
Slide 1 of 25

Generating High-Quality Tests

for Boolean Circuits by Treating

Tests as Proof Encoding

Eugene Goldberg, Pete Manolios
Northeastern University, USA

An extended version of the TAP-2010 talk

Slide 2 of 25

References

• E.Goldberg, P.Manolios. Generating High-

Quality Tests for Boolean Circuits by Treating

Tests as Proof Encoding, TAP-2010, Malaga,

Spain, LNCS 6143, pp.101-116

• E.Goldberg. On bridging simulation and formal

verification, VMCAI-2008, San Francisco, USA,

LNCS 4905, pp.127-141

• E.Goldberg. Testing Satisfiability of CNF

Formulas by Computing a Stable Set of Points.

Proceedigns of Conference on Automated

Deduction, CADE 2002,pp.161-180 .

Slide 3 of 25

Summary

• Introduction

• Test generation algorithm
based on TTPE

• Experimental results and
conclusion

Slide 4 of 25

Motivation

• Testing is easy (scalable) but incomplete

• Formal verification is complete but hard

• How do we get the best of both worlds (e.g. by

generating a small test set that is complete or

close to such)?

• We study testing by the example of

combinational circuits

• We describe circuits by propositional logic

Slide 5 of 25

Main Idea

Q: When does one stop generating tests?

A: When the test set encodes a proof

Q: Why does testing work at all?

A: Short proof  small encoding test set

Q: What is the best coverage metric?

A: A formal proof is an ideal coverage metric

(contains a complete set of corner cases)

TTPE: Treating Tests As Proof Encoding

Slide 6 of 25

Description of the Setup

Circuit N  CNF formula FN(X,Y,z),

N  0  (FN  z)  0
….

N
Y

z

Point p is (x,y,z) i.e. a complete assignment to X  Y  {z}

The test extracted from p is x (i.e. assignment to X)

X

N is a combinational circuit,

It is correct if N  0,

It has a bug if N(x) = 1.

Slide 7 of 25

A Naive Testing Procedure

N(x1)=0, Enc(F,S1) = no

….

N
Y

z

X

Let F = FN  z. Given test xi, Si is a set of points

(xi,y,z) where the value of xi is the same.

N(x2)=0, Enc(F,S1  S2) = no

……..

N(xi)=0, Enc(F,S1  ..  Si) = no

N(xi+1)=1, Enc(F,S1  ..  Si+1) = no

N(xi+1)=0, Enc(F,S1  ..  Si+1) = yes

Slide 8 of 25

A Modified Version

p1, N(x1)=0, Enc(F,{p1}) = no

….

N
Y

z

X

p2, N(x2)=0, Enc(F,{p1,p2}) = no

……..

pi, N(xi)=0, Enc(F,{p1,..,pi}) = no

pi+1, N(xi+1)=1, Enc(F,{p1,..,pi+1}) = no

i j  pi  pj but xi may be equal to xj

pi+1, N(xi+1)=0, Enc(F,{p1,..,pi+1}) = yes

Slide 9 of 25

Summary

• Introduction

• Test generation algorithm
based on TTPE

• Experimental results and
conclusion

Slide 10 of 25

High-Level Description

• We use the resolution proof system

• Checking if a set of points encodes a resolution

proof is hard

• Instead, we generate points (called boundary)

that encode mandatory fragments of a proof

• So, instead of trying to encode an entire proof we

target essential parts of it

• We stop when a counterexample is found or a

resource is exceeded

Slide 11 of 25

Encoding a Resolution Proof

C = y1  y2 ~y5, C =~y1  y7

S={p1,..,pk} encodes a proof if the resolutions encoded

by points of S are sufficient to derive an empty clause.

Tests x1,..,xm encode a proof if they are extracted from

a set of points {p1,..,pk}, k  m encoding a proof.

 C = y2 ~y5 y7

p = (y1=0,y2=0,y5=1,y7=0,…….), C (p)=0

p = (y1=1,y2=0,y5=1,y7=0,…….), C (p)=0

Hamming_distance(p ,p) = 1.

Points p and p encode resolution of C and C if:

Slide 12 of 25

Checking if a Set of Points

Encodes a Proof

1. Find clauses C ,C of F encoded by points p,

p of S and producing a new resolvent C

2. If C ,C do not exist, STOP.

3. If the resolvent C is an empty clause, STOP.

4. Add C to F. Go to step 1.

STOP: S does not encode a proof

STOP: S encodes a proof

Given CNF formula F=FN  z and S={p1,..,pk} .

Slide 13 of 25

Small Complete Test Sets

A proof of (FN  z)  0 of k resolutions

is encoded by 2k points (at most)

A complete set of  2k tests for checking N  0.

N with 1000 inputs: 106 tests instead of 21000

Slide 14 of 25

Boundary Points
Given a CNF formula F and literal l, an unsatisfying

assignment to Vars(F) is an l-boundary point p iff

(C(p)=0)  (C  F)  l  C

Let p be an l-boundary point of F and p = flip(p,l) .

Then F(p) = 1 or p is an ~l-boundary point of F.

If p is an l-boundary point of F and F is unsatisfiable, in

any proof there is a resolution on literals l and ~l produ-

cing resolvent C such that C(p) = 0 and C(p) = 0.

Slide 15 of 25

Boundary Points Encode

Mandatory Fragments of a Proof

If p and p are l and ~l boundary points of F

such that Hamming_distance(p,p)=1, they

encode a mandatory resolution on literals l and ~l

Finding an l-boundary point reduces to

checking the satisfiability of F \ {clauses with l}.

After adding the resolvent C of this resolution to F, p

is not an l-boundary point of F (because C(p) = 0).

Slide 16 of 25

Example of a Boundary Point

F = FN  z, FG1  FN

FG1 = C  (y5  ~y10)  (y7  ~y10),

C = ~y5  ~y7  y10

Let p=(..,y5=1,..,y7 =1,…,y10=0,..)

satisfies all clauses of F but C

p is an y10-boundary point of F.

(It is also ~y5-boundary and ~y7-

boundary point)

Slide 17 of 25

Test Extracted from a

Boundary Point

FG1 = C  (y5  ~y10)  (y7  ~y10),

C = ~y5  ~y7  y10

FG2 = (y10  y11  ~y12)  C (~y11  y12),

C = ~y10  y12

Let p satisfy the clauses of F but C.

Point p = flip(p,y10) satisfies F

p = (x,y,1), p = (x,y,1)

Application of x to N produces

the trace (y,1) of p

Slide 18 of 25

Non-trivial Case

Let p satisfy all clauses of F but C of FG1.

After applying x to N,

y10 : 0 1, y12 : 0  1.

Other change is blocked by

y14=0, y15=0. So N(x) = 1

Let p = flip(p,y10) .

Point p falsifies FG2 but the

test x of p is good.

p = (x,y,1), p = (x,y,1)

Application of x to N:

trace is different from (y,1)

Slide 19 of 25

Extracting Tests from

Boundary Points

1. Generate an l-boundary point pi of F

2. Extract test xi from pi

3. N(xi)=1? If so, stop.

4. Add to F a resolvent on l and ~l mandated by pi

5. Go to step 1 to generate pi+1

Circuit N , CNF formula F=FN  z, Is N(x)=1?

 satisfiable FN  z,  a bnd. pnt. p such that N(x)=1

Slide 20 of 25

Summary

• Introduction

• Test generation algorithm
based on TTPE

• Experimental results and
conclusion

Slide 21 of 25

Boundary Points and Stuck-at

Fault Model

• Tests detecting suck-at faults is a special case of

tests extracted from boundary points

• These points are computed for the formula

describing equivalence checking of two identical

copies of the circuit under test

• The success of the stuck-at model shows that

tests extracted from boundary points computed for a

circuit N can be used for a modified version of N

Slide 22 of 25

The Reasons for the Success

of the Stuck-at Model

• One may say that the stuck-at fault model is a

trick to produce tests extracted from boundary

points

• The success of the stuck-at fault model may

have little to do with its proximity to real faults

Slide 23 of 25

Faults in Arithmetic Components

G is a 24-input AND gate

Slide 24 of 25

Comparing SAT, Random Tests

and Tests from Boundary Points

Precosat Tests from boundary pnts

time (s.) time (s.) #tests

total 54, 115 2,919 562

average 3,183 172 33

median 935 8 3

• 17 faults. Random tests failed (106 per fault)

• Reused tests generated for previous faults

• Precosat is a winner of SAT-2009 competition

• Used Precosat for finding boundary points too

Slide 25 of 25

Some Concluding Remarks

• TTPE is not a trick. There is a deep relation

between proofs and tests.

• Many ways to use TTPE (e.g. encoding

mandatory parts of a proof).

• TTPE for more expressive logics

(describing sequential circuits and software).

