ol i"‘* DESIGN, AUTOMATION & TEST IN EUROPE
» 19 - 23 March, 2018 - ICC : Dresden - Germany

o<
P =
D i E * The European Event for Electronic
* System Design & Test

* o ¥

Efficient Verification of Multi-Property
Designs (the benefit of wrong assumptions)

E. Goldberg, M. Gudemann, D. Kroening R. Mukherjee
Diffblue Ltd, Cadence Design Systems,

Oxford, UK USA

» Motivation and problem definition
« “Just-assume” verification

« EXperimental results

e Conclusions

20 March 2018 Efficient verification of multi-property designs @

« Main bulk of research: single property verification
A design can have thousands of properties

* A hard property = conjunction of easier properties

4

Need for efficient methods of multiple-property verification

20 March 2018 Efficient verification of multi-property designs @

Problem Definition

* Given sequential circuit and safety properties P,,...,P,
* check if every P; is true
« if some P, fails = design is incorrect

 How many failed properties does one need to find?

« Straightforward approach:
- find every failed property P,
« a flaw: same bug can break many properties
» We take a more practical approach:
« find a (small) subset of failed properties identifying bugs

20 March 2018 Efficient verification of multi-property designs @

Joint and Separate Verification

 Joint verification: check aggregate property P := P, A ... A P,
« design is correct iff P holds

« Separate verification: prove each P, separately
* P, is weaker than P = it should be easier to prove
« different properties can have quite different proofs
* inductive invariant for P; can be re-used when proving P,

 “Just-assume” verification: an instance of separate verification
» verify P, assuming that every P_,, m #i holds
* no justification of assumptions is necessary, hence the name

20 March 2018 Efficient verification of multi-property designs @

Background

« Using design structure to group similar properties
« G.Cabodi, S.Nocco (DATE 2011)
« P. Camurati, C. Loiacono, P. Pasini, D. Patti, S. Quer (DIFTS 2014)

 G. Cabodi, P.E. Camurati, C. Loiacono, M. Palena. P. Pasini, D. Patti,
S. Quer (Int J Software Tool Tech Tran, 2017)

* On-line information on multi-property verification by ABC
« ABC implements joint verification

« HWMCC results, multi-track (up to 2013)

20 March 2018 Efficient verification of multi-property designs @

« Motivation and problem definition
« “Just-assume” verification

« EXperimental results

e Conclusions

20 March 2018 Efficient verification of multi-property designs @

Proving Properties Globally and Locally

Proving P; globally:
no CEXs,,.., S,,,S,., Where s,,..,S,
are P;-states and s, ,, IS ~P; state

Proving P; locally: (wW.r.tP:=P;A ... AP))
no CEXs,,.., S,,,S,., Where s,,..,S,
are P-states and s, ., is ~P; state

Sn+1 Proving P; locally means assuming
that every P, m # I holds

20 March 2018 Efficient verification of multi-property designs

Relation Between Global and Local Proofs

If P; holds globally it does locally too

The opposite it not true

S+l If P, holds locally it either
* holds globally OR
» every CEX breaking P; first breaks P,

S, Is P;-state and ~P-state
S, breaks some property P,

20 March 2018 Efficient verification of multi-property designs @

Advantage of Verifying Properties Locally

* Proving P, locally is easier than P
* proving P : can one reach ~P-state by transitions from P-states ?
* proving P; locally : can one reach ~P;-state by transitions from P-states ?
* the ~P;-states is a subset of the ~P-states

* If P, holds locally, it is most likely not a bug-identifying property

- even if P, fails globally, some property P, fails before P,

« If P, fails locally, it is a bug-identifying property

* there is a CEX where P; is the first to fail

* If P falls = at least one P, fails locally (and hence globally)

20 March 2018 Efficient verification of multi-property designs

module counter (enable, clk, request);

parameter reset_val =1 << 7; P,: assert property (request == 1);
input enable, clk, request; P,: assert property (val <= reset_val);
reg [7:0] val ;
wire reset ;
initial val = 0: Both P, and P, fail globally
assign reset = ((val == reset_val) && request); _ _
always @(posedge clk) begin C_onS|der proving P, and P, locally
if (enable) begin with reSpeCt to P: = Pl A P2
if (reset) val = 0;
else val = val +1; P, fails locally (i.e. assuming P, is true)
e:d P, holds locally (i.e. assuming P, is true)
en
endmodule

20 March 2018 Efficient verification of multi-property designs @

“Just-Assume” (Ja) Verification

» Check every property P, locally
* l.e. we assume that every P, m # i holds

* If every P, holds locally = aggregate property P holds
otherwise

* Properties failing locally identify bugs

* No justification of assumptions is required

* When proving P; locally
« assumption “P,, holds™ is useful even if it is wrong:
» we simply drop traces where P, fails before P,

20 March 2018 Efficient verification of multi-property designs @

Re-using Inductive Invariants

Let R be the set of reachable states

Proving P; by induction:
Find strengthening G; such that
P, A G, is an inductive invariant

Both P, and G, over-approximate R

Let G,,..,G, be strengthenings for P,..,P,;
Proving P;,;, = proving G; A..AG A Py,

20 March 2018 Efficient verification of multi-property designs @

« Motivation and problem definition
« “Just-assume” verification

« EXperimental results

e Conclusions

20 March 2018 Efficient verification of multi-property designs

Implementation of Ja-Verification

* In experiments, we used IC3-db, a Diffblue version of IC3
* To prove P; locally, IC3-db treats P,,, m # I as constraints

« Ja-verification was implemented as a Perl script
 |[C3-db is called in a loop to prove properties locally one by one

* Order in which properties are verified matters
* the reason is re-using of inductive invariants
* a rule of thumb: prove easy properties first
* re-use inductive invariants when proving harder properties

* We verified P,,..,P, In the order they were listed

20 March 2018 Efficient verification of multi-property designs @

Implementation of Joint Verification

* We also used IC3-db to implement joint verification
 as a Perl script iteratively calling IC3-db

* Implementation is meant for solving all properties globally

* The script first calls IC3-db to check P := P, A ... A P,
* If P holds, all properties P; are true
otherwise
» false properties are removed, remaining properties are conjoined

* We cross-checked results of IC3-db by ABC (UC, Berkeley)
« Joint verification is a natural mode of operation for ABC

20 March 2018 Efficient verification of multi-property designs

Comparison of Joint and Ja-verification

« Joint verification is less robust than separate verification
« Complexity of proving P :=P; A ... A P,blows up

- if a few properties P, are too hard to solve
* properties P; depend on different local behaviors

» This problem can be solved by clustering similar properties
e we want to make a semantic comparison

 We used HWMCC-13 benchmarks

« correct designs: 8 designs solved by joint verification without clustering
(under 1000 properties each)

« faulty designs: 8 designs where at least one property was proved false

20 March 2018 Efficient verification of multi-property designs @

Designs with Failed Properties

Name | #lat- #pro- Joint verification Ja-verification
ches per- ABC 1C3-db by IC3-db
ties

false (tr) | time |false (tr) [time | time limit | false (tr) | total time
6s104 | 84,925 | 124 | 1(0) 10h [1(0) memout | 0.3 h 1(123)* |2.5h

6s335 | 1,658 |61 |26(35 |2h |26(35)* |260s |03h |20 (41)* [56s

6s380 | 5,606 |897 |399(0) [10h [395(0) [10h |0.3h 3(894)* |550s
20 March 2018 Efficient verification of multi-property designs @

6s260 | 2179 [35 |[1(0) |10h [1(0) [10h |05h 1(34)* | 1,686s
6s258 | 1,790 |80 |25(0) |10h |30(0) [10h |03h 1(72) |24h
65175 | 7415 |3 |2(0) |10h |2(0) |[10h |03h |2(1) |554s
6s207 | 3,012 [33 [6(0) |10h |10(0) [10h [03h |2(31)* |22s
6s254 | 762 |14 |13(1) |25s |13(1)* |225s |03h 113 | 2s
0
(

Name #lat- #pro- | Joint verification Ja-verification by IC3-db
ches |per- 1 ABC [IC3-db |time |#un- |total
tes | time time | limit | solved | time
65124 6,748 [630 |[>10h [29h [08h 0 19 h
65135 2,307 | 340 |[123s 335s [0.8h 0 746 s
65139 16,230 | 120 [4.7h 1.7h |28h 2 6.5 h
65256 3,141 |5 >10h 602s |28h 1 29h
bob12m09 | 285 85 1,692s [930s |[0.8h 0 784 s
6s407 11,379 | 371 1.3 h 34h |[08h 0 2,077 s
65273 15,944 | 42 18s 325s |[0.8h 0 290 s
65275 3196 | 673 |334s 1,154s | 0.8 h 0 1,611's

20 March 2018

Efficient verification of multi-property designs

Correct Designs

Conclusions

* We Introduce “Just-Assume” (Ja) verification
* it is a special case of separate verification

* We give a semantic version of Ja-verification
* a structure-aware method can be built on top of it

* In Ja-verification, assumptions do not need justification

« CEXs are built only for failed properties identifying bugs
« this can give big performance gains (finding CEXs can be very hard)

« Joint and Ja-verification are competitive on correct designs

20 March 2018 Efficient verification of multi-property designs

