
Partial Quantifier Elimination

Eugene Goldberg, Pete Manolios
Northeastern University, USA

HVC-2014, November 18-20,

Haifa, Israel

Outline

• Partial Quantifier Elimination (PQE)

• Solving QE and PQE

• Experimental results

Quantifier Elimination (QE)

Let F(X,Y) be a Boolean CNF formula

QE problem:

 Given X [F], find a CNF formula F*(Y)

 such that F*  X [F]

F*(y) = X [F(y)] for every complete assignment y to Y

SATus Quo

• Straightforward QE is hard

• Best model checkers use SAT rather than QE

A model checker that can break new ground (e.g.

finding very deep bugs)

A different approach based on partial QE:

Perform reachability analysis light

Partial QE (PQE)

Let F(X,Y) , G(X,Y) be Boolean CNF formulas

Given X [F  G], find F*(Y) s.t.

 F*  X [G]  X [F  G]

Replace quantified F with quantifier-free F*

PQE :

QE is a degenerate case of PQE where G is empty

Reachability Analysis Light

Onlys : Qs  S [T]  S [Cs  T]
The assignments falsifying Qs specify states

reachable only from s in one transition

Alls : Rs  S [~Cs  T]
The assignments satisfying Rs specify all states

reachable from s in one transition

T(S,S) - transition relation,

s - a state (an assignment to S)

Cs - the longest clause falsified by s

s satisfies ~Cs and falsifies Cs

Reachability Analysis Light
(continued)

• Onlys  Alls

• Onlys can be dramatically smaller than Alls

• It is sufficient to compute Onlys rather than Alls

• Onlys cannot be efficiently computed by a traditional

 CDCL SAT-solver

Outline

• Partial Quantifier Elimination (PQE)

• Solving QE and PQE

• Experimental results

Our Approach To QE
(FMCAD 12, 13)

1) Make X-clauses redundant in X [F] by adding resolvents

Redundancy of X-clause C: X [F]  X [F \ {C}]

2) Use branching to prove redundancy of X-clauses in

 subspaces

Find F* such that F*  X [F]

An X-clause is a clause with a variable of X

3) Use the machinery of dependency sequents to merge

 results of branches

QE versus SAT
(why one needs dependency sequents)

SAT: Is F satisfiable? QE: Find F* s.t. F*  X [F]

No need to reason about

subspaces where F is satisfiable
One has to reason about subspaces

where F is satisfiable

Trivial termination condition:

• finding satisfying assignment

• deriving an empty clause

Non-trivial termination condition:

• deriving a “sufficient” number of

clauses depending of free variables

Dependency Sequents

(D-sequents)

Semantics: R is redundant in X [F] in subspace q

Let q be an assignment to Vars(F).

Let FX denote the X-clauses of F

 (X [F] , q)  R , where R  FX A D-sequent:

D-sequents are used to record that a set of

X-clauses is redundant in a subspace

D-Sequent Calculus

Resolution-like operation Join

Resolution

of clauses Initial clauses

of F

Atomic D-

sequents

 (X [F] , )  FX

Operation Compose

Solving PQE

• Adding resolvent clauses to F

• Proving redundancy of X-clauses of F and

 some X-clauses of G in subspaces

• Merging results of branches using D-sequents

Given X [F  G]

QE: Derive (X [F  G] , )  FX  G X

PQE: Derive (X [F  G] , )  FX

PQE can be solved similarly to QE by:

Outline

• Partial Quantifier Elimination (PQE)

• Solving QE and PQE

• Experimental results

PQE versus QE: traditional

model checking

We compared two algorithms of

backward model checking

MC-PQE: computes pre-image by PQE

MC-QE: computes pre-image by QE (FMCAD-13)

We used HWMCC-10 benchmarks

Time limit: 2,000 s.

Results on Some Concrete

Benchmarks

bench-

mark

#latch

es

#gates #iter-

ations

bug MC-QE

 (s.)

MC-PQE

 (s.)

bj08amba3g62 32 9,825 4 no 241 38

kenflashp03 51 3,738 2 no 33 104

pdtvishuffman2 55 831 6 yes > 2,000 296

pdtvisvsar05 82 2,097 4 no 1,368 7.7

pdtvisvsa16a01 188 6,162 2 no > 2,000 17

texaspimainp12 239 7,987 4 no 807 580

texasparsesysp1 312 11,860 10 yes 39 25

pj2002 1,175 15,384 3 no 254 47

mentorbm1and 4,344 31,684 2 no 1.4 1.7

Conclusions

• QE is inherently hard  look for QE light

• PQE is a light version of QE

• Experiments show superiority of PQE over QE

• PQE facilitates new methods of model checking

• PQE is enabled by D-sequents

Next step: D-sequent re-using

