
On Equivalence Checking and Logic Synthesis of Circuits with a Common
Specification

Cadence Berkeley Labs

1995 University Ave.,Suite 460, Berkeley, California,94704
phone: (510)-647-2825, fax: (510)-486-0205

CDNL-TR-2004-1220
December 2004

Eugene Goldberg (Cadence Berkeley Labs), egold@cadence.com

Abstract. In this report we develop a theory of equivalence
checking and logic synthesis of circuits with a common
specification (CS). We show that two combinational circuits
N1,N2 have a CS iff they can be partitioned into subcircuits that
are connected “ in the same way” and are toggle equivalent. This
fact allows one to represent a specification of a circuit implicitly
as a partitioning into subcircuits. We give an efficient procedure
for checking if circuit N1, N2 have the same predefined
specification. As a “ by-product” , this procedure checks N1 and
N2 for functional equivalence. We show how, given a circuit N1
with a predefined specification, one can efficiently build a circuit
N2 satisfying the same specification. We give experimental
evidence that equivalence checking of N1, N2 is hard if their CS is
unknown. We also show experimentally that one can eliminate
logic redundancy of circuit N1 by building a circuit N2 that is
toggle equivalent to N1.

1. Introduction
In this report we continue developing the theory of

equivalence checking and logic synthesis of circuits with a
common specification (CS) started in [5][6][7]. A CS S of
combinational circuits N1 and N2 is just a circuit of multi-valued
gates (further referred to as blocks) such that N1 and N2 are
different implementations of S. Figure 1 gives an example.
Circuits N1 and N2 have a 3-block CS shown on the left.
Subcircuits N1

i, N2
i are different implementations of the multi-

valued block Gi of S. Circuit Nm
i (m=1,2) implements a multi-

output Boolean function whose truth table is obtained from that of
Gi by replacing values of multi-valued variables with their binary
codes. So the difference between N1

i and N2
i is in the choice of

binary encodings for the variables of S. The size of the largest
subcircuit Nm

i is called the granularity of specification S of Nm.

G 1 G 2

G 3

N 1
1 N 1

2

N 1
3

N 2
1 N 2

2

N 2
3

Figure 1. Circuits N1 and N2 with a common specification of
three blocks

There are at least four reasons why a theory of circuits with a
CS is of practical importance: a) large circuits are usually
composed of a set of meaningful subcircuits; b) the space of
implementations the same specification is very “ rich” and so this
space most likely contains implementations that are much better
than the original one; c) there is an efficient procedure for
checking if N1 and N2 implement the same predefined
specification and are functionally equivalent; d) there is an
efficient procedure to build a circuit satisfying a predefined
specification.

An example of a large combinational circuit having a high-
level structure is a multiplier that is usually specified as a network
of smaller subcircuits, adders. A sequential circuit always has a
natural partitioning into combinational subcircuits implementing
next-state functions. (Although the theory we develop in this
report targets synthesis and verification of large combinational
circuits with a high-level structure, after some modification, it can
be also applied to synthesis and verification of sequential
circuits.).

Implementations of the same specification S are different
only in the choice of encodings. A k-output subcircuit can be
considered as an implementation of a 2k-valued function. The

number of different k-bit encodings of a 2k-valued variable is
(2k)! . This number is very large even for very small values of k.
So even for a specification S of very small granularity, the space
of implementations is huge.

One of the problems one has to face when building a circuit
N2 that is another implementation of a specification S of N1 is the
increasing complexity of equivalence checking (EC). Since N1 and
N2 may not have any functionally equivalent internal points, their
equivalence cannot be, in general, efficiently checked by the
existing algorithms. (The most efficient equivalence checkers
heavily rely on existence of functionally equivalent internal
points.) Fortunately, in [5][6] it was shown that if a CS S of N1
and N2 is known, there is an efficient procedure for EC of N1 and
N2. The most advanced version of this procedure was given in [7].
The advantage of the procedure of [7] is that one does not need to
know either the functionality of multi-valued blocks or binary
encodings. A CS S of N1 and N2 is represented as partitioning of
N1 and N2 into subcircuits. This procedure has exponential
complexity in the granularity of the CS S of N1 and N2 and linear
complexity in the number of subcircuits (i.e. blocks of
specifications). So if one considers only EC of circuits N1, N2 with
a CS of granularity bounded by a constant, the complexity of the
procedure of [7] is linear in circuit size.

The flaw of the procedure of [7] is in its relying on the
assumption that the specifications S1 of N1 and S2 of N2
represented by the corresponding partitions are identical i.e.
S1=S2=S. In this report, we show that circuits N1 and N2 have a
CS of a specified topology T iff they can be partitioned into
subcircuits N1

1,.., N1
k and N2

1,.., N2
k that are connected as

described by T and if N1
j and N2

j are toggle equivalent j=1,..,k. We
also modify the procedure of [7] so that now it not only checks if
N1 and N2 are functionally equivalent but also tests if the
specification of N1 and that of N2 are identical. The modified
procedure has the same complexity as that of [7].

As it was mentioned above the space of implementations of a
specification S is huge even if S has small granularity. So, given
an implementation N1 of specification S that does not satisfy
necessary requirements, there is a good chance to find an
implementation N2 of S that will meet our requirements. The
notion of toggle equivalence is key in building such a circuit N2.
In this report, we show that if S is specified as a partitioning of N1
into subcircuits N1

1,.., N1
k, to build N2 it is sufficient to replace

each subcircuit N1
i with its toggle equivalent counterpart N2

i.
The importance of the notion of toggle equivalence it that it

allows one to reencode multi-valued variables implicitly without
any knowledge of the functionality of multi-valued blocks and/or
binary encodings of multi-valued variables. One reason why re-
encoding of multi-valued variables implicitly is a good idea is
that the domain of a multi-valued variable may be too large to be
handled explicitly. (For example, a 20-output subcircuit of N1 can
be considered as an implementation of a multi-valued block
whose output variable takes up to 220 values.) Another important
reason for using implicit reencoding is that it is hard to “guess” a
good encoding at the level of multi-valued blocks. Besides, when
re-encoding a multi-valued variable it is reasonable to try to
improve the current encoding rather than start building a new
encoding from scratch. This can be done if one finds a way to
modify a circuit implementing a multi-valued function in such a
way that the modified circuit is still an implementation of this
function.

In this report, we show that if two multi-output subcircuits N
and N′ are toggle equivalent, they are implementations of the
same multi-valued function. This means that if N is an
implementation of a multi-valued function g and we want to re-
encode the output variable of g it sufficient to synthesize a circuit
N′ that is toggle equivalent to N. If circuit N has k outputs it
means that by building the circuit N′ we reencode a variable
taking up to 2k values. Besides, if, when building the circuit N′
one optimizes N (rather than builds N′ from scratch), the new
encoding is obtained by “ improvement” of the previous encoding
rather than by building a completely new one.

The report is structured as follows. Section 2 introduces the
notion of toggle equivalence of Boolean functions. In Section 3
we show that circuits N1 and N2 have a CS iff they can be
partitioned into toggle equivalent subcircuits that are connected
“ in the same way” in N1 and N2. In Section 4 we give a procedure
for checking if a CS of N1, N2 is correct. In Section 5 we explain
why EC of circuits with unknown CS is hard. In Section 6 we
discuss logic synthesis of circuits preserving a predefined
specification. In Section 7 we give experimental evidence that EC
of circuits with unknown CS is hard. Besides, we show that one
indeed can use toggle equivalence for logic optimization. In
Section 8 we discuss what else needs to be done to make logic
synthesis preserving high-level specification possible. Finally, we
draw some conclusions in Section 9.

2. Toggle equivalence of Boolean functions
In this section, we introduce the notion of toggle

equivalence. We also show that toggle equivalent Boolean
functions can be considered as different implementations of the
same multi-valued function.

2.1 Toggle equivalence of functions with
identical sets of var iables
Definition 1. Let f1:{ 0,1} n → { 0,1} m and f2 { 0,1} n → { 0,1} k be
m-output and k-output Boolean functions of the same set of
variables. Functions f1 and f2 are called toggle equivalent if f1(x)
≠ f1(x′′′′) ⇔ f2(x) ≠ f2(x′′′′). Circuits N1 and N2 implementing toggle
equivalent functions f1 and f2 are called toggle equivalent
circuits.

Informally, toggle equivalence means that for any pair of
input vectors x, x′′′′ for which at least one output of f1 “ toggles” ,
the same is true for f2 and vice versa.

Definition 2. Let f be a multi-output Boolean function of n
variables. Denote by Part(f) the partition of the set { 0,1} n into
disjoint subsets B1,…,Bk such that f(x) = f(x′′′′) iff x, x′′′′ are in the
same subset Bi.
Proposition 1. Two Boolean functions f1 and f2 are toggle
equivalent iff Part(f1)=Part(f2) i.e. iff for each element Bi of the
partition Part(f1) there is an element B′j of the partition Part(f2)
such that Bi=B′j and vice versa.
Proof. If f1 and f2 are toggle equivalent, there cannot be a pair of
vectors x, x′′′′ such that x, x′′′′ are in the same subset of one partition
and in different subsets of the other partition. (Because that would
mean that one function produces two identical output assignments
while the other function toggles.)

Proposition 2. Let f1 and f2 be toggle equivalent single output
Boolean functions. Then f1=f2 or f1=~f2 where ‘~’ means
negation.

Proof. From Proposition 1 it follows that Part(f1)=Part(f2). Since
f1, f2 are single output Boolean functions, Part(f1) and Part(f2)
consist of two elements each. So f1=f2 or f1=~f2.

Definition 3. A multi-output Boolean function f of multi-valued
variables is called an implementation of a multi-valued function
F, if the truth table of f can be obtained from that of F in the
following two steps
1) Replace the values of multi-valued variables of F with their
codes (we assume that different values of a variable are assigned
different codes);
2) Fill in the empty rows (if any) of the truth table with arbitrary
Boolean vectors.
Proposition 3. Let f1 and f2 be toggle equivalent. Then f1 and
f2 are two different implementations of the same multi-valued
function of Boolean variables.
Proof. According to Proposition 1, Part(f1)=Part(f2). Let
Part(f1), Part(f2) consist of k elements each. Then f1 and f2 are
implementations of the function F: { 0,1} n → { 1,..,k} where
F(x)=m, iff x ∈ Bm, i.e. iff x is in the m-th element Part(f1).

Proposition 3 is of great importance because it shows how
one can reencode multi-valued variables implicitly. Suppose, a
multi-output circuit N1 implements a multi-valued function F and
we want to reencode F. Synthesizing a circuit N2 that is toggle
equivalent to N1 we obtain a new implementation of F. That is we
reencode the output multi-valued variable of F not even knowing
the binary encodings used to obtain N1 and N2 from F.

2.2 Toggle equivalence of functions with
different sets of var iables

In this subsection, the notion of toggle equivalence is
extended to the case of Boolean functions with different sets of
variables that are related by constraint functions.

Definition 4. Let X and Y be two disjoint sets of Boolean
variables (the number of variables in X and Y may be different).
A function Cf(X,Y) is called a correlation function if there are
subsets AX ⊆ { 0,1} |X| and AY ⊆ { 0,1} |Y| such that
1) | AX | = | AY | and
2) Cf(X,Y) specifies a bijective mapping M: AX → AY. Namely
Cf(x, y)=1 iff x ∈∈∈∈ AX and y ∈ AY and y = M(x).
Remark 1. Informally, Cf(X,Y) is a correlation function if it
specifies a bijective mapping between a subset AX of { 0,1} |X| and
a subset AY of { 0,1} |Y|. So one can view Cf(X,Y) as relating two
different encodings of a |AX| – valued variable.

As Proposition 4 below shows, one can check if a Boolean
function H(X,Y) is a correlation one without explicitly finding
subsets AX and AY.

Proposition 4. Let X and Y be two disjoint sets of Boolean
variables. A Boolean function H(X,Y) is a correlation one iff the
following two conditions hold:
1). There do not exist three vectors x, x′′′′, y (where x, x′′′′ are
assignments to variables X and y is an assignment to variables Y)
such that x ≠ x′ and H(x, y)=H(x′, y)=1.
2) There do not exist three vectors x, y, y′′′′ such that y ≠ y′ and
H(x, y)=H(x, y′′′′)=1.

Proof. Only if part. If H(X,Y) is a correlation function, the fact
that conditions 1) and 2) hold, follows from Definition 4.

If part. If conditions 1) and 2) hold then, H(X,Y) specifies a
bijective mapping between subsets AX and AY defined in the
following way. Subset AX consists of all the assignments x ∈
{ 0,1} |X| such that H(x, y)=1 for some y ∈ { 0,1} |Y|. Subset AY
consists of all the assignments y ∈ { 0,1} |Y| such that H(x, y)=1 for
some x ∈ { 0,1} |X|.

Remark 2. Checking if H(X,Y) is a correlation function reduces
to two satisfiability checks. Checking condition 1) of Definition 4
reduces to testing the satisfiability of the expression H(X,Y) ∧
H(X′,Y′) ∧ Neq(X,X′) ∧ Eq(Y,Y′). Here H(X′,Y′) is a “copy” of
H(X,Y) where variables of X′,Y′ are independent of those of X,Y.
Neq(x, x′) is equal to 1 iff x ≠ x′′′′. Function Eq(Y,Y′) is the
negation of Neq(Y,Y′). Checking condition 2) of Definition 4
reduces to testing the satisfiability of H(X,Y) ∧ H(X′,Y′) ∧
Eq(X,X′) ∧ Neq(Y,Y′). If both expressions are constant 0, then H
is a correlation function.

Our definition of correlation function is different from the
one given in [6] but serves the same purpose of relating two
encodings of a multi-valued variable.

Definition 5. Let f1:{ 0,1} n → { 0,1} m and f2:{ 0,1} p → { 0,1} k be
m-output and k-output Boolean functions and X and Y specify
their sets of Boolean variables where |X|=n and |Y|=p. Let
Dinp(X,Y) be a Boolean function. Functions f1 and f2 are called
toggle equivalent under constraint function Dinp(X,Y) if (f1(x) ≠
f1(x′′′′) ∧ (Dinp(x,y)= Dinp(x′′′′, y′′′′)=1)) � (f2(y) ≠ f2(y′′′′) and vice
versa (f2(y) ≠ f2(y′′′′) ∧ (Dinp(x,y)=Dinp(x′′′′, y′′′′)=1)) � f1(x) ≠ f1(x′′′′).
Proposition 5. Let X,Y be sets of Boolean variables and
{ X1,..,Xs} and { Y1,..,Ys} be partitions of X and Y respectively. Let
Cf(X1,Y1),..,Cf(Xs,Ys) be correlation functions. Let f1(X) and f2(Y)
be toggle equivalent under the constraint function
Dinp(X,Y)=Cf(X1,Y1) ∧ … ∧ Cf(Xs,Ys). Then f1 and f2 are
implementations of the same multi-valued function of s multi-
valued variables.
Proof follows from Proposition 3 and Remark 1.

2.3 Testing toggle equivalence
In this subsection, we show how one can check if multi-

output Boolean circuits N1 and N2 are toggle equivalent. Namely
we show that checking the toggle equivalence of N1 and N2
reduces to testing if function Dout(N1, N2) specified by Definition
8 (see below) is a correlation one. This test can be performed by
two satisfiability checks as described in Remark 2.

Definition 6. Let N be a Boolean circuit. Denote by v(N) be the
set of Boolean variables associated either with the output of a
gate or a primary input of N . Denote by Sat(v(N)) the Boolean
function such that Sat(z)=1 iff the assignment z to variables v(N)
is “possible” i.e consistent. For example, if circuit N consists of
just one AND gate y=x1 ∧ x2, then v(N)={ y, x1,x2} and Sat(v(N))=
(~x1∨ ~x2 ∨ y) ∧ (x1 ∨ ~y) ∧ (x2 ∨ ~y).
Definition 7. Let f be a Boolean function. We will say that
function f* is obtained from f by existentially quantifying away
variable x if f* = f(…,x=0,…) ∨ f(…,x=1,….).
Definition 8. Let N1 and N2 be Boolean circuits whose inputs
are specified by set of variables X and Y respectively. Let
Dinp(X,Y) be a Boolean function. Denote by Dout(N1, N2) the
Boolean function obtained from the Boolean function H, where
H=Sat(v(N1)) ∧ Sat(v(N2)) ∧ Dinp(X,Y), by existentially

quantifying away all the variables of H but the output variables of
N1 and N2.

Proposition 6. Let N1 and N2 be Boolean circuits with input
variables specified by sets X, Y respectively. Let Dinp(X,Y) be a
Boolean function relating X and Y. Let Dinp(X,Y) be a correlation
function. Then N1 and N2 are toggle equivalent under constraint
function Dinp(X,Y) iff the function Dout(N1,N2) specified in
Definition 8 is also a correlation function.
Proof. Only If part. Let N1 and N2 be toggle equivalent. Then
Dout(N1,N2) satisfies either condition of Proposition 4 and hence it
is a correlation function. For example, there cannot exist Boolean
vectors z, z′′′′ and h (where z � z′′′′ and z, z′′′′ are output assignments
of N1 and h is an output assignment of N2) such that
Dout(z,h)=Dout(z′′′′,h)=1. Indeed, it would mean that there exist pairs
of vectors x, y and x′′′′, y′′′′ such that a) z=N1(x), z′′′′ = N2(x′′′′) and
h = N2(y)=N2(y′′′′);b) Dinp(x, y)=1 and Dinp(x′′′′, y′′′′)=1; c) x � x′′′′
and y � y′′′′ ; d) N1(x)� N1(x′′′′) while N2(y) = N2(y′′′′). But this is
impossible since N1 and N2 are toggle equivalent.

If part can be proven in a similar manner.

3. Common specification and toggle
equivalence

In this section, we show that the existence of a CS of single
output combinational circuits N1 and N2 means that N1, N2 can be
partitioned into toggle equivalent subcircuits that are connected in
N1 and N2 “ in the same way” . The main result of this section is
formulated in Proposition 7.

Definition 9. Let N = (V,E) be a DAG representing a Boolean
circuit (here V,E are sets of nodes and edges of N respectively.) A
subgraph N*=(V*, E*) of N is called a subcircuit if the following
two conditions hold:
a) if g1, g2 are in V* and there is a path from g1 to g2 in N, then all
the nodes of N that on that path are in V* ;
b) if g1, g2 of V* are connected by an edge in N, then they are also
connected by an edge in N*.

Figure 2. I llustration to Definition 12

Definition 10. Let N* be a subcircuit of N. An input of a gate g
of N* is called an input of N* if it is not connected to the output
of some other gate of N*. The output of a gate g is called an
output of subcircuit N* if a) it is the primary output of N; b) it is
connected to an input of a gate of N that is not in N*.
Definition 11. Let a Boolean circuit N be partitioned into k
subcircuits N 1, ..., N k . Let T be a directed graph of k nodes such
that nodes Gi and Gj of T are connected by a directed edge (from
ni to nj) iff an output of N i is connected to an input of N k in N. T

is called the communication specification corresponding to the
partition N 1, ..., N k . The partition N 1, ..., N k is called
topological if T is a DAG (i.e. if T does not contain cycles)

Figure 3. Example of circuits N1 and N2 with a CS

Definition 12. Let T be the communication specification of
circuit N with respect to a topological partition N 1, ..., N k. Let Gi
be the node of T corresponding to subcircuit N i. The length of the
longest path from an input of T to Gi is called the level of Gi and
N i (denoted by level(Gi) and level(N i) respectively).
Definition 13. Let N1

1, ...,N1
k and N2

1, ..., N2
k be topological

partitions of single output Boolean circuits N1, N2. Let
communication specifications of N1 and N2 with respect to
partitions N1

1, ..., N1
k and N2

1, ..., N2
k be identical. Denote by

Dout(N1
m,N2

m), m=1,…, k functions computed by induction in
topological levels. Namely, we first compute functions Dout for the
subcircuits of level 1, then for those of level 2 and so on.
Function Dout(N1

m, N2
m) is obtained from function H=Sat(v(N1

m))
∧ Sat(v(N2

m)) ∧ Dinp(N1
m, N2

m) by existentially quantifying away
all the variables except the output variables of N1

m, N2
m. The

function Dinp(N1
m, N2

m) is equal to Dout(N1
m1, N2

m1) ∧ …. ∧
Dout(N1

ms, N2
ms) ∧ Eq(xm1, ym1) ∧…∧ Eq(xmr, ymr). Here N1

m1,
,.., N1

ms, N2
m1,.., N2

ms are the s subcircuits (if any) whose outputs
are connected to inputs of N1

m, N2
m respectively. (See illustration

in Figure 2.) Variables xm1,…, xmr, ym1,.., ymr are the r primary
input variables of N1 and N2 (if any) that feed N1

m and N2
m

respectively. Function Eq(xmt,ymt), 1 ≤ t ≤ r is equal to 1 iff xmit is
equal to ymt.

Proposition 7. Let N1, N2 be two functionally equivalent single
output circuits. Let T be a DAG of k nodes. Circuits N1 and N2 are
implementations of a specification S whose topology is given by T
iff there is a partitioning Spec(N1) = { N1

1, ..., N1
k} of N1 and a

partitioning Spec(N2) = { N2
1, ..., N2

k} of N2 into k subcircuits
such that
a) Communication specifications T1,T2 of N1 and N2 with respect
to partitionings Spec(N1), Spec(N2) are equal to T;

b) Each pair of circuits N1
m, N2

m is toggle equivalent under
constraint function Dinp(N1

m, N2
m) specified by Definition 12.

Sketch of the proof. If part. It is proven by induction (in levels)
using Proposition 5 and Proposition 6. Only if part is proven by
induction using the fact that two Boolean functions implementing
the same multi-valued function are toggle equivalent.

Example. An example of circuits with a CS of three blocks is
shown in Figure 3. Circuit N1 (at the top) and N2 (at the bottom)
have the same communication specification (shown in Figure 1 on
the left side). Subcircuits N1

1, N1
2 (outlined by the dotted line) are

toggle equivalent to subcircuits N2
1, N2

2 respectively in terms of
their inputs related by the constraint functions Dinp(N1

1, N2
1)

=Eq(x1, y1) ∧ Eq(x2, y2) ∧ Eq(x3, y3) and Dinp(N1
2, N2

2) =Eq(x3, y3)
∧ Eq(x4, y4) ∧ Eq(x5, y5) respectively.

Consider, for example subcircuits N1
1 and N2

1. For the pair of
input assignments (x1=0, x2=1, x3=0) and (x1=0, x2=1, x3=1) the
outputs of N1

1 take values (w1=1,w2=1,w3=1) and
(w1=0,w2=1,w3=1) respectively i.e. N1

1 toggles. For the pair of the
corresponding input assignments (y1=0, y2=1, y3=0) and (y1=0,
y2=1, y3=1) the outputs of N2

1 take values (v1=0,v2=1) and
(v1=1,v2=0) respectively. So N2

1 toggles as well. On the hand for
the pair of input assignments (x1=0, x2=0, x3=0) and (x1=1, x2=0,
x3=0) the outputs of N1

1 take the same assignment
w1=1,w2=1,w3=0 and hence N1

1 does not toggle. For the
corresponding pair of input assignments (y1=0, y2=0, y3=0) and
(y1=1, y2=0, y3=0) the outputs of N2

1 take the same value
(v1=0,v2=0). So N2

1 does not toggle either.

It is not hard to check that subcircuits N1
3 and N2

3 are toggle
equivalent in terms of their local inputs related by the constraint
function Dinp(N1

3, N2
3)=Dout(N1

1, N2
1) ∧ Dout(N1

2, N2
2). The

functions Dout(N1
1, N2

1), Dout(N1
2, N2

2) are obtained as described
in Definition 13.

4. A Procedure for checking if a common
specification of two circuits is correct

In this section, we describe a procedure for checking if a
predefined CS of circuits N1,N2 is correct. We will refer to this
procedure as Common Specification Verification (CSV). As a
“by-product” , our CSV procedure checks if N1,N2 are functionally
equivalent.

The EC procedure for circuits N1, N2 with a CS introduced in
[6] and modified in [7] essentially uses an implicit representation
of this CS as partitions of N1 and N2. Proposition 7 allows one to
modify this procedure so that in addition to EC it also checks the
correctness of the CS. The pseudocode of the CSV procedure is
shown in Figure 4.

The procedure topol_partition checks if Spec(N1) and
Spec(N1) are topological partitions (see Definition 11). The

procedure equiv_commun_specs checks if communication
specifications T1 of N1 with respect to Spec(N1) and T2 of N2 with
respect to Spec(N2) are identical.

In the main loop, functions Dout(N1
i,N2

i) are computed in
topological order as described in Definition 12. Before computing
Dout(N1

i,N2
i) the procedure constr_func forms the expression Dinp

(see Definition 13).

/* --- Spec(N1)= { N1

1,..,N1
k} ,Spec(N2)= { N2

1,..,N2
k} ---* /

CSV(N1, N2, Spec(N1),Spec(N2)) {
 if (topol_partition(N1,N2,Spec(N1),Spec(N2)) == ‘no’)
 return(‘CS_check_failure’);

 if (equiv_commun_specs(N1,N2,Spec(N1),Spec(N2)) == ‘no’)
 return(‘CS_check_failure’);

 for (i=1; i <= k ; i++) {
 Dinp = constr_func(N1

i,N2
i,N1,N2);

 Dout(N1
i, N2

i) = exist_quantify(N1
i,N2

i, Dinp);
 if (correlation_function(Dout) == ‘no’)
 return(‘CS_check_failure’);}

 if (Dout(N1

k, N2
k) implies equivalence_ function)

 return(‘equivalent’);
 else
 return(‘CS_check_failure’);}

Figure 4. Pseudocode of the CSV procedure

The function exist_quantify existentially quantifies away from
the function H=Sat(v(N1

m)) ∧ Sat(v(N2
m)) ∧ Dinp all the variables

except the output variables of N1
i and N2

i. Then the
correlation_function procedure checks if the result of
quantification Dout is a correlation function. The check is
performed as described in Remark 2.

Finally, the CSV procedure checks if the correlation function
of subcircuits N1

k and N2
k (whose primary outputs are primary

outputs of N1 and N2) implies the equivalence function Eq(y, z).
(Here y, z are Boolean variables associated with the outputs of N1
and N2 respectively). If so, then N1 and N2 are declared equivalent.
Otherwise, the CSV procedure returns the ‘CS_check_failure’
answer. This answer is also returned if any of the checks
performed by topol_partition, equiv_commun_specs and
correlation_function fails.
Definition 14. Let N be a circuit with a specification S
represented by partition Spec(N)={ N 1..,N

k} . The granularity of
specification S for N is the size (i.e. the number of gates) of the
largest subcircuit N

j, j=1,..,k.

Definition 15. Let N1 and N2 be implementations of the same
specification S. Let p1 and p2 be granularities of specification S for
N1 and N2 respectively. We will call the maximum of p1 and p2 the
granularity of the CS S of N1, N2.

The CSV procedure is exponential in the granularity p of CS S
of N1, N2 and is linear in the number of blocks of S i.e. in the
number of subcircuits in Spec(N1), Spec(N2). The exponentiality
in p is due to procedures exist_quantify and correlation_function.
The reason why the CSV procedure is exponential only in p and
not in the circuit size is that the two exponential procedures above
are applied only to subcircuits N1

i, N2
i whose size is bounded by p.

Suppose that the value of p is bounded by a constant (i.e. circuits
N1, N2 can be of arbitrary size but the granularity of their CS is
bounded). Then the CSV procedure proves the equivalence of

specifications Spec(N1) and Spec(N2) (and hence functional
equivalence of N1 and N2) in linear time in the circuit size.

5. Equivalence checking of circuits with
unknown specification
Note that the efficiency of our CSV procedure is due to the fact
that a CS specification of N1 and N2 (represented by Spec(N1) and
Spec(N2)) is known. A natural question to ask is as follows.
Suppose circuits N1, N2 have a CS specification S of small
granularity p. Is there an efficient procedure for EC of N1, N2 if S
is unknown (i.e we do not know the partitions Spec(N1) and
Spec(N2) representing S)? In [6][5] it was conjectured that in that
case EC of N1,N2 is hard for any deterministic algorithm. The
new (and equivalent) definition of CS given in this report allows
one to get a better perspective on the problems one has to solve
when checking N1,N2. for equivalence.

One way to do the job is to find Spec(N1) and Spec(N2) and
apply the CSV procedure. This approach is very similar to what
the existing EC procedures exploiting structural similarity of
N1, N2 do ([1][2][3][8][9][11]). Namely, they try to find pairs of
functionally equivalent points of N1,N2 and use them as cut
points. Then new points of N1,N2 that are functionally equivalent
in terms of cut points are looked for. The idea is that checking
functional equivalence of internal points of N1,N2 in terms of cut
points is much easier than in terms of primary inputs. This
approach faces the following two problems. The first problem is
to find new potential cut points (i.e. to find points of N1,N2 that
are functionally equivalent). The second problem is to decide
whether two functionally equivalent internal points can be used as
cut points. Making a wrong decision here leads to the appearance
of so called “ false negatives” .

One can view the “cut advancement” approach above as search
for a CS of N1,N2 of a special type where every subcircuit of
Spec(N1) and Spec(N2) has exactly one output. However, if one try
to extend this approach to CSs of the general type (where
subcircuits of Spec(N1) and Spec(N2) may have many outputs), the
two problems mentioned above become virtually unsolvable. In
the case of multi-output subcircuits, functional equivalence is
replaced with toggle equivalence. Let the granularity p of a CS of
N1, N2 be equal to 10. (So the subcircuits of Spec(N1) and Spec(N-
2) may have up to 10 outputs.) Then the number of candidate
subcircuits in N1 and N2 is proportional to |N1|

10 and |N2|
10

respectively where |Nj| is the size of Nj. The number of potential
pairs of subcircuits to examine is proportional to |N1|

10∗|N2|
10. But

even if one finds subcircuits N1
i, N2

i of size less or equal to 10
that are toggle equivalent, one still needs to decide if the outputs
of N1

i,N2
i can be used as cut points. That is one needs to decide

whether N1
i, N2

i are toggle equivalent “by chance” or they are a
part of a CS. Since the number of candidates is huge, making a
mistake becomes unavoidable.

One can also try to perform EC of N1 and N2 by a procedure
like recursive learning [10] that does not need the knowledge of a
CS. The problem is that to prove N1 N2 to be equivalent, one
needs to derive relations between 2∗p Boolean variables. If a CS
of N1, N2 is not known, the number of relations one needs to
derive in the worst case is proportional to (|N1|+|N2|)

2∗p, which
makes such a procedure computationally infeasible.

6. On logic synthesis of circuits preserving
predefined specification

In this section we describe a procedure that, given a circuit
N1 with a known specification, builds another circuit N2
implementing the same specification as N1.

Let N1 be a Boolean circuit that needs to be optimized. Let S be
a specification of N1 represented as Spec(N1)= { N1

1,..,N1
k} .

Figure 5 shows pseudocode of a procedure for generating a circuit
N2 that implements the same specification as circuit N1. We will
refer to it as Specification Preserving (SP) procedure. We assume
that subcircuits N1

1,.., N1
k are numbered in topological order i.e.

for every pair i,j such that i < j � level(N1
i) ≤ level(N1

j).

Synthesize(N1, Spec(N1),cost_functions) {
 for (i=1; i <= k ; i++) {
 Dinp= constr_func(N1

i,N2
i,N1,N2);

 N2
i = synth_toggle_equivalent(N1

i, Dinp,cost_functions)
 Dout(N1

i, N2
i) = exist_quantify(N1

i,N2
i, Dinp); }

return(N2,Spec(N2))}
Figure 5. Pseudo code of the SP procedure

The idea of the SP procedure is to replace subcircuits
{ N1

1,.., N1
k} with toggle equivalent subcircuits { N2

1,.., N2
k} in

topological order moving from inputs to outputs. The SP
procedure returns circuit N2 implementing the same specification
as N1. Circuit N2

i toggle equivalent to N1
i is built by the

synth_toggle_equivalent procedure. (Section 7 gives an example
of such a procedure.) After N2

i is synthesized we compute the
correlation function Dout(N1

i,N2
i) using previously computed

functions Dout exactly as it is done by the CSV procedure. (Note
that since N1

i, N2
i are toggle equivalent “by construction” ,

Dout(N1
i,N2

i) is a correlation function.)
The importance of the SP procedure is twofold. First, the

complexity of the SP procedure is the same as that of the CSV
procedure. Namely, it is exponential in the granularity p of the CS
of N1, N2 represented by Spec(N1),Spec(N2) and linear in the
number of subcircuits in Spec(N1) and Spec(N2). (Here we make a
realistic assumption that synth_toggle_equivalent is “only”
exponential in p). This means that if p is fixed, the SP procedure
is linear in circuit size and hence it is scalable.

Second, the SP procedure allows one to make a nice trade-off
between optimization quality and efficiency. Note that the search
space explored by the SP procedure is limited to the
implementations of the specification of N1 represented by
Spec(N1). The smaller the granularity of specification S of N1 is,
the smaller the search space is, which implies greater efficiency
of the SP procedure. So, if no good alternative implementation N2
of S is found for the current specification of N1, one can merge
some adjacent subcircuits of Spec(N1) to get a specification with
a larger value of granularity for N1 . This way the search space
becomes larger at the expense of performance degradation of the
SP procedure.

7. Exper imental Results
In this section, we give some experimental results. In

Subsection 7.1 we show that equivalence checking even of very
similar circuits N1 N2 (i.e. circuits having a CS of small
granularity) is hard if this CS is not known. In Subsection 7.2 we
use MCNC benchmarks to show that one can optimize a medium

size circuit N1 by removing logical redundancy and obtaining
another (smaller) circuit N2 that is toggle equivalent to N1.

7.1 Equivalence checking
In the experiments we compared the performance of two EC

algorithms: our CSV procedure shown in Figure 4 and an
Industrial Equivalence Checker (referred to as IEC) of very high
quality. Both algorithms were run on a 3.06 GHz Xeon PC.

 In the experiments we checked for equivalence circuits
obtained from a specification given as a combinational circuit of
multi-valued blocks. The number of values taken by the variables
of a block was parameterized. Circuits N1, N2 to be checked for
equivalence were obtained from a specification using two sets of
random encodings of the minimum (logarithmic) length.

Table 1. EC of circuits obtained from 4-valued specifications

Name # blocks in
CS

CSV
 (sec.)

IEC
(sec.)

Ratio
(IEC / CSV)

des1 705 0.4 3 7

des2 2,562 2 14 7

des3 3,519 3 281 94

des4 8,628 14 308 22

des5 9,027 16 543 34

des6 10,572 20 534 27

The goal of experiments was twofold. First we wanted to show
that EC of circuits with a CS S of even small granularity is hard if
S is unknown. Second, we wanted to demonstrate that this
weakness of current EC algorithms hinders the development of
more powerful synthesis procedures. (Even though we obtained
circuits N1, N2 by explicitly encoding multi-valued variables of
specification, circuit N2 could have been obtained from N1 by the
synthesis procedure described in Section 6.)

In Table 1 we consider specifications with blocks of 4-valued
variables. Second column gives the number of blocks for each
design. Third and fourth columns give runtimes for CSV and
IEC. The last column gives the ratio of runtimes.

Table 2. EC of circuits obtained from 8-valued specifications

Name # blocks in
CS

CSV
(sec.)

IEC
(sec.)

Ratio
(IEC / CSV)

des1 705 5 16,948* > 3,390

des2 2,562 19 24,638* > 1,297

des3 3,519 29 >36,000 > 1,241

des4 8,628 107 26,758 250

des5 9,027 111 >36,000 > 324

des6 10,572 141 27,391 194

In Table 2 we consider the same specifications (i.e. the

topology of corresponding specifications was the same) of 8-
valued blocks. Hence the granularity of CSs of binary circuits
obtained by encoding multi-valued variables was slightly larger
than for binary circuits of Table 1. Runtimes of IEC marked with

‘ *’ correspond to the cases where IEC aborted without completion
(due to exhausting some internal resource).

For the circuits from both tables CSV was faster than IEC.
However the gap between the performance of CSV and IEC
increased dramatically as the granularity of CSs had grown. IEC
was able to complete all the instances of Table 1 in a reasonable
time. On the other hand, it completed only 2 equivalence checks
for the circuits of Table 2 and took dramatically more time.

7.2 Toggle equivalence based redundancy
removal

The goal of experiments described in this subsection was
twofold. First, we wanted to show that one can efficiently check
toggle equivalence of two practical circuits of medium size.
Second, we wanted to demonstrate that one can use the notion of
toggle equivalence for logic optimization.

In Section 6 we described a method of logic synthesis that
preserves a predefined specification. The key procedure of the
algorithm shown in Figure 5 is synth_toggle_equivalent. Given
a subcircuit N1

i and a cost function, this procedure builds another
subcircuit N2

i that is toggle equivalent to N1
i and is optimized with

respect to this cost function. In this subsection we give an
example of such a procedure. This procedure is based on stuck-at
fault redundancy removal. Suppose that N1 is a multi-output
circuit to be optimized (for the sake of simplicity, in this section
we drop superscripts from the symbols denoting subcircuits with
the exception of the last few paragraphs). Suppose that N2 is the
circuit obtained from N1 by setting to a constant a ∈ { 0,1} the line
connecting the output of a gate gi of N1 to an input of gate gk of
N1. Suppose N2 and N1 are functionally equivalent. This means
that one can remove the connection between gates gi and gk and
set the corresponding input of gk to the constant a without
changing the functionality of N1 (which means that N1 has some
logic redundancy).

Suppose however that we relax the requirement of preserving
the functional equivalence of N1 and N2. In other words, suppose
that after setting the output of the gate gk to a constant (as
described above) we get a circuit N2 that is toggle equivalent to
N1. Setting a line to a constant can be considered as an example
of transformations that can be used by the procedure
synth_toggle_equivalent above. On the one hand, by removing
redundancies that preserve toggle equivalence (but may break
functional equivalence) we optimize circuit N1. On the other hand
we build a circuit that is toggle equivalent to N1. Since functional
equivalence is a special case of toggle equivalence, logic
redundancy removal that preserves toggle equivalence is a more
powerful optimization technique than its counterpart preserving
functional equivalence.

In this subsection, we test logic redundancy of some MCNC
benchmarks with respect to toggle equivalence. But first we show
how one can check toggle equivalence of the original and faulty
circuits. To check if circuits N1 and N2 are toggle equivalent one
can use the method described in Proposition 6. Let us assume for
the sake of clarity that N1 and N2 have the same set of input
variables X={ x1,.., xn} . Then to check if N1 and N2 are toggle
equivalent one can a) existentially quantify away from the
function H(N1, N2) = Sat(v(N1) ∧ Sat(v(N2)) all the variables
except the output variables of N1 and N2; b) check if the function
obtained from H after existential quantification is a correlation
function as described in Remark 2. However, it is not hard to see

that one can check N1 and N2 for toggle equivalence without
existential quantification.

Let Y={ y1,…, ym} and Z={ z1,.., zk} be the sets of output
variables of N1 and N2 respectively. Then checking if N1 and N2
are toggle equivalent reduces to two SAT checks similar to those
of Remark 2. The first check is to test if the function
H1 = H(N1, N2) ∧ H(N* 1, N* 2) ∧ Neq(Y,Y*) ∧ Eq(Z,Z*) is
satisfiable. Here N*1 and N*2 are copies of circuits N1 and N2,
with input variables represented by X*={ x*1,.., x*n} and their
output variables represented by Y*={ y* 1,…, y* m} and
Z*= { z* 1,.., z* k} respectively (see Figure 6). The value of
Eq(z, z*) where z and z* are assignments to Z and Z* respectively
is equal to 1 iff z=z* . The function Neq(Y, Y*) is the negation of
Eq(Y,Y*). The second SAT check is to test if the function H2 =
H(N1, N2) ∧ H(N* 1, N* 2) ∧ Eq(Y,Y*) ∧ Neq(Z,Z*) is satisfiable.

 Circuits N1 and N2 are toggle equivalent iff H1 and H2 are
unsatisfiable. For example, if N1 is satisfiable, then there is a pair
of assignments x, x* to variables X and X* respectively such that
N1 and N*1 produce different output assignments while N2 and
N*2 produce the same assignment (which means that N1 toggles
and N2 does not).

N1

....
x1

xn

....y1 ym

N2

....
x1

xn

....z1 zk

N*1

....
x*1 x*n

....y*1 y*m

N*2

....
x*1

x*n

....z*1 z*k

Figure 6. Two copies of N1 and N2 one needs for checking

their toggle equivalence

Table 3 gives results of redundancy removal for MCNC
benchmarks. In the first column the names of the MCNC
benchmarks we used in experiments are shown. First, initial
MCNC benchmarks were technology mapped to obtain circuits
consisting of two input NAND gates. The technology mapping
was performed by the “ tech_decomp” command of the logic
synthesis system SIS [10]. The size of obtained circuits (number
of inputs, outputs and gates) is shown in columns 2-4. Then the
circuits were optimized by removing stuck-at fault redundancy as
described above. This optimization was performed by running the
“ red_removal” command of SIS. The size of optimized circuits is
shown in the column “ final number of gates” of Table 3. Note
that the resulting circuits do not contain untestable stuck-at faults
any more. The last column of Table 3 shows the number of
untestable stuck-at faults with respect to toggle equivalence
circuits still have after removing all the single stuck-at faults with
respect to functional equivalence. This column shows that more
than one-third of circuits still have stuck-at faults that are
untestable with respect to toggle equivalence and some circuits
(like vda, x1,K2) can be significantly optimized by removing this
redundancy.

To check toggle equivalence of original and faulty circuits we
ran two SAT checks as described above. The SAT checks were
performed by the SAT-solver BerkMin [4] . Table 4 gives some

 Table 3. Redundancy removal from MCNC

benchmarks

name #in-
puts

#out-
puts

ini-
tial
number
of
gates

final
number
of
gates

number
of red.
faults
w.r.t.
toggle
equi-
valence

 pcler8 27 17 86 86 8

 frg1 28 3 792 792 0

 sct 19 15 207 202 0

 unreg 36 16 128 128 0

 lal 26 19 198 198 28

 c8 28 18 332 235 0

 cht 47 36 374 253 0

 b9 41 21 147 141 10

my_adder 33 17 256 256 0

example2 85 66 382 328 35

 C432 36 7 218 175 0

 apex7 49 37 327 290 0

 vda 17 39 1333 1333 2125

 ttt2 24 21 670 387 0

 i5 133 66 423 423 0

 i6 138 67 760 717 0

 term1 34 10 854 494 0

 i7 199 67 972 893 0

 i9 88 63 1163 812 0

 K2 45 43 2875 2643 587

 apex6 135 99 747 747 8

 x4 94 71 959 737 6

 x3 135 99 1547 1326 0

 x1 51 35 2140 1913 318

 C499 41 32 446 438 0

 rot 135 107 1359 1193 85

 C880 60 26 360 360 6

 frg2 143 139 2434 1729 76

 C1355 41 32 550 542 0

 pair 173 137 1916 1596 38

data on the time taken by those SAT checks. The column “max
time” gives the maximum time taken by a SAT check when testing
stuck-at fault redundancy (with respect to toggle equivalence) of a
particular circuit. The column “Median time” gives the median
time among all the SAT checks and the column “Arithmetic
mean” gives the average time taken by BerkMin when testing
redundancy of a particular circuit. The results of Table 4 show

that toggle equivalence can be efficiently checked by a state-of-
the-art SAT-solver.

Table 4. Per formance of Sat-solver in toggle equivalence
checks

name Max time Median
time

Arithmetic

mean

 pcler8 0.03 0.010 0.01

 frg1 0.89 0.100 0.14

 sct 0.16 0.040 0.04

 unreg 0.08 0.010 0.01

 lal 0.20 0.040 0.05

 c8 0.42 0.040 0.07

 cht 0.18 0.020 0.04

 b9 0.20 0.030 0.04

my_adder 0.36 0.050 0.07

example2 0.56 0.100 0.13

 C432 0.27 0.040 0.05

 apex7 0.36 0.060 0.08

 vda 3.23 0.680 0.64

 ttt2 3.09 0.070 0.20

 i5 0.89 0.270 0.30

 i6 2.51 0.080 0.25

 term1 1.47 0.120 0.19

 i7 5.21 0.370 0.73

 i9 3.02 0.170 0.40

 K2 13.38 2.500 3.96

 apex6 3.83 0.300 0.51

 x4 2.38 0.270 0.49

 x3 6.24 1.040 1.37

 x1 11.84 1.850 2.56

 C499 13.06 0.110 1.11

 rot 7.94 1.110 1.71

 C880 10.86 0.070 0.53

 frg2 13.01 2.180 2.78

 C1355 16.24 0.150 1.32

 pair 17.10 1.810 2.91

Unfortunately, the method of obtaining toggle equivalent

circuits by removing logic redundancy that preserves toggle
equivalence is “ incomplete” . Suppose for example, that we want
to optimize a circuit N1 whose specification Spec(N1)={ N1

1,
N1

2, N1
3} is shown in Figure 1. Using the procedure of logic

redundancy removal above, only circuits of the first topological
level i.e. N1

1, N1
2 can be optimized by replacing them with their

toggle equivalent counterparts N2
1, N2

2. To finish synthesis of
circuit N2 we have to compute correlation functions Dout(N1

1, N2
1)

and Dout(N1
2, N2

2) and then synthesize a subcircuit N2
3 that is

toggle equivalent to N1
3 under the constraint function

Dout(N1
1, N2

1) ∧ Dout(N1
2, N2

2). This last circuit cannot be

obtained by simply removing redundant logic from the subcircuit
N1

3. However, results of this subsection imply that it is feasible to
design an efficient procedure for building a subcircuit N2

3 that is
toggle equivalent to N1

3.

8. Directions for future research
In this section we sketch three directions for future research.

The first direction is to apply the results of the theory we
introduced in this report to sequential circuits. It is of great
practical importance because a sequential circuit has a “natural
partitioning” which is a partitioning of this circuit into
combinational subcircuits bounded by registers. The idea is that
one can use the notion of toggle equivalence for encoding state
variables implicitly. The procedure for equivalence checking of
two sequential circuits is a straightforward generalization of the
corresponding procedure for combinational circuits with a CS.

The second direction is to develop more powerful procedures
for existential quantification which is a core operation for both
equivalence checking of circuits with a known CS and logic
synthesis preserving a predefined specification. Suppose that N is
a k-output Boolean circuit and one needs to existentially quantify
away all the variables of N except output variables. If the value of
k is small one can perform 2k SAT-checks if a particular output
assignment is observable under some input assignment. Note, that
such a SAT-based quantification can be performed even if the size
of N is large. If k is large, then one can use BDDs to perform
quantification. The idea is to represent the function Sat(v(N)) as a
BDD and quantify away all the variables except output ones. The
drawback of this method that it may occur that even though the set
of observable output combinations is “ reasonably regular” there is
no any good ordering of output variables and so the final BDD is
too large to compute. So if N has a regular set of observable
output combinations (but there is no small BDD representing it)
and k is large, no current method of existential quantification can
compute this set.

The third direction is to find efficient and high-quality
procedures to solve the following problem. Let N1 be a multi-
output Boolean circuit and X be its set of input variables. Let Y
be another set of Boolean variables such that X ∩ Y ≠ ∅ and
Cf(X,Y) be a correlation function. The problem is to find a circuit
N2 with the set of input variables Y such that a) N1 and N2 are
toggle equivalent under the constraint function Cf(X,Y); b) N2 is
optimized with respect to a cost function. (For example, N2 has
fewer gates than N1.) This operation is key to logic synthesis
preserving a predefined specification.

9. Conclusions
In this report, we show that two combinational circuits N1, N2

have a CS S iff they can be partitioned into toggle equivalent
subcircuits connected in N1, N2 in the same way. We give an
efficient procedure for verifying a CS of N1, N2 that also performs
EC of N1, N2. We show how one can build a combinational
circuit that preserves a predefined specification. We give
experimental evidence that EC of circuits with unknown CS is
hard. Besides we experimentally show that the notion of toggle
equivalence can be used for logic optimization of practical
circuits.

References
[1] C.L. Berman, L.H.Trevillyan. Functional comparison of

logic designs for VLSI circuits. ICCAD-89, pp.456-459.
[2] D.Brand. Verification of large synthesized designs. ICCAD-

93,pp.534-537.
[3] J.R.Burch,V.Singhal. Tight integration of combinational

verification methods. ICCAD-98, pp.570-576.
[4] E.Goldberg, Y.Novikov. BerkMin: A Fast and Robust SAT-

solver. DATE-2002, Paris,pp.142-149..
[5] E.Goldberg,Y.Novikov. How good can a resolution based

SAT-solver be? SAT-2003, LNCS 2919,pp.37-52.
[6] E.Goldberg, Y. Novikov. Equivalence Checking of

Dissimilar Circuits. International Workshop on Logic and
Synthesis, May 28-30, 2003, USA. Available at
http://eigold.tripod.com/papers/dissim-iwls.zip

[7] E.Goldberg. Equivalence Checking of Dissimilar Circuits II.
Technical report. CDNL-TR-2004-08030, August 2004,
available at http://eigold.tripod.com/papers/tr-2004-0830.pdf

[8] C.van Eijk,G.Janssen. Exploiting structural similarities in a
BDD-based verification method. Proceedings of 2nd
International Conference on Theorem Provers in Circuit
Design, pp.110-125,1995.

[9] A.Kuehlmann, F.Krohm. Equivalence checking using cuts
and heaps, DAC-98, pp.263-268.

[10] W.Kunz, D.Pradhan. Recursive Learning: A New Implication
Technique for Efficient Solutions to CAD-problems: Test,
Verification and Optimization. IEEE transactions on CAD,
Vol. 13, No. 9, pp. 1143-1158, 1994.

[11] Y.Matsunaga. An efficient equivalence checker for
combinatorial circuits. DAC-96,pp.629-634.

[12] E. Sentovich et al. SIS: A system for sequential circuit
analysis, tech. rep., Electronics Research Laboratory,
University of California, Berkeley, May 1992.

