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Summary

• Introduction 

• Test generation algorithm 
based on TTPE

• Experimental results and 
conclusion
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Motivation

• Testing is easy (scalable) but incomplete

• Formal verification is complete but  hard

• How do we get  the best of both worlds (e.g. by 

generating a small test set that is complete or 

close to such)?

• We study testing by the example of

combinational circuits

• We describe circuits by propositional logic
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Main Idea

Q: When does one stop generating tests?

A: When the test set encodes a proof

Q: Why does testing work at all? 

A: Short proof   small encoding test set

Q:  What is the best coverage metric? 

A:  A formal  proof is an ideal coverage metric 

(contains a complete set of corner cases)

TTPE: Treating Tests As Proof Encoding
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Description of the Setup 

Circuit N  CNF formula FN(X,Y,z),

N  0  (FN  z)  0
….

N
Y

z

Point p is (x,y,z) i.e. a complete assignment to X  Y  {z}

The test extracted from p is x (i.e. assignment to X)

X

N is a combinational circuit,

It is correct if N  0,

It has a bug if N(x) = 1.
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A Naive Testing Procedure

N(x1)=0, Enc(F,S1) = no

….

N
Y

z

X

Let F = FN  z. Given test xi, Si is a set of points

(xi,y,z) where the value of xi is the same.

N(x2)=0, Enc(F,S1  S2) = no

……..

N(xi)=0, Enc(F,S1  ..  Si) = no

N(xi+1)=1, Enc(F,S1  ..  Si+1) = no

N(xi+1)=0, Enc(F,S1  ..  Si+1) = yes
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A Modified Version

p1, N(x1)=0, Enc(F,{p1}) = no

….

N
Y

z

X

p2, N(x2)=0, Enc(F,{p1,p2}) = no

……..

pi, N(xi)=0, Enc(F,{p1,..,pi}) = no

pi+1, N(xi+1)=1, Enc(F,{p1,..,pi+1}) = no

i j  pi  pj but xi may be equal to xj

pi+1, N(xi+1)=0, Enc(F,{p1,..,pi+1}) = yes
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Summary

• Introduction 

• Test generation algorithm 
based on TTPE

• Experimental results and 
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High-Level Description

• We use the resolution proof system

• Checking if a set of points encodes a resolution

proof is hard

• Instead, we generate points (called boundary)

that encode mandatory fragments of a proof

• So, instead of trying to encode an entire proof we

target essential parts of it

• We stop when a counterexample is found or a

resource is exceeded
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Encoding a Resolution Proof

C = y1  y2 ~y5, C =~y1  y7

S={p1,..,pk} encodes a proof if the resolutions encoded

by points of S are sufficient to derive an empty clause.

Tests x1,..,xm encode a proof if they are extracted from

a set of points {p1,..,pk}, k  m encoding a proof.

 C = y2 ~y5 y7

p = (y1=0,y2=0,y5=1,y7=0,…….), C (p )=0

p = (y1=1,y2=0,y5=1,y7=0,…….), C (p )=0

Hamming_distance(p ,p ) = 1.

Points p and p encode resolution of C and C if:
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Checking if a Set of Points 

Encodes a Proof

1. Find clauses C ,C of F encoded by points p, 

p of S and producing a new resolvent C

2. If C ,C do not exist, STOP.

3. If the resolvent C is an empty clause, STOP.

4. Add C to F. Go to step 1.

STOP: S does not encode a proof

STOP: S encodes a proof

Given CNF formula F=FN  z and S={p1,..,pk} .
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Small Complete Test Sets

A proof of (FN  z)  0 of k resolutions

is encoded by 2k points (at most)

A complete set of  2k tests for checking N  0.

N with 1000 inputs: 106 tests instead of 21000
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Boundary Points
Given a CNF formula F and literal l, an unsatisfying

assignment to Vars(F) is an l-boundary point p iff

(C(p)=0)  (C  F)  l  C

Let p be an l-boundary point of F and p = flip(p,l) .

Then F(p ) = 1 or p is an ~l-boundary point of F.

If p is an l-boundary point of F and F is unsatisfiable, in 

any proof there is a resolution on literals l and ~l produ-

cing resolvent C such that  C(p ) = 0 and C(p ) = 0. 
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Boundary Points Encode 

Mandatory Fragments of a Proof

If p and p are l and ~l boundary points of F

such that Hamming_distance(p,p )=1, they 

encode a mandatory resolution on literals l and ~l

Finding an l-boundary point reduces to 

checking the satisfiability of F \ {clauses with l}.

After adding the resolvent  C of this resolution to F, p

is not an l-boundary point of F (because C(p ) = 0).
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Example of a Boundary Point

F = FN  z, FG1  FN

FG1 = C  (y5  ~y10)  (y7  ~y10), 

C =  ~y5  ~y7  y10

Let p=(..,y5=1,..,y7 =1,…,y10=0,..) 

satisfies all clauses of F but C

p is an y10-boundary point of F. 

(It is also ~y5-boundary and ~y7-

boundary point)
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Test Extracted from a 

Boundary Point

FG1 = C  (y5  ~y10)  (y7  ~y10),

C =  ~y5  ~y7  y10

FG2 = (y10  y11  ~y12)  C (~y11  y12),

C = ~y10  y12

Let p satisfy the clauses of F but  C.

Point p = flip(p,y10) satisfies F

p = (x,y,1), p = (x,y,1)  

Application of  x to N produces 

the  trace (y,1) of p
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Non-trivial Case

Let p satisfy all clauses of F but C of FG1.

After applying x to N,

y10 : 0 1, y12 : 0  1.

Other change is blocked by 

y14=0, y15=0.  So N(x) = 1

Let p = flip(p,y10) .  

Point p falsifies  FG2  but the 

test x of p is good.

p = (x,y,1), p = (x,y,1)  

Application of  x to N: 

trace is different from (y,1)
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Extracting Tests from 

Boundary Points

1. Generate an l-boundary point pi  of F

2. Extract test xi from pi

3. N(xi)=1? If so, stop.

4. Add to F a resolvent on l and ~l mandated by pi

5. Go to step 1 to generate pi+1

Circuit N , CNF formula F=FN  z, Is N(x)=1?

 satisfiable FN  z,  a bnd. pnt. p such that N(x)=1



Slide 20 of 25

Summary

• Introduction 

• Test generation algorithm 
based on TTPE

• Experimental results and 
conclusion
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Boundary Points and Stuck-at 

Fault Model

• Tests detecting suck-at faults is a special case of 

tests extracted from boundary points

• These points are computed for the formula 

describing equivalence checking of two identical 

copies of the circuit under test

• The success of the stuck-at model shows that 

tests extracted from boundary points computed for a 

circuit N can be used for a modified version of  N
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The Reasons for the Success 

of the Stuck-at Model

• One may say that the stuck-at fault model is a 

trick to produce tests extracted from boundary 

points

• The success of the stuck-at fault  model may 

have little to do with its proximity to real faults
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Faults in Arithmetic Components

G is a 24-input AND gate
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Comparing SAT, Random Tests 

and Tests from Boundary Points

Precosat Tests from boundary pnts

time (s.) time (s.) #tests

total 54, 115 2,919 562

average 3,183 172 33

median 935 8 3

• 17 faults. Random tests failed (106 per fault)

• Reused tests generated for previous faults

• Precosat is a winner of SAT-2009 competition

• Used Precosat for finding boundary points too
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Some Concluding Remarks

• TTPE is not a trick. There is a deep relation

between proofs and tests.

• Many ways to use TTPE (e.g. encoding

mandatory parts of a proof).

• TTPE for more expressive logics

(describing sequential circuits and software).


