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Abstract.  In this report we develop a theory of equivalence 
checking and logic synthesis of circuits with a common 
specification (CS).  We show that two combinational circuits 
N1,N2 have a CS iff they can be partitioned into subcircuits that  
are connected “ in the same way”  and are toggle equivalent.  This 
fact allows one to represent a specification of a circuit implicitly 
as a partitioning into subcircuits. We give an efficient procedure 
for checking if circuit N1, N2 have the same predefined 
specification.  As a “ by-product” , this procedure checks N1 and 
N2 for functional equivalence. We show how, given a circuit N1 
with a predefined specification, one can efficiently build a circuit 
N2 satisfying the same specification. We  give experimental 
evidence that equivalence checking of N1, N2 is hard if their CS is 
unknown. We also show experimentally that one can eliminate 
logic redundancy of circuit N1 by building a circuit N2 that is 
toggle equivalent to N1. 
 

1.  Introduction 
In this report we continue developing the theory of 

equivalence checking and logic synthesis of circuits with a 
common specification (CS) started in [5][6][7].   A CS S of 
combinational circuits N1 and N2 is just a circuit of multi-valued 
gates (further referred to as blocks) such that N1 and N2 are 
different implementations of S. Figure 1 gives an example. 
Circuits N1 and N2 have a 3-block CS  shown on the left.  
Subcircuits N1

i, N2
i are different implementations of the multi-

valued block Gi of S.   Circuit Nm
i (m=1,2) implements a multi-

output Boolean function whose truth table is obtained from that of 
Gi by replacing values of multi-valued variables with their binary 
codes. So the difference between N1

i and N2
i is in the choice of 

binary encodings for the variables of S.  The size of the largest 
subcircuit Nm

i  is called the granularity of specification S of Nm. 
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Figure 1. Circuits N1 and N2  with a common specification of 
three blocks 

There are at least four reasons why a theory of circuits with a 
CS is of practical importance: a)  large circuits  are usually 
composed of a set of meaningful subcircuits; b) the space of 
implementations the same specification is very “ rich”  and so this 
space most likely contains  implementations that are much better 
than the original one; c) there is an efficient procedure for 
checking if N1 and N2 implement  the same predefined 
specification and are functionally equivalent; d) there is an 
efficient procedure to build a circuit satisfying a predefined 
specification.  

An example of a large combinational circuit having a high-
level structure is a multiplier that is usually specified as a network 
of smaller subcircuits, adders. A sequential circuit always has a 
natural partitioning into combinational subcircuits implementing 
next-state functions. (Although the theory we develop in this 
report targets synthesis and verification of  large combinational 
circuits with a high-level structure, after some modification, it can 
be also applied to synthesis and verification of sequential 
circuits.).  

Implementations of the same specification S are different 
only in the choice of encodings. A k-output subcircuit can be 
considered as an implementation of a 2k-valued function. The 



number of different k-bit encodings of a 2k-valued variable is 
(2k)! . This number is very large even for very small values of k. 
So even for a specification S of very small granularity, the space 
of implementations is huge. 

One of the problems one has to face when building a circuit 
N2 that is another implementation of a specification S of N1 is the 
increasing complexity of equivalence checking (EC). Since N1 and 
N2 may not have any functionally equivalent internal points, their 
equivalence cannot be, in general, efficiently checked by the 
existing algorithms. (The most efficient equivalence checkers 
heavily rely on existence of functionally equivalent internal 
points.) Fortunately, in [5][6] it was shown that if a CS S of N1 
and N2 is known, there is an efficient procedure for EC of N1 and 
N2. The most advanced version of this procedure was given in [7].  
The advantage of the procedure of [7] is that one does not need to 
know  either the functionality of multi-valued blocks or binary 
encodings. A CS S of N1 and N2 is represented as partitioning of 
N1 and N2 into subcircuits.  This procedure has exponential 
complexity in the granularity of the CS S of N1 and N2 and linear  
complexity in the number of subcircuits (i.e. blocks of 
specifications). So if one considers only EC of circuits N1, N2 with 
a CS of granularity bounded by a constant, the complexity of the 
procedure of [7] is linear in circuit size. 

The flaw of the procedure of [7] is in its relying on the 
assumption that the specifications S1 of N1 and S2 of N2 
represented by the corresponding partitions are identical i.e. 
S1=S2=S.  In this report, we show that circuits N1 and N2 have a 
CS of a specified topology T iff they can be partitioned into 
subcircuits N1

1,.., N1
k and N2

1,.., N2
k  that are connected as 

described by T and if N1
j and N2

j are toggle equivalent j=1,..,k. We 
also modify  the procedure of [7] so that now it not only checks if 
N1 and N2 are functionally equivalent but also tests if the 
specification of   N1 and that of  N2 are identical.  The modified 
procedure has the same complexity as that of [7]. 

As it was mentioned above the space of implementations of a 
specification S is huge even if S has small granularity. So, given 
an implementation N1 of specification S that does not satisfy 
necessary requirements, there is a good chance to find an 
implementation  N2 of S that will meet our requirements.  The 
notion of toggle equivalence is key in building such a circuit N2. 
In this report, we show that if S is specified as a partitioning of N1 
into subcircuits N1

1,.., N1
k, to build N2 it is sufficient to replace 

each subcircuit N1
i with its toggle equivalent counterpart N2

i. 
The importance of the notion of toggle equivalence it that it 

allows one to reencode multi-valued variables implicitly without 
any knowledge of the functionality of multi-valued blocks and/or  
binary encodings of multi-valued variables. One reason why re-
encoding of multi-valued variables implicitly  is a good idea is 
that the domain of a multi-valued variable may be too large to be 
handled explicitly. (For example, a 20-output subcircuit of N1 can 
be considered as an implementation of a multi-valued block 
whose output variable takes up to 220 values.) Another important 
reason for using implicit reencoding is that it is hard to “guess”  a 
good encoding at the level of multi-valued blocks. Besides, when 
re-encoding a multi-valued variable it is reasonable to try to 
improve the current encoding rather than start building a new 
encoding from scratch. This can be done if one finds a way to 
modify a circuit implementing a multi-valued function in such a 
way that the modified circuit is still an implementation of this 
function. 

In this report, we show that if two multi-output subcircuits N 
and N′ are toggle equivalent, they are implementations of the 
same multi-valued function. This means that if N is an 
implementation of a multi-valued function g and we want to re-
encode the output variable of g it sufficient to synthesize a circuit 
N′  that is toggle equivalent to N.  If circuit N has k outputs it 
means that by building the circuit N′  we reencode a variable 
taking up to 2k values. Besides, if, when building the circuit N′ 
one optimizes N (rather than builds N′ from scratch), the new 
encoding is obtained by “ improvement”  of the previous encoding 
rather than by building a completely new one. 

The report is structured as follows. Section 2 introduces the 
notion of toggle equivalence of Boolean functions. In  Section 3 
we show that circuits N1 and N2 have a CS iff they can be 
partitioned into toggle equivalent subcircuits that are connected 
“ in the same way”  in N1 and N2. In Section 4 we give a procedure 
for checking if a CS of N1, N2 is correct. In Section 5 we explain 
why EC of circuits with unknown CS is hard. In Section 6 we 
discuss logic synthesis of circuits preserving a predefined 
specification. In Section 7 we give experimental evidence  that EC 
of circuits with unknown CS is hard.  Besides, we show that one 
indeed can use toggle equivalence for logic optimization.  In 
Section 8 we discuss what else needs to be done to make logic 
synthesis preserving high-level specification possible. Finally, we 
draw some conclusions in Section  9. 

2. Toggle equivalence of Boolean functions 
In this  section, we introduce the notion of toggle 

equivalence. We also show that toggle equivalent Boolean 
functions can be considered as different implementations of the 
same multi-valued function. 

2.1 Toggle equivalence of functions with 
identical sets of var iables 
Definition 1.  Let f1:{ 0,1} n  → { 0,1} m and f2 { 0,1} n → { 0,1} k be  
m-output and k-output Boolean functions of the same set of 
variables.  Functions f1 and f2 are called toggle equivalent if  f1(x) 
≠ f1(x′′′′ ) ⇔ f2(x) ≠ f2(x′′′′).  Circuits N1 and N2 implementing toggle 
equivalent functions f1 and f2 are called toggle equivalent 
circuits. 

Informally, toggle equivalence means that for any pair of 
input vectors x, x′′′′ for which at least one output of f1 “ toggles” , 
the same is true for f2 and vice versa. 

Definition 2. Let f be a multi-output Boolean function of n 
variables.  Denote by Part(f) the partition of the set { 0,1} n into 
disjoint subsets B1,…,Bk such that f(x) = f(x′′′′ ) iff  x, x′′′′ are in the 
same subset Bi. 
Proposition 1.  Two Boolean functions f1 and f2 are toggle 
equivalent iff Part(f1)=Part(f2) i.e. iff for each element Bi of the 
partition Part(f1) there is an element B′j of the partition Part(f2) 
such that Bi=B′j and vice versa. 
Proof.  If f1 and f2 are toggle equivalent, there cannot be a pair of 
vectors x, x′′′′ such that x, x′′′′ are in the same subset of  one partition 
and in different subsets of the other partition. (Because that would 
mean that one function produces two identical output assignments 
while the other function toggles.) 

Proposition 2. Let f1 and f2 be toggle equivalent single output 
Boolean functions. Then f1=f2 or f1=~f2 where ‘~’  means 
negation. 



Proof. From Proposition 1 it follows that Part(f1)=Part(f2). Since 
f1, f2 are single output Boolean functions, Part(f1) and Part(f2) 
consist of two elements each. So f1=f2 or f1=~f2. 

Definition 3. A multi-output Boolean function f of multi-valued 
variables is called an implementation of a multi-valued function 
F, if the truth table of f can be obtained from that of F  in the 
following two steps 
1) Replace the values of multi-valued variables of F with their 
codes (we assume that different values of a variable are assigned 
different codes); 
2) Fill in the empty rows (if any) of  the truth table  with arbitrary 
Boolean vectors. 
Proposition 3.   Let f1 and f2 be toggle equivalent. Then f1 and 
f2 are two different implementations of the same multi-valued 
function of Boolean variables. 
Proof. According to Proposition 1, Part(f1)=Part(f2). Let 
Part(f1), Part(f2) consist of  k elements each. Then f1 and f2 are 
implementations of the function F: { 0,1} n → { 1,..,k}  where 
F(x)=m, iff x ∈ Bm, i.e. iff x  is in the m-th element Part(f1). 

Proposition 3 is of great importance because it shows how 
one can reencode multi-valued variables implicitly. Suppose, a 
multi-output circuit N1  implements a multi-valued function F and 
we want to reencode F. Synthesizing a circuit N2 that is toggle 
equivalent to N1 we obtain a new implementation of F. That is we 
reencode the output  multi-valued variable of F not even knowing 
the binary encodings used  to obtain  N1 and N2 from F. 

2.2 Toggle equivalence of functions with 
different sets of var iables 

In this subsection, the notion of toggle equivalence is 
extended to the case of Boolean functions with different sets of 
variables that are related by constraint functions. 

Definition 4. Let X and Y be two disjoint sets of Boolean 
variables (the number of variables in X and Y may be different).  
A function Cf(X,Y) is called a correlation function  if there are 
subsets AX ⊆ { 0,1} |X| and AY ⊆ { 0,1} |Y| such  that  
1) | AX | = | AY |  and  
2) Cf(X,Y) specifies a bijective mapping M: AX → AY. Namely  
Cf(x, y)=1 iff x ∈∈∈∈ AX and y ∈ AY and y = M(x). 
Remark  1. Informally, Cf(X,Y) is a correlation function if it 
specifies a bijective mapping between a subset AX of { 0,1} |X| and 
a subset AY of { 0,1} |Y|.  So one can view Cf(X,Y) as relating two 
different encodings of a  |AX| – valued variable.  

As Proposition 4 below shows, one can check if a Boolean 
function  H(X,Y) is a correlation one without explicitly finding 
subsets AX and AY. 

Proposition 4. Let X and Y be two disjoint sets of Boolean 
variables. A Boolean function H(X,Y) is  a correlation one iff the 
following two conditions hold: 
1). There do not exist three vectors x, x′′′′, y (where x, x′′′′ are 
assignments to variables X and y is an assignment to variables Y ) 
such that x ≠ x′ and H(x, y)=H(x′, y)=1. 
2)  There do not exist  three vectors x, y, y′′′′ such that y ≠ y′ and 
H(x, y)=H(x, y′′′′ )=1. 

Proof. Only if part. If H(X,Y) is a correlation function, the fact 
that conditions 1) and 2) hold, follows from  Definition 4. 

If part. If  conditions 1) and 2) hold then, H(X,Y) specifies a 
bijective mapping between subsets AX and AY defined in the 
following way. Subset AX consists of all the assignments x ∈ 
{ 0,1} |X| such that H(x, y)=1 for some y ∈ { 0,1} |Y|. Subset AY 
consists of all the assignments y ∈ { 0,1} |Y| such that H(x, y)=1 for 
some x ∈ { 0,1} |X|.  

Remark  2.  Checking if H(X,Y) is a correlation function reduces 
to two satisfiability checks. Checking  condition 1) of Definition 4 
reduces to testing the satisfiability of the expression H(X,Y) ∧ 
H(X′,Y′ ) ∧ Neq(X,X′ ) ∧ Eq(Y,Y′ ). Here H(X′,Y′ ) is a “copy”  of 
H(X,Y) where variables of X′,Y′ are independent of  those of X,Y. 
Neq(x, x′ ) is equal to 1 iff  x ≠ x′′′′. Function Eq(Y,Y′ ) is the 
negation of Neq(Y,Y′ ). Checking condition 2) of Definition 4 
reduces to testing the satisfiability of H(X,Y) ∧ H(X′,Y′ ) ∧ 
Eq(X,X′ ) ∧ Neq(Y,Y′ ). If both expressions are constant 0, then H 
is a correlation function. 

Our definition of  correlation function is different from the 
one given in [6] but serves the same purpose of relating two 
encodings of a multi-valued variable. 

Definition 5.  Let f1:{ 0,1} n  → { 0,1} m and f2:{ 0,1} p → { 0,1} k be  
m-output and k-output Boolean functions and X and Y specify 
their sets of Boolean variables where |X|=n and |Y|=p. Let 
Dinp(X,Y) be a Boolean function. Functions f1 and f2 are called 
toggle equivalent under constraint function Dinp(X,Y)  if  (f1(x) ≠ 
f1(x′′′′ )  ∧  (Dinp(x,y)= Dinp(x′′′′, y′′′′)=1)) � (f2(y) ≠ f2(y′′′′ ) and vice 
versa (f2(y) ≠ f2(y′′′′ ) ∧  (Dinp(x,y)=Dinp(x′′′′, y′′′′)=1)) � f1(x) ≠ f1(x′′′′ ). 
Proposition 5. Let X,Y be sets of Boolean variables and  
{ X1,..,Xs}  and { Y1,..,Ys}  be partitions of X and Y respectively. Let 
Cf(X1,Y1),..,Cf(Xs,Ys) be correlation functions. Let f1(X) and f2(Y) 
be toggle equivalent under the constraint function 
Dinp(X,Y)=Cf(X1,Y1) ∧ … ∧ Cf(Xs,Ys). Then f1 and f2 are 
implementations of the same multi-valued function of s multi-
valued variables.  
Proof  follows from Proposition 3 and Remark  1.  

2.3 Testing toggle equivalence 
In this subsection, we show how one can check if multi-

output Boolean circuits  N1 and N2 are toggle equivalent. Namely 
we show that  checking the toggle equivalence of N1 and N2 
reduces to testing if function Dout(N1, N2) specified by Definition 
8 (see below) is a correlation one. This test can be performed by 
two satisfiability checks as described in Remark  2. 

Definition 6. Let N be a Boolean circuit. Denote by v(N) be the 
set of  Boolean variables associated either with the output of a 
gate or a primary input of N . Denote by Sat(v(N))  the Boolean 
function such that Sat(z)=1 iff the assignment z to variables v(N) 
is “possible”  i.e consistent.  For example, if circuit N consists of 
just one AND gate y=x1 ∧ x2, then v(N)={ y, x1,x2}  and Sat(v(N))= 
(~x1∨ ~x2 ∨ y)  ∧ (x1 ∨ ~y) ∧ (x2 ∨ ~y). 
Definition 7. Let f be a Boolean function. We will say that 
function f* is obtained from f by existentially quantifying away 
variable x if f* = f(…,x=0,…) ∨  f(…,x=1,….). 
Definition 8.  Let N1 and N2 be Boolean circuits whose inputs 
are specified by set of variables X and Y respectively. Let 
Dinp(X,Y) be  a Boolean function. Denote by Dout(N1, N2) the 
Boolean function obtained from the Boolean function H, where 
H=Sat(v(N1)) ∧ Sat(v(N2)) ∧ Dinp(X,Y), by existentially 



quantifying away all the variables of H but the output variables of 
N1 and N2. 

Proposition 6.   Let N1 and N2 be Boolean circuits with input 
variables specified by sets  X, Y respectively. Let  Dinp(X,Y) be a 
Boolean function relating X and Y.  Let Dinp(X,Y) be a correlation 
function. Then N1 and N2 are toggle equivalent under constraint 
function Dinp(X,Y) iff the function Dout(N1,N2) specified in 
Definition 8 is also a correlation function. 
Proof. Only If part.  Let N1 and N2 be toggle equivalent. Then 
Dout(N1,N2) satisfies either condition of Proposition 4 and hence it 
is a correlation function. For example, there cannot exist Boolean 
vectors z, z′′′′ and h  (where z � z′′′′ and  z, z′′′′ are output assignments 
of N1 and h is an output assignment of N2) such that 
Dout(z,h)=Dout(z′′′′,h)=1. Indeed, it would mean that there exist pairs 
of vectors x, y and x′′′′, y′′′′ such that a) z=N1(x), z′′′′ = N2(x′′′′) and 
h = N2(y)=N2(y′′′′ );b)  Dinp(x, y)=1 and Dinp(x′′′′, y′′′′ )=1; c)  x � x′′′′  
and y � y′′′′ ; d) N1(x)� N1(x′′′′) while N2(y) = N2(y′′′′ ). But this is 
impossible since  N1 and N2 are toggle equivalent. 

If part can be proven in a similar manner. 

3. Common specification and toggle 
equivalence 

In this section, we show that  the existence of a CS of single 
output combinational circuits N1 and N2 means that N1, N2 can be 
partitioned into toggle equivalent subcircuits that are connected in 
N1 and N2 “ in the same way” .  The main result of this section is 
formulated in Proposition 7. 

Definition 9. Let N = (V,E) be a DAG representing a Boolean 
circuit (here V,E are sets of nodes and edges of N respectively.)  A 
subgraph N*=(V*, E*) of N is called a subcircuit if the following 
two conditions hold: 
a) if g1, g2 are in V* and there is a path from g1 to g2 in N, then all 
the nodes of N that on that path are in V* ;  
b) if g1, g2 of V* are connected by an edge in N, then they are also 
connected by an edge in N*.  
 

Figure 2. I llustration to  Definition 12 

Definition 10. Let N* be a subcircuit of N. An input of a gate g 
of N* is called an input of N* if it is not connected to the output 
of some other gate of N*. The output of a gate g is called an 
output of subcircuit N* if a) it is the primary output of N; b) it is 
connected to an input of a gate of N that is not in N*. 
Definition 11. Let a Boolean circuit N be partitioned into k 
subcircuits N 1, ..., N k . Let T be a directed graph of k nodes such  
that nodes Gi and Gj of T are connected by a directed edge (from 
ni to nj) iff an  output  of N i is connected to an input of N k in N. T 

is called the communication specification  corresponding to the 
partition  N 1, ..., N k . The partition N 1, ..., N k  is called 
topological  if T is a DAG (i.e. if T does not contain cycles)  
 

 

 

Figure 3. Example of circuits N1 and N2 with a CS 

Definition 12.  Let T be the communication specification of 
circuit N with respect to a topological partition N 1, ..., N k. Let Gi 
be the node of T corresponding to subcircuit N i. The length of the 
longest path from an input of T to Gi is called the level of Gi and 
N i (denoted by level(Gi) and level(N i) respectively).  
Definition 13. Let N1

1, ...,N1
k and N2

1, ..., N2
k be topological 

partitions of single output Boolean circuits N1, N2. Let 
communication specifications of N1 and N2 with respect to 
partitions  N1

1, ..., N1
k and N2

1, ..., N2
k  be identical. Denote by 

Dout(N1
m,N2

m), m=1,…, k functions computed  by induction in 
topological levels. Namely, we first compute functions Dout for the 
subcircuits of level 1, then for those of level 2 and so on.  
Function Dout(N1

m, N2
m) is  obtained from function H=Sat(v(N1

m)) 
∧ Sat(v(N2

m)) ∧ Dinp(N1
m, N2

m)  by existentially quantifying away 
all the variables except the output variables of  N1

m, N2
m. The 

function Dinp(N1
m, N2

m) is equal to Dout(N1
m1, N2

m1) ∧ ….  ∧ 
Dout(N1

ms, N2
ms) ∧ Eq(xm1, ym1) ∧…∧ Eq(xmr, ymr). Here N1

m1, 
,.., N1

ms, N2
m1,.., N2

ms are the s subcircuits (if any) whose outputs 
are connected to inputs of N1

m, N2
m respectively. (See illustration 

in Figure 2.)  Variables xm1,…, xmr, ym1,.., ymr are the r primary 
input variables of N1 and N2 (if any) that feed N1

m and N2
m 

respectively. Function Eq(xmt,ymt), 1 ≤ t ≤ r is equal to 1 iff xmit is 
equal to ymt.      



Proposition 7. Let N1, N2 be two functionally equivalent single 
output circuits. Let T be a DAG of k nodes. Circuits N1 and N2 are 
implementations of a specification S whose topology is given by T 
iff   there is a partitioning Spec(N1) = { N1

1, ..., N1
k}  of N1  and a 

partitioning Spec(N2) = { N2
1, ..., N2

k}   of N2 into k subcircuits 
such that 
a) Communication specifications T1,T2 of N1 and N2 with respect 
to partitionings Spec(N1), Spec(N2) are equal to T; 

b) Each pair of circuits N1
m, N2

m is toggle equivalent under 
constraint function Dinp(N1

m, N2
m) specified by Definition 12. 

Sketch of the proof. If part.  It is proven by induction (in levels) 
using Proposition 5 and Proposition 6. Only if part is proven by 
induction using the fact that two Boolean functions implementing 
the same multi-valued function are toggle equivalent. 

Example. An example of circuits with a CS of three blocks is 
shown in Figure 3. Circuit N1 (at the top) and N2 (at the bottom) 
have the same communication specification (shown in Figure 1 on 
the left side). Subcircuits N1

1, N1
2 (outlined by the dotted line) are 

toggle equivalent to subcircuits N2
1, N2

2 respectively in terms of  
their inputs related by the constraint functions Dinp(N1

1, N2
1) 

=Eq(x1, y1) ∧ Eq(x2, y2) ∧ Eq(x3, y3) and Dinp(N1
2, N2

2) =Eq(x3, y3) 
∧ Eq(x4, y4) ∧ Eq(x5, y5) respectively.  

Consider, for example subcircuits N1
1 and N2

1. For the pair of 
input assignments (x1=0, x2=1, x3=0) and (x1=0, x2=1, x3=1) the 
outputs of N1

1 take values (w1=1,w2=1,w3=1) and 
(w1=0,w2=1,w3=1) respectively i.e. N1

1 toggles. For the pair of the 
corresponding input assignments (y1=0, y2=1, y3=0) and (y1=0, 
y2=1, y3=1)  the outputs of N2

1 take values (v1=0,v2=1) and 
(v1=1,v2=0) respectively. So N2

1 toggles as well. On the hand for 
the pair of input assignments (x1=0, x2=0, x3=0) and (x1=1, x2=0, 
x3=0) the outputs of N1

1 take the same assignment 
w1=1,w2=1,w3=0 and hence N1

1 does not toggle. For the 
corresponding pair of input assignments (y1=0, y2=0, y3=0) and 
(y1=1, y2=0, y3=0) the outputs of  N2

1 take the same value 
(v1=0,v2=0). So N2

1 does not toggle either. 

 

It is not hard to check that subcircuits N1
3 and N2

3 are toggle 
equivalent in terms of their local inputs related by the constraint 
function Dinp(N1

3, N2
3)=Dout(N1

1, N2
1) ∧ Dout(N1

2, N2
2).  The 

functions Dout(N1
1, N2

1),  Dout(N1
2, N2

2)  are obtained as described 
in Definition 13. 

4. A Procedure for  checking if a common 
specification of two circuits is correct 

In this section, we describe a procedure for checking if a 
predefined CS of circuits N1,N2 is correct. We will refer to this 
procedure as Common Specification Verification (CSV). As a 
“by-product” , our CSV procedure checks if N1,N2 are functionally 
equivalent. 

The EC procedure for circuits N1, N2 with a CS introduced in 
[6] and modified in [7] essentially uses an implicit representation 
of this CS as partitions of N1 and N2. Proposition 7 allows one to 
modify this procedure so that in addition to EC it also checks the 
correctness of the CS. The pseudocode of the CSV procedure is 
shown in Figure 4. 

The procedure topol_partition checks if  Spec(N1) and 
Spec(N1) are topological partitions (see Definition 11).  The 

procedure equiv_commun_specs checks if communication 
specifications T1 of N1 with respect to Spec(N1)  and T2 of N2 with 
respect to Spec(N2)  are identical.  

In the main loop, functions Dout(N1
i,N2

i) are computed in 
topological order as described in Definition 12. Before computing  
Dout(N1

i,N2
i) the procedure constr_func forms the expression Dinp 

(see Definition 13).  
 
/*   ---  Spec(N1)= { N1

1,..,N1
k} ,Spec(N2)= { N2

1,..,N2
k}   ---* /  

CSV(N1, N2, Spec(N1),Spec(N2)) {  
 if (topol_partition(N1,N2,Spec(N1),Spec(N2)) == ‘no’ ) 
       return(‘CS_check_failure’ ); 
 
   if (equiv_commun_specs(  N1,N2,Spec(N1),Spec(N2)) == ‘no’ ) 
          return(‘CS_check_failure’ ); 
 
  for (i=1; i <= k ; i++) {  
     Dinp = constr_func(N1

i,N2
i,N1,N2); 

      Dout(N1
i, N2

i) =  exist_quantify(N1
i,N2

i, Dinp); 
      if (correlation_function(Dout) == ‘no’ ) 
            return(‘CS_check_failure’ );}  
 
  if (Dout(N1

k, N2
k)  implies  equivalence_ function) 

           return(‘equivalent’ ); 
   else 
           return(‘CS_check_failure’ );}  

Figure 4. Pseudocode of the CSV procedure 

The function exist_quantify existentially quantifies away from 
the function  H=Sat(v(N1

m)) ∧ Sat(v(N2
m)) ∧ Dinp all the variables 

except the output variables of N1
i and N2

i.  Then the 
correlation_function procedure checks if the result of 
quantification Dout is  a correlation function. The check is 
performed as described in  Remark  2. 

Finally, the CSV procedure checks if the correlation function 
of subcircuits N1

k and N2
k (whose primary outputs are primary 

outputs of N1 and N2) implies the equivalence function Eq(y, z). 
(Here y, z are Boolean variables associated with the outputs of N1 
and N2 respectively). If so, then N1 and N2 are declared equivalent. 
Otherwise, the CSV procedure returns the ‘CS_check_failure’  
answer. This answer is also returned if any of the checks 
performed by topol_partition, equiv_commun_specs and 
correlation_function fails. 
Definition 14. Let N be a circuit with a specification S 
represented by partition Spec(N)={ N 1..,N 

k} . The granularity of 
specification S  for N  is the size (i.e. the number of gates) of the 
largest subcircuit N 

j,  j=1,..,k. 

Definition 15. Let N1 and N2 be implementations of the same 
specification S. Let p1 and p2 be granularities of specification S for 
N1 and N2 respectively. We will call the maximum of p1 and p2 the 
granularity of the CS S of N1, N2. 

The CSV procedure is exponential in the granularity p of CS S 
of N1, N2 and is linear in the number of blocks of S i.e. in the 
number of subcircuits in Spec(N1), Spec(N2). The exponentiality 
in p is due to procedures exist_quantify and correlation_function. 
The reason why the CSV procedure is exponential only in p and 
not in the circuit size is that the two exponential procedures above 
are applied only to subcircuits N1

i, N2
i whose size is bounded by p.  

Suppose that the value of p is bounded by a constant (i.e. circuits 
N1, N2 can be of arbitrary size but the granularity of their CS is 
bounded). Then the CSV procedure proves the equivalence of 



specifications Spec(N1) and Spec(N2) (and hence functional 
equivalence of N1 and N2) in linear  time in the circuit size. 

 

5. Equivalence checking of circuits with 
unknown  specification 
Note that the efficiency of our CSV procedure is due to the fact 
that a CS specification of N1 and N2 (represented by Spec(N1) and 
Spec(N2)) is known. A natural question to ask is as follows. 
Suppose circuits N1, N2 have a CS specification S of small 
granularity p. Is there an efficient procedure for EC of N1, N2 if S 
is unknown (i.e we do not know the partitions Spec(N1) and 
Spec(N2) representing S)? In [6][5] it was conjectured that in that 
case EC of N1,N2 is hard for any  deterministic algorithm. The 
new (and equivalent) definition of CS given in this report allows 
one to get a better perspective on the problems one has to solve 
when  checking N1,N2. for equivalence. 

One way to do the job is to find Spec(N1) and Spec(N2) and 
apply the CSV procedure. This approach is very similar to what 
the existing EC procedures exploiting structural similarity of 
N1, N2 do ([1][2][3][8][9][11]).  Namely, they try to find pairs of 
functionally equivalent points of N1,N2 and use  them as cut 
points. Then new points of N1,N2 that are functionally equivalent 
in terms of cut points are looked for. The idea is that checking 
functional equivalence of internal points of N1,N2 in terms of cut 
points is much easier than in terms of primary inputs. This 
approach faces the following two problems. The first problem is 
to find new potential cut points (i.e. to find points of N1,N2 that 
are functionally equivalent). The second problem is to decide 
whether two functionally equivalent internal points can be used as 
cut points. Making a wrong decision here leads to the appearance 
of so called “ false negatives” .  

One can view the “cut advancement”  approach above as search 
for a CS of N1,N2 of a special type where every subcircuit of 
Spec(N1) and Spec(N2) has exactly one output. However, if one try 
to extend this approach to CSs of the general type (where 
subcircuits of Spec(N1) and Spec(N2) may have many outputs), the 
two problems mentioned above become virtually unsolvable. In 
the case of multi-output subcircuits, functional equivalence  is 
replaced with toggle equivalence.  Let the granularity p of a CS of 
N1, N2 be equal to 10. (So the subcircuits of Spec(N1) and Spec(N-
2) may have up to 10 outputs.) Then the number of candidate 
subcircuits in N1 and N2  is proportional to |N1|

10 and |N2|
10 

respectively where |Nj| is the size of Nj. The number of potential 
pairs of subcircuits to examine is proportional to |N1|

10∗|N2|
10.  But 

even if one finds subcircuits N1
i, N2

i  of size less or equal to 10 
that are toggle equivalent, one still needs to decide if the outputs 
of N1

i,N2
i can be used as cut points. That is one needs to decide 

whether N1
i, N2

i are toggle equivalent “by chance” or they are a 
part of a CS. Since the number of candidates is huge, making a 
mistake becomes  unavoidable. 

One can also try to perform EC of N1 and N2 by a procedure 
like recursive learning [10] that does not need the knowledge of a 
CS. The problem is that to prove  N1 N2 to be equivalent, one 
needs to derive relations between 2∗p Boolean variables. If a CS 
of N1, N2 is not known, the number of relations one needs to 
derive in the worst case is proportional to (|N1|+|N2|)

2∗p, which 
makes such a procedure computationally infeasible.  

 

6. On logic synthesis of circuits preserving 
predefined specification 

In this section we describe a procedure that, given a circuit 
N1 with a known specification, builds another circuit N2 
implementing the same specification as N1. 

Let N1 be a Boolean circuit that needs to be optimized. Let S be 
a specification of N1 represented as Spec(N1)= { N1

1,..,N1
k} .  

Figure 5 shows pseudocode of a procedure for generating a circuit 
N2 that implements the same specification as  circuit N1.  We will 
refer to it as Specification Preserving (SP) procedure. We assume 
that subcircuits N1

1,.., N1
k are numbered in topological order i.e. 

for every pair i,j such that i < j  � level(N1
i) ≤ level(N1

j).  
 
Synthesize(N1, Spec(N1),cost_functions) {    
 for (i=1; i <= k ; i++) {  
       Dinp= constr_func(N1

i,N2
i,N1,N2); 

        N2
i = synth_toggle_equivalent(N1

i, Dinp,cost_functions) 
        Dout(N1

i, N2
i ) =  exist_quantify(N1

i,N2
i, Dinp);     }  

return(N2,Spec(N2))}  
Figure 5. Pseudo code of the SP procedure 

The idea of  the SP procedure is to replace subcircuits 
{ N1

1,.., N1
k}  with toggle equivalent subcircuits { N2

1,.., N2
k}  in 

topological order moving from inputs to outputs.  The SP 
procedure returns circuit N2 implementing the same specification 
as N1. Circuit N2

i  toggle equivalent to N1
i is built by the 

synth_toggle_equivalent procedure. (Section 7 gives an example 
of such a procedure.) After N2

i is synthesized we compute the 
correlation function Dout(N1

i,N2
i) using previously computed 

functions Dout exactly as it is done by the CSV procedure.  (Note 
that since N1

i, N2
i are toggle equivalent “by construction” , 

Dout(N1
i,N2

i) is a correlation function.)  
The importance of the SP procedure is twofold. First, the 

complexity of the SP procedure is the same as that of the CSV 
procedure. Namely, it is exponential in the granularity p of the CS 
of N1, N2 represented by Spec(N1),Spec(N2) and linear in the 
number of subcircuits in Spec(N1) and Spec(N2). (Here we make a 
realistic assumption that  synth_toggle_equivalent is “only”  
exponential in p).  This means that if p is fixed, the SP procedure 
is linear in circuit size and hence it is scalable. 

Second, the SP procedure allows one to make a nice trade-off 
between optimization quality and efficiency. Note that the search 
space explored by the SP procedure is limited to the 
implementations of the specification of N1 represented by 
Spec(N1). The smaller the granularity of specification S of  N1 is, 
the smaller the search space is, which implies  greater efficiency 
of the SP procedure. So, if no good alternative implementation N2 
of S is found for the current specification of N1, one can merge 
some adjacent subcircuits of Spec(N1) to get a specification  with 
a larger value of granularity for N1 . This way the search space 
becomes larger at the expense of performance degradation of the 
SP procedure.  

 
 

7. Exper imental Results 
In this section, we give some experimental results. In 

Subsection 7.1 we show that equivalence checking even of very 
similar circuits N1 N2 (i.e. circuits having a CS of small 
granularity) is hard if this CS is not known. In Subsection 7.2 we 
use MCNC benchmarks to show   that one can optimize a medium 



size circuit N1 by removing logical redundancy and obtaining 
another   (smaller) circuit N2 that is toggle equivalent to N1. 

 
 

7.1 Equivalence checking 
In the experiments we compared the performance of two EC 

algorithms: our CSV procedure shown in Figure 4 and an 
Industrial Equivalence Checker (referred to as IEC) of very high 
quality.  Both algorithms were run on a 3.06 GHz  Xeon PC. 

 In the experiments we checked for equivalence circuits 
obtained from a specification given as a combinational  circuit of 
multi-valued blocks.  The number of values taken by the variables 
of a block was parameterized.  Circuits N1, N2 to be checked for 
equivalence were obtained from a specification using two sets of 
random encodings of the minimum (logarithmic) length.  
 
Table 1. EC of circuits obtained from 4-valued specifications 

Name  # blocks in 
CS 

CSV 
 (sec.) 

IEC  
(sec.) 

Ratio 
(IEC / CSV) 

des1 705  0.4 3 7 

des2 2,562  2 14 7 

des3 3,519  3 281 94 

des4 8,628  14 308 22 

des5 9,027  16 543 34 

des6 10,572  20 534 27 

The goal of experiments was twofold. First we wanted to show 
that EC of circuits with a CS S of even  small granularity is hard if 
S is unknown. Second, we wanted to demonstrate that this 
weakness of current EC algorithms hinders the development of  
more powerful synthesis procedures. (Even though we obtained 
circuits N1, N2 by explicitly encoding multi-valued variables of 
specification, circuit N2 could have been  obtained from N1 by the 
synthesis procedure described in Section 6.) 

In Table 1 we consider specifications with blocks of 4-valued 
variables. Second column gives the number of blocks for each 
design. Third  and fourth columns give  runtimes for CSV and 
IEC. The last column gives the ratio of runtimes.   
 

 
Table 2. EC of circuits obtained from 8-valued specifications 

Name  # blocks in 
CS 

CSV  
(sec.) 

IEC  
(sec.) 

Ratio   
(IEC / CSV) 

des1 705  5 16,948* > 3,390 

des2 2,562  19 24,638* > 1,297 

des3 3,519  29 >36,000 > 1,241 

des4 8,628  107 26,758 250 

des5 9,027  111 >36,000 > 324 

des6 10,572  141  27,391 194 

 
In Table 2 we consider the same specifications (i.e. the 

topology of corresponding specifications was the same) of  8-
valued blocks.  Hence the granularity of CSs of binary circuits 
obtained by encoding multi-valued variables was slightly larger 
than for binary circuits of Table 1. Runtimes of IEC marked with 

‘ *’  correspond to the cases where IEC aborted without completion 
(due to exhausting some internal resource). 

For the circuits from  both tables  CSV was faster than IEC. 
However the gap between the performance of CSV and IEC 
increased dramatically as the granularity of CSs had grown. IEC 
was able to complete all the instances of Table 1 in a reasonable 
time. On the other hand, it completed only  2 equivalence checks 
for the circuits of Table 2 and took dramatically more time.  
 

7.2 Toggle equivalence based redundancy 
removal  

The goal of experiments described in this subsection was 
twofold. First, we wanted to show that one can efficiently check 
toggle equivalence of two practical circuits of medium size. 
Second, we wanted to demonstrate that one can use the notion of 
toggle equivalence for logic optimization. 

In Section 6 we described  a method of logic synthesis that 
preserves   a predefined specification. The key procedure of the 
algorithm  shown in   Figure 5 is synth_toggle_equivalent. Given 
a subcircuit N1

i and a cost function, this procedure builds another 
subcircuit N2

i that is toggle equivalent to N1
i and is optimized with 

respect to this cost function. In this subsection we give an 
example of such a procedure.  This procedure is based on stuck-at 
fault redundancy removal. Suppose that N1 is a multi-output 
circuit to be optimized (for the sake of simplicity, in this section 
we drop superscripts from the symbols denoting subcircuits with 
the exception of the last few paragraphs). Suppose that N2 is the 
circuit obtained from N1 by setting to a constant a ∈ { 0,1}  the line 
connecting the output of a gate gi of N1 to an input of gate gk of 
N1. Suppose  N2 and N1 are functionally equivalent. This means 
that one can remove the connection between gates gi and gk and 
set the corresponding input of gk to the constant a without 
changing the functionality of N1 (which means that N1 has some 
logic redundancy).   

Suppose however that we relax the requirement of preserving 
the functional equivalence of N1 and N2.  In other words, suppose 
that after setting the output of the gate gk to a constant (as 
described above) we get a circuit  N2 that is toggle equivalent to 
N1.  Setting a line to a constant can be considered as an example 
of transformations that can be used by the procedure 
synth_toggle_equivalent above. On the one hand, by removing  
redundancies that preserve toggle equivalence (but may break 
functional equivalence) we optimize circuit N1. On the other hand 
we build a circuit that is toggle equivalent to N1. Since functional 
equivalence is a special case of toggle equivalence, logic 
redundancy removal that preserves  toggle equivalence is a more 
powerful optimization technique than its counterpart  preserving 
functional equivalence. 

In this subsection, we test logic redundancy of some MCNC 
benchmarks with respect to toggle equivalence. But first we show 
how one can check toggle equivalence of  the original and faulty 
circuits. To check if  circuits N1 and N2  are toggle equivalent one 
can use the method described in Proposition 6.  Let us assume for 
the sake of clarity that N1 and N2  have the same set of input 
variables  X={ x1,.., xn} .  Then to check if N1 and N2 are toggle 
equivalent one can a) existentially quantify away from the 
function H(N1, N2) = Sat(v(N1) ∧ Sat(v(N2)) all the variables 
except the output variables of N1 and N2; b) check if the function 
obtained from H after existential quantification is a correlation 
function as described in Remark  2. However, it is not hard to see 



that one can check N1 and N2 for toggle equivalence without 
existential quantification.  

Let Y={ y1,…, ym}   and Z={ z1,.., zk}  be the sets of output 
variables of N1 and N2  respectively. Then checking if N1 and N2 
are toggle equivalent reduces to two SAT checks similar to those 
of Remark  2. The first check is to test if the function 
H1 = H(N1, N2) ∧ H(N* 1, N* 2) ∧ Neq(Y,Y* ) ∧ Eq(Z,Z* ) is 
satisfiable. Here N*1 and N*2  are copies of circuits N1 and N2, 
with input variables represented by X*={ x*1,.., x*n}   and  their 
output variables represented by Y*={ y* 1,…, y* m}  and 
Z*= { z* 1,.., z* k}   respectively (see Figure 6).  The value of 
Eq(z, z* ) where z and z*  are assignments to Z and Z* respectively 
is equal to 1 iff z=z* .  The function Neq(Y, Y*) is the negation of 
Eq(Y,Y*). The second SAT check is to test if the function H2 = 
H(N1, N2) ∧ H(N* 1, N* 2 ) ∧ Eq(Y,Y*  ) ∧ Neq(Z,Z* ) is satisfiable. 

 Circuits N1 and N2 are toggle equivalent iff  H1 and H2 are 
unsatisfiable. For example, if N1 is satisfiable, then there is a pair 
of assignments x, x*  to variables X and X* respectively such that 
N1 and N*1 produce  different output assignments while N2 and 
N*2 produce the same assignment (which means that N1 toggles 
and N2 does not).     
 

N1

....
x1

xn

....y1 ym

N2

....
x1

xn

....z1 zk

N*1

....
x*1 x*n

....y*1 y*m

N*2

....
x*1

x*n

....z*1 z*k

 
Figure 6. Two copies of N1 and N2  one needs for  checking 

their  toggle equivalence 

Table 3 gives results of redundancy removal  for MCNC 
benchmarks. In the first column the names of the MCNC 
benchmarks we used in experiments are shown. First, initial 
MCNC benchmarks were technology mapped to obtain circuits 
consisting of two input NAND gates. The technology mapping 
was performed by the “ tech_decomp” command of the logic 
synthesis system SIS [10].  The size  of obtained circuits (number 
of inputs, outputs and gates) is shown in columns 2-4. Then the 
circuits were optimized by removing stuck-at fault redundancy as 
described above. This optimization was performed by running the 
“ red_removal”  command of SIS.  The size of optimized circuits is 
shown in the  column “ final number of gates”  of Table 3. Note 
that the resulting circuits do not contain  untestable stuck-at faults 
any more. The last column of Table 3 shows the number of  
untestable stuck-at faults with respect to toggle equivalence 
circuits still have after removing all the single stuck-at faults with 
respect to functional equivalence.  This column shows that more 
than one-third of circuits  still have stuck-at faults that are 
untestable with respect to toggle equivalence and some circuits 
(like vda, x1,K2) can be significantly optimized by removing this 
redundancy.  

To check toggle equivalence of  original and  faulty circuits we 
ran two SAT checks as described above. The SAT checks were 
performed by the SAT-solver BerkMin [4] . Table 4 gives some 

 
 Table 3. Redundancy removal from MCNC 

benchmarks 

name #in-
puts 

#out-
puts 

ini-
tial 
number
of 
gates 

final 
number 
of 
gates 

 

 

number 
of red. 
faults 
w.r.t. 
toggle 
equi-
valence 

 pcler8  27 17 86 86 8 

 frg1  28 3 792 792 0 

 sct  19 15 207 202 0 

 unreg  36 16 128 128 0 

 lal  26 19 198 198 28 

 c8  28 18 332 235 0 

 cht  47 36 374 253 0 

 b9  41 21 147 141 10 

my_adder  33 17 256 256 0 

example2  85 66 382 328 35 

 C432  36 7 218 175 0 

 apex7  49 37 327 290 0 

 vda  17 39 1333 1333 2125 

 ttt2  24 21 670 387 0 

 i5  133 66 423 423 0 

 i6  138 67 760 717 0 

 term1  34 10 854 494 0 

 i7  199 67 972 893 0 

 i9  88 63 1163 812 0 

 K2  45 43 2875 2643 587 

 apex6  135 99 747 747 8 

 x4  94 71 959 737 6 

 x3  135 99 1547 1326 0 

 x1  51 35 2140 1913 318 

 C499  41 32 446 438 0 

 rot  135 107 1359 1193 85 

 C880  60 26 360 360 6 

 frg2  143 139 2434 1729 76 

 C1355  41 32 550 542 0 

 pair  173 137 1916 1596 38 

 
data on the time taken by those SAT checks.  The column “max 
time” gives the maximum time taken by a SAT check when testing 
stuck-at fault redundancy (with respect to toggle equivalence) of a 
particular circuit. The column “Median time” gives the median 
time among all the SAT checks and the column “Arithmetic 
mean” gives the average time taken by  BerkMin when testing 
redundancy of a particular circuit.  The results of Table 4 show 



that toggle equivalence can be efficiently checked by a state-of-
the-art SAT-solver.  
 

Table 4. Per formance of  Sat-solver  in toggle equivalence 
checks 

name Max time Median 
time 

Arithmetic 

mean 

 pcler8  0.03 0.010 0.01 

 frg1  0.89 0.100 0.14 

 sct  0.16 0.040 0.04 

 unreg  0.08 0.010 0.01 

 lal  0.20 0.040 0.05 

 c8  0.42 0.040 0.07 

 cht  0.18 0.020 0.04 

 b9  0.20 0.030 0.04 

my_adder 0.36 0.050 0.07 

example2  0.56 0.100 0.13 

 C432  0.27 0.040 0.05 

 apex7  0.36 0.060 0.08 

 vda  3.23 0.680 0.64 

 ttt2  3.09 0.070 0.20 

 i5  0.89 0.270 0.30 

 i6  2.51 0.080 0.25 

 term1  1.47 0.120 0.19 

 i7  5.21 0.370 0.73 

 i9  3.02 0.170 0.40 

 K2  13.38 2.500 3.96 

 apex6  3.83 0.300 0.51 

 x4  2.38 0.270 0.49 

 x3  6.24 1.040 1.37 

 x1  11.84 1.850 2.56 

 C499  13.06 0.110 1.11 

 rot  7.94 1.110 1.71 

 C880  10.86 0.070 0.53 

 frg2  13.01 2.180 2.78 

 C1355  16.24 0.150 1.32 

 pair  17.10 1.810 2.91 

 
Unfortunately,  the method of obtaining toggle equivalent 

circuits by removing logic redundancy that preserves toggle 
equivalence is “ incomplete” . Suppose for example, that we want 
to optimize a circuit N1 whose specification Spec(N1)={ N1

1, 
N1

2, N1
3}  is shown in Figure 1.  Using the procedure of logic 

redundancy removal above, only circuits of the first topological 
level i.e. N1

1, N1
2 can be optimized by replacing them with their 

toggle equivalent counterparts N2
1, N2

2. To finish  synthesis of 
circuit N2 we have to compute correlation functions Dout(N1

1, N2
1) 

and Dout(N1
2, N2

2) and then synthesize a subcircuit N2
3 that is 

toggle equivalent to N1
3 under the constraint function  

Dout(N1
1, N2

1) ∧ Dout(N1
2, N2

2).  This last circuit cannot be 

obtained by simply removing redundant logic from the subcircuit 
N1

3. However, results of this subsection imply that it is feasible to 
design an efficient procedure  for building a subcircuit N2

3 that is 
toggle equivalent to N1

3. 
 

8. Directions for  future research 
In this section we sketch three directions for future research.  

The first direction is to apply the results of the theory we 
introduced in this report to sequential circuits. It is of great 
practical importance because a sequential circuit has a “natural 
partitioning”  which is a partitioning of this circuit into 
combinational subcircuits bounded by  registers. The idea is that 
one can use the notion of toggle equivalence for encoding state 
variables implicitly. The procedure for equivalence checking of 
two sequential circuits is a straightforward generalization of the 
corresponding procedure for combinational circuits with a CS. 

The second direction is to develop more powerful procedures 
for existential quantification which is a core operation for both 
equivalence checking of circuits with a known CS and logic 
synthesis preserving a predefined specification. Suppose that N is 
a k-output Boolean circuit and one needs to existentially quantify 
away all the variables of N except output variables. If the  value of 
k is small one can perform 2k SAT-checks if a particular output 
assignment is observable under some input assignment. Note, that 
such a SAT-based quantification can be performed even if the size 
of N is large. If k is large, then one can use BDDs to perform 
quantification. The idea is to represent the function Sat(v(N)) as a 
BDD and quantify away all the variables except output ones.  The 
drawback of this method that it may occur that even though the set 
of observable output combinations is “ reasonably regular”  there is 
no any good ordering of output variables and so the final BDD is 
too large to compute.  So if N has a regular set of observable 
output combinations (but there is no small BDD representing it) 
and k is large, no current method of existential quantification can 
compute this set. 

The third direction is to find efficient and high-quality 
procedures to solve the following problem. Let N1 be a multi-
output Boolean circuit and X be its set of input variables.  Let Y 
be another set of Boolean variables such that X ∩ Y ≠ ∅ and 
Cf(X,Y) be a correlation function. The problem is to find a circuit 
N2 with the set of input variables Y such that a) N1 and N2 are 
toggle equivalent under the constraint function Cf(X,Y); b) N2 is 
optimized with respect to a cost function. (For example, N2 has 
fewer gates than N1.) This operation is key to logic synthesis 
preserving a predefined specification. 
 

9.  Conclusions 
In this report, we show that two combinational circuits N1, N2 

have a CS S iff they can be partitioned into toggle equivalent 
subcircuits connected in N1, N2 in the same way. We give an 
efficient procedure for verifying  a CS of N1, N2 that also performs 
EC of  N1, N2. We show  how one can build a combinational 
circuit that preserves a predefined specification. We give 
experimental evidence that EC of circuits with unknown CS is 
hard. Besides we experimentally  show that the notion of toggle 
equivalence can be used for   logic optimization of practical 
circuits. 
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