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• Main bulk of research: single property verification 

• A design can have thousands of properties  

•  A hard property   conjunction of easier properties 

 

Motivation 
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Need for efficient methods of multiple-property verification 



• Given sequential circuit and safety properties P1,...,Pk  

• check if every Pi is true 

• if some Pi fails     design is incorrect 

 

•  How many failed properties does one need to find? 

• Straightforward approach: 

• find every failed property Pi 

• a flaw: same bug can break many properties 

• We take a more practical approach: 

• find a (small) subset of failed properties identifying bugs 

Problem Definition 
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•  Joint verification: check aggregate property P := P1  ...   Pk 

•  design is correct iff P holds 

•  Separate verification:  prove each Pi separately 
• Pi is weaker than P   it should be easier to prove 
• different properties can have quite different proofs 
• inductive invariant for Pi can be re-used when proving Pm 

• “Just-assume” verification: an instance of separate verification 
• verify Pi  assuming that every Pm, m ≠ i  holds 
• no justification of assumptions is necessary, hence the name 

 

Joint and Separate Verification 
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•  Using design structure to group similar properties 
• G.Cabodi, S.Nocco  (DATE  2011) 

• P. Camurati, C. Loiacono, P. Pasini, D. Patti,  S. Quer (DIFTS 2014) 

• G. Cabodi, P.E. Camurati, C. Loiacono, M. Palena. P. Pasini, D. Patti,  
S. Quer (Int J Software Tool Tech Tran, 2017) 

• On-line information on multi-property verification by ABC 

• ABC implements joint verification 

• HWMCC results, multi-track (up to 2013) 

 Background 
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Proving Properties Globally and Locally 

s2 s1 

Pi 

sn sn+1 

Proving Pi globally: 

no CEX s1,.., sn,sn+1 where s1,..,sn  

are Pi-states and sn+1 is ~Pi state 

Pi 

s1 

... 

s2 ... sn 

Proving Pi locally: (w.r.t P := P1  ...  Pk) 

no CEX s1,.., sn,sn+1 where s1,..,sn  

are P-states and sn+1 is ~Pi state 

sn+1 

P 

Proving Pi locally means assuming 

that every Pm, m ≠ i holds 



If Pi holds locally it  either 
• holds globally  OR 

• every CEX breaking Pi first breaks Pm 

Relation Between Global and Local Proofs  
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Pi 

s1 s2 
... sk sn+1 

P 

sk is  Pi-state and ~P-state 

sk breaks some property Pm 

If Pi holds globally it does locally too 

The opposite it not true 

... 



Advantage of Verifying Properties Locally 
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• Proving Pi locally is easier than P  

• proving P :             can one reach  ~P-state by transitions from P-states ? 

• proving Pi locally : can one  reach ~Pi-state by transitions from P-states ? 

• the ~Pi-states is a subset  of the ~P-states 
 

• If Pi holds locally,  it is most likely not a bug-identifying property 

• even if Pi fails globally, some property Pm fails before Pi  

 

• If Pi fails locally,  it  is  a bug-identifying property 

• there is a CEX where Pi is the first to fail 

 

• If P fails    at least one Pi fails locally (and hence globally) 
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Example 

module counter (enable, clk, request); 

   parameter reset_val = 1 << 7; 

    input enable, clk, request; 

   reg [7:0] val ; 

   wire reset ; 

   initial val = 0; 

   assign reset = (( val == reset_val ) && request); 

   always @( posedge clk ) begin 

      if ( enable ) begin 

         if (reset ) val = 0; 

         else val = val +1; 

     end 

  end 

endmodule 

P1: assert property (request == 1); 

P2: assert property (val <= reset_val); 

Both P1 and P2 fail globally 

 

Consider proving P1 and P2 locally  

with respect to P: = P1  P2  

 
P1 fails locally (i.e. assuming P2 is true) 

P2 holds locally (i.e. assuming P1 is true) 
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• Check every property Pi locally  
• i.e. we assume that every Pm , m ≠ i holds 

• If every Pi holds locally  aggregate property P  holds 
  otherwise 

• Properties failing locally identify bugs 

 

• No justification of assumptions is required 

• When proving Pi locally 

• assumption “Pm holds” is useful even if it is wrong: 

• we simply drop traces where Pm fails before Pi 

“Just-Assume” (Ja) Verification 
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Re-using Inductive Invariants 
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Pi 
Let R be the set of reachable states 

Proving Pi by induction: 

Find strengthening Gi such that 

Pi  Gi  is an inductive invariant 

Both Pi and Gi over-approximate R 

Let G1,..,Gi be strengthenings for P1,..,Pi 

Proving Pi+1   proving   G1  ..  Gi  Pi+1 

R 

Gi 
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• In experiments, we used IC3-db, a Diffblue version of IC3 

• To prove Pi locally, IC3-db treats Pm, m ≠ i as constraints 

• Ja-verification was implemented as a Perl script 
• IC3-db is called in a loop to prove properties locally one by one 

•  Order in which properties are verified matters 
• the reason is re-using of inductive invariants 
• a rule of thumb: prove easy properties first  
• re-use  inductive invariants when proving harder properties 

• We verified P1,..,Pk in the order they were listed 

 

Implementation of Ja-Verification 
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• We also used IC3-db to implement joint verification 
•  as a Perl script iteratively calling IC3-db 

• Implementation is meant for solving all properties globally 

• The script first calls IC3-db to check P := P1  ...   Pk 

• If P holds, all properties Pi are true 

        otherwise 

• false properties are removed, remaining properties are conjoined 

• We cross-checked results of IC3-db by ABC (UC, Berkeley) 
• Joint verification is a natural mode of operation for ABC 

 

Implementation of Joint Verification 
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• Joint verification is less robust than separate verification 

• Complexity of  proving P := P1  ...   Pk blows up 

• if a few properties Pi are too hard to solve 

• properties Pi depend on different local behaviors  

• This problem can be solved by clustering similar properties 

• we want to make a semantic comparison 

• We used HWMCC-13 benchmarks 

• correct designs:  8 designs solved by joint verification without clustering 

(under 1000 properties each) 

• faulty designs:  8 designs where at least one property was proved false  

 

 

Comparison of Joint and Ja-verification 
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Designs with Failed Properties 
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Name #lat- 

ches 

#pro- 

per- 

ties 

Joint verification Ja-verification  

by IC3-db ABC IC3-db 

false (tr) time false (tr) time time limit false (tr) total time 

6s104 84,925 124 1 (0) 10 h 1 (0) memout 0.3 h 1 (123)* 2.5 h 

6s260 2,179 35 1 (0) 10 h 1 (0) 10 h 0.5 h 1 (34)* 1,686 s 

6s258 1,790 80 25 (0) 10 h 30(0) 10 h 0.3 h 1 (72) 2.4 h 

6s175 7,415 3 2 (0) 10 h 2 (0) 10 h 0.3 h 2 (1)* 554 s 

6s207 3,012 33 6 (0) 10 h 10 (0) 10 h 0.3 h 2 (31)* 22 s 

6s254 762 14 13 (1)* 25 s 13 (1)* 225 s 0.3 h 1 (13)*  2 s 

6s335 1,658 61 26 (35)* 2 h 26 (35)* 260 s 0.3 h 20 (41)* 56 s 

6s380 5,606 897 399 (0) 10 h 395 (0) 10h 0.3 h 3 (894)* 550 s 



Correct Designs 

20 March 2018 19 

Name #lat- 

ches 

#pro-

per-

ties 

Joint verification Ja-verification by IC3-db 

ABC 

time 

IC3-db 

time 

time 

limit 

#un-

solved 

total  

time 

6s124 6,748 630 > 10 h 2.9 h 0.8 h  0 1.9 h 

6s135 2,307 340 123 s 335 s 0.8 h  0 746 s 

6s139 16,230 120 4.7 h 1.7 h 2.8 h  2 6.5 h 

6s256 3,141 5 > 10h 602 s 2.8 h  1 2.9 h 

bob12m09 285 85 1,692 s 930 s 0.8 h  0 784 s 

6s407 11,379 371 1.3 h 3.4 h 0.8 h  0 2,077 s 

6s273 15,544 42 1.8 s 325 s 0.8 h       0 290 s 

6s275 3,196 673 334 s 1,154 s 0.8 h 0 1,611 s 

Efficient verification of multi-property designs  



• We introduce “Just-Assume” (Ja) verification 
• it is a special case of separate verification 

• We give a semantic version of Ja-verification 
• a structure-aware method can be built on top of it  

• In Ja-verification, assumptions do not need justification 

• CEXs are built only for failed properties identifying bugs 
• this can give big performance gains  (finding CEXs can be very hard) 

• Joint and Ja-verification are competitive on correct designs 

Conclusions 
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