Partial Quantifier Elimination

Eugene Goldberg, Pete Manolios Northeastern University, USA

HVC-2014, November 18-20, Haifa, Israel

Outline

- Partial Quantifier Elimination (PQE)
- Solving QE and PQE
- Experimental results

Quantifier Elimination (QE)

Let F(X, Y) be a Boolean CNF formula

QE problem:

```
Given \exists X[F], find a CNF formula F^*(Y) such that F^* \equiv \exists X[F]
```

 $F^*(y) = \exists X [F(y)]$ for every complete assignment y to Y

SATus Quo

- Straightforward QE is hard
- Best model checkers use SAT rather than QE

A different approach based on partial QE:

Perform reachability analysis light

A model checker that can break new ground (e.g. finding very deep bugs)

Partial QE (PQE)

Let F(X, Y), G(X, Y) be Boolean CNF formulas

PQE:

Given
$$\exists X [F \land G]$$
, find $F^*(Y)$ s.t.

$$F^* \wedge \exists X[G] \equiv \exists X[F \wedge G]$$

Replace quantified *F* with quantifier-free *F**

QE is a degenerate case of PQE where G is empty

Reachability Analysis Light

```
T(S,S') - transition relation,

\mathbf{s} - a state (an assignment to S)

C_{\mathbf{s}} - the longest clause falsified by \mathbf{s}
```

s satisfies $\sim C_s$ and falsifies C_s

$$All_s$$
: $R_s \equiv \exists S [\sim C_s \land T]$

The assignments satisfying R_s specify all states reachable from s in one transition

Only_s:
$$Q_s \wedge \exists S[T] \equiv \exists S[C_s \wedge T]$$

The assignments falsifying Q_s specify states reachable only from s in one transition

Reachability Analysis Light (continued)

- $Only_s \subseteq All_s$
- Only_s can be dramatically smaller than All_s
- It is sufficient to compute Only_s rather than All_s
- Only_s cannot be efficiently computed by a traditional CDCL SAT-solver

Outline

- Partial Quantifier Elimination (PQE)
- Solving QE and PQE
- Experimental results

Our Approach To QE (FMCAD 12, 13)

Find F^* such that $F^* \equiv \exists X [F]$ An **X-clause** is a clause with a variable of X

- 1) **Make** X-clauses **redundant** in $\exists X[F]$ by adding resolvents Redundancy of X-clause C: $\exists X[F] \equiv \exists X[F \setminus \{C\}]$
- 2) **Use branching** to prove redundancy of *X*-clauses in subspaces
- 3) **Use** the **machinery of dependency sequents** to merge results of branches

QE versus SAT (why one needs dependency sequents)

SAT: Is *F* satisfiable?

QE: Find F^* s.t. $F^* \equiv \exists X [F]$

Trivial termination condition:

- finding satisfying assignment
- deriving an empty clause

Non-trivial termination condition:

 deriving a "sufficient" number of clauses depending of free variables

No need to reason about subspaces where *F* is satisfiable

One has to reason about subspaces where *F* is satisfiable

Dependency Sequents (D-sequents)

D-sequents are used to record that a set of X-clauses is redundant in a subspace

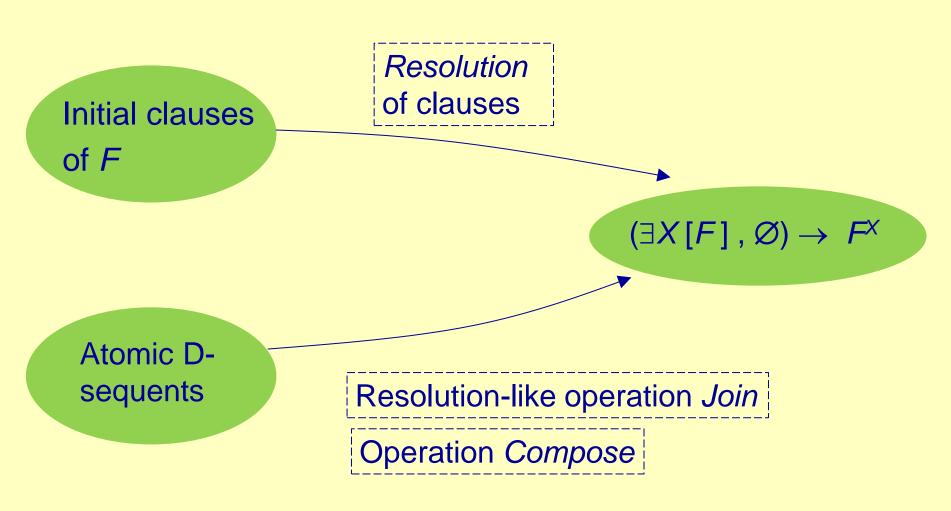
Let q be an assignment to Vars(F).

Let F^{X} denote the X-clauses of F

A D-sequent: $(\exists X[F], \mathbf{q}) \rightarrow R$, where $R \subseteq F^X$

Semantics: R is redundant in $\exists X[F]$ in subspace q

D-Sequent Calculus



Solving PQE

Given $\exists X [F \land G]$

QE: Derive $(\exists X [F \land G], \emptyset) \rightarrow F^{\times} \cup G^{\times}$

PQE: Derive $(\exists X [F \land G], \emptyset) \rightarrow F^{\times}$

PQE can be solved similarly to QE by:

- Adding resolvent clauses to F
- Proving redundancy of X-clauses of F and some X-clauses of G in subspaces
- Merging results of branches using D-sequents

Outline

- Partial Quantifier Elimination (PQE)
- Solving QE and PQE
- Experimental results

PQE versus QE: traditional model checking

We compared two algorithms of backward model checking

MC-PQE: computes pre-image by PQE

MC-QE: computes pre-image by QE (FMCAD-13)

We used HWMCC-10 benchmarks Time limit: 2,000 s.

Results on Some Concrete Benchmarks

bench- mark	#latch es	#gates	#iter- ations	bug	MC-QE (s.)	MC-PQE (s.)
bj08amba3g62	32	9,825	4	no	241	38
kenflashp03	51	3,738	2	no	33	104
pdtvishuffman2	55	831	6	yes	> 2,000	296
pdtvisvsar05	82	2,097	4	no	1,368	7.7
pdtvisvsa16a01	188	6,162	2	no	> 2,000	17
texaspimainp12	239	7,987	4	no	807	580
texasparsesysp1	312	11,860	10	yes	39	25
pj2002	1,175	15,384	3	no	254	47
mentorbm1and	4,344	31,684	2	no	1.4	1.7

Conclusions

- QE is inherently hard ⇒ look for QE light
- PQE is a light version of QE
- Experiments show superiority of PQE over QE
- PQE facilitates new methods of model checking
- PQE is enabled by D-sequents

Next step: D-sequent re-using