Generating High-Quality Tests for Boolean Circuits by Treating Tests as Proof Encoding

> Eugene Goldberg, Pete Manolios Northeastern University, USA

An extended version of the TAP-2010 talk

Slide 1 of 25

References

• E.Goldberg, P.Manolios. *Generating High-Quality Tests for Boolean Circuits by Treating Tests as Proof Encoding,* TAP-2010, Malaga, Spain, LNCS 6143, pp.101-116

• E.Goldberg. *On bridging simulation and formal verification,* VMCAI-2008, San Francisco, USA, LNCS 4905, pp.127-141

• E.Goldberg. *Testing Satisfiability of CNF Formulas by Computing a Stable Set of Points.* Proceedigns of Conference on Automated Deduction, CADE 2002,pp.161-180.

Slide 2 of 25

Summary

- Introduction
- Test generation algorithm
 based on TTPE
- Experimental results and conclusion

Motivation

- Testing is easy (scalable) but incomplete
- Formal verification is complete but hard
- How do we get the best of both worlds (e.g. by generating a small test set that is complete or close to such)?

We study testing by the example of combinational circuits
We describe circuits by propositional logic

Slide 4 of 25

Main Idea

TTPE: Treating Tests As Proof Encoding

Q: Why does testing work at all?

A: Short proof \Rightarrow small encoding test set

Q: What is the best coverage metric?

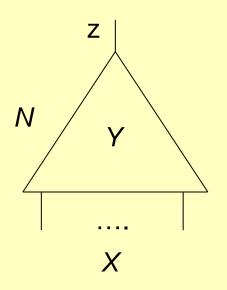
A: A formal proof is an ideal coverage metric (contains a complete set of corner cases)

Q: When does one stop generating tests?

A: When the test set encodes a proof

Slide 5 of 25

Description of the Setup



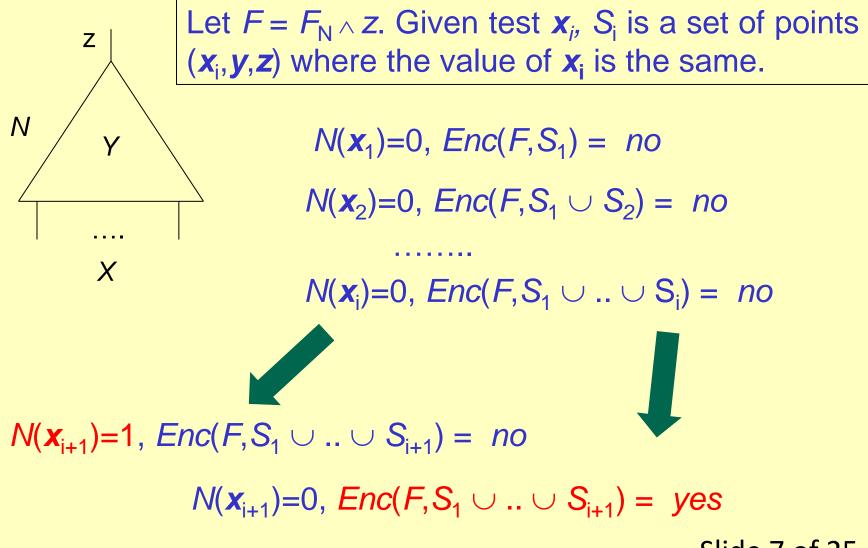
N is a combinational circuit, It is correct if $N \equiv 0$, It has a bug if $N(\mathbf{x}) = 1$.

Circuit $N \Rightarrow$ CNF formula $F^N(X, Y, z)$, $N \equiv 0 \Leftrightarrow (F^N \land z) \equiv 0$

Point **p** is (x,y,z) i.e. a complete assignment to $X \cup Y \cup \{z\}$ The test extracted from **p** is **x** (i.e. assignment to X)

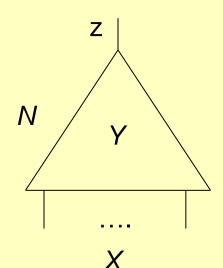
Slide 6 of 25

A Naive Testing Procedure



Slide 7 of 25

A Modified Version



 $i \neq j \Rightarrow p_i \neq p_i$ but x_i may be equal to x_i p_1 , $N(x_1)=0$, $Enc(F, \{p_1\}) = no$ p_2 , $N(x_2)=0$, $Enc(F, \{p_1, p_2\}) = no$ $p_i, N(x_i)=0, Enc(F, \{p_1, ..., p_i\}) = no$ $p_{i+1}, N(x_{i+1})=1, Enc(F, \{p_1, ..., p_{i+1}\}) = no$

 $p_{i+1}, N(x_{i+1})=0, Enc(F, \{p_1, \dots, p_{i+1}\}) = yes$

Slide 8 of 25

Summary

- Introduction
- Test generation algorithm
 based on TTPE
- Experimental results and conclusion

High-Level Description

- We use the resolution proof system
- Checking if a set of points encodes a resolution proof is hard
- Instead, we generate points (called boundary) that encode mandatory fragments of a proof
- So, instead of trying to encode an entire proof we target essential parts of it
- We stop when a counterexample is found or a resource is exceeded

Slide 10 of 25

Encoding a Resolution Proof

 $C' = \mathbf{y}_1 \lor \mathbf{y}_2 \lor \mathbf{\neg} \mathbf{y}_5, \ C'' = \mathbf{\neg} \mathbf{y}_1 \lor \mathbf{y}_7 \quad \Rightarrow \quad C = \mathbf{y}_2 \lor \mathbf{\neg} \mathbf{y}_5 \lor \mathbf{y}_7$

Points p' and p'' encode resolution of C' and C'' if:

$$p' = (y_1 = 0, y_2 = 0, y_5 = 1, y_7 = 0,), C'(p') = 0$$

 $p'' = (y_1 = 1, y_2 = 0, y_5 = 1, y_7 = 0,), C''(p'') = 0$
Hamming_distance(p', p'') = 1.

 $S=\{p_1,..,p_k\}$ encodes a proof if the resolutions encoded by points of *S* are sufficient to derive an empty clause.

Tests $x_1,...,x_m$ encode a proof if they are extracted from a set of points $\{p_1,...,p_k\}, k \ge m$ encoding a proof.

Slide 11 of 25

Checking if a Set of Points Encodes a Proof

Given CNF formula $F = F^N \wedge z$ and $S = \{p_1, ..., p_k\}$.

- Find clauses C', C" of F encoded by points p', p" of S and producing a new resolvent C
- 2. If C', C'' do not exist, **STOP**.
- 3. If the resolvent *C* is an empty clause, **STOP**.
- 4. Add C to F. Go to step 1.

STOP: S does not encode a proof **STOP:** S encodes a proof

Slide 12 of 25

Small Complete Test Sets

A proof of $(F^N \wedge z) \equiv 0$ of *k* resolutions is encoded by 2 k points (at most)

A complete set of $\leq 2 * k$ tests for checking $N \equiv 0$.

N with 1000 inputs: 10^6 tests instead of 2^{1000}

Slide 13 of 25

Boundary Points

Given a CNF formula F and literal I, an unsatisfying assignment to Vars(F) is an I-boundary point p iff

 $(C(\mathbf{p})=0) \land (C \in F) \implies I \in C$

Let p' be an *l*-boundary point of *F* and p'' = flip(p',l). Then F(p'') = 1 or p'' is an ~*l*-boundary point of *F*.

If p' is an *I*-boundary point of *F* and *F* is unsatisfiable, in any proof there is a resolution on literals *I* and $\sim I$ producing resolvent *C* such that C(p') = 0 and C(p'') = 0.

Slide 14 of 25

Boundary Points Encode Mandatory Fragments of a Proof

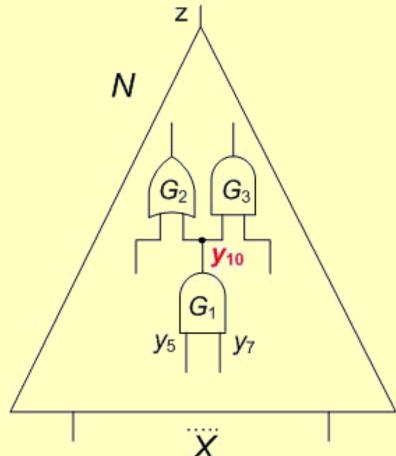
If **p**' and **p**" are / and ~/ boundary points of F such that Hamming_distance(**p**',**p**")=1, they encode a mandatory resolution on literals / and ~/

After adding the resolvent *C* of this resolution to *F*, p' is not an *I*-boundary point of *F* (because C(p') = 0).

Finding an *I*-boundary point reduces to checking the satisfiability of $F \setminus \{\text{clauses with } I\}$.

Slide 15 of 25

Example of a Boundary Point



$$F = F_{N} \wedge Z, F_{G1} \subseteq F_{N}$$

$$F_{G1} = C \wedge (y_{5} \vee \sim y_{10}) \wedge (y_{7} \vee \sim y_{10}),$$

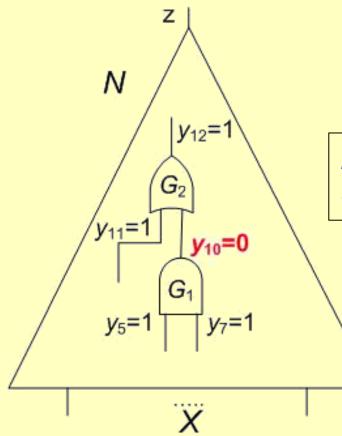
$$C = \gamma_{5} \vee \sim y_{7} \vee y_{10}$$

Let $p=(...,y_5=1,...,y_7=1,...,y_{10}=0,...)$ satisfies all clauses of *F* but *C*

p is an y_{10} -boundary point of *F*. (It is also $\sim y_5$ -boundary and $\sim y_7$ -boundary point)

Slide 16 of 25

Test Extracted from a Boundary Point



$$F_{G1} = C' \land (y_5 \lor \sim y_{10}) \land (y_7 \lor \sim y_{10}),$$

$$C' = \sim y_5 \lor \sim y_7 \lor y_{10}$$

$$F_{G2} = (y_{10} \lor y_{11} \lor \thicksim y_{12}) \land C'' \land (\sim y_{11} \lor y_{12}),$$

$$C'' = \sim y_{10} \lor y_{12}$$

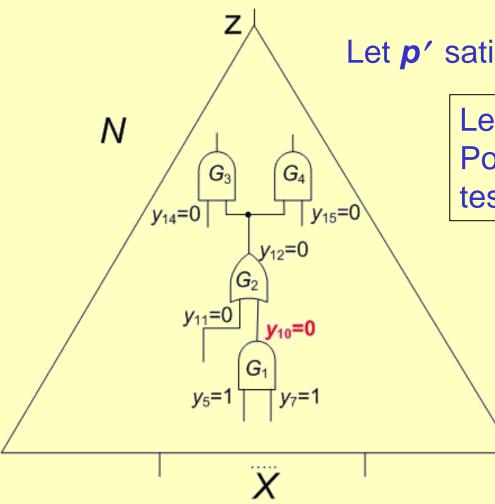
Let p' satisfy the clauses of F but C'.

Point $p'' = flip(p', y_{10})$ satisfies F

p' = (x, y', 1), p'' = (x, y'', 1)Application of x to N produces the trace (y'', 1) of p''

Slide 17 of 25

Non-trivial Case



Let p' satisfy all clauses of F but C of F_{G1} .

Let $p'' = flip(p', y_{10})$. Point p'' falsifies F_{G2} but the test x of p'' is good.

> After applying **x** to *N*, $y_{10}: 0 \rightarrow 1, y_{12}: 0 \rightarrow 1.$ Other change is blocked by $y_{14}=0, y_{15}=0.$ So $N(\mathbf{x}) = 1$

> p' = (x, y', 1), p'' = (x, y'', 1)Application of x to N: trace is different from (y'', 1)

> > Slide 18 of 25

Extracting Tests from Boundary Points

Circuit *N*, CNF formula $F=F^N \wedge z$, Is N(x)=1?

- 1. Generate an *I*-boundary point **p**_i of F
- 2. Extract test **x**_i from **p**_i
- 3. $N(x_i) = 1$? If so, stop.
- 4. Add to *F* a resolvent on *I* and ~*I* mandated by *p*_i
- 5. Go to step 1 to generate p_{i+1}

 \forall satisfiable $F^{N} \land z$, \exists a bnd. pnt. **p** such that $N(\mathbf{x})=1$

Slide 19 of 25

Summary

- Introduction
- Test generation algorithm
 based on TTPE
- Experimental results and conclusion

Slide 20 of 25

Boundary Points and Stuck-at Fault Model

• Tests detecting suck-at faults is a special case of tests extracted from boundary points

• These points are computed for the formula describing equivalence checking of two identical copies of the circuit under test

• The success of the stuck-at model shows that tests extracted from boundary points computed for a circuit *N* can be used for a modified version of *N*

Slide 21 of 25

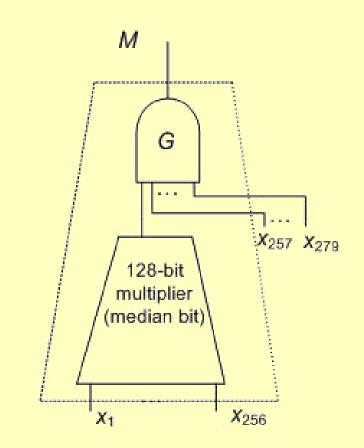
The Reasons for the Success of the Stuck-at Model

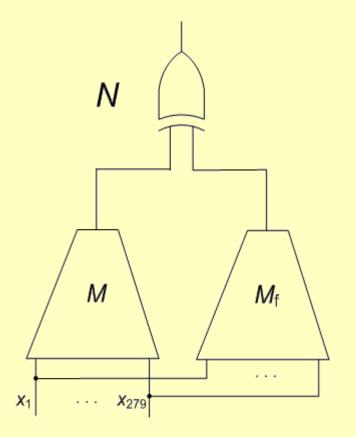
 One may say that the stuck-at fault model is a trick to produce tests extracted from boundary points

• The success of the stuck-at fault model may have little to do with its proximity to real faults

Slide 22 of 25

Faults in Arithmetic Components





G is a 24-input AND gate

Slide 23 of 25

Comparing SAT, Random Tests and Tests from Boundary Points

- 17 faults. Random tests failed (10⁶ per fault)
- Reused tests generated for previous faults

	Precosat	Tests from boundary pnts	
	time (s.)	time (s.)	#tests
total	54, 115	2,919	562
average	3,183	172	33
median	935	8	3

- Precosat is a winner of SAT-2009 competition
- Used Precosat for finding boundary points too

Slide 24 of 25

Some Concluding Remarks

- TTPE is not a trick. There is a deep relation between proofs and tests.
- Many ways to use TTPE (e.g. encoding mandatory parts of a proof).
- TTPE for more expressive logics (describing sequential circuits and software).

Slide 25 of 25