
On Bridging Simulation and Formal Verification

Eugene Goldberg

Cadence Research Labs, USA, 2150 Shattuck Ave., 10th floor, Berkeley, California,
94704, phone: (510)-647-2825, fax: (510)-647-2801 egold@cadence.com

Abstract. Simulation and formal verification are two complementary
techniques for checking the correctness of hardware and software designs.
Formal verification proves that a design property holds for all points
of the search space while simulation checks this property by probing
the search space at a subset of points. A known fact is that simulation
works surprisingly well taking into account the negligible part of the
search space covered by test points. We explore this phenomenon by the
example of the satisfiability problem (SAT). We believe that the success
of simulation can be understood if one interprets a set of test points not
as a sample of the search space, but as an “encoding” of a formal proof1

We introduce the notion of a sufficient test set of a CNF formula as a
test set encoding a formal proof that this formula is unsatisfiable. We
show how sufficient test sets can be built. We discuss applications of tight

sufficient test sets for testing technological faults (manufacturing testing)
and design changes (functional verification) and give some experimental
results.

1 Introduction

Development of new methods of hardware and software verification is in growing
demand due to ever-increasing design complexity. Simulation and formal verifi-
cation are two complementary verification techniques. Given a design property
ξ, formal verification proves that ξ holds for every point of the search space.
Simulation verifies ξ by testing a small subset of the search space. The main
drawback of formal verification is its unscalability while an obvious flaw of sim-
ulation is its inability to prove that ξ holds for every point of the search space.
Nevertheless, the main bulk of verification is currently done by simulation: it is
scalable and works surprisingly well even though the set of test points (further
referred to as the test set) comprises a negligible part of the search space.

We study why simulation is so effective on the example of the satisfiability
problem (SAT). In terms of SAT, formal verification is to prove that a CNF
formula F (x1,.., xn) is unsatisfiable at every point p ∈ {0,1}n. On the other
hand, simulation is to give some guarantee that F is unsatisfiable by testing
it at a (small) set of points from {0,1}n. (Local search algorithms pioneered
in [5, 6] can be viewed as solving SAT by “simulation”. While these algorithms
target satisfiable formulas, in this paper, we are mostly interested in applying

1 In VMCAI-08 proceedings we mistakenly used the term ”encryption”.

simulation to unsatisfiable formulas.) We believe that the success of simulation
can be explained if one interprets a test set not as a sample of the search space
but as an “encoding” of a formal proof that the CNF formula under test is
unsatisfiable.

We introduce procedure Sat(T ,F ,L) that checks satisfiability of a CNF for-
mula F using a test set T and a set L of lemma clauses (or just lemmas for
short). Henceforth we will also refer to a set of lemma clauses L as a proof.
Sat(T ,F ,L) is not a practical procedure and is introduced just to formally define
what it means that a test set T encodes a proof L . Namely, T encodes L if
Sat(T ,F ,L) proves F to be unsatisfiable.

The set of lemma clauses L1,. . . ,Lk is ordered and the last clause Lk is
empty. The Sat(T ,F ,L) procedure is based on the fact that a CNF formula is
unsatisfiable iff it has a stable set of points (SSP) [4]. In this paper, we introduce
an efficient procedure that, given a CNF formula F ′ and a set of points T , checks
if T contains an SSP of F ′. This procedure is used by Sat(T ,F ,L) to prove that
F implies Li. This is done by checking if the set T contains an SSP for a CNF
formula F ′ equivalent to F → Li. If F → Li holds, clause Li is added to F . Both
L and T are crucial for Sat(T ,F ,L). The set L specifies a “high-level structure”
of the proof by indicating the set of lemmas to prove. On the other hand, the
set T is necessary for proving the lemmas of L efficiently.

A test set T is called sufficient for a CNF formula F , if there is a set of lemma
clauses L for which Sat(T ,F ,L) proves unsatisfiability of F . The fewer lemmas
a sufficient test set T needs for proving unsatisfiability of F by Sat(T ,F ,L), the
larger the size and the higher the quality of T is. If the set L of lemma clauses
consists only of an empty clause, Sat(T ,F ,L) succeeds in proving unsatisfiability
of F only if T contains an SSP. So an SSP is a test set of the highest quality but
it usually contains an exponential number of points [4]. In [3], we introduced the
notion of a point image of resolution proof R that a CNF formula is unsatisfiable.
We show in this paper that if the clauses of L are the resolvents of R, the
procedure Sat(T ,F ,L) succeeds if T is a point image of R. A point image of a
resolution proof is a sufficient test set of lower quality but it contains dramatically
fewer points than an SSP.

A sufficient test set may occupy a negligible part of the search space. (For
example, a point image of a resolution proof is at most two times the size of
the proof.) This fact sheds light on why simulation works so well even though it
samples only a tiny portion of the search space. A cleverly selected set of tests
(e.g. tests exercising various corner cases) may specify a set of points that encode
a formal proof that the property in question holds (or a “significant part” of such
a proof).

Simulation can be used for two kinds of problems. We will refer to the prob-
lems of the first kind as property checking. In the context of SAT, property
checking by simulation is to prove the satisfiability of a CNF formula F by
probing the value of F at a (small) set of points or to give some “guarantee”
that F is unsatisfiable. The problems of the second kind are referred to as prop-
erty preservation. In the context of SAT, property preservation is as follows.

Suppose that F is an unsatisfiable formula and we need to find a (small) set
of points T such that a satisfiable formula F ′ obtained by a (small) variation
of F most likely evaluates to 1 for a point p of T . In other words, we want to
find a set of points T that will most likely identify satisfiable variations of F .
Assuming that F describes a design property, the variation of F may specify a
design change (if we deal with a software model of the design) or a technological
fault (if F describes a hardware implementation of the design).

Although the theory we develop can be applied to the problems of both
kinds, the main focus of this paper is property preservation. (Some insights into
how sufficient test sets can be used for property checking are given in [2].) The
main idea is as follows. Let R be a proof that F is unsatisfiable. To build a test
set that detects satisfiable variations of F we propose to extract tests from a
tight sufficient test set T specified by R. Informally, a sufficient test set is tight
if points of T falsify as few clauses of F as possible. (Since F is unsatisfiable,
obviously a point of T has falsify at least one clause of F). “Regular” tests i.e.
input assignments are extracted from the points of T . (If F describes a property
of a circuit N , then a point p of T is a complete an assignment to the variables
of N . By dropping all the assignments of p but the input assignments of N we
obtain a regular test vector. In more detail, the relation between regular tests
and points is described in Section 5). If R is a resolution proof, then tests are
extracted from a tight point image of R.

As a practical application of our theory we study regular tests (i.e. input
assignments) extracted from a tight point image T of a resolution proof that
two copies of a circuit N are functionally equivalent. We show that such regular
tests detect the testable stuck-at faults of N . This result explains why the stuck-
at fault model is so successful. Besides, this result suggests that the success of this
model may have nothing to do with the assumption made by many practitioners
that the stuck-at fault model works so well because it correctly describes the
“real” faults. Interestingly, tests extracted from T may detect the same stuck-at
fault many times (i.e. for the same stuck-at fault different test vectors may be
generated). At the same time, in [8] it was shown experimentally, that test sets
where the same stuck-at fault was tested many times had the best performance
in identifying faulty chips.

In the experimental part of this paper, we apply tests extracted from a res-
olution proof that two copies of a circuit are identical to detection of literal
appearance faults (such faults are more subtle than stuck-at faults). Our results
show that tests extracted from resolution proofs have much higher quality than
random tests.

This paper is structured as follows. Section 2 describes a procedure for check-
ing if a set of points contains an SSP of a CNF formula. In Section 3, we describe
the procedure Sat(T ,F ,L) and introduce the notion of a sufficient test set. Gen-
eration of tight sufficient test sets is described in Section 4. In Section 5, we
discuss the specifics of testing formulas describing circuits. Section 6 describes
application of sufficient test sets for testing design changes and manufacturing
faults. We give some experimental results in Section 7 and conclude by Section 8.

2 Checking if Test Set Contains SSP

In this section, we give some basic definitions, recall the notion of a stable set of
points (SSP) [4] and introduce a procedure that checks if a set of points contains
a stable subset.

2.1 Basic Definitions

Let F be a CNF formula (i.e. conjunction of disjunctions of literals) over a set
X of Boolean variables. The satisfiability problem (SAT) is to find a complete
assignment p (called a satisfying assignment) to the variables of X such
that F (p) = 1 or to prove that such an assignment does not exist. If F has a
satisfying assignment, F is called satisfiable. Otherwise, F is unsatisfiable. A
disjunction of literals is further referred to as a clause. A complete assignment
to variables of X will be also called a point of the Boolean space {0,1}|X|. A
point p satisfies clause C, if C(p)=1. If C(p)=0, p is said to falsify C. Denote
by Vars(C) and Vars(F) the set of variables of C and F , respectively. We will
call a complete assignment p ∈ {0,1}|X| a test for F . We will call a set of points
T ⊆ {0,1}|X| a test set for F .

2.2 Stable Set of Points

Let a point p ∈ {0,1}|X| falsify a clause C of k literals. Denote by Nbhd(p,C) the
set of k points obtained from p by flipping the value of one of k variables of C. For
example, let X={x1,.., x5} and C = x2 ∨ x3 ∨ x5 and p=(x1=0, x2=0, x3=0,
x4=1, x5=1). (Note that C(p)=0.) Then Nbhd(p,C) ={p1, p2, p3} where
p1 = (.., x2=1,..), p2=(.., x3=1,..), p3 = (. . . , x5=0). (For each pi , the skipped
assignments are the same as in p.)

Let a CNF formula F over a set X of Boolean variables consist of clauses
C1,. . . ,Cs. Let T = {p1,. . . ,pm} be a non-empty set of points from {0,1}|X|

such that F (pi)=0, i=1,..,m. The set T is called a stable set of points (SSP)
of F if for each pi ∈ T , there is a clause Ck of F such that Ck(pi)=0 and
Nbhd(pi,Ck) ⊆ T . (In [4] we used a slightly different but equivalent definition
of SSP.)

Proposition 1. Let F={C1,..,Cs} be a CNF formula over a set X of Boolean
variables. Formula F is unsatisfiable iff there is a set T of points from {0,1}|X|

such that T is an SSP of F .

Proof is given in [4].

2.3 Checking if a test set contains an SSP

Given a set of points T and a CNF formula F , checking if T is an SSP for F is
very simple. One just needs to check if for every point p of T there is a clause
C of F such that Nbhd(p,C)⊆ T . If the check passes, then T is an SSP for F

and hence the latter is unsatisfiable. The complexity of this check is |T |∗|F|∗|X|
where X is the set of variables of F .

It is quite possible that a subset of T is an SSP of F while T itself is not.
The procedure of Figure 1 checks if there is a subset of T that is an SSP of F .
For every point p of T it checks

Stable subset check(T ,F)
{removed=true;
while (removed)
{removed=false;
for (every point p ∈ T)

if (no clause(p,F ,T))
{T = T\ {p};
removed=true;
break;}}

if (T 6= ∅) return (stable)
else return(unstable);}

if there is a clause C of F such that Nbhd(p,C) ⊆
T (the function no clause(p,F ,T)). If such a
clause does not exist, p is removed from T and
every point of T is checked again. (The reason
for starting over again is as follows. Suppose that
in the previous iterations a point p∗ was not
removed from T because for some clause C of
F , Nbhd(p∗,C)⊆ T . If p was in Nbhd(p∗,C)),
then removing p from T would break the rela-
tion Nbhd(p∗,C)⊆ T .)

Figure 1. Checking if T contains an SSP

This repeats until no point is removed from T , which may happen only in two
cases: a) T is empty (and so the original set T did not contain a stable subset);
b) The remaining points of T form an SSP. The complexity of this procedure is
|T |2∗|F|∗|X|.

3 Procedure Sat(T ,F ,L) and Sufficient Test Sets

In this section, we describe a procedure Sat(T ,F ,L) that uses a test set T to prove
that a CNF formula F is unsatisfiable. Sat(T ,F ,L) is not a practical procedure.
We introduce it just to formally define what it means that T encodes a proof L.
We also introduce the notion of a sufficient test set and describe how sufficient
test sets can be obtained.

3.1 Sat(T ,F ,L) procedure

The pseudocode of the procedure Sat(T ,F ,L) is shown in Figure 2. Here L is
a set of lemma clauses L1,.., Lk where the clause Lk is empty. First, Sat(T,F,L)
checks if a point p of T satisfies F . If such a point exists, Sat(T ,F ,L) reports
that F is satisfiable. Then Sat(T ,F ,L) processes the clauses of L in the order
they are numbered. For every lemma clause Li of L, this procedure checks if F

implies Li, by calling the function implies(T ,F ,Li). If it succeeds in proving this
implication, Li is added to F . To check if F implies Li, the function

implies(T ,F ,Li) uses the procedure Stable subset check of Figure 1 as follows.

Sat(T ,F ,L)
{if (satisfy(T ,F)) return(sat)
for (i=1,..,k))
{if (implies(T ,F ,Li)==false)

return(unknown)
F = F ∪ {Li} }}

return(unsat);}

First, the subformula FLi
is obtained from

F by making the assignments setting all
the literals of Li to 0. Formula F im-
plies Li iff FLi

is unsatisfiable. To check
if FLi

is unsatisfiable, the procedure Sta-
ble subset check(TLi

,FLi
) is called by the

function implies(T ,F ,Li) where TLi
is

Figure 2. Pseudocode of procedure SAT(T ,F ,L)

the subset of points of T falsifying Li. This procedure checks if the set TLi
con-

tains a subset that is an SSP with respect to FLi
. The complexity of Sat(T ,F ,L)

is |T |2 ∗ |F | ∗ |X| ∗ |L| where X is the set of variables of F and |L| is the number
of lemma clauses. (In [2], we give a version of Sat(T ,F ,L) that is linear in |T |
but needs more information than the procedure of Figure 2.)

3.2 Sufficient test sets

We will say that a test set T is sufficient for F , if there is a set L of lemma
clauses such that Sat(T ,F ,L) succeeds in proving the unsatisfiability of F . That
is, T is a sufficient test set for F , if it has enough points to show that F is
unsatisfiable by proving a sequence of lemmas L.

In general, the fewer lemma clauses are in the set L, the larger test set T is
necessary for Sat(T ,F ,L) to succeed. In particular, if L contains only an empty
clause, then Sat(T ,F ,L) succeeds only if T contains an SSP. On the other hand,
as we show below, if L consists of the resolvents of a resolution proof R that F

is unsatisfiable, Sat(T, F, L) succeeds even if T is just a point image of R.
A resolution proof is an ordered set of resolution operations that proves

unsatisfiability of a CNF formula F by deriving an empty clause [9]. A resolu-
tion operation is performed over two clauses C ′ and C ′′ such that a) they have
opposite literals of some variable xi and b) there is only one such variable for C ′

and C ′′. The result of the resolution operation is a clause C called the resolvent
of C ′ and C ′′. The resolvent C consists of all the literals of C ′ and C ′′ but the
literals of xi. (C is said to be obtained by resolving C ′ and C ′′ in variable xi.)
For example, if C ′=x2 ∨ x4 ∨ x20 and C ′′=x4 ∨ x31 , then by resolving them in
variable x4 we obtain the resolvent C= x2 ∨ x20 ∨ x31.

The notion of a point image of a resolution proof R was introduced in [3]. A
set of points T is called a point image of R if for any resolution operation of
R over clauses C ′ and C ′′, there are points p′,p′′ ∈ T satisfying the following
two conditions: a) C ′(p′)= C ′′(p′′)=0; b) p′,p′′ are different only in the variable
in which clauses C ′ and C ′′ are resolved. Such two points are called a point
image of the resolution operation over C ′ and C ′′.

Now we show that if R is a resolution proof that F is unsatisfiable and T is a
point image of R, then Sat(T, F, L) returns unsat where L is the set of resolvents
of R. Let C be a resolvent of R obtained by resolving C ′ and C ′′. Then C is

in L. When the Sat(T ,F ,L) procedure gets to proving that C is implied by the
current formula F , clauses C ′ and C ′′ are in F . Let FC be the formula obtained
from F (by making the assignments setting the literals of C to 0) for checking if
F implies C. In FC , clauses C ′ and C ′′ turn into unit clauses xi and xi (where
xi is the variable in which C ′ and C ′′ are resolved). Then the points p′,p′′ form
an SSP with respect to these unit clauses and hence with respect to FC . So the
procedure Sat(T ,F ,L) succeeds in proving unsatisfiability of F . A point image
is a weak sufficient test set, because it can be used only to prove very simple
lemmas (that the resolvent of C ′ and C ′′ is implied by C ′ ∧ C ′′).

3.3 Generation of sufficient test sets

Given a CNF formula F , one can build its sufficient test set as a point image
T of a resolution proof R that F is unsatisfiable. Building T is very simple. For
every pair of clauses C ′ and C ′′ whose resolvent is in R one just needs to find
a point image of the resolution operation over C ′ and C ′′. The union of point
images of all resolution operations forms a point image of R (and so a sufficient
test set for F). The size of such a point image is twice the size of R at most.

As we mentioned above, a point image of a resolution proof R is a weak
sufficient test set. However, one can always get a stronger test set by “rarefying”
R. The idea is to remove some resolvents from R (preserving an empty clause)
and use the remaining clauses as the set L of lemmas. Then for every clause
Li of L we build an SSP Si for FLi

thus proving that F → Li . (We assume
that the lemma clauses L1,.., Li−1 proved before Li have been added to F .) A
procedure for building an SSP is described in [4]. Since some resolvents of R are
missing, now one may need more than two points to prove that F → Li. The set
T = S1∪ .. ∪Sk where k = |L| forms a sufficient test set that is stronger than a
point image of R (because T can prove more complex lemmas). If one removes
from R all the resolvents but an empty clause, T turns into an SSP.

4 Tight Sufficient Test Sets

The fact that a test set T is sufficient for a CNF formula F means that T is
complete in the sense that it encodes a proof that F is unsatisfiable. However,
this completeness alone does not make T a high-quality test set for a property
preservation problem. Recall that we are interested in finding a test set such
that, given an unsatisfiable formula F , it will most likely “detect” satisfiable
variations of F . In other words, given a satisfiable formula F ′ obtained from F

by a small change, we want T to contain a point p that satisfies F ′ and so detects
this change. This can be done by making sufficient test sets tight. Informally, a
sufficient test set T is tight if every point p of T falsifies as few clauses of the
original formula F as possible. (Ideally, every point p of T should falsify only
one original clause). The intuition here is that if p falsifies only clause Ci of F ,
then p may detect a variation of F that includes disappearance of Ci from F

(or adding to Ci a literal satisfied by p).

Let us consider building a tight point image T of a resolution proof R. Let
C be the resolvent of C ′ and C ′′. When looking for two points p′,p′′ forming a
point image of the resolution operation over clauses C ′ and C ′′ (and so forming
an SSP of sub formula FC) we have freedom in assigning variables of F that
are not in C ′ and C ′′. To make the test set T tight, these assignments should
be chosen to minimize the number of clauses falsified by p′,p′′. Note that since
p′,p′′ are different only in one variable (in which C ′ and C ′′ are resolved), picking
one point, say p′, completely determines the point p′′. This poses the following
problem. It is possible that no matter how well one picks the point p′ to falsify
only one clause of F , the corresponding point p′′ falsifies many clauses of F .

In [2], we describe a solution to the problem above. Namely we describe a
version of the procedure Sat(T ,F ,L) that slightly “relaxes” the definition of a
sufficient test set. (By changing procedure Sat(T ,F ,L), we essentially change the
definition of proof encoding we use. Obviously, the same proof can be encoded
in many ways.) In this version, in points p′,p′′, only the parts consisting of the
assignments of the variables of Vars(C ′) ∪ Vars(C ′′) have to be at Hamming
distance 1 (i.e. one just needs to guarantee that both p′,p′′ falsify the resolvent
of C ′ and C ′′). Assignments to the variables that are not in C ′ and C ′′ can
be done independently in p′,p′′. (In [2], we also describe how to extract a tight
sufficient test set from a “rarefied” resolution proof introduced in subsection 3.3,
i.e. how to build tight sufficient tests sets that are stronger than those obtained
from resolution proofs.)

5 Circuit Testing

So far we have studied the testing of general CNF formulas. In this section,
we consider the subproblem of SAT called Circuit-SAT. In this subproblem,
CNF formulas describe combinational circuits. In this section, we discuss some
specifics of testing formulas of Circuit-SAT.

5.1 Circuit-SAT

Let N be a single-output combinational circuit. Let FN be a CNF formula
specifying N and obtained from it in a regular way. That is for every gate
Gi,i=1,..,k of the circuit N , a CNF formula F (Gi) specifying Gi is formed and
FN = F (G1) ∧ . . . ∧ F (Gk). For example, if Gi is an AND gate implementing
vi = vm ∧ vn (where vi, vm,vn describe the output and inputs of Gi), F (Gi) is
equal to (vm∨vn∨vi)∧ (vm∨vi)∧ (vn∨vi). Let variable z describe the output of
N . Then the formula FN ∧ z (where z is just a single-literal clause) is satisfiable
iff there is an assignment to input variables of N for which the latter evaluates
to 1. We will refer to testing the satisfiability of FN ∧ z as Circuit-SAT.

5.2 Specifics of testing Circuit-SAT formulas

Let N(Y ,H,z) be a circuit where Y , H are the set of input and internal variables
respectively. Let FN ∧z be a CNF formula describing the instance of Circuit-SAT
specified by N(Y ,H,z). Let p be a test as we defined it for SAT (i.e. a complete
assignment to the variables of Y ∪H ∪{z}. We will denote by inp(p) the input
part of p that is the part consisting of the assignments of p to the variables
of Y .

The main difference between the definition of a test as a complete assignment
p that we used so far and the one used in circuit testing is that in circuit
testing the input part of p is called a test. (We will refer to inp(p) as a circuit
test.) The reason for that is as follows. Let N(Y ,H, z) be a circuit and FN ∧ z

be the CNF formula to be tested for satisfiability. A complete assignment p

can be represented as (y ,h ,z∗) where y , h are complete assignments to Y , H

respectively and z∗ is an assignment to variable z. Denote by F the formula
FN ∧ z. If F (p)=0, then no matter how one changes assignments h , z∗ in p, the
latter falsifies a clause of F . (So, in reality, inp(p) is a cube specifying a huge
number of complete assignments.) Then instead of enumerating the complete
assignments to Vars(F) one can enumerate the complete assignments to the
set Y of input variables. In our approach, however, using cubes is unacceptable
because the complexity of Sat(T ,F ,L) is proportional to the size of T .

Note that, given a sufficient test set T= {p1,. . . ,pm}, one can always form
a circuit test set inp(T)= {y1,. . . ,yk}, k ≤ m, consisting of input parts of the
points from T . (Some points of T may have identical input parts, so inp(T) may
be smaller than T .) In the case of manufacturing testing, transformation of T

into inp(T) is mandatory. In this case, a hardware implementation of a circuit
N is tested and usually one has access only to the input variables of N . (In the
case of functional verification, one deals with a software model of N and so any
variable of F can be assigned an arbitrary value.)

A point pi of T has an interesting interpretation in Circuit-SAT if the value
of z is equal to 1 in pi. Let F ′ be the subset of clauses of FN falsified by pi.
(For a tight test set, F ′ consists of a very small number of clauses, most likely
one clause.) Suppose N has changed (or has a fault) and this change can be
simulated by removing the clauses of F ′ from FN or by adding to every clause
of F ′ a literal satisfied by pi . Then pi satisfies the modified formula F . So the
internal part of pi specifies the change that needs to be brought into circuit N

to make inp(pi) a circuit test that detects the satisfiability of the modified N .

6 Testing design changes/manufacturing faults

In this section, we consider the problem of property preservation (i.e. the problem
of testing design changes and manufacturing faults) in more detail. In terms of
SAT, the objective of property preservation is to detect a satisfiable variation
(fault) of an unsatisfiable CNF formula F . We assume here that F specifies a
property ξ of a circuit N . The idea of our approach is to build a resolution proof

R that F is unsatisfiable and then use R (possibly “rarefied”) to build a tight
sufficient test set T . This test set is meant to detect changes/faults that break
the property ξ. Every point pi of T can be trivially transformed to a circuit test
by taking the input part of pi. For the sake of clarity, in the following write-up
we consider the testing of manufacturing faults (however the same approach can
be used for verifying design changes).

Usually, to make manufacturing test generation more efficient, a fault model
(e.g. the stuck-at fault model [1]) is considered. Then a set of tests detecting all
testable faults of this model is generated. An obvious flaw of this approach is that
one has to foresee what kind of faults may occur in the circuit. Nevertheless, some
fault models (especially the stuck-at fault model) are widely used in industry.
The reason for such popularity is that a set of tests detecting all testable stuck-at
faults also detects a great deal of faults of other types. An obvious advantage of
our approach is that it is fault model independent. So one does not need to guess
what may happen with the chip.

For the case of generality, we consider the

G
1

z

….
….

y
1

y
s

N’ N”

…. ….

G
m

G

….

Z’1 Z”
1

Z’q Z”
q

Fig. 3. Miter M of circuits N ′

and N ′′

situation when one does not know any spe-
cific property of the circuit N to be tested.
In this case, one can employ the most funda-
mental property of a circuit which is its self-
equivalence. In this section, we show that a
tight sufficient test set T for the formula spec-
ifying self-equivalence of N contains tests for
detecting stuck-at faults. (In [2], we prove that
on the one hand, inp(T) contains tests for de-
tecting all testable stuck-at faults, on the other
hand, inp(T) is stronger than a set of tests
detecting all testable stuck-at faults.) These
results offer a good explanation of why test

sets detecting stuck-at faults work so well for other types of faults.

Further exposition is structured as follows. First we describe a circuit (called
a miter) that is used for equivalence checking. Then we give the definition of a
stuck-at fault in circuit N . After that we show how one can build a test detecting
a stuck-at fault using a formula F that describes checking self-equivalence of N .
Finally, we show that a tight point image of a “natural” resolution proof that F

is unsatisfiable contains such tests.

6.1 Manufacturing tests and self-equivalence check

Fig. 3 shows a circuit M (called a miter) composed of two s-input, q-output
circuits N ′ and N ′′. Here Gi is an XOR gate and G is an OR gate. The circuit
M evaluates to 1 iff N ′ and N ′′ produce different output assignments for the
same input assignment. So N ′ and N ′′ are functionally equivalent iff the CNF
formula FM ∧ z is unsatisfiable (here FM specifies the functionality of M and z

is the output variable of M).

Suppose that we want to generate a set of manufacturing tests for a circuit
N . We can do this as follows. First we build the miter M of two copies of N .
(In this case, N ′ and N ′′ of Fig. 3 are just copies of N having the same input
variables and separate sets of internal variables.) After that we construct a proof
R that the formula F = FM ∧ z is unsatisfiable and then use R to build a tight
sufficient test set T . The idea is that being tight, T can be used for detection of
variations of F describing appearance of a fault in one of the copies of N .

6.2 Stuck-at faults

A stuck-at fault in a circuit N , describes the situation when a line in N is stuck
at constant value 0 or 1. Let Gi(vm,vk) be a gate of N . Then appearance of a
stuck-at-1 fault φ on the input line vm of Gi, means that for every assignment
to the inputs of N the value of vm remains 1. (Suppose that the output of gate
Gm described by variable vm, in addition to an input of Gi, feeds an input of
some other gate Gp. In the single stuck-at fault model we use in this paper, only
the input vm of Gi or Gp is assumed to be stuck at a constant value. However,
if the output line of Gm is stuck at 1, then input lines vm of both Gi and Gp

are stuck at 1.) Let Gi be an AND gate. Then the functionality of Gi can be
described by CNF F (Gi) = (vm∨vk∨vi)∧(vm∨vi)∧(vk∨vi) where vi describes
the output of Gi. The fault φ above can be simulated by removing the clause
vm ∨ vi from F (Gi) (it is satisfied by vm=1) and removing the literal vm from
the clause vm ∨ vk ∨ vi of F (Gi).

6.3 Construction of tests detecting stuck-at faults

Suppose the stuck-at-1 fault φ above occurred in the copy N ′ of N (i.e. it oc-
curred on the input line v′

m of the AND gate Gi(v
′
m,v′

k) of N ′). Let us show how
this fault can be detected using the formula F=FM ∧ z. Let p be an assignment
falsifying the clause v′

m ∨ v′
i of F (G′

i) and satisfying every other clause of F .
Then the input assignment inp(p) is a circuit test detecting φ. Indeed, since p

satisfies all the clauses of F but v′
m∨v′

i, then N ′′ (the correct copy of N) and N ′

(the faulty copy) produce different output assignments. Besides, since p falsifies
v′

m ∨ v′
i and satisfies the clause v′

k ∨ v′
i the assignments to the variables of G′

i are
v′

m=0,v′
k=1, v′

i=1. That is the output of G′
i has exactly the value, that would

have been produced if v′
m got stuck at 1. If there is no point p falsifying v′

m ∨ v′
i

and satisfying the rest of the clauses of F , the stuck-at-1 fault φ is untestable
(i.e. the input/output behavior of N does not change in the presence of φ).

6.4 Extracting a tight sufficient test set from a “natural” resolution
proof

A “natural” proof Rnat that F is unsatisfiable is to derive clauses describing
functional equivalence of corresponding internal points of N ′ and N ′′. These
clauses are derived in topological order. First, the clauses describing the equiva-
lence of outputs of corresponding gates of topological level 1 (whose inputs are

inputs of N ′ and N ′′) are derived. Then using the equivalence clauses relating
outputs of gates of topological level 1, the equivalence clauses relating outputs
of corresponding gates of level 2 are derived and so on.

When building Rnat, we resolve clauses F (G′
i(v

′
m, v′

k)) and F (G′′
i (v′′

m, v′′
k))

describing corresponding gates G′
i and G′′

i of N ′ and N ′′ and equivalence clauses
EQ(v′

m,v′′
m), EQ(v′

k,v′′
k) relating inputs of G′

i and G′′
i . Here EQ(v′

m,v′′
m)=(v′

m ∨
v′′

m) ∧ (v′
m∨v′′

m) if v′
m and v′′

m are internal variables. If v′
m and v′′

m are input vari-
ables of N ′ and N ′′, they denote the same input variable and EQ(v′

m, v′′
m) ≡ 1. By

resolving clauses of F (G′
i(v

′
m, v′

k)) ∧ F (G′′
i (v′′

m, v′′
k)) ∧ EQ(v′

m,v′′
m) ∧ EQ(v′

k,v′′
k)

we generate new equivalence clauses EQ(v′
i,v

′′
i) relating the outputs of G′

i and
G′′

i . Let p1 and p2 be a tight point image of the resolution operation over clauses
C1 and C2 performed when deriving clauses of EQ(v′

i,v
′′
i) . Let, say C1, be a

clause of F (G′
i) , p1 falsify C1 and satisfy F \ {C1}. Then, using the reasoning

applied in the previous subsection, one can show that inp(p1) is a circuit test
detecting the stuck-at-fault corresponding to disappearance of C1 from F . More
detailed description of building a tight point image of R and its relation to stuck-
at fault tests is given in [2]. In particular, we show that the set inp(Tnat) where
Tnat is a tight point image of Rnat contains tests detecting all testable stuck-at
faults. On the other hand, inp(Tnat) may have to contain tests that detect the
same stuck-at-fault in different ways. So, inp(Tnat) is stronger than a test set
detecting testable all stuck-at faults. Interestingly, the high quality of test sets
detecting every stuck-at fault many times was observed in [8] experimentally.

6.5 Brief discussion

The size of Rnat and hence the size of Tnat is linear in the size of N . Moreover,
since different points of Tnat may have identical input parts, the size of inp(Tnat)
may be considerably smaller than that of Tnat. Importantly, Tnat is not meant
to detect stuck-at or any other type of faults. The fact that Tnat does contain
such tests suggests that tight test sets extracted from resolution proofs can be
successfully used in manufacturing testing.

One can always get a stronger test set (that detects more faults of various
kinds) by “rarefying” the proof Rnat. Suppose, for example, that a single-output
subcircuit K of circuit N is particularly prone to faults and requires some extra
testing. This can be achieved, for example, by dropping all the resolvents of Rnat

that were generated from clauses FK′ and FK′′ when obtaining the equivalence
clauses EQ(v′

i,v
′′
i). Here EQ(v′

i,v
′′
i) relate the outputs of K ′ and K ′′ in N ′ and

N ′′ and FK are the clauses specifying the functionality of subcircuit K. Let C

be a clause of EQ(v′
i,v

′′
i). Then an SSP S of the subformula FC (here FC is

the CNF formula built to check if F implies C) will contain more points then
the part of a point image of Rnat corresponding to resolution operations over
clauses of FK′ and FK′′ . So a test set containing S will provide better testing of
the subcircuit K.

7 Experimental Results

In this section, we describe application of tight sufficient test sets to detect a
change in the functionality of a combinational circuit. Such a change may be
caused either by a manufacturing fault or by circuit re-synthesis.

In the experiments we compared the quality of circuit tests (i.e. complete
assignments to input variables) generated randomly and extracted from tight
sufficient test sets. Given a circuit N , a tight sufficient test set T was extracted
from a resolution proof R that a CNF formula F describing equivalence checking
of two copies of N is unsatisfiable. (The exact procedure for obtaining T from
R and many more experimental results are given in [2]. As we mentioned above
a resolution proof that two copies of N are functionally equivalent can be easily
generated manually. However, for the sake of generality, in experiments we used
resolution proofs generated by a SAT-solver, namely by the SAT-solver FI [3].)
To form a circuit test set from T we randomly picked a subset of the set inp(T)
(where inp(T) consists of the input parts of the points from T).

Table 1 shows experimental results for four circuits of a MCNC benchmark
set. All circuits consist of two-input AND and OR gates inputs of which may
be negated. The columns 2-4 give the number of inputs, outputs and gates of
a circuit. The fifth column shows the size of the proof R (in the number of
resolution operations) that

two copies of circuit N areName #inp #out #gates #proof #point
image T

c432 36 7 215 10,921 5,407
c499 41 32 414 59,582 27,903
cordic 23 2 93 1,443 808
i2 201 1 233 1,777 1,435

Table 1. The size of circuits, proofs and
point images

equivalent. The last column
gives the size of a tight point
image of R (in the number of
points).

Let F be a CNF formula
describing equivalence check-
ing of two copies N ′ and N ′′

of a circuit N . Here F = FM ∧
z where z is the variable de-

scribing the output of the miter M of N ′ and N ′′ (as shown in Fig. 3).
The fault we used in experiments was to add a literal to a clause of FM . This

fault is more subtle than a stuck-at fault in which an entire clause is removed
from FM . In [2] we give the interpretation of the literal appearance fault from
a technological point of view. Literal appearance in a clause of FM can be also
used to simulate small design changes that are hard to detect in functional
verification.

Let s be a circuit test (i.e. an assignment to the input variables of N). To
check if φ is detected by s we make the assignments specified by s in FM and
run Boolean Constraint Propagation (BCP) for FM . If z gets assigned 1 (or 0)
during BCP, then s detects (respectively does not detect) φ.

In general however, running BCP may not result in deducing the value of
z. The reason is that after adding a literal to a clause of FM , circuit behavior
becomes non-deterministic. For example, let C = v′

i ∨ v′
j ∨ v′

k be a clause of the
CNF F (G′

k) describing the functionality of the AND gate G′
k(v′

i, v
′
j). Suppose

that φ is to add literal v′
m to C. Normally, if v′

i=1,v′
j=1, the value v′

k=1 is derived
from the clause C. However, if the value of v′

m becomes equal to 1 during BCP
(before the variable v′

k is assigned), then the clause v′
i ∨ v′

j ∨ v′
k ∨ v′

m is satisfied
without assigning 1 to v′

k. So the output of the gate G′
k remains unspecified under

the input assignment s. In this case, we run a SAT-solver trying to assign values
to the unassigned variables to satisfy F (and so set z to 1). If such an assignment
exists (does not exist), s is considered to detect (not to detect) φ. The reason is
that if φ simulates a manufacturing fault and we succeed in satisfying the faulty
F , then s will detect φ in case the output of G′

k is set to the wrong value (i.e.
0).

Table 2 shows the resultsName #tests SIS rand extr. from
#flts #flts inp(T)

#flts

c432

58 86 69.7(65) 79.7 (76)
100 - 77.1 (72) 86.7 (78)
200 - 88.7(85) 95.5 (90)

c499

93 90 78.7 (70) 85.9(83)
200 - 86.9 (84) 91.2 (89)
400 - 91 (88) 95.2 (92)

cordic

43 84 28.5 (23) 81.6 (74)
100 - 36.6 (29) 94.2 (87)
200 - 54.8 (36) 99 (98)

i2

221 71 7.8 (3) 66.4 (62)
400 - 9.2 (6) 74.6 (69)
600 - 11.6 (10) 82.4 (80)

Table 2. Circuit testing

of fault testing for the circuits
of Table 1. In every experiment
we generated 100 testable faults
(i.e. every fault specified a sat-
isfiable variation of F). The sec-
ond column of Table 2 gives
the size of a test set. The third
column gives the result for a
test set detecting all stuck-at
faults in N . This test set was
generated by the logic synthe-
sis system SIS [7]. Since we could
not vary the size of the test set
produced by SIS, only one test
set was used per circuit. For
example, for the circuit c432,
a test set of 58 tests was gen-

erated by SIS. These tests were able to detect 86 out of 100 faults of literal
appearance. The fourth column contains the results of fault detection using cir-
cuit tests generated randomly. In every experiment we used 10 test sets and
computed the average result.The value in parentheses shows the worst result
out of 10. For example, for the circuit c432, in the first experiment (first line
of Table 2) we generated 10 random test sets, each consisting of 58 tests. On
average, 69.7 faults were detected, 65 faults being the worst result out of 10.

The fifth column contains the result of fault detection using circuit tests
extracted from the set inp(T) where T is a point image of a proof R that F is
unsatisfiable. Namely, we randomly extracted a particular number of tests from
inp(T). The corresponding sizes of T are given in Table 1. In every experiment we
also generated 10 test sets of a particular size and we give the average value and
the worst result out of 10. For example, in the first experiment, for the circuit
c432, 10 test sets of 58 tests each were extracted from inp(T). The average
number of detected faults was 79.7 and the worst result was 76 faults.

Table 2 shows that tests extracted from a point image T of a resolution proof
R perform better than random tests. For circuits c432, c499 that are shallow

(i.e. have few levels of logic) and have relatively large number of outputs (7 and
32 respectively) tests extracted from resolution proofs performed only slightly
better. (Testing shallow circuits with many outputs is easy). However, for circuits
cordic and i2 that are also shallow but have only 2 and 1 outputs respectively
tests extracted from resolution proofs significantly outperformed random tests.

Table 2 also shows that the quality of a test set extracted from a resolution
proof depends on proof quality. As we mentioned above, tests detecting stuck-at
faults is a part of inp(Tnat) where Tnat is a point image of a natural resolution
proof Rnat. Table 2 shows that tests found by SIS performed better than tests
extracted from proofs found by FI (these proofs are significantly larger than
Rnat).

8 Conclusion

In this paper, we develop a theory of sufficient test sets. The essence of our ap-
proach is to interpret a set of tests not as a sample of the search space but as an
encoding of a formal proof. We believe that this theory can have many applica-
tions. An obvious application is generation of high-quality tests. We show that
such tests can be extracted from resolution proofs (possibly rarefied). One more
interesting direction for research is extending the notion of stable sets of points
(which is the foundation of our approach) to domains other than propositional
logic. This may lead to developing new methods of generating high quality test
sets for more complex objects like sequential circuits or even programs.

References

1. M. Abramovici, M.A.Breuer, A.D.Friedman. Digital Systems Testing and Testable

Design. 672 p.Sep. 1994, Wiley-IEEE Press
2. E.Goldberg. On bridging simulation and formal verification. Tech-

nical Report CDNL-TR-2006-1225, December 2006 (available at
http://eigold.tripod.com/papers/ssim.pdf).

3. E.Goldberg. Determinization of resolution by an algorithm operating on complete

assignments. SAT-2006, LNCS 4121, pp.90-95.
4. E. Goldberg. Testing Satisfiability of CNF Formulas by Computing a Stable Set of

Points, CADE 2002, LNCS, vol 2392,pp.161-180.
5. B. Selman H. Levesque, D. Mitchell. 1992. A New Method for Solving Hard Satis-

fiability Problems. AAAI-92, pp. 440-446.
6. B.Selman, H.A.Kautz. and B.Cohen. Noise strategies for improving local search.

AAAI-94, Seattle, pp. 337-343, 1994.
7. E.Sentovich et. al. SIS: A system for sequential circuit synthesis. Technical report,

University of California at Berkeley, 1992. Memorandum No. UCB/ERL M92/41
8. E. McCluskey and C. Tseng, Stuck-fault tests vs. actual defects, Proc. of Int. Test

Conf., pp. 336 -343, 2000.
9. L.Bachmair, H.Ganzinger. A.Robinson, A.Voronkov editors, The Handbook of Au-

tomated Reasoning, chapter 2, vol. 1,19-99. Elsevier Science Pub.2001.

