
E. Goldberg, M. Güdemann, D. Kroening

Diffblue Ltd,

Oxford, UK

Efficient Verification of Multi-Property
Designs (the benefit of wrong assumptions)

R. Mukherjee

Cadence Design Systems,

USA

• Motivation and problem definition

• “Just-assume” verification

• Experimental results

• Conclusions

Outline

20 March 2018 Efficient verification of multi-property designs 2

• Main bulk of research: single property verification

• A design can have thousands of properties

• A hard property  conjunction of easier properties

Motivation

20 March 2018 Efficient verification of multi-property designs 3

Need for efficient methods of multiple-property verification

• Given sequential circuit and safety properties P1,...,Pk

• check if every Pi is true

• if some Pi fails  design is incorrect

• How many failed properties does one need to find?

• Straightforward approach:

• find every failed property Pi

• a flaw: same bug can break many properties

• We take a more practical approach:

• find a (small) subset of failed properties identifying bugs

Problem Definition

20 March 2018 Efficient verification of multi-property designs 4

• Joint verification: check aggregate property P := P1  ...  Pk

• design is correct iff P holds

• Separate verification: prove each Pi separately
• Pi is weaker than P  it should be easier to prove
• different properties can have quite different proofs
• inductive invariant for Pi can be re-used when proving Pm

• “Just-assume” verification: an instance of separate verification
• verify Pi assuming that every Pm, m ≠ i holds
• no justification of assumptions is necessary, hence the name

Joint and Separate Verification

20 March 2018 Efficient verification of multi-property designs 5

• Using design structure to group similar properties
• G.Cabodi, S.Nocco (DATE 2011)

• P. Camurati, C. Loiacono, P. Pasini, D. Patti, S. Quer (DIFTS 2014)

• G. Cabodi, P.E. Camurati, C. Loiacono, M. Palena. P. Pasini, D. Patti,
S. Quer (Int J Software Tool Tech Tran, 2017)

• On-line information on multi-property verification by ABC

• ABC implements joint verification

• HWMCC results, multi-track (up to 2013)

 Background

20 March 2018 Efficient verification of multi-property designs 6

• Motivation and problem definition

• “Just-assume” verification

• Experimental results

• Conclusions

Outline

20 March 2018 Efficient verification of multi-property designs 7

20 March 2018 Efficient verification of multi-property designs 8

Proving Properties Globally and Locally

s2 s1

Pi

sn sn+1

Proving Pi globally:

no CEX s1,.., sn,sn+1 where s1,..,sn

are Pi-states and sn+1 is ~Pi state

Pi

s1

...

s2 ... sn

Proving Pi locally: (w.r.t P := P1  ...  Pk)

no CEX s1,.., sn,sn+1 where s1,..,sn

are P-states and sn+1 is ~Pi state

sn+1

P

Proving Pi locally means assuming

that every Pm, m ≠ i holds

If Pi holds locally it either
• holds globally OR

• every CEX breaking Pi first breaks Pm

Relation Between Global and Local Proofs

20 March 2018 Efficient verification of multi-property designs 9

Pi

s1 s2
... sk sn+1

P

sk is Pi-state and ~P-state

sk breaks some property Pm

If Pi holds globally it does locally too

The opposite it not true

...

Advantage of Verifying Properties Locally

20 March 2018 Efficient verification of multi-property designs 10

• Proving Pi locally is easier than P

• proving P : can one reach ~P-state by transitions from P-states ?

• proving Pi locally : can one reach ~Pi-state by transitions from P-states ?

• the ~Pi-states is a subset of the ~P-states

• If Pi holds locally, it is most likely not a bug-identifying property

• even if Pi fails globally, some property Pm fails before Pi

• If Pi fails locally, it is a bug-identifying property

• there is a CEX where Pi is the first to fail

• If P fails  at least one Pi fails locally (and hence globally)

Efficient verification of multi-property designs 11

Example

module counter (enable, clk, request);

 parameter reset_val = 1 << 7;

 input enable, clk, request;

 reg [7:0] val ;

 wire reset ;

 initial val = 0;

 assign reset = ((val == reset_val) && request);

 always @(posedge clk) begin

 if (enable) begin

 if (reset) val = 0;

 else val = val +1;

 end

 end

endmodule

P1: assert property (request == 1);

P2: assert property (val <= reset_val);

Both P1 and P2 fail globally

Consider proving P1 and P2 locally

with respect to P: = P1  P2

P1 fails locally (i.e. assuming P2 is true)

P2 holds locally (i.e. assuming P1 is true)

20 March 2018

• Check every property Pi locally
• i.e. we assume that every Pm , m ≠ i holds

• If every Pi holds locally  aggregate property P holds
 otherwise

• Properties failing locally identify bugs

• No justification of assumptions is required

• When proving Pi locally

• assumption “Pm holds” is useful even if it is wrong:

• we simply drop traces where Pm fails before Pi

“Just-Assume” (Ja) Verification

20 March 2018 Efficient verification of multi-property designs 12

Re-using Inductive Invariants

20 March 2018 Efficient verification of multi-property designs 13

Pi
Let R be the set of reachable states

Proving Pi by induction:

Find strengthening Gi such that

Pi  Gi is an inductive invariant

Both Pi and Gi over-approximate R

Let G1,..,Gi be strengthenings for P1,..,Pi

Proving Pi+1  proving G1  ..  Gi  Pi+1

R

Gi

• Motivation and problem definition

• “Just-assume” verification

• Experimental results

• Conclusions

Outline

20 March 2018 Efficient verification of multi-property designs 14

• In experiments, we used IC3-db, a Diffblue version of IC3

• To prove Pi locally, IC3-db treats Pm, m ≠ i as constraints

• Ja-verification was implemented as a Perl script
• IC3-db is called in a loop to prove properties locally one by one

• Order in which properties are verified matters
• the reason is re-using of inductive invariants
• a rule of thumb: prove easy properties first
• re-use inductive invariants when proving harder properties

• We verified P1,..,Pk in the order they were listed

Implementation of Ja-Verification

20 March 2018 Efficient verification of multi-property designs 15

• We also used IC3-db to implement joint verification
• as a Perl script iteratively calling IC3-db

• Implementation is meant for solving all properties globally

• The script first calls IC3-db to check P := P1  ...  Pk

• If P holds, all properties Pi are true

 otherwise

• false properties are removed, remaining properties are conjoined

• We cross-checked results of IC3-db by ABC (UC, Berkeley)
• Joint verification is a natural mode of operation for ABC

Implementation of Joint Verification

20 March 2018 Efficient verification of multi-property designs 16

• Joint verification is less robust than separate verification

• Complexity of proving P := P1  ...  Pk blows up

• if a few properties Pi are too hard to solve

• properties Pi depend on different local behaviors

• This problem can be solved by clustering similar properties

• we want to make a semantic comparison

• We used HWMCC-13 benchmarks

• correct designs: 8 designs solved by joint verification without clustering

(under 1000 properties each)

• faulty designs: 8 designs where at least one property was proved false

Comparison of Joint and Ja-verification

20 March 2018 Efficient verification of multi-property designs 17

Designs with Failed Properties

20 March 2018 Efficient verification of multi-property designs 18

Name #lat-

ches

#pro-

per-

ties

Joint verification Ja-verification

by IC3-db ABC IC3-db

false (tr) time false (tr) time time limit false (tr) total time

6s104 84,925 124 1 (0) 10 h 1 (0) memout 0.3 h 1 (123)* 2.5 h

6s260 2,179 35 1 (0) 10 h 1 (0) 10 h 0.5 h 1 (34)* 1,686 s

6s258 1,790 80 25 (0) 10 h 30(0) 10 h 0.3 h 1 (72) 2.4 h

6s175 7,415 3 2 (0) 10 h 2 (0) 10 h 0.3 h 2 (1)* 554 s

6s207 3,012 33 6 (0) 10 h 10 (0) 10 h 0.3 h 2 (31)* 22 s

6s254 762 14 13 (1)* 25 s 13 (1)* 225 s 0.3 h 1 (13)* 2 s

6s335 1,658 61 26 (35)* 2 h 26 (35)* 260 s 0.3 h 20 (41)* 56 s

6s380 5,606 897 399 (0) 10 h 395 (0) 10h 0.3 h 3 (894)* 550 s

Correct Designs

20 March 2018 19

Name #lat-

ches

#pro-

per-

ties

Joint verification Ja-verification by IC3-db

ABC

time

IC3-db

time

time

limit

#un-

solved

total

time

6s124 6,748 630 > 10 h 2.9 h 0.8 h 0 1.9 h

6s135 2,307 340 123 s 335 s 0.8 h 0 746 s

6s139 16,230 120 4.7 h 1.7 h 2.8 h 2 6.5 h

6s256 3,141 5 > 10h 602 s 2.8 h 1 2.9 h

bob12m09 285 85 1,692 s 930 s 0.8 h 0 784 s

6s407 11,379 371 1.3 h 3.4 h 0.8 h 0 2,077 s

6s273 15,544 42 1.8 s 325 s 0.8 h 0 290 s

6s275 3,196 673 334 s 1,154 s 0.8 h 0 1,611 s

Efficient verification of multi-property designs

• We introduce “Just-Assume” (Ja) verification
• it is a special case of separate verification

• We give a semantic version of Ja-verification
• a structure-aware method can be built on top of it

• In Ja-verification, assumptions do not need justification

• CEXs are built only for failed properties identifying bugs
• this can give big performance gains (finding CEXs can be very hard)

• Joint and Ja-verification are competitive on correct designs

Conclusions

20 March 2018 Efficient verification of multi-property designs 20

