this report we formulate the complexity of
equivalence checking in terms of resolution proofs, we recall a
common way of reducing equivalence checking to the
satisfiability problem.
Definition 10. A disjunction of literals of Boolean variables not
containing two literals of the same variable is called a clause. A
conjunction of clauses is called a conjunctive normal form
(CNF).

Definition 11. Given a CNF F, the satisfiability problem (SAT)
is to find a value assignment to the variables of F for which F
evaluates to 1 (also called a satisfying assignment) or to prove
that such an assignment does not exist. A clause K of F is said to
be satisfied by a value assignment y if K(y)=1.

The standard conversion of an equivalence checking
problem into an instance of SAT is performed in two steps. Let N1
and N2 be Boolean circuits to be checked for equivalence. At the
first step of this conversion, a circuit M called a miter [1] is
formed from N1 and N2. The miter M is obtained by 1) identifying
the corresponding primary inputs of N1 and N2; 2) XORing each
pair of corresponding primary outputs of N1 and N2; 3) ORing the
outputs of the added XOR gates. So the miter of N1 and N2
evaluates to 1 if and only if for some input assignment a primary
output of N1 and the corresponding output of N2 evaluate to
different values. Therefore, the problem of checking the
equivalence of N1 and N2 is equivalent to testing the satisfiability
of the miter of N1 and N2.

At the second step of conversion, the satisfiability of the
miter is reduced to that of a CNF formula F. This formula is a
conjunction of CNF formulas F1,..,Fn specifying the functionality
of the gates of M and a one-literal clause that is satisfied only if
the output of M is set to 1. The CNF Fi specifies the i-th gate gi of
M. Any assignment to the variables of Fi that is inconsistent with
the functionality of gi falsifies a clause of Fi (and vice versa, a
consistent assignment satisfies all the clauses of Fi.) For instance,
the AND gate y=x1x2 is specified by the following three clauses
~x1 ∨ ~x2 ∨ y, x1 ∨ ~y, x2 ∨ ~y.

4. Equivalence Checking in General
Resolution

In this section, we prove some results about the complexity of
equivalence checking of circuits with a CS of granularity p. The
main idea of the proof is that if S is a CS of N1 and N2, then their
equivalence checking reduces to computing the correlation
function for encodings q1(C),q2(C) of each variable C of S. The
two main properties of correlation functions are that
• They can be built based only on the information about the

topology of S and about “assignment” of gates of N1 and N2
to blocks of S.

• The correlation function for encodings q1(C),q2(C) of the
variable C specifying the output of a block G(A,B) can be
computed “ locally” from the correlation functions of
encodings of variables A and B and CNFs specifying
implementations I1(G) and I2(G). So these functions can be
computed in topological order starting with inputs and
proceeding to outputs.

4.1 Class M(p) and general resolution

Definition 12. Given a constant p, a CNF formula F is a
member of the class M(p) if and only if it satisfies the following
two conditions.
• F is the CNF formula (obtained by the procedure described

in Section 3) specifying the miter of a pair of functionally
equivalent circuits N1,N2.

• N1,N2 has a CS of granularity p.
Definition 13. Let K and K’ be clauses having opposite literals
of a variable (say variable x) and there is only one such variable.
The resolvent of K , K’ in variable x is the clause that contains all
the literals of K and K’ but the positive (i.e. literal x) and negative
(i.e. literal ~x) literals of x. The operation of producing the
resolvent of K and K’ is called resolution.
Definition 14. General resolution is a proof system of
propositional logic that has only one inference rule. This rule is to
resolve two existing clauses to produce a new one. Given a CNF
formula F, a proof L(F) of unsatisfiability of F in the general
resolution system consists of a sequence of resolutions resulting in
the derivation of an empty clause (i.e. a clause without literals).

 General resolution is complete, which means that given an
unsatisfiable formula F there is always a proof L(F) that derives
an empty clause.
Definition 15. Let F be a set of clauses. Denote by supp(F) the
set of variables whose literals occur in clauses of F.

The following Proposition 3 and also Propositions 4,5,6
proved in subsections 4.2, 4.3 are used in the proof of Proposition
7 that is the main result of this paper.
Proposition 3. Let F be a set of clauses that implies a clause K.
Then there is a sequence of resolutions of at most 3|supp(F)| steps that
results in the derivation of a clause that implies K.
Proof. Denote by F’ the formula that is obtained from F by
making the assignments that set the literals of K to 0 (and
removing the satisfied clauses and the literals set to 0). It is not
hard to see that F’ is unsatisfiable since it implies an empty
clause. So there is a resolution proof L(F’) that results in
deducing an empty clause. Then by replacing each clause of F’
involved in L(F’) with its “parent” clause from F we get a
sequence of resolutions resulting in deducing a clause that
implies K. The number of resolvents in L(F’) cannot be more
than 3|supp(F’)| (i.e. the total number of clauses of |supp(F’)|
variables) and so it cannot be more than 3|supp(F)|.

4.2 Correlation functions

Definition 16. Let S be a CS of circuits N1 and N2 and C be
a variable of S. A function Cf (v1(C),v2(C)) is called a
correlation function for encodings q1 and q2 of the values
of C (used when producing N1 and N2) if :

• supp(Cf) ⊆ v1(C) ∪ v2(C) .

• Cf(z1, z2)=1 for any assignment z1 to v1(C) and z2 to v2(C)
such that z1=q1(c) and z2=q2(c) where c ∈ D(C). Otherwise
Cf(z1, z2)=0.

From now on we will say that Cf(v1(C),v2(C)) is the
correlation function for the variable C meaning that it is the
correlation function for encodings q1(C),q2(C) of the variable C.

Remark 4. If C is a primary input variable of S, then
Cf(v1(C),v2(C)) ≡ Eq(v1(C),v2(C)). The function Eq(z1, z2) is equal
to 1 iff z1=q1(c), z2 = q2(c), where c ∈ D(C) and q1(c) = q2(c).
Otherwise , Eq(v1(C),v2(C)) is equal to 0. Indeed, as it follows
from Remark 1, sets v1(C) and v2(C) have the same number of
coding variables and any assignment to v1(C) or v2(C) is the code
of a value c ∈ D(C). Besides, from the definition of CS it
follows that q1(C)=q2(C). So every “permissible” assignment
(x,y) to the variables of v1(C),v2(C) can be represented as
(q1(c),q2(c)), were c ∈ D(C) and q1(c) = q2(c).

Proposition 4. Let S be a CS of circuits N1,N2. Let
C=G(A,B) be a block of S. Let F be the CNF formula specifying
the miter of N

1
,N

2
 built as described in Section 3. Let F(I

1
(G)) and

F(I2(G)) be the part of F specifying the implementation I1(G) and
I

2
(G) of G in N

1
 and N

2
 respectively. Then P implies

Cf(v1(C),v2(C)). Here P = Correlation ∧ Implementation and,
Correlation = Cf(v

1
(A),v

2
(A)) ∧ Cf(v

1
(B),v

2
(B)), Implementation =

F(I1(G)) ∧ F(I2(G)).
Proof. To prove that P implies Cf(v1(C),v2(C)) one needs to show
that any assignment that sets P to 1 also sets Cf(v1(C),v2(C)) to 1.
It is not hard to see that the support of all the functions of the
expression P → Cf(v1(C),v2(C)) is a subset of supp(F(I1(G)) ∪
supp(F(I2(G)). Let h=(x1, x2, y1, y2, z1, z2) be an assignment that
sets P to 1 where x1, x2, y1, y2, z1, z2 are assignments to v1(A),
v2(A), v1(B), v2(B), v1(C), v2(C) respectively. Then h has to set to 1
all the functions the conjunction of which forms P. Since h has to
set the function Correlation to 1, then x1=q1(a), x2=q2(a) where
a∈ D(A) and y1=q1(b) , y2=q2(b), where b ∈ D(B). So
h=(q1(a),q2(a), q1(b),q2(b), z1, z2). Since h sets the function
Implementation to 1, then z1 has to be equal to q1(c), c=G(a,b) and
z2 has to be equal to q2(c). So h is equal to
(q1(a),q2(a),q1(b),q2(b),q1(c),q2(c)) and hence it sets the
correlation function Cf(v1(C),v2(C)) to 1.

4.3 Complexity of formulas from M(p)

Proposition 5. Let A,B,C be Boolean functions and A ∧ B→
C. Then for any function A’ such that A’ → A, it is true that
A’ ∧ B→ C.
Proof. Let x be an assignment that sets A’ ∧ B to 1. Then A’ (x)=1
and B(x)=1. Since A’ → A, then A(x)=1. Then A(x) ∧ B(x) = 1 and
so C(x)=1.
Proposition 6. Let X

1
 and X

2
 be sets of Boolean variables,

F(X1,X2) and H(X2) be CNF formulas and F imply H. Then in at
most 3|supp(F)| resolution steps one can derive a CNF formula H’
that implies H(X2) such that supp(H’) ⊆ supp(H).
Proof. Let K be a clause of H. From Proposition 3 it follows that
in at most 3|supp(F)| steps one can derive a clause K’ that implies K.
Since K’→ K, then supp(K’) ⊆ supp(K). So in at most |H| ∗
3|supp(F)| steps, where |H| is the number of clauses in H, one can
derive a CNF H’ implying H such that supp(H’) ⊆ supp(H). (The
fact that H’ implies H follows from Proposition 5.) However, if

one does not produce the same resolvent twice, the total number
of resolution steps when deriving H’ cannot be more than 3|supp(F)|
(because it is the total number of clauses of |supp(F)| variables).

Proposition 7. Let F be a formula of M(p) specifying the miter
of circuits N1,N2 obtained from a CS S of granularity p. The
unsatisfiability of F can be proven by a resolution proof of no
more than d∗n∗36p resolution steps where n is the number of
blocks in S and d is a constant.

Proof. From Proposition 4 it follows that one can deduce
correlation functions for all the variables of S starting with blocks
of topological level 1 and proceeding in topological order.
Indeed, let C=G(A,B) be a block of topological level 1. Then A
and B are primary input variables and the correlation functions for
them are equal to Eq(v1(A),v2(A)) and Eq(v1(B),v2(B)) respectively
(see Remark 4). The correlation function Cf(v1(C),v2(C)) is
implied by P =F(I1(G)) ∧ F(I2(G)) ∧ Eq(v1(A),v2(A)) ∧
Eq(v1(B),v2(B)). So a function implying Cf(v1(C),v2(C)) can be
derived from P by resolution. From Proposition 5 it follows that
to apply Proposition 4, instead of the function Cf(v1(C),v2(C)),
one can use any function implying it. After correlation functions
are computed for all the variables of level 1, the same procedure
can be applied to variables of topological level 2 and so on. If S
consists of n blocks, then in n steps one can deduce correlation
functions for the primary output variables of S. At each step the
correlation function is computed for a variable C=G(A,B) of S.
The complexity of this step is no more than 36p. Indeed, the
support of all functions mentioned in Proposition 4 needed for
computing Cf(v1(C),v2(C)) is a subset of A=supp(F(I1(G))) ∪
supp(F(I2(G))). The total number of gates in I1(G) and I2(G) is
bounded by 2p, each gate having 2 inputs and 1 output. So the
total number of variables in A cannot be more than 6p. Then from
Proposition 6 it follows that in at most 36p steps one can deduce
CNFs implying Cf(v1(C),v2(C)). Then the total number of
resolution steps one needs to deduce functions implying the
correlation functions for the primary output variables of S is
bounded by n∗36p.

Now we show that from the correlation functions for primary
output variables of S, one can deduce an empty clause in the
number of resolution steps linear in n∗p. Let C be a primary
output variable specifying the output of a block G of N. Let I1(G)
and I2(G) be the implementations of G in N1 and N2 respectively.
Let |D(C)|=2k (By Assumption 2 the multiplicity of C is a power
of 2.) Then length(q1(C))= length(q2(C))=k. (By Assumption 3,
values of S are encoded by a minimal length encoding.)

Now we show that there is always a correlation function
Cf(v1(C),v2(C)) that implies the CNF consisting of k pairs of two
literal clauses specifying the equivalence of corresponding outputs
of I1(G) and I2(G). Let f1 and f2 be two Boolean variables of v1(C)
and v2(C) respectively that specify corresponding outputs of N1
and N2. Since S is a CS of N1 and N2, then q1(C)=q2(C). So any
assignment q1(c),q2(c) to v1(C) and v2(C) that satisfies
Cf(v1(C),v2(C)) also satisfies clauses K’=f1 ∨ ~f2 and K” =~f1 ∨ f2.
So K’ and K” are implied by Cf(v1(C),v2(C)) and so clauses
implying them can be deduced by the procedure described in the
proof of Proposition 4. (The resolution steps one needs to deduce
equivalence clauses are already counted in the expression n∗36p)

Using each pair of equivalence clauses K’ and K” (or
clauses implying them) and the clauses specifying the gate

g=XOR(f1,f2) of the miter, one can deduce a single literal clause
~g. This clause requires setting the output of this XOR gate to 0.
Each such a clause can be deduced in the number of resolutions
bounded by a constant and the total number of such clauses
cannot be more than n∗p. Finally, from these unit clauses and the
clauses specifying the final OR gate of the miter, the empty clause
can be deduced in the number of resolutions bounded by n∗p. So

the empty clause is deduced in no more than n∗36p + d’∗n∗p
steps where d’ is a constant. Finally, one can pick a
constant d such n∗36p + d’∗n∗p ≤ d∗n∗36p
Remark 5. The essence of the resolution proof described in
Proposition 7 is to compute correlation functions “ inductively”
moving from inputs to outputs. It is not hard to see that this
computation is not restricted to general resolution. Indeed , all the
terms of the expression P=Cf(v1(A), v2(A)) ∨ Cf(v1(B), v2(B)) ∨
F(I1(G)) ∨ F(I2(G)) are just functions and so can be represented in
any possible way (i.e. not only as CNF formulas). Besides,
Proposition 7 can be proven in terms of existential quantification
introduced by Definition 17. Indeed, from Proposition 8 below it
follows that Cf(v1(C),v2(C)) (or a function implying it) can be
obtained from P by existentially quantifying away all the variables
except those of v1(C) ∪ v2(C). Existential quantification of a
function can be done in many ways, for example, by using BDDs.
So, summarizing, Proposition 7 can be formulated and proven in
terms of functions and existential quantification i.e.
independently of a proof system.
Definition 17. Let f be a Boolean function. We will say that
function f* is obtained from f by existentially quantifying away
Boolean variable x if f* = f(…,x=0,…) ∨ f(…,x=1,….).
Proposition 8. Let X1 and X2 be two disjoint sets of Boolean
variables. Let F(X

1
,X

2
) and H(X

2
) be two Boolean functions and F

imply H. Let F*(X1 \ { x} , X2) be obtained from F(X1,X2) by
existentially quantifying away the variable x. Then F*(X

1
\ { x} ,X

2
)

also implies H(X2).

Proof. Denote by X′1 the set X1\{ x} . Let (z, z1′,z2) be a boolean
vector representing an assignment to the variables of X1 ∪ X2.
Here z is a Boolean value assigned to the variable x and z1′, z2 are
Boolean vectors representing assignments to the variables of X′1

and X2 respectively. Suppose that F*(z1′, z2) = 1. According to
Definition 17, F*(X′1,X2) = F(0, X′1,X2) ∨ F(1, X′1,X2) and so
either F(0, z1′, z2) or F(0, z1′, z2) has to be equal to 1. Since
F(x,X′1,X2) implies H(X2) then H(z2) = 1. So from F*=1 it follows
that H=1. Hence F* implies H.

Remark 6. In Proposition 7 we give a worst case estimate for
the complexity of correlation function computation. In practice,
this complexity can be much lower. In a sense, the best way to
interpret the theory developed in this section is that the
complexity of equivalence checking of circuits N1,N2 with a CS S
is linear in the number of blocks in S.
Remark 7. In this report, for the sake of clarity, we assumed
that every block of a specification has two inputs and one
output (Assumption 1). However, one can easily extend
Proposition 7 to the case of a specification S where a block may
have an aribtrary (but finite) number of inputs. (We still assume
that every gate of circuits N1 and N2 implementing S have two
inputs and one output). Indeed, let G be a block of S with n
inputs and let C, A1,.., An be variables associated with its output

and n inputs respecitvely. Then one can prove (in the same
manner as in Proposition 4) that correlation function
Cf(v1(C),v2(C)) is implied by the expression P = Correlation ∧
Implementation. Here Implementation= F(I1(G)) ∨ F(I2(G)) is the
same as in Proposition 4 and Correlation = Cf(v1(A1), v2(A1)) ∧
… ∧Cf(v1(An), v2(An)). So to compute the correlation function for
the output of an n-input block one needs to compute n correlation
functions corresponding to n input variables. Other than that, the
proof of Proposition 7 does not change.

4.4 A few words about filtering functions

In subsection 4.3, we reproduced the result of [2] without
introducing filtering functions. To make things even more clear,
in this subsection we give an informal explanation of why filtering
functions can be dropped. We also explain under what
circumstances filtering functions might come useful.

Here is the definition of filtering functions from [2].

Definition 18. Let N be an implementation of a specification S.
Let C be a variable of S associated with the output of a block G.
A function Ff is called a filtering function if:

• supp(Ff) ⊆ v(C).

• If an assignment z to the variables of v(C) is a code q(c), c ∈
D(C), then Ff(z)=1. Otherwise, Ff(z)=0.

Let N1 and N2 be circuits with a CS S. Let v1(C) and v2(C) be
the coding variables of the variable C of S corresponding to the
implementations I1(G) and I2(G) in N1 and N2 respectively. From
Definition 18 of filtering functions and Definition 16 of
correlation functions it follows that

Ff(v1(C)) ∧ Ff(v2(C)) ∧ Cf(v1(C),v2(C)) = Cf(v1(C),v2(C)).

On the other hand, in Proposition 7 of [2] (used to prove the main
result i.e. Proposition 8) filtering functions Ff(v1(C)) ∧ Ff(v2(C))
appear only in conjunction with the correlation function
Cf(v1(C),v2(C)). So filtering functions can be removed from the
proof.

The reason why filtering functions appeared in [2] was that
originally the definition of correlation functions used in the
manuscript was as follows.

Definition 19. Let S be a CS of circuits N1 and N2 and C be a
variable of S. A function Cf is called a correlation function for
encodings q1 and q2 of the values of C (used when obtaining N1
and N

2
) if :

• supp(Cf) ⊆ v1(C) ∪ v2(C) .

• Cf(z1, z2)=0 for any assignment z1 to v1(C) and z2 to v2(C)
such that z1=q1(c) and z2=q2(c*) where c,c* ∈ D(C) and
c≠c*.

It is not hard to see that Definition 19, only partially defines
Cf. Definition 19 can be viewed is a relaxation of Definition 16,
meaning that the correlation function specified by the latter is an
implementation of the correlation function specified by the
former. If correlation functions are specified by Definition 19,
then to prove Proposition 7 one needs filtering functions.
(Because now Ff(v1(C)) ∧ Ff(v2(C)) ∧ Cf(v1(C),v2(C)), in general,

is not equivalent to Cf(v1(C),v2(C)).) Later, the definition of
correlation functions was changed to the one used in [2] which
made filtering functions redundant.

Definition 16 is preferable from a “ theoretical” point of view
because it reduces the number of objects employed in our theory.
However, in practical implementations of the algorithm of
equivalence checking described in Section 5, the use of filtering
and correlation functions specified by Definition 18 and
Definition 19 respectively, instead of correlation functions
specified by Definition 16, may make sense. The reason is that
Definition 16 mixes up two unary and one binary relation
specified over the set of output assignments of subcircuits I1(G)
and I2(G). On the other hand, in practical applications one may
want to compute them separately. (The unary relations are
specified by the filtering functions Ff(v1(C)) and Ff(v2(C)) that
single out output assignments of I1(G) and I2(G) that are codes of
C. The binary relation is given by the correlation function
Cf(v1(C),v2(C)) specified by Definition 19.)

5. Algorithm of Equivalence Checking with a
Known Specification

In this section we describe an algorithm for equivalence
checking of circuits with a known specification. This algorithm is
identical to the one introduced in [4] with a few exceptions. First,
we formulate this algorithm in terms of correlation functions only
(omitting filtering functions). Second, we emphasize the fact that
this equivalence checking procedure needs only an implicit
representation of a CS of circuits N1, N2. This representation is
given as a partitioning of N1, N2 into subcircuits.

In Section 4 we considered equivalence checking in general
resolution that is a non-deterministic proof system. This means
that this proof is guided by an oracle that points to the next pair
of clauses to be resolved. Now we summarize the results of
Section 4 in a deterministic procedure of equivalence checking of
circuits N1 and N2 with a CS S of granularity p. The idea is that if
a CS S of N1 and N2 is known, then S itself can be viewed as an
oracle. This oracle is powerful enough to make equivalence
checking of N1 and N2 efficient. (However, if S is unknown it is
unlikely that there is an efficient algorithm for equivalence
checking of N1 and N2 even if there exists a CS of N1,N2 of small
granularity.)

For the sake of simplicity, we will assume that all the primary
input and output variables of S are binary. (A more general case
implied by Assumption 2 and Assumption 3 is not much different
but makes explanation more wordy.) We will also assume that N1
and N2 have only one primary output. Besides, we give the
description of the algorithm that is independent of the proof
system (see Remark 5).

Note that in the proof of Proposition 7 we never used an
explicit representation of blocks of S. We only needed to know
how gates of N1 and N2 are assigned to subcircuits that are
implementations of blocks of S. So in the algorithm description
shown in Figure 2, a k-block specification S of N1,N2 is
represented implicitly as a partitioning of these two circuits into k
subcircuits N1

1,..,N1
k, N2

1,..,N2
k . We assume that N1

i and N2
i are

implementations of the same block of specification S. We also

assume that subcircuits are numbered in the topological order of
blocks in S. That is if i > j, then the topological level of the block
implemented by N1

i is greater or equal to the topological level of
the block implemented by N1

j.

/* --------------------------
 Part(N1)= { N1

1,..,N1
k} ,

 Part(N2)= { N2
1,..,N2

k}
-----------------------------*/

check_for_equivalence(N1, N2, Part(N1),Part(N2))
{
 /* check that specification is correct “ topolgically” */
 if (check_partitionins(Part(N1),Part(N2)) == ‘ incorrect’)
 return(‘unsolved’);

 /* compute correlation functions */
 for (i=1; i <= k ; i++)
 { Correlation = comp_inp_corr_func(N1

i,N2
i);

 Cf(N1
i, N2

i) = comp_out_corr_func(N1
i,N2

i, Correlation);
 }

/* check the correlation function of the last pair of subcircuits */
 if (Cf(N1

k, N2
k) implies equivalence_ function)

 return(‘equivalent’);
 else
 return(‘unsolved’);

}

 Figure 2. Pseudocode of equivalence checking algorithm

The pseudocode of our algorithm for equivalence checking is
given in Figure 2. The procedure check_partitions checks that
specification S represented by Part(N1),Part(N2) is correct
topologically. Namely, it checks that if outputs of subcircuit N1

i
are (not) connected to inputs of subcircuit N1

j, then outputs of
subcircuit N2

i should (not) be connected to inputs of N2
j. If this is

not true, the check_partitions procedure returns result ‘ incorrect’ .
In the main loop we compute the correlation functions

Cf(N1
i,N2

i) in topological order. (Note that in Figure 2 we denote
correlation function differently to emphasize the fact that
specification S is represented implicitly. Here Cf(N1

i,N2
i) denotes

what we previously denoted as Cf(v1(C),v2(C)) where C is the
variable associated with the output of the block of S implemented
by N1

i and N2
i.).

Before computing Cf(N1
i,N2

i) the procedure
comp_inp_corr_func forms the expression Correlation. This
expression is a conjunction of
• the correlation functions corresponding to subcircuits whose

outputs are connected to inputs of N1
i and N2

i.
• the correlation functions corresponding to the primary inputs

of N1 and N2 (if any) that are in the fanin of N1
i or N2

i.

If, for example, inputs of N1
i are connected only to outputs of

subcircuits N1
j and N1

m (and so inputs of N2
i are connected only to

outputs of N2
j and N2

m), then Correlation = Cf(N1
j,N2

j) ∧
Cf(N1

m,N2
m). On the other hand, if an input x1 of N1

i is a primary
input of N1 (and so the corresponding input x2 of N2 is a primary
input of N2), then in the conjunction of terms specifying
Correlation there is term Eq(x1,x2) describing the equivalence of
x1 and x2.

The function comp_out_corr_func computes the correlation
function Cf(N1

i,N2
i) by existentially quantifying the function

P=Implementation ∧ Correlation. The function Implementation =
F(N1

i) ∧ F(N2
i) describes consistent assignments to the variables

of N1
i and N2

i. The function Cf(N1
i,N2

i) is obtained from P by
existentially quantifying away all the variables of N1

i and N2
i

except the ones corresponding to outputs of N1
i and N2

i.
Finally, the algorithm checks if the correlation function of

subcircuits N1
k and N2

k (whose primary outputs are primary
outputs of N1 and N2) implies the equivalence function. If yes,
then N1 and N2 are equivalent. Otherwise, the algorithm returns
the ‘unsolved’ answer.

The complexity of the algorithm shown in Figure 2 is the same
as in general resolution i.e. d∗n∗36p where d is a constant. That is
for the class of formulas M(p) with the fixed value of p, the
complexity of this algorithm is linear in circuit size.

6. Conclusions

In this report, we prove the results of paper [2] without using
the notion of filtering functions. This allows us to simplify the
formulation of our theory for equivalence checking of circuits
with a common specification. Besides, we give a modified
description of the algorithm for equivalence checking of circuits
with a known specification. In this description we use only
correlation functions (omitting fitering functions) and emphasize
the fact that CS is represented implicitly.

7. References

[1] Brand, D., Verification of large synthesized designs.
Proceedings of ICCAD-1993,pp 534-537.

[2] E.Goldberg, Y.Novikov. Equivalence Checking of
Dissimilar Circuits. International Workshop on Logic and
Synthesis, May 28-30,2003,USA.

[3] E.Goldberg, What Sat-solvers can and cannot do. pp.1-43.
in Advanced Formal Verification, edited by Rolf
Drechsler,2004, Kluwer Academic Publishers.

[4] E.Goldberg, Y.Novikov. On complexity of equivalence
checking. Technical Report, CDNL-TR-2003-08026,
August, 2003.

