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Abstract

   We consider the problem of timing analysis in the
presence of known false paths. The main difficulty in
adaptation of classical  breadth-first search to the
problem is that at each node one has to store the
number of delays which is proportional to that of false
paths going through the node. We propose a reduction
technique that allows one to drastically reduce the
number of delays to store. In particular, the technique
can be applied when false paths are  implicitly
specified by a set of through-path exceptions or false
sub-graphs. In addition, we introduce  a new data
structure for representing false paths called abstract
false graphs which are as expressive as false sub-
graphs but are as compact as through-path exceptions.
A preliminary prototype implementation illustrates the
potential benefits  of our reduction technique by
showing up to exponential reduction in memory usage
and run-time over previous work.

Introduction

   Given a logic circuit with a delay assignment on each
of the gates and wires in the circuit, timing analysis is
employed to determine the longest (or critical) paths of
the design. It is well known that a depth-first (DFS),
breadth-first (BFS), or best-first search algorithm may
be utilized for this task [2,3,4]. However, it is often
required that false paths be neglected from the timing
analysis. In this paper we address the problem of
timing analysis in the presence of user-specified false
paths. There are two issues to be addressed in solving
this problem efficiently: (i) the false paths must be
specified and represented compactly (ii) the search
algorithm must be modified to account for the false
paths. This paper makes contributions on both issues.
Note that we assume that the false paths have been
identified prior to timing analysis using manual or
automatic techniques.

   Since BFS is the fastest of the known timing analysis
algorithms, it is natural to try to adapt it to the case of
timing analysis with false paths. The problem of
modifying BFS to account for false paths specified by
false sub-graphs during timing analysis has been
addressed in [1]. It is shown that the number of delay
values to be stored at a node is bounded by the number
of false paths including this node. This potentially
limits the application of the BFS algorithm. In this
paper we develop methods to reduce the number of
delay values to be stored at a node.

   The first contribution of this paper is to present a
timing analysis algorithm for which the number of
delay values to be stored at a node can be reduced. We
describe and prove the conditions under which the
reductions retain the accuracy of the timing analysis.
We formulate our reduction rules for the case when
false paths are specified explicitly. We extend the rules
to the case when false paths are specified implicitly by
false sub-graphs or through-path exceptions.

Application of our reduction technique to implicitly
represented false paths is based on the fact  that a false
sub-graph or a through-path exception specify a
Cartesian set of false paths. We show that if the set of
false paths is specified by k Cartesian representations
the number of delays to store at a node is bounded by
2k. (This result generalizes the one obtained in [1] for
false sub-graphs.) So to make timing analysis efficient
it is crucial to represent the set of false paths as the
union of the minimum number of Cartesian sets of
paths.  From this point of view it is important to have a
representation such that any set of paths specified by it
is Cartesian and any Cartesian set of paths can be
specified by this representation. We show that false
sub-graphs satisfy these two requirements and through-
path exceptions do not. However false sub-graphs are
too redundant. The second contribution of our paper is
that we introduce a new data structure for representing
false paths called Abstract False Graphs (AFGs)  which
are as expressive as false sub-graphs but are as
compact as through-path exceptions.



   In the paper we focus only on the problem of finding
the delay of the longest path that is not false. Another
problem of great interest in timing analysis is to
compute the required arrival time (RAT) for each node
in the circuit [3]. The RAT and delay at a node n can
then be used to compute the slack-time at n, which is
an important measure of timing violation. All the
theory we develop further for finding delays can be
easily extended and applied to computing the RAT.

Problem formulation

   A circuit C is represented by a directed acyclic graph
G (termed the circuit graph) whose nodes correspond
to gates in C and whose edges correspond to
connections between the gates. While a delay may be
associated with each gate and connection in C, without
any loss in generality, we assign delays only on edges
of G. Primary inputs (outputs) of  C correspond to
sources (sinks) of G. An example of the circuit graph
with the source node a and the sink node c is shown in
Figure 1.

   A complete path in G starts at a source node and
terminates at a sink. In this paper the term false path is
only applied to complete paths and denotes any user
specified path that must be ignored in timing analysis.
An incomplete path will be called sub-path. We use the
notation nH to denote a sub-path that starts at a source
node and terminates at node n and Tn to denote a sub-
path from n that terminates at a sink node. The notation
nH.Tn denotes the complete path formed by the
catenation of the sub-paths nH and Tn.
   True paths: Given a set Φ of false paths, a path is
called true if it is not contained in Φ.
   Problem: Given a graph G with delays assigned to
edges and a set Φ of false paths, find the longest true
path.

Reduction for explicit representation

    False sub-paths: Given a set of false paths Φ, a sub-
path is false if there is a false path in Φ  that contains
this sub-path. Otherwise the sub-path is called true.

    In the absence of false paths, a single delay value
equal to the length of the longest sub-path up to the
node needs to be stored at each node. If we want to
disregard a set of false paths Φ, several delay values
may have to be stored at a node. Let ∆(nH) denote the
delay of nH. Suppose that nH and nH’  are two sub-paths
such that ∆(nH) > ∆( nH’) . If we drop delay ∆( nH’)   it
may turn out that the longest true path is nH’ .Tn. This
may happen if nH.Tn, which is longer than nH’ .Tn, is

false (and so nH is a false sub-path). It means that in
general, given ∆(nH) > ∆(nH’) , we can’t drop ∆(nH’)  if
nH is a false sub-path. The simplest solution is to store
r extra delays at n where r is the total number of false
sub-paths ending at node n.
 
   Proposition 1: [1] Given a set of false paths Φ the
total number of extra delays to store at a node n is no
more than the number of false paths that include n.
 
    We can reduce the number of values to store required
by Proposition 1 by applying a form of dominance
between false sub-paths. This reduction approach is
new.
    False (true) tails: Tn is a false (true) tail of a sub-
path  nH if nH.Tn is a false (true) path.
 
   Let False_Tails(nH) (True_Tails(nH)) denote the set
of all false (true) tails of nH. Obviously, if
False_Tails(nH) is not empty then nH is a false sub-
path. Similarly, if nH is a true sub-path then all its tails
are true.

   Let nH and nH’  be two paths such that ∆( nH) >
∆(nH’) . We  need to store the value ∆(nH’)  at n only if
there exists a path from n, say Tn such that path nH.Tn

is false while nH’.Tn is not. However, this will never
happen if False_Tails(nH’) ⊇ False_Tails(nH). In this
case we can safely drop delay ∆(nH’).
 
   We can generalize the reduction rule based on the
idea of false sub-path dominance.
   Proposition 2: Let nH

1, nH
2,.., nH

k be the set of all
sub-paths such that ∆( nH

i) ≥ ∆(nH
1), i=2, …, k. We do

not need to store the value ∆(nH
1) at n if ∪i = 2, …, k

True_Tails(nH
i)  ⊇ True_Tails(nH

1).
 
Cartesian representations

   The set Φ of false paths is usually specified
implicitly. Let us consider two representations
commonly used for specifying false paths.

   Through-Path Exception: A through-path
exception FT is a subset of nodes in the circuit graph G
such that any path of G that includes all the nodes in FT

is specified to be a false path.

   In Figure 1 through-path exceptions {a,b,s} and
{a,b,p} specify the 4 false paths listed in the top right
corner.

   False Sub-Graph [1]: A false sub-graph FS is a
connected sub-graph of the circuit graph G with a



begin set B(FS) and end set E(FS) of nodes such that
each node in B(FS) has no incoming edges in FS and
each node in E(FS) has no outgoing edges in FS. A
complete path P of G is specified to be a false path if P
contains at least one path in FS that starts at a node in
B(FS) and ends at a node in E(FS).

   An example of the false sub-graph specifying the
same 4 false paths as the through-path exceptions
{a,b,s} and {a,b,p} is shown in Figure 1.
Let F be a false sub-graph or a through-path exception.
Denote by Φ(F) the set of all false paths specified by
F. A sub-path in G satisfies F if it is contained in a
path from Φ(F).
   Cartesian set of paths: A set of false paths Φ is
Cartesian if for any node n of circuit graph G and any
two false sub-paths nH, Tn, nH.Tn is a false path from
Φ .
 
    If Φ is Cartesian then the subset of paths from Φ
going through a node n can be represented as nH* ×
*Tn  where  nH* and *Tn are the sets of all false sub-
paths ending and starting at n, respectively. Sympol ‘×’
denotes the Cartesian product yielding the set of all
paths that can be obtained by catenation of a sub-path
nH  from nH*  and Tn  from *Tn.
 
    The set of 4 false paths shown in Figure 1 is
Cartesian and can be represented as {a-k-b, a-m-b} ×
{b-s-c, b-p-c}.
   Cartesian representation: An implicit repre-
sentation is called Cartesian if it specifies only
Cartesian sets of paths.
 
    From the definitions it follows that the set of false
paths represented by a single false sub-graph or a

through-path exception is Cartesian. This means that
false sub-graphs and through-path exceptions are
Cartesian representations. We use this fact in the next
section.

Reduction for implicit representation

   Let F be a Cartesian representation specifying the set
Φ(F) of paths to disregard. Then for any two false sub-
paths nH , nH’ satisfying  F         False_Tails(nH) =
False_Tails(nH’) .  Since the set of false tails of any
false sub-path nH satisfying F is the same, we will
denote the set by False_Tails(n,F).
 
    Let the set of false paths be specified by a set F1, ...,
Fk of Cartesian representations i.e. the set of false paths
is     ∪ i = 1, …, k Φ(Fi).
 
    Denote by nH(S) a false sub-path that satisfies each
representation  from a subset S of {F1,..,Fk}. Let
False_Tails(n , S) = ∪ Fi ∈ S False_tails(n, Fi).  Since
every Fi specifies a Cartesian set of false paths
False_Tails(nH(S))= False_Tails(n, S). This means that
if nH(S) and nH’(S’) are two sub-paths ending at n and
S⊆ S′  then False_Tails(nH(S)) ⊆ False_Tails(nH’(S’)).
Hence by Proposition 2 we can drop delay ∆(nH’(S’))
if  ∆(nH’(S’)) ≤ ∆ (nH(S)).
 
    This means in particular that for all paths satisfying
the same set S of representations, we need one
corresponding delay value at a node. So if we apply
Proposition 2 only to paths satisfying the same set of
false graphs then the number of extra delays at a node
n is equal to the number of subsets S of {F1,..,Fk} such
that there is at least one sub-path nH satisfying only
representations from S. Since the number of different
subsets of S is 2k, it is an upper bound on the number
of values to store at a node. This result was obtained
for false sub-graphs in [1]. We now show that
Proposition 2 yields further dramatic reduction of the
number of values to store.
 
    Denote by S* the set of all representations Fi sati-
sfied by at least one path nH.  Denote by
True_Tails(n,∅) the set of tails Tn not satisfying any of
representations Fi. It means that if Tn is in
True_Tails(n,∅) then for any sub-path nH   path nH.Tn

is true.  If S is the set of representations satisfied by nH
then True_Tails(nH(S)) = False_Tails(n, S* \ S ) ∪
True_Tails(n,∅). The latter is true because nH.Tn,
where  Tn ∈ False_Tails(n, S), is true iff Tn does not
satisfy any representation in S. That is Tn either
satisfies only representations from S* \ S or doesn’t
satisfy any representation from S* at all.



 
    Proposition 3: Let nH

1(S1), nH
2(S2),.., nH

k(Sk) be the
set of all sub-paths such that ∆(nH

i(Si)) ≥ ∆(nH
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i=2, …, k. We do not need to store the value ∆(nH
1(S1))

at n if   (S* \ S2) ∪ .. ∪ (S* \ Sk) ⊇ S* \ S1.
 
    The larger S1 is (i.e. the more representations are
satisfied by nH

1(S1)) the smaller S* \ S1 is and the more
likely it is that ∆(nH

1(S1)) will be dropped.
 
Abstract false sub-graphs

    Let the set of false paths to disregard is specified by
k Cartesian representations F1, …,Fk. Though
application of Proposition 3 allows a drastic reduction
in the number of delay values stored at a node, the
worst case storage requirement remains at 2k. It is thus
very important to minimize the value of k. Given a set
of false paths, a minimum value of k corresponds to a
representation that is the union of the smallest number
of Cartesian sets of false paths.
 
    If false paths are specified implicitly it is impor-tant
to select a Cartesian representation that is expressive
enough to specify any Cartesian set of false paths.
False sub-graphs satisfy this requirement while
through-path exceptions does not.

   Proposition 4.  Any Cartesian set of false paths can
be represented by a false sub-graph.
   Proposition 5. There is a Cartesian set of paths that
cannot be specified by only one through-path
exception.

   It not hard to check that the Cartesian set of  4 paths
shown in Figure 1 can’t  be represented by a single
through-path exception.

   Though false sub-graphs are more expressive than
through-path exceptions they may not be very
compact. Suppose we want to disregard the set of all
paths going through nodes a and b. It can be
represented by the through-path exception consisting
of just two nodes a, b. On the other hand, to represent
this set of false paths by a false sub-graph requires the
inclusion of the nodes and edges of the circuit graph
included in all sub-paths of G starting at a and ending
at b.
 
   We describe a new data structure named Abstract
False Graph (AFG) which is as expressive as false sub-
graphs and as compact as exceptions. The key idea is
to supplement false sub-graphs with abstract edges.

    Abstract edge: The edge (x, y), where x, y are nodes
of the circuit graph G, is called abstract if there is no
edge between the nodes x and y in G.
 
    An example of the AFG specifying the same set of
false paths as the false sub-graph on the right is shown
in Figure 1. In the AFG we replace edges
(a,k),(k,b),(a,m),(m,b) with one abstract edge (a,b)
since all sub-paths in the circuit graph beginning at a
go through node b. Adding abstract edges allows the
AFG to use an optimal combination of means
employed by through-path exceptions and false sub-
graphs to specify false paths.
 
   Satisfiability of an AFG by a path: A path P in G
satisfies an AFG F if there is a path R in F such that:
1. if an edge of (a, b) of  R is abstract then nodes a

and b are contained in P;  and
2. if an edge (a, b) of R is contained in G then (a, b)

is an edge of P.
 
    An AFG is not just a false sub-graph supplemented
with abstract edges. If we do not restrict the use of
abstract edges, there is a chance that the set of paths
specified by an AFG will not be Cartesian. Suppose,
for example, that the set of false paths is specified by
AFG F consisting of two abstract edges (a, b) and (c,
d). Assume that in the circuit graph G there is node n
and edges (a, n), (n, b) and (c, n), (n, d). Then F
specifies any path containing sub-path a-n-b or c-n-d
as false while a path containing sub-paths c-n-b or a-n-
d is true. Let sub-paths nH and Tn contain edges (c, n)
and (n, b) respectively.  Either sub-path is false
because there is a false path containing it. On the other
hand, path nH.Tn is true and so  the set of paths
specified by F is not Cartesian.

   The definition of AFG below is meant to guarantee
that AFG’s are equivalent to false-sub-graphs in their
expressiveness and so they can represent any Cartesian
set of paths and any set of paths specified by an AFG
is Cartesian.

   Let level(n) denote the level of node n in graph G.
The level of n is equal to 1 if n is a source of G.
Otherwise level(n) is equal to 1 plus the maximum
level of its fanin nodes. If L is a set of nodes,
min_level(L) = min { level(n) | n ∈ L} and
max_level(L) =  max { level(n) | n ∈ L}.

   Abstract False Graph: F is an abstract false graph
(AFG) of a circuit graph G with a begin set B(F) and
end set E(F) of nodes such that each node in B(F) has
no incoming edges in F and each node in E(F) has no
outgoing edges in F, if the set of nodes in F can be



partitioned into p subsets of nodes, called layers and
denoted as L1,..,Lp, such that for each i, 1 ≤ i < p:
(i) min_level(Li+1) > max_level(Li); and
(ii) nodes a, b of the same layer Li are not

connected by a path in G; and
(iii) if a ∈ Li, b ∈ Li+1 and there is no edge (a, b)

in F, then (a, b) is an edge in G and there is
no other path in G from a to b; and

(iv) if a ∈ Li, b ∈ Lj where j > i+1 and there is
edge (a, b) in F, then (a, b) is an edge in G.

   The AFG can be thought of as a subset of nodes of G
partitioned into layers with nodes of adjacent layers
connected by edges (abstract or “real”).  The essence
of the last two conditions is that we restrict what one
can do with abstract edges. One cannot drop the
abstract edge (a, b) between nodes a and b of adjacent
layers. One cannot connect nodes a, b of non-adjacent
layers by an abstract edge.

    Proposition 6: Let FS be a false sub-graph. Then we
can find an AFG F such that Φ(F) = Φ(FS).
    Proposition 7: Let F be an AFG. Then we can find a
false sub-graph FS such that Φ(FS) = Φ(F).

 
Experimental results

   Our reduction technique is demonstrated using a
prototype program written in APL2 on a Pentium II
300 MHz computer. Programs in APL2 are about two
orders of magnitude slower than those written in C.

We applied our program on rectangular meshes of size
m×m having one source and one sink located at nodes
(0, 0)   and (m, m) respectively, where (x, y) specifies
the Cartesian coordinates in the mesh. Each node (x, y)
is connected to the node (x+1, y) (if x < m) and node (x,
y+1)  (if y < m). All edges have unit delays. The results
of the experiment are given in Table 1. In each run,
represented by a row of the table, we generated a set of
AFG’s and ran the program to find the longest delay
path. Each AFG consisted only of two nodes: begin
node (xb, yb) and end node (xe, ye).
 
   Each pair of begin and end nodes was selected
randomly to satisfy the two conditions: i) xb ≤ xe, yb ≤
ye ; ii) xe + ye - (xb+ yb) = C where C is a constant. The
first condition guarantees that there is a path in the
mesh going through nodes (xb, yb) and (xe, ye). The
second condition allows one to control the number of
paths satisfying the AFG. C is the “length” of the AFG
and the larger it is the more paths the AFG satisfies.
 We ran the program in two modes: with and without
the reduction based on Proposition 3. We compare run
times and average numbers of delays to store. The
results show that the run time of the algorithm in the
reduction mode grows close to linear due to the fact
that the number of values stored at each node is very
small. On the other hand, without reduction the run
time tends to grow exponentially because of the blow-
up of the number of delays to store. Note that without
the reduction the algorithm mimics the one of [1].

 
 Table 1

 Name  Size  Number
of  AFGs

 Length of
AFGs

 Runtime (sec)  Average number of delays per
node

     w/o
reduction

 with
reduction

 w/o reduction  with reduction

 Rand1  24 x 24  40  10  17.61  9.64  11.44  1.04
 Rand2  24 x 24  80  10  40.25  15.73  25.25  1.58
 Rand3  24 x 24  40  15  124.91  11.13  54.73  1.34
 Rand4  24 x 24  80  15  1129.67  16.77  177.88  1.34
 Rand5  34 x 34  60  10  30.33  24.64  5.56  1.07
 Rand5  34 x 34  120  10  68.38  41.53  15.6  1.07
 Rand7  34 x 34  60  20  1358.25  27.67  140.76  1.24
 Rand8  34 x 34  120  20   > 30 min  48.64  284.82  1.99
 Rand9  34 x 34  60  30   > 30 min  32.70  268.56  1.34
 Rand10  34 x 34  120  30   > 30 min  70.73  365.50  5.59
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